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Abstract
Weprovide a spectral sequence computing the extension groups of tautological bundles
on symmetric products of curves. One main consequence is that, if E �= OX is simple,
then the natural map Ext1(E, E) → Ext1(E [n], E [n]) is injective for every n. Along
with previous results, this implies that E �→ E [n] defines an embedding of the moduli
space of stable bundles of slope μ /∈ [−1, n−1] on the curve X into the moduli space
of stable bundles on the symmetric product X (n). The image of this embedding is, in
most cases, contained in the singular locus. For line bundles on a non-hyperelliptic
curve, the embedding identifies the Brill–Noether loci of X with the loci in the moduli
space of stable bundles on X (n) where the dimension of the tangent space jumps. We
also prove that E [n] is simple if E is simple.

Keywords Tautological bundles · Symmetric products of curves · Extension groups ·
Moduli of vector bundles

Mathematics Subject Classification 14J60 · 14H60 · 14C05

1 Introduction

Various aspects of tautological bundles on symmetric products of curves have been
studied since the early 1960s; see Schwarzenberger (1961), Schwarzenberger (1964),
Mattuck (1965). A bit more recently, focuses of research became stability of these
bundles (Ancona and Ottaviani 1994; Bohnhorst and Spindler 1992; El Mazouni et al.
2011; Biswas and Nagaraj 2013; Dan and Pal 2016; Basu and Dan 2018; Mistretta
2019; Krug 2020) and connections to Koszul cohomology (Voisin 2002, 2005; Ein
and Lazarsfeld 2015).

Let X be a smooth projective curve over C and n ∈ N a positive integer. The
symmetric product is the quotient X (n) = Xn/Sn by the naturalSn-action permuting
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the factors of Xn . Let π : Xn → X (n) be the quotient morphism and write x1 +
· · · + xn := π(x1, . . . , xn) which can be regarded as an effective degree n divisor
on X . Then, for a vector bundle E on X , there is the associated tautological bundle
E [n] of rank(E [n]) = n rank(E), whose fibres are given by E [n](x1 + · · · + xn) =
H0(E|x1+···+xn ); see Sect. 2.3 for the precise definition. Note that, for X a curve,
the symmetric product is smooth and isomorphic to the Hilbert scheme of points:
X (n) ∼= X [n].

In this paper, we study the graded vector spaces Ext∗(E [n], F [n]) between two tauto-
logical bundles. The technical main results are in Sect. 4. There, we describe a spectral
sequence, whose terms on the E

1-level are products of extension and cohomology
groups on the curve X , andwhose limit terms are the extension groups Exti (E [n], F [n]).
This spectral sequence follows from computations regarding theSn-equivariant pull-
back and push-forward along the quotient map π : Xn → X (n) carried out in Sect. 3.
These computations are analogous to the ones in the surface case, see Scala (2009a),
Scala (2009b), Krug (2014), Krug (2018), where the derived McKay correspondence
D(S[n]) ∼= DSn (S

n) of Bridgeland et al. (2001) and Haiman (2001) is used. However,
the result for Ext∗(E [n], F [n]) is more complicated in the curve than in the surface case.
The reason behind this is the fact that, while the derived McKay correspondence gives
equivalences in the surface case, the functors π

Sn∗ : DSn (X
n) � D(X (n)) : π∗ in the

curve case are not equivalences. For a few more words on the comparison between
the curve and the surface case, see Remark 3.5.

Instead of giving the details of the technical results of Sect. 4 in this introduction, let
us focus on the consequences. In Krug (2020), it is shown that, if E is a stable vector
bundle with slope μ(E) /∈ [−1, n− 1], then the associated tautological bundle E [n] is
again μ-stable with respect to the polarisation of X (n) given by H = O(x + X (n−1))

for some x ∈ X . On the critical interval [−1, n − 1] the picture is more complicated:
There are some stable bundles E with slope in this interval, such that E [n] is not stable
anymore (Krug 2020, Sect. 3), but others where stability is still preserved (Biswas and
Nagaraj 2013). A first application of our spectral sequence for the extension groups is
that, at least, simpleness is also preserved on the critical interval.

Theorem 1.1 (Theorems 5.2 and 6.4). Let X be a smooth projective curve of genus
g ≥ 1, and E �= OX a non-trivial vector bundle on X. Then, for every n ∈ N, we have

E is simple 	⇒ E [n] is simple.

Let us fix a pair (r , d) with d /∈ [−r , (n − 1)r ]. Then, by the result of Krug
(2020) mentioned above, there is a well-definedmap ϕ : MX (d, r) → MX (n) , [E] �→
[E [n]] from the moduli space of stable bundles of degree d and rank r on X to the
moduli space of H -slope stable bundles on X (n); see Sect. 2.4 for details. This map
is injective as the isomorphism type of a stable bundle can be reconstructed from the
associated tautological bundle; see Biswas andNagaraj (2012) for g ≥ 2 andKrug and
Rennemo (2022) for g ≤ 1. We will prove that the natural map (_)[n] : Ext1(E, E) →
Ext1(E [n], E [n]) is injective for every stable bundle E �= OX ; see Proposition 5.3,
Proposition 6.7. This means that the differential of ϕ is injective (see Proposition 2.1
for details), which implies
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Theorem 1.2 Let X be a smooth projective curve, d ∈ Z, n, r ∈ N a triple of numbers
satisfying d /∈ [−r , (n − 1)r ] and gcd(d, r) = 1. Let MX (d, r) be the moduli space
of stable bundles of rank r and degree d on X, and let MX [n] be the moduli space of
H-slope stable bundles on X (n). Then the morphism

ϕ : MX (d, r) → MX (n) , [E] �→ [E [n]]

is a closed embedding.

We move on to study properties of the image of the morphism ϕ : MX (d, r) ↪→
MX (n) . In Theorems 5.8 and 5.17, we give closed formulae for Ext1(E [n], E [n]) if
E �= OX is stable and g ≥ 2. For simplicity, here in the introduction, we only state a
special case where the direct summands involving Koszul cohomology are guaranteed
to vanish.

Theorem 1.3 Let X be non-hyperelliptic of genus g ≥ 3. Then, for every line bundle
L on X of degree deg(L) /∈ {0, 1}, we have

Ext1(L [n], L [n]) ∼= Ext1(L, L)⊕H1(OX )⊕ (
H0(L)⊗H1(L∨)

)⊕ (
H1(L)⊗H0(L∨)

)
.

In particular, for any two line bundles L1, L2 ∈ Pic(X) of the same degree deg(L1) =
deg(L2) ≥ 3 and every n ≥ 2, we have

h0(L1) < h0(L2) ⇐⇒ ext1(L [n]
1 , L [n]

1 ) < ext1(L [n]
2 , L [n]

2 ).

The second part of the statement can be interpreted by saying that the point [L [n]] of
MX (n) becomes more singular when the line bundle L becomes more special. More
precisely, for n ≤ d ≤ 2(g − 1), the closed embedding ϕ : MX (d, 1) = Picd(X) ↪→
MX (n) pulls back the stratification of MX (n) given by the dimension of the tangent
spaces of points to the Brill–Noether stratification of Picd(X).

It turns out that, in most cases, the image of ϕ : MX (r , d) → MX (n) is entirely
contained in the singular locus of MX (n) .

Theorem 1.4 (Theorem 5.20). Let E ∈ VB(X) be a stable vector bundle on a curve of
genus g ≥ 3. For |μ(E)| � 0, the point [E [n]] is a singular point ofMX (n) for every
n ∈ N, except (possibly) if n = 2, and X is of genus g = 3.

In the special case that n = 2, X is of genus g = 2 or non-hyperelliptic of genus
g = 3, and |d| � 0, however, the imageϕ(Picd(X)) is entirely contained in the smooth
locus ofMX (2) ; seeProposition5.18 andRemark5.19.Hence, in these cases, onemight
conjecture that the whole connected component of MX (2) containing ϕ(Picd(X)) is
smooth.

The paper is organised as follows. In Sects. 2.1 and 2.2, we introduce some general
notation and convention, and collect some basic facts about graded vector spaces. In
Sect. 2.3, we introduce the main object of our studies, namely tautological bundles.
In Sect. 2.4, we discuss maps between moduli spaces and their differential. The main
result of this section, Proposition 2.1, should be well-known to experts, but we could
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not find aprecise reference. InSect. 2.5,we summarise parts of the theoryof equivariant
coherent sheaves, which are needed later.

In Sect. 3, we describe tautological bundles on the symmetric products as invari-
ants of naturally constructed Sn-equivariant sheaves on the cartesian product; see
Proposition 3.1. Also, we describe the pull-back of tautological bundles along the
quotient map as a complex of Sn-equivariant coherent sheaves; see Proposition 3.4.
The results of this section are analogous to known results for tautological bundles on
Hilbert schemes of points on surfaces; see Remark 3.5 for a few more details on this
analogy.

We start Sect. 4 by proving our technical main result Proposition 4.2. It gives
a spectral sequence whose terms are, often easily computable, extension groups of
certain equivariant coherent sheaves, and which converges to the extension groups
of tautological bundles. The construction of this spectral sequence uses the results of
Sect. 3. We then move on to describe the objects of the spectral sequence as products
of extension groups of bundles on the curve in Sect. 4.1, and the differentials of the
spectral sequence in terms of cup products on the curve in Sect. 4.2.

Once the technical results of Sect. 4 are established, we can prove the results which
were presented in the introduction. To do this, we have to separate between the case
of curves of genus g ≥ 2, which is treated in Sect. 5, and the case of elliptic curves,
which is treated in Sect. 6.

2 Preliminaries

2.1 Notation and conventions

We work over the ground field C. Throughout, X will be a smooth projective curve.
We often write O and ω for the trivial and the canonical line bundle OX and ωX .

Given a variety M , we write VB(M) for the category of vector bundles and
Coh(M) for the category of coherent sheaves on M . Furthermore, we write D(M) :=
Db(Coh(M)) for the bounded derived category of coherent sheaves.

Given a positive integer n, we write [n] := {1, 2, . . . , n}.

2.2 Graded vector spaces

A graded vector space is a vector space V together with a finite direct sum decompo-
sition V = ⊕

i∈Z V i where V i as called the degree i part of V . For d ∈ Z, the shift
V [d] is the graded vector space whose degree i part is V i+d .

On the k-fold tensor product V⊗k , there is the Sk-action given by

(i , i + 1) · (v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vk)

= (−1)degvi ·degvi+1v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vk .

We define the (graded) symmetric power SkV as the invariants under this action.
Setting
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V even :=
⊕

i even

V i , V odd :=
⊕

i odd

V i ,

we have an isomorphism of vector spaces

SkV ∼=
k⊕

�=0

(S�V even) ⊗ (∧k−�V odd),

where, on the right-hand side, the symmetric and wedge products are taken in the
usual (non-graded) sense. Furthermore, the (graded) wedge power ∧kV is defined as
the anti-invariants under the aboveSk-action on V⊗k . By this, wemean the invariants
under the Sk-action twisted by the signum of the permutations. We then have an
isomorphism of vector spaces

∧kV ∼=
k⊕

�=0

(∧�V even) ⊗ (Sk−�V odd).

There is a natural isomorphism of graded vector spaces

Sk(V [1]) ∼= (∧kV )[k]. (1)

The dual V∨ of V is defined as the graded vector space whose degree i part is (V−i )∨.
For E, F ∈ Coh(M) we summarise the Ext-spaces in the graded vector space

Ext∗(E, F) :=
⊕

i≥0

Exti (E, F)[−i].

With this notation, Serre duality on a smooth projective variety Y of dimension n takes
the form

Ext∗(E, F)∨[−n] ∼= Ext∗(F, E ⊗ ωY ).

2.3 Tautological bundles

Let X be a smooth curve, and n ∈ N a positive integer. The symmetric group Sn

acts on Xn by permutation of the factors. We denote the quotient by X (n) = Xn/Sn

and call it the symmetric product. By the Chevalley–Shephard–Todd theorem, X (n) is
again smooth. The symmetric product can be identified with the Hilbert scheme of n
points on X , with the universal family � = �n ⊂ X × X [n] of length n subschemes
of X given by the image of the embedding

X × X (n−1) ↪→ X × X (n), (x, x1 + · · · + xn−1) �→ (x, x1 + · · · + xn−1 + x).
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This means that the Hilbert–Chow morphism

μ : X [n] → X (n), [ξ ] �→
∑

x∈ξ

�(Oξ,x )x

sending a zero-dimensional length n subscheme to its weighted support is an isomor-
phism for X a smooth curve. We denote the projections from the universal family
by

X
prX←−− �

prX(n)−−−→ X (n).

Since prX (n)∗ is flat and finite of degree n, the push-forward prX (n)∗ is exact and sends
vector bundles to vector bundles. Hence, for every E ∈ VB(X), there is the associated
tautological vector bundle

E [n] := prX (n)∗ pr∗X E ∈ VB(X (n))

with rank(E [n]) = n rank(E). Since � is also flat over X , see (Krug and Rennemo
2022, Thm. 1.1), the pull-back pr∗X is exact too. This means that E �→ E [n] extends
to a functor (_)[n] : D(X) → D(X (n)) between the derived categories, and this functor
is isomorphic to the Fourier–Mukai transform

FMO�
: D(X) → D(X (n)).

Wheneverwe speakof stability of bundles on X (n),wemean slope stabilitywith respect
to the polarisation H = O(x + C (n−1)) for any point x ∈ X . Indeed, the numerical
equivalence class of H , and hence the notion of slope stability, is independent of the
chosen point x ∈ C ; see (Krug 2020, Sect. 1.3) for details.

2.4 Morphisms of moduli spaces induced by Fourier–Mukai transforms

Let X and Y be two polarised varieties, and Z ⊂ X × Y a closed subscheme which
is flat over X , and flat and finite over Y . We consider the associated Fourier–Mukai
transform

	 := FMOZ
∼= prY∗ ◦pr∗X : D(X) → D(Y )

where prY : Z → Y and prX : Z → X are the projections. By the assumptions on Z ,
it restricts to exact functors 	 : Coh(X) → Coh(Y ) and 	 : VB(X) → VB(Y ). Of
course, what we have in mind is the case that X is a smooth curve, Y = X (n), and
Z = �n is the universal family of length n subschemes of X .

Proposition 2.1 Let M be a moduli space of stable sheaves on X such that 	(E) is
a stable sheaf on Y for every [E] ∈ M. Then there is a morphism ϕ : M → N to
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the moduli spaceN of stable sheaves on Y given on closed points by [E] �→ [	(E)].
Furthermore, for every [E] ∈ M we have a commutative diagram

TM([E]) ϕ∗−−−−→ TN ([	(E)])
∼=
⏐⏐�

⏐⏐�∼=

Ext1(E, E)
	−−−−→ Ext1(	(E),	(E)) .

(2)

Proof We first consider the case thatM is a fine moduli space, which means that there
is a universal family U ∈ Coh(M× X). Set pr′X := idM ×prX , pr

′
Y := idM ×prY ,

and

	′ := pr′Y∗ ◦pr′∗X : D(M × X) → D(M × Y ) .

Since pr′X is still flat and pr′Y is still flat and finite,	′(U) is a sheaf which is flat over Y .
Let [E] ∈ M be a closed point given by i[E] : SpecC → M. Then, (i[E] × idX )∗U ∼=
E . By base change along the diagram

X
prX←−−−− Z

prY−−−−→ Y

i[E]×idX

⏐⏐� i[E]×idZ

⏐⏐� i[E]×idY

⏐⏐�

M × X
pr′X←−−−− M × Z

pr′Y−−−−→ M × Y

we get (i[E] × idY )∗	′(U) ∼= 	(E) which is stable by assumption. Hence 	′(U) is
a flat family of stable sheaves on Y , which means that we get a classifying morphism
ϕ : M → N with ϕ([E]) = [	(E)] for every closed point [E] ∈ M.

ByCăldăraru (2000, Prop. 3.3.2), there is an étale covering {Ui }ofM such that there
are universal families Ui over Ui × X together with isomorphisms Ui |(Ui×MUk )×X ∼=
Uk|(Ui×MUk )×X .1 Hence, we can construct the morphism ϕ first locally using the
universal family as above, and then glue the local pieces by étale descent.

Since the statement on the differential is an étale local one, we can assume that
both, M and N , have universal families U and W with

(ϕ × idY )∗W ∼= U . (3)

The vertical isomorphisms in (2) are given as follows (we explain the left one, but the
right one is analogous): A tangent vector v ∈ TM([E]) corresponds to a morphism
jv : SpecC[ε] → M with r ◦ jv = i[E], where r : SpecC → SpecC[ε] is the
inclusion of the reduction. Let Ev := ( jv × idX )∗U . Then, there is a short exact
sequence

0 → E → Ev → E → 0, (4)

1 Note that, in general, these isomorphisms only satisfy a twisted cocycle condition, in which the local
universal families do not glue to give a universal family as an ordinary sheaf, but only as a twisted sheaf.
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where the second map is the restriction to the reduction. The class cv ∈ Ext1(E, E) of
(4) is the image of v under the vertical isomorphism TM([E]) → Ext1(E, E) in (2).��

Now, the tangent vector ϕ∗(v) ∈ TN ([	(E)]) corresponds to jϕ∗(v) = ϕ ◦
jv : SpecC[ε] → N . Let 	(E)ϕ∗(v) := ( jϕ∗(v) × idY )∗W . By base change along
the diagram

X
prX←−−−−− Z

prY−−−−−→ Y

r×idX

⏐⏐
� r×idZ

⏐⏐
� r×idY

⏐⏐
�

SpecC[ε] × X
id×prX←−−−−− SpecC[ε] × Z

id×prY−−−−−→ SpecC[ε] × Y SpecC[ε] × Y

jv×idX

⏐⏐
� jv×idZ

⏐⏐
� jv×idY

⏐⏐
� jϕ∗(v)×idY

⏐⏐
�

M × X
pr′X←−−−−− M × Z

pr′Y−−−−−→ M × Y
ϕ×idY−−−−−→ N × Y

together with (3), we see that the short exact sequence

0 → 	(E) → 	(E)ϕ∗(v) → 	(E) → 0,

where the second map is the restriction to the reduction, is given by applying 	 to (4).
Hence, cϕ∗(v) = 	(cv). ��
Remark 2.2 We apply Proposition 2.1 to 	 = (_)[n] = FMO�n

: D(X) → D(X (n))

andM = MX (r , d)where d /∈ [−r , (n−1)r ]. Then, by Krug (2020), the assumption
of Proposition 2.1 is fulfilled: E [n] is stable for every [E] ∈ MX (r , d). We get the
classifying morphism ϕ : MX (r , d) → MX (n) , ϕ([E]) = [E [n]].

If gcd(r , d) = 1, this morphism is projective. Hence, by Vakil (2008, Thm.
1.11), it is a closed embedding if and only if it is injective on closed points and
on tangent vectors. The injectivity on closed points is the fact that E [n] ∼= F [n]
implies E ∼= F ; see (Biswas and Nagaraj 2012, Thm. 1.1) for g ≥ 2, (Krug
and Rennemo 2022, Thm. 1.3) for g = 1, and (Krug and Rennemo 2022, Rem.
4.4) for g = 0. By Proposition 2.1, injectivity on the tangent vectors will follow
from the injectivity of (_)[n] : Ext1(E, E) → Ext1(E [n], E [n]). For g = 0, we have
Ext1(E, E) ∼= Hom(E, E ⊗ωP1) = 0 for every simple bundle E . Otherwise, compo-
sition with an embedding E ⊗ ωP1 ↪→ E would give a non-trivial automorphism of
E . For g ≥ 2, injectivity of (_)[n] on Ext1 is proved in Proposition 5.3, and for g = 1,
this is Proposition 6.7.

2.5 Equivariant sheaves

In this subsection, we summarize some results on equivariant sheaves. For further
details, we refer to Bridgeland et al. (2001, Sect. 4) or Elagin (2014). Let G be a
finite group acting on a variety M . A G-equivariant (coherent) sheaf is a pair (E, λ)

where E ∈ Coh(E) and λ is a G-linearisation of E , i.e. a family of isomorphism
{λg : E

∼−→ g∗E}g∈G satisfying λgh = (h∗λg) ◦ λh for all g, h ∈ G. Later, we
often write just E instead of (E, λ) with the linearisation omitted in the notation.
Given two equivariant sheaves (E, λ) and (F, μ), there is a G-action on Hom(E, F)
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by conjugation by the linearisations: g · ϕ = μ−1
g ◦ (g∗ϕ) ◦ λg . We get an abelian

category CohG(X) with G-equivariant coherent sheaves as objects, and morphism
given by

HomG
(
(E, λ), (F, μ)

) := Hom(E, F)G

where the invariants on the right side are taken with regard to the above conjugation
action. Similarly, there is an induced action by conjugation on Exti (E, F) andwe have

ExtiG
(
(E, λ), (F, μ)

) ∼= Exti (E, F)G

where the left side is given by the derived functor of HomG and the right side is given
by the invariants under the conjugation action. The structure sheafOM has a canonical
linearisation by push-forward of regular functions along the automorphisms of G, and
we write

H∗
G(M, F) := Ext∗G(OM , F) ∼= H∗(M, F)G .

The pull-backs and push-forwards of equivariant sheaves along equivariantmorphisms
inherit linearisations. This means that, for f : M → N a G-equivariant morphism of
varieties, there is a pull-back f ∗ : CohG(N ) → CohG(M) and, if f is proper, also a
push-forward f∗ : CohG(M) → CohH (N ) with f ∗ � f∗.

Also, the tensor product of equivariant sheaves is canonically equipped with a
linearisation. In particular, let E ∈ CohG(M) be an equivariant sheaf, and � a G-
representation. Then, we can define a new equivariant sheaf E ⊗� := E ⊗ p∗� where
p : X → SpecC is the structure morphism. If χ : G → C is a one-dimensional
representation, i.e. a character, E ⊗ χ has the same underlying sheaf E , but the
linearisation is twisted by χ . In particular, if a denotes the sign representation of
Sn and E = (E, λ), then E ⊗ a = (E, λ) with λg = sgn(g)λg .

Let H ⊂ G be a subgroup. There is the restriction functor

Res = ResHG : CohG(M) → CohH (G), (E, λ) �→ (E, λ|H )

which restricts theG-linearisation of an equivariant sheaf to an H -linearisation. There
is also the induction functor Ind = IndGH : CohH (M) → CohG(M) which is left- and
right-adjoint to ResHG . We have IndH

G (E, λ) = ⊕
[g]∈G/H g∗E with the linearisation

given by a combination of the linearisation of E and permutation of the factors. Induc-
tion and restriction commute with pull-backs and push-forwards along equivariant
morphisms. In particular, for f : M → N a proper G-equivariant morphism, we have

f∗ ◦ IndGH ∼= IndGH ◦ f ∗ . (5)

If G acts trivially on M , a G-linearisation of a sheaf E is the same as a G-
action, i.e. a homomorphism G → Aut(E). In this case, there is the functor
triv : Coh(M) → CohG(M) which equips every sheaf with the trivial lineari-
sation, and the functor (_)G : CohG(M) → Coh(M) which takes the invariants
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under the G-action. These two functors are both-sided adjoints of each other. Let
π : N → N/G be a quotient morphism (of course, we mainly want to consider the
case π : Xn → X (n) = Sn). Then, π is G-equivariant when considering the quo-
tient N/G equipped with the trivial action. We have an adjoint pair π∗ � πG∗ , where
π∗ := π∗ ◦ triv : Coh(N/G) → CohG(N ) (so triv is usually hidden in the notation)
and πG∗ := (_)G ◦ π∗ : CohG(N ) → Coh(N/G). Since πG∗ ON ∼= ON/G , projection
formula gives

πG∗ ◦ π∗ ∼= idCoh(N/G) . (6)

Let still G act trivially on M , and let E be a G-equivariant sheaf. Assume that there
is a direct sum decomposition

⊕
i∈I Ei and a G-action on the index set I such that

g ·Ei = Eg·i for all g ∈ G and i ∈ I . Let i1, . . . , ik be a set of representatives of theG-
orbits of I , and letGi j be the isotropy groups. Then, the projection E → Ei1⊕· · ·⊕Eik
induces an isomorphism

EG ∼=−→ E
Gi1
i1

⊕ · · · ⊕ E
Gik
ik

. (7)

Its inverse E
Gi1
i1

⊕ · · · ⊕ E
Gik
ik

→ EG is given by

(s1, . . . , sk) �→
∑

g∈G
g · ι

( s1
|Gi1 |

, . . . ,
sk

|Gik |
)

=
k∑

j=1

∑

[g]∈G/Gi j

g · ι j (s j ) (8)

where ι : Ei1 ⊕ · · · ⊕ Eik → E and ι j : Ei j → E are the inclusions of the direct
summands. Note that we can apply this to the special case M = SpecC where G-
equivariant sheaves are the same as G-representations. This will be used later to
compute equivariant extension groups.

If G acts transitively on I , we have E ∼= IndGGi
Ei for every i ∈ I . Hence, in this

special case, (7) gives an isomorphism of functors

(_)G IndGH ∼= (_)H : CohH (M) → Coh(M) (9)

for every subgroup H ⊂ G.
Given an action of a finite group on a smooth variety M , we write DG(M) :=

Db(CohG(M)) for the bounded derived category of coherent G-equivariant sheaves
on G. All of the functors discussed above can be derived to give functors between the
equivariant derived categories. Note, however, that many of the functors, like Ind, Res,
(_)G and triv are already exact, so their derived versions are just given by term-wise
application to complexes. For E, F ∈ CohG(M), which we can regard as complexes
concentrated in degree zero, we have

ExtiG(E, F) ∼= HomDG (M)(E, F).

Accordingly, we also write ExtiG(E•, F•) := HomDG (M)(E•, F•) if E•, F• ∈
DG(M) are proper complexes.
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3 Pull-back and push-forward along the quotient map

Throughout this section, let n ≥ 2 be some fixed number. For this section, X can
be any smooth curve and does not need to be projective. Let π : Xn → X (n) be the
quotient morphism. For E ∈ VB(X), we will see that there is anSn-equivariant vector
bundle C(E) ∈ VBSn (X

n)withπ
Sn∗ C(E) ∼= E [n].Wewill also describe the pull-back

π∗E [n] ∈ VBSn (X
n).

Let pri : Xn → X , (x1, . . . , xn) �→ xi be the projection to the i-th factor. We
consider the functor

C := IndSn
Sn−1

◦pr∗1 : VB(X) → VBSn (X
n) .

For this definition to make sense, we note that pr1 : Xn → X isSn−1-invariant, if
we considerSn−1 ∼= S[2,n] ≤ Sn as the subgroupof permutationswhich leave 1fixed.
That means that C(E) ∼= ⊕n

i=1 pr
∗
i E and the linearisation λ of C(E) has the property

that for g ∈ Sn and i ∈ [n], we have λg(Ei ) = g∗Eg(i). Furthermore, for a morphism
ϕ : E → F of vector bundles on X , we have C(ϕ) = ⊕i pr∗i (ϕ) : C(E) → C(F). We
can also describe the functor C as the equivariant Fourier–Mukai transform

C ∼= FMIndSn
Sn−1

OD1

∼= FM⊕n
i=1ODi

,

where Di = {(x; x1, . . . , xn) | x = xi } ⊂ X × Xn .

Proposition 3.1 There is an isomorphism of functors (_)[n] ∼= π
Sn∗ ◦ C : D(X) →

D(X (n)).

Proof This should be well-known. For example, the case of line bundles is Mattuck
(1965, Prop. 1). Anyway, let us sketch the proof as it is not long. We use the commu-
tative diagram

Xn

pr1 q1
π

X � = X × X (n−1)
prX prX(n)

X (n)

Since q1 is the Sn−1-quotient morphism, we get

(_)[n] ∼= prX (n)∗ pr
∗
X

(6)∼= prX (n)∗ q
Sn−1
1∗ q∗

1 pr∗X ∼= (_)Sn−1π∗ pr∗1
(9)∼= (_)Sn IndSn

Sn−1
π∗ pr∗1

(5)∼= π
Sn∗ IndSn

Sn−1
pr∗1

∼= π
Sn∗ C .

��
The functors in Proposition 3.1 restrict to the categories of vector bundles so that

we get a natural isomorphism π
Sn∗ C(E) ∼= E [n] for every E ∈ VB(X).
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Lemma 3.2 We consider the reduced subscheme D ⊂ X × Xn given by

D =
n⋃

i=1

Di = {
(x; x1, . . . , xn | x = xi for some i ∈ [n]} .

Then, the following diagram is cartesian:

D
prXn−−−−→ Xn

idX ×π

⏐⏐�
⏐⏐�π

�
prX(n)−−−−→ X (n) .

(10)

Proof Recall that � ∼= X × X (n−1). As a subset of Xn ⊂ X × X (n−1) × Xn , the fibre
product F := � ×X [n] Xn is given by

F = {
(x, x2 + · · · + xn, y1, . . . , yn) | x + x2 + · · · + xn = y1 + · · · + yn

}
.

Since (10) is commutative, we get an induced map D → F . Let us show that this is an
isomorphism with inverse given by prX×Xn |F where prX×Xn : X × X (n−1) × Xn →
X × Xn is the projection. It is easy to check that the composition of these morphisms
in both directions equal the identities on D and F , respectively, on C-valued points.
If both D and F are reduced, this implies that the compositions equal the identities.

The subscheme D ⊂ X×Xn is reduced by definition. As π : Xn → X (n) is flat and
finite, the fibre product F is flat and finite over the smooth variety � ∼= X × X (n−1),
hence Cohen–Macaulay; see (Eisenbud 1995, Exe. 18.17). It follows that F is reduced
since it is generically reduced; see (Eisenbud 1995, Exe. 18.9). ��
Corollary 3.3 There is an isomorphism of functors π∗ ◦ (_)[n] ∼= FMOD : D(X) →
D(X (n)).

Proof This follows from base change along the diagram (10). ��
In order to describe the Sn-equivariant bundle π∗E [n] ∈ VBSn (X

n) more con-
cretely, we will define an Sn-equivariant complex C•

E concentrated in degrees
0, . . . n − 1 as follows. We start by setting C0E := C(E). For 2 ≤ k ≤ n, we con-
sider the embedding

ι[k] : X × Xn−k ↪→ Xn, ι(x, x1, . . . , xn−k) = (x, . . . , x︸ ︷︷ ︸
k−times

, x1, . . . , xn−k) .

We note that ι[k]∗(E � OXn−k ) carries a natural Sk × Sn−k-linearisation where we
considerSk ×Sn−k ∼= S[k] ×S[k+1,n] ≤ Sn as the subgroup of permutations which
fix the two blocks [k] and [k + 1, n]. We define

Ck−1
E := IndSn

Sk×Sn−k
ι[k]∗

(
(E ⊗ ak) � OXn−k

)
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where ak is the sign representation ofSk . In order to give a more concrete description
of Ck−1

E , for I ⊂ [n] with |I | = k, we set ιI = g ◦ ι[k] : X × Xn−k where g ∈ Sn is
a permutation with g([k]) = I such that g|[n]\I is increasing. The image of ιI is the
I -th partial diagonal �I = {

(x1, . . . , xn) ∈ Xn | xi = x j ∀ i, j ∈ I
}
. We then have

Ck−1
E =

⊕

I⊂[n] , |I |=k

EI , EI := ιI∗(E � OX ) , (11)

and its linearisation λ satisfies λg(EI ) = Eg(I ) for g ∈ Sn , and λh|EI is multiplication
by sgn(h) for h ∈ SI ≤ Sn .

Finally, we define differentials d p : Cp
E → Cp+1

E by

(d p(s))I :=
∑

i∈I
(−1)|{ j∈I | j<i}|sI\{i} . (12)

Here, for a local section s ∈ Cp
E , we denote its component in EJ by sJ . For p = 0,

equation (12) makes sense by setting E{ j} := pr∗j E .

Proposition 3.4 Let E ∈ VB(X), and let ε := εC0E
: π∗πSn∗ C0E → C0E be the counit of

the adjunction π∗ � π
Sn∗ . Then, the following Sn-equivariant sequence is exact:

0 → π∗πSn∗ C0E
ε−→ C0E

d0−→ C1E
d1−→ . . .

dn−1−−→ Cn−1
E → 0 .

In particular, there is an isomorphism π∗E [n] ∼= C•
E in DSn (X

n).

Proof For I ⊂ [n], we set DI := ∩i∈I Di . Since the irreducible components Di of D
intersect transversely, we get an Sn-equivariant resolution

0 → OD →
n⊕

i=1

ODi →
⊕

|I |=2

ODI → · · · → OD[n] → 0 (13)

ofOD with the differentials and theSn-linearisations analogous to those of C•
E . This

is exactly as in the surface case, where details can be found in Scala (2009a, Rem.
2.2.1). We have

FM⊕
|I |=p+1 ODI

(E) ∼= Cp
E .

Hence, (13) induces a short exact sequence

0 → FMOD (E) → C0E → C1E → · · · → Cn−1
E → 0 . (14)

This sequence is constructed exactly as in the surface case; see Scala (2009a, Thm.
2.2.3) or (2009b, Thm. 16) or Krug (2018, Rem. 2.10) for details.
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By Proposition 3.1 and Lemma 3.2, we have an isomorphism FMOD (E) ∼=
π∗πSn∗ C0E . So it is left to show that, under this isomorphism, the first map in (14)
agrees, up to a scalar multiple, with the counit of adjunction ε. Note that both func-
tors, πSn∗ and π∗, are Fourier–Mukai transforms. Hence, by Căldăraru and Willerton
(Căldăraru andWillerton 2010, App. A), the counitπ∗◦π

Sn∗ → idDSn
(Xn) is induced

by a map between the Fourier–Mukai kernels. Hence, after precomposition by the
functor C = FM⊕iODi

, the counit ε : π∗ ◦ π
Sn∗ ◦ C → C is still induced by some

Sn-equivariant map OD → ⊕n
i=1ODi between the Fourier–Mukai kernels. How-

ever, one easily checks that, up to scalar multiples, the only Sn-equivariant map
OD → ⊕n

i=1ODi is the natural injection given by the restriction map to every com-
ponent. This is the same as the the first map in (13) and hence it induces the first map
of (14).

The quasi-isomorphism π∗E [n] ∼= C•
E now comes from the isomorphism π∗E [n] ∼=

π∗πSn∗ C0E , see Proposition 3.1, together with the fact, which we just proved, that C
•
E

is an equivariant resolution of π∗πSn∗ C0E . ��
Remark 3.5 The results of this subsection are analogous to the surface case. For S a
smooth quasi-projective surface, tautological bundles on the Hilbert scheme S[n] of
points on the surface are still defined by means of the Fourier–Mukai transform along
the universal family. A crucial difference is that, in the surface case, the Hilbert–Chow
morphismμ : S[n] → S(n) from the Hilbert scheme of points to the symmetric product
is not an isomorphism. However, one can consider the commutative diagram

I n S
p−−−−→ Sn

q
⏐
⏐�

⏐
⏐�π

S[n] μ−−−−→ S(n) .

(15)

where I n S := (Sn ×S(n) S[n])red. Then, instead of the pull-back and push forward
along π , one considers the derived McKay correspondences

	 := Rp∗ ◦ q∗ : D(S[n]) → DSn (S
n) , � := qSn∗ ◦ Lp∗ : DSn (S

n) → D(S[n]) .

For E ∈ VB(S), the equivariant bundle C(E) = C0E and the complex C•
E can then be

defined in the exact sameway as in the curve case above, andwe have�(C(E)) ∼= E [n]
and 	(E [n]) ∼= C•

E ; see Scala (2009a), Scala (2009b), Krug (2018). The proofs we
showed in this section are very similar to the proofs in Scala (2009a), Scala (2009b),
Krug (2018), with the main difference being that some steps become easier in the
curve case because the diagram (15) collapses in the sense that the left and right side
are identified. Instead of reproducing the proofs in the curve case, one can also deduce
them from the surface case by a base change argument. However, we needed to go
through parts of the argument again, since the statement that the augmentation map
in Proposition 3.4 is given by the counit of adjunction does not appear in any of the
references on the surface case. We need that statement for the proof of Proposition 4.1
below.

123



Beitr Algebra Geom

While some things become easier in the curve case due to the isomorphism X [n] ∼=
X (n), we will see that the description of the extension groups of tautological bundles
becomes actually more complicated in the curve case compared to the surface case.
In the surface case, we have the simple formula

Ext∗S[n](E
[n], F [n]) ∼= Ext∗(E, F) ⊗ Sn−1 H∗(OX ) ⊕ H∗(E∨) ⊗ H∗(E) ⊗ Sn−2 H∗(OX );

see Krug (2014), Krug (2018). In the curve case, the extension groups Ext∗(E [n], F [n])
depend on more input data than just Ext∗(E, F) like certain Koszul cohomology
groups. The reason for the complications in the curve case is that, while the functors	

and � in the surface case are equivalences (though not mutually inverse), the functors
π∗ and π

Sn∗ in the curve case are not equivalences (at least π∗ : D(X (n)) → DSn (X
n)

is fully faithful, but πSn∗ is not).

Remark 3.6 Another result in Krug (2018) is the formula 	(Wk(L)) ∼= ∧k L [n], for
every L ∈ Pic S, where Wk(L) = IndSn

Sk×Sn−k

(
(L�k ⊗ ak) � O�n−k

S

)
. Also this has

an analogue in the curve case:

πSn∗ Wk(L) ∼= ∧k L [n] for L ∈ Pic X . (16)

Again, one can either deduce this from the surface case by a base change argument,
or imitate the proof from the surface case. The k = n case of (16) can also be found
in Sheridan (2019, Prop. 3.2). By (16) and (9), we get the formula

H∗(∧k L [n]) ∼= H∗
Sn

(Wk L) ∼= H∗
Sk×Sn−k

(
(L�k ⊗ ak) � O�n−k

S

)

∼= ∧k H∗(L) ⊗ Sn−k H∗(OX ) .

For the details of the computation behind the last two isomorphisms; see the proof of
Krug (2018, Prop. 4.1), or see the proof of Lemma 4.3 below for a similar computation.

4 Extension groups of tautological bundles

In this section, let E, F ∈ VB(X) be two vector bundles on a smooth projective curve
X .

Proposition 4.1 There is a natural isomorphism

α : Ext∗Sn
(C•

E ,C0
F )

∼=−→ Ext∗(E [n], F [n])
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such that the following diagram commutes:

Ext∗Sn
(C0E ,C0F )

π
Sn∗−−−−→ Ext∗(πSn∗ C0E , π

Sn∗ C0F )

τ∗
⏐⏐�

⏐⏐�β̂

Ext∗Sn
(C•

E ,C0F )
α−−−−→ Ext∗(E [n], F [n]) .

(17)

Here, τ : C•
E → C0E is the truncation map, and β̂ = β−1

F ◦ _ ◦ βE where β : (_)[n]
∼=−→

π
Sn∗ ◦ C is the isomorphism of functors of Proposition 3.1.

Proof By Proposition 3.4, the counit of adjunction εC0E
: π∗πSn∗ C0E → C0E induces

a quasi-isomorphism ε̃ : π∗πSn∗ C0E → C•
E . We define the isomorphism α as the

composition

Ext∗Sn
(C•

E ,C0F )
ε̃∗−→ Ext∗Sn

(π∗πSn∗ C0E ,C0
F )

π
Sn∗−−→ Ext∗(πSn∗ π∗πSn∗ C0E , πSn∗ C0

F )

(η
π
Sn∗ C0E

)∗

−−−−−−→ Ext∗(πSn∗ C0E , πSn∗ C0
F )

β̂−→ Ext∗(E [n], E [n])

where η : idD(X (n)) → π
Sn∗ π∗ is the unit of adjunction. The first map of this com-

position is an isomorphism since ε̃ is an quasi-isomorphism. The last map is an
isomorphism since β is an isomorphism. The middle part η∗ ◦ π

Sn∗ is the standard
adjunction isomorphism. Hence, α is indeed an isomorphism.

The commutativity of the diagram (17) now follows from the identity τ ◦ ε̃ = εC0E

and the general unit-counit identity (ηπ
Sn∗ ) ◦ (π

Sn∗ ε) ∼= id
π
Sn∗

. ��
Proposition 4.2 There is a spectral sequence

E
1
p,q = ExtqSn

(C−p
E ,C0

F ) 	⇒ E
p+q = Extp+q(E [n], F [n]) .

concentrated in the second quadrant. The differentials on the 1-level are given by

(d p∗
E )Sn : E

1−p−1,q = ExtqSn
(Cp+1

E ,C0F ) → E
1−p,q = ExtqSn

(Cp
E ,C0F )

where d p
E : Cp

E → Cp+1
E is the differential of the complex C•

E as defined in (12). The
edge morphisms of the spectral sequence

Extq(C0E ,C0F ) = E
1
0,q � E

∞
0,q ↪→ E

q ∼= Extq(E [n], F [n])

are given by β̂ ◦ π
Sn∗

Proof There is the hyperext spectral sequence

E
1
p,q = ExtqSn

(C−p
E ,C0

F ) 	⇒ E
p+q = Extp+q(C•

E ,C0
F ) ,
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whose edge morphisms are given by τ ∗ : ExtqSn
(C0

E ,C0
F ) → Extq(C•

E ,C0
F ). It is

constructed as the spectral sequent associated to the double complex Hom•(C•
E , I •)

by taking some injective Sn-equivariant resolution I • of C0
F .

Now, we replace E
p+q = Extp+q(C•

E ,C0
F ) by E

p+q = Extp+q(E [n], F [n]) using
the isomorphism α. Then, by Proposition 4.1, the edge morphisms are of the desired
form. ��

4.1 A closer look at the terms of the spectral sequence

We now express the terms of the spectral E
1
p,q = ExtqSn

(C−p
E ,C0

F ) as products and

sums of extension spaces of bundles on the curve X . We will first compute (E1
p,q)

∨
and then apply Serre duality to get a formula for E

1
p,q .

The Sn-action on Xn induces, by pull-back of n-forms, a Sn-linearisation on the
canonical bundleωXn .We denote the canonical bundle equippedwith this linearisation
byω[Xn/Sn ]. This notation comes from the fact that it is the canonical line bundle of the
associated quotient stack. Under the isomorphismωXn ∼= ω�n

X , the above linearisation
differs from the onewhich permutes the box-factors by the sign-representation. In other
words, ω[Xn/Sn ] ∼= ω�n

X ⊗ an ; see (Krug and Sosna 2015, Lem. 5.10).

Lemma 4.3 For every p = 0, . . . , n − 1, there are natural isomorphisms

Ext∗Sn
(CpE , C0F )∨[−n]

∼= Ext∗Sn
(C0F ,CpE ⊗ω�n

X ⊗ an)

∼=
(
Ext∗(F, E ⊗ ω

p+1
X ) ⊗ ∧n−p−1 H∗(ωX )

)
⊕

(
Ext∗(F, ωX ) ⊗ H∗(E ⊗ ω

p+1
X ) ⊗ ∧n−p−2 H∗(ωX )

)
.

In the case p = n − 1, the second summand vanishes.

Proof The first isomorphism is equivariant Serre duality; see e.g. (Bridgeland et al.
2001, Sect. 4.3). Looking at the definition of the terms of the complex C•

E in Sect. 3,
we have

Ext∗(C0F ,Cp
E ⊗ω�n

X ⊗ an) ∼=
⊕

i=1,...,n
I⊂[n] , |I |=p+1

Ext∗(pr∗i F, EI ⊗ aI ⊗ ω�n
X ⊗ an).

(18)

The Sn-action on the Ext-space induced by the linearisations of C0F and Cp
E has the

property that g ∈ Sn maps the direct summand indexed by (i, I ) to the one indexed by
(g(i), g(I )). Hence, the action on the index set of the direct sum (18) has two orbits,
represented by (1, [p + 1]) and (1, [2, p + 2]) (except in the case p = n − 1 where
the second orbit does not exist). The stabilisers of these two representatives are

G1 := S[2,p+1] × S[p+2,n], G2 := S[2,p+2] × S[p+3,n].
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Hence, by (7), the Sn-invariants of (18) are computed as

Ext∗Sn
(C0F ,Cp

E ⊗ω�n
X ⊗ an) ∼=

Ext∗(pr∗1 F, E[p+1] ⊗ a[p+1] ⊗ ω�n
X ⊗ an)

G1

⊕
Ext∗(pr∗1 F, E[2,p+2] ⊗ a[2,p+2] ⊗ ω�n

X ⊗ an)
G2

(19)

To compute the first direct summand, we note that

Hom(pr∗1 F, E[p+1] ⊗ a[p+1] ⊗ ω�n
X ⊗ an)

∼= Hom(F, E ⊗ ω
p+1
X )[p+1] � ω

�n−p−1
X ⊗a[p+1,n] ;

compare (11) for the notation used. As theS[p+1]-action onHom(F, E⊗ω
p+1
X )[p+1]

is trivial,

Ext∗(pr∗1 F, E[p+1] ⊗ a[p+1] ⊗ ω�n
X ⊗ an)

G1

∼= H∗(Hom(F, E ⊗ ω
p+1
X )[p+1] � ω

�n−p−1
X ⊗a[p+1,n]

)S[p+2,n]

∼= Ext∗(F, E ⊗ ω
p+1
X ) ⊗ ∧n−p−1 H∗(ωX )

where the last isomorphism is due to the Künneth formula. Similarly, the second direct
summand of (19) is computed as

Ext∗(pr∗1 F, E[2,p+2] ⊗ a[2,p+2] ⊗ ω�n
X ⊗ an)

G2

∼=H∗(Hom(F, ωX ) � (E ⊗ ω
p+1
X )[2,p+2] � ω

�n−p−2
X ⊗ a[p+3,n]

)S[p+3,n]

∼= Ext∗(F, ωX ) ⊗ H∗(E ⊗ ω
p+1
X ) ⊗ ∧n−p−2 H∗(ωX ) .

��
Lemma 4.4 For p = 0, . . . , n − 1, we have

Ext∗Sn
(C p

E ,C0
F )[p]

∼=
(
Ext∗(E, F ⊗ ω

−p
X ) ⊗ Sn−p−1 H∗(OX )

)

⊕
(
Ext∗(E, ω

−p
X ) ⊗ H∗(F) ⊗ Sn−p−2 H∗(OX )

)
.

In the case p = n − 1, the second summand vanishes.

Proof We apply (_)∨[−(n − p)] to both sides of Lemma 4.3 and use (1) to get

Ext∗Sn
(C p

E ,C0
F )[p] ∼=

(
Ext∗(F, E ⊗ ω

p+1
X )∨[−1]) ⊗ (

Sn−p−1(H∗(ωX )∨[−1]))

⊕(
Ext∗(F, ωX )∨[−1]) ⊗ (

H∗(E ⊗ ω
p+1
X )∨[−1]) ⊗ (

Sn−p−2(H∗(ωX )∨[−1])) .
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Now, the formula follows by applying Serre duality on the curve X to every factor of
the right-hand side. ��

4.2 A closer look at the differentials of the spectral sequence

Now, we describe the duals of the differentials on the 1-level of the spectral sequence
of Proposition 4.2.

Lemma 4.5 Under the isomorphisms of Lemma 4.3, the map

(d p
E∗)

Sn : Ext∗Sn
(C0F ,Cp

E ⊗ω�n
X ⊗ an) → Ext∗Sn

(C0F ,Cp+1
E ⊗ω�n

X ⊗ an)

is given by

(
A B
0 D

)
where

A : Ext∗(F, E ⊗ ω
p+1
X ) ⊗ ∧n−p−1 H∗(ωX ) → Ext∗(F, E ⊗ ω

p+2
X ) ⊗ ∧n−p−2 H∗(ωX )

ϕ ⊗ (tp+2 ∧ · · · ∧ tn) �→ −(p + 1)

n − p − 1

n∑

i=p+2

(−1)αi (ϕ ∪ ti ) ⊗ (tp+2 ∧ · · · ∧ t̂i ∧ · · · ∧ tn)

with αi := i + ∑i−1
j=p+2 deg(t j )deg(ti ),

B : Ext∗(F, ωX ) ⊗ H∗(E ⊗ ω
p+1
X ) ⊗ ∧n−p−2 H∗(ωX )

→ Ext∗(F, E ⊗ ω
p+2
X ) ⊗ ∧n−p−2 H∗(ωX )ϑ ⊗ s ⊗ (tp+3 ∧ · · · ∧ tn)

�→ (ϑ ∪ s) ⊗ (tp+3 ∧ · · · ∧ tn),

D : Ext∗(F, ωX ) ⊗ H∗(E ⊗ ω
p+1
X ) ⊗ ∧n−p−2 H∗(ωX ) → Ext∗(F, ωX )

⊗ H∗(E ⊗ ω
p+2
X ) ⊗ ∧n−p−3 H∗(ωX )

ϑ ⊗ s ⊗ (tp+3 ∧ · · · ∧ tn) �→ −(p + 2)

n − p − 2
n∑

i=p+3

(−1)βi ϑ ⊗ (s ∪ ti ) ⊗ (tp+3 ∧ · · · ∧ t̂i ∧ · · · ∧ tn)

with βi := i + ∑i−1
j=p+3 deg(t j )deg(ti ). The second summand of

Ext∗Sn
(C0F ,Cp+1

E ⊗ω�n
X ⊗ an) vanishes for p = n − 2, so does the map D.

Proof For i ∈ [n] and I ⊂ [n], we set

M(i,I ) := Ext∗(pr∗i F, EI ⊗ ω�n
X ⊗ a[n]\I ) ,

M := Ext∗Sn
(C0F ,Cp

E ⊗ω�n
X ⊗ an) =

⊕

|I |=p+1

M(i,I )

N := Ext∗Sn
(C0F ,Cp+1

E ⊗ω�n
X ⊗ an) =

⊕

|J |=p+2

M( j,J ) .
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We write f := d p
E∗ : M → N and denote its components by f(i,I ),( j,J ) : M(i,I ) →

M( j,J ). Note that, by (12),

f(i,I ),( j,J ) = 0 unless i = j and I ⊂ J . (20)

As we already observed in the proof of Lemma 4.4, the group G := Sn acts on M ,
by conjugation by the G-linearisations of the CkE , and this action satisfies g · M(i,I ) =
Mg(i),g(I ) for every g ∈ G. Hence, (7) gives isomorphisms

MSn ∼= M
G(1,[p+1])
(1,[p+1]) ⊕ M

G(1,[2,p+2])
(1,[2,p+2]) , NSn ∼= M

G(1,[p+2])
(1,[p+2]) ⊕ M

G(1,[2,p+3])
(1,[2,p+3]) .

Under these isomorphisms, the map fSn is given by

(
A B
C D

)
: MG(1,[p+1])

(1,[p+1]) ⊕ M
G(1,[2,p+2])
(1,[2,p+2]) → M

G(1,[p+2])
(1,[p+2]) ⊕ M

G(1,[2,p+3])
(1,[2,p+3])

where (compare (8) or (Scala 2009a, App. A))

A(x) =
∑

[g]∈Sn/G(1,[p+1])
fg(1,[p+1]),(1,[p+2])(gx) ,

B(y) =
∑

[g]∈Sn/G(1,[2,p+2])
fg(1,[2,p+2]),(1,[p+2])(gy)

C(x) =
∑

[g]∈Sn/G(1,[p+1])
fg(1,[p+1]),(1,[2,p+3])(gx) ,

D(y) =
∑

[g]∈Sn/G(1,[2,p+2])
fg(1,[2,p+2]),(1,[2,p+3])(gy).

It follows from (20) that all the summands of C vanish. We now compute A in detail,
and leave the analogous computation of B and D to the reader. By (20), the only
non-vanishing summands of A are the maps fg(1,[p+1]),(1,[p+2]) with g(1, [p+ 1]) =
(1, [p+2] \ {k}) for k = 2, . . . , p+2. For [g] ∈ Sn/G(1,[p+1]) with g(1, [p+1]) =
(1, [p+2]\{k}), a representative of [g]with g|[p+3,n] = id[p+3,n], hence g ∈ S[2,p+2],
can be chosen. Since theS[2,p+2]-action on M(1,[p+2]) is trivial, theSn-equivariance
of f gives

A(x) =
∑

[g]∈Sn/G(1,[p+1])
fg(1,[p+1]),(1,[p+2])(gy)

=
∑

[g]∈Sn/G(1,[p+1])
g f(1,[p+1]),(1,[p+2])(y)

= (p + 1) f(1,[p+1]),(1,[p+2])(y) . (21)
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Now, we recall from the proof of Lemma 4.3 that

M
G(1,[p+1])
(1,[p+1]) = Ext∗(pr∗1 F, E[p+1] ⊗ ω�n ⊗ a[p+2,n])S[2,p+1]×S[p+2,n]

∼= Ext∗(F, E ⊗ ωp+1) ⊗ (H∗(ω)⊗n−p−1 ⊗ an−p−1)
Sn−p−1

∼= Ext∗(F, E ⊗ ωp+1) ⊗ ∧n−p−1 H∗(ω) . (22)

Under the last isomorphism, ϕ ⊗ (tp+2 ∧ · · · ∧ tn) corresponds to

1

(n − p − 1)!
∑

σ∈S[p+2,n]
sgn(σ )ϕ ⊗ σ(tp+2 ⊗ · · · ⊗ tn) (23)

where σ(tp+2 ⊗ · · · ⊗ tn) is given by permuting the factors with an additional sign
whenever two odd degree elements switch places, i.e. it is the action on the tensor
power of the graded vector space H∗(ω) as described in Sect. 2.2.

For a fixed i ∈ [p + 2, n], every σ ∈ S[p+2,n] with σ(i) = p + 2 can be written
in the form σ = τ ◦ (p + 2, p + 3, . . . , i) for a unique τ ∈ S[p+3,n]. Then,

σ(tp+2 ⊗ · · · ⊗ tn) = (−1)
∑i−1

j=p+2 deg(t j )deg(ti )ti ⊗ τ(tp+2 ⊗ · · · ⊗ t̂i ⊗ · · · ⊗ tn)

and sgn(σ ) = (−1)i−p−2 sgn(τ ). Hence, (n− p− 1)! times (23) can be rewritten as

n∑

i=p+2

∑

τ∈S[p+3,n]
(−1)i−p−2+∑i−1

j=p+2 deg(t j )deg(ti ) sgn(τ )ϕ ⊗ ti ⊗ τ(tp+2

⊗ · · · ⊗ t̂i ⊗ · · · ⊗ tn)

Since f(1,[p+1]),(1,[p+2]) is (−1)p+1 times the restriction map, see (12), we have

f(1,[p+1]),(1,[p+2])
(
ϕ ⊗ ti ⊗ τ(tp+2

⊗ · · · ⊗ t̂i ⊗ · · · ⊗ tn)
) = (−1)p+1(ϕ ∪ ti ) ⊗ τ(tp+2 ⊗ · · · ⊗ t̂i ⊗ · · · ⊗ tn) .

Hence, applying f(1,[p+1]),(1,[p+2]) to (23) gives

(−1)p+1

(n − p − 1)!
n∑

i=p+2

∑

τ∈S[p+3,n]

(−1)i−p−2+∑i−1
j=p+2 deg(t j )deg(ti ) sgn(τ )(ϕ ∪ ti ) ⊗ τ(tp+2 ⊗ · · · ⊗ t̂i ⊗ · · · ⊗ tn) .

Noting that 1
(n−p−1)! = 1

n−p−1 · 1
(n−p−2)! , we see that the above corresponds to

−1

(n − p − 1)

n∑

i=p+2

(−1)i+
∑i−1

j=p+2 deg(t j )deg(ti )(ϕ ∪ ti ) ⊗ (tp+2 ∧ · · · ∧ t̂i ∧ · · · ∧ tn) .
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under the analogue of the isomorphism (22) for Mi,[p+2]. Combining this with (21)
gives the assertion. ��

4.3 The functor C on the level of Ext

Lemma 4.6 Under the isomorphism

Ext∗Sn
(C(E),C(F)) = Ext∗Sn

(C0E ,C0F ) ∼= Ext∗(E, F) ⊗ Sn−1 H∗(O)

⊕H∗(E∨) ⊗ H∗(F) ⊗ Sn−2 H∗(O)

of Lemma 4.4, the map C : Ext∗(E, F) → Ext∗
(
C(E),C(F)

)
is given by

C(ϕ) = (ϕ ⊗ idn−1, 0) .

Proof A class ϕ ∈ Exti (E, F) corresponds to a morphism E → F[i] in D(X). We
have C(ϕ) = ⊕n

i=1 pr
∗
i ϕ : C(E) = ⊕

i pr
∗
i E → C(F)[i] = ⊕

i pr
∗
i F[i]. Now, we

just need to follow the element C(ϕ) through the isomorphism (7) and the Künneth
isomorphism

Ext∗Sn
(C(E),C(F)) ∼= Ext∗(pr∗1 E,pr∗1 F)S[2,n] ⊕ Ext∗(pr∗1 E,pr∗2 F)S[3,n]

∼= (
Ext∗(E, F) ⊗ Sn−1 H∗(O)

) ⊕ (
H∗(E∨) ⊗ H∗(F) ⊗ Sn−2 H∗(O)

)

to get the assertion. ��
Remark 4.7 By Remark 2.2, in order to prove Theorem 1.2 it suffices to prove the
injectivity of (_)[n] : Ext1(E, E) → Ext1(E [n], E [n]) for every stable bundle E with
μ(E) /∈ [−1, n−1]. For this, in turn, it suffices to prove that, for everyϕ ∈ Ext1(E, E),
the element C(ϕ) = (ϕ ⊗ idn−1, 0) does not vanish under the edge morphism

Ext1
(
C(E),C(E)

) ∼= E
1
0,1 � E

∞
0,q ↪→ E

q ∼= Extq(E [n], F [n])

In other words, we need that C(ϕ) = (ϕ ⊗ idn−1, 0) does not lie in the image of any
of the differentials

E
1−1,1 → E

1
0,1 , E

2−2,2 → E
2
0,1 , E

3−3,3 → E
3
0,1 , . . . .

The reason is that, up to the isomorphism (_)[n] ∼= π
Sn∗ ◦C, the edge morphism equals

π
Sn∗ ; see Proposition 4.2.

5 The case of genus g ≥ 2

In this section, let X be a smooth projective curve of genus g ≥ 2. We write E for the
E = F case of the spectral sequence of Proposition 4.2.
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5.1 Results for simple bundles

Lemma 5.1 Let E ∈ VB(X) be a simple vector bundle. Then, for all p = 1, . . . , n−1,
we have

E
1−p,p

∼= ExtpSn
(C p

E ,C0
E ) = 0

Proof By Lemma 4.4, we have

ExtpSn
(C p

E ,C0
E ) ∼= Hom(E, E ⊗ ω

−p
X ) ⊕

(
Hom(E, ω

−p
X ) ⊗ H0(E)

)
. (24)

Since ω
−p
X � OX and E ⊗ ω

−p
X � E are proper subbundles, non-vanishing of one

of the two summands in (24) would yield an endomorphism of E which is not just
multiplication by a scalar. But we assumed E to be simple. ��

We can now prove the g ≥ 2 case of Theorem 1.1.

Theorem 5.2 Let E ∈ VB(X) be a simple vector bundle. Then E [n] is again simple for
all n ∈ N.

Proof It follows from Lemma 5.1 that

Hom(E [n], E [n]) ∼= E
0 ∼= E

1
0,0

∼= Hom(E0
E ,C0

E ) ∼= Hom(E, E) ⊕
(
H0(E∨) ⊗ H0(E)

)
.

The second summand vanishes. Otherwise, we would get an endomorphism of E
which is not just multiplication by a scalar. ��

Proposition 5.3 Let E �= OX be a simple sheaf. Then the map (_)[n] : Ext1(E, E) →
Ext1(E [n], E [n]) is injective for all n ∈ N.

Proof This follows from Lemma 5.1 together with Remark 4.7. ��

We obtain Theorem 1.2 for g ≥ 2 as a corollary:

Corollary 5.4 For all d ∈ Z, n, r ∈ N with d /∈ [−r , (n − 1)r ] and gcd(d, r) = 1, the
morphism

ϕ : MX (d, r) → MX (n) , [E] �→ [E [n]]

is a closed embedding.

Proof As explained in Remark 2.2, this follows from Proposition 5.3. ��
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5.2 Stable bundles of positive degree

In the following we will study the spectral sequence E of Proposition 4.2 in the
special case that g ≥ 2 and F = E �= O is a stable bundle. This will first be done for
deg(E) ≥ 0 and later for deg(E) < 0.Whenwe speak of two linear maps f : A → B
and f ′ : A′ → B ′ being isomorphic, we mean that there are isomorphisms A ∼= A′
and B ∼= B ′ which make the following diagram commutative:

A
f−−−−→ B

∼=
⏐⏐
� ∼=

⏐⏐
�

A′ f ′
−−−−→ B ′

(25)

The following lemma describes the leftmost non-vanishing differential in every line
of the 1-level of the spectral sequence E.

Lemma 5.5 Let OX �= E ∈ VB(X) be a stable bundle with deg(E) ≥ 0. The dual of
the differential E

1−1,2 → E
1
0,2 is isomorphic to

(∪ , ∪) :
Hom(E, E ⊗ ω) ⊗ H0(ω)

⊕
Hom(E, ω) ⊗ H0(E ⊗ ω)

→ Hom(E, E ⊗ ω2) for n = 2,

and isomorphic to

(
0 ∪ ∪ 0
0 0 0 idExt1(E,ω)

⊗∪
)

:

∧2 H0(ω)

⊕
Hom(E, E ⊗ ω) ⊗ H0(ω)

⊕
Hom(E, ω) ⊗ H0(E ⊗ ω)

⊕
Ext1(E, ω) ⊗ H0(E ⊗ ω) ⊗ H0(ω)

−→
Hom(E, E ⊗ ω2)

⊕
Ext1(E, ω) ⊗ H0(E ⊗ ω2)

for n ≥ 3, where the various products of global sections are all denoted by the same
symbol ∪. For p = 1, . . . , n − 3, the dual of the differential E

1−p−1,2+p → E
1−p,2+p

is isomorphic to

(∪ 0 ∪
0 idExt1(E,ω) ⊗∪ 0

)
:

Hom(E, E ⊗ ωp+1) ⊗ H0(ω)

⊕
Ext1(E, ω) ⊗ H0(E ⊗ ωp+1) ⊗ H0(ω)

⊕
Hom(E, ω) ⊗ H0(E ⊗ ωp+1)

→
Hom(E, E ⊗ ωp+2)

⊕
Ext1(E, ω) ⊗ H0(E ⊗ ωp+2)

.
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The dual of the differential E
1−n+1,n → E

1−n+2,n is isomorphic to

(∪ ∪) :
Hom(E, E ⊗ ωn−1) ⊗ H0(ω)

⊕
Hom(E, ω) ⊗ H0(E ⊗ ωn−1)

→ Hom(E, E ⊗ ωn) .

Proof This is really just a special case of Lemma 4.3 and Lemma 4.5. By the p = 0
case of Lemma 4.3, we have that (E1

0,2)
∨ is the degree n − 2 part of

(
Ext∗(E, E ⊗ω)⊗∧n−1 H∗(ω)

)⊕ (
Ext∗(E, ω)⊗H∗(E ⊗ω)⊗∧n−2 H∗(ω)

)
. (26)

We note thatH1(E⊗ω) ∼= H0(E∨) = 0, sinceO �= E is stable of non-negative degree.
Furthermore, Ext1(E, E ⊗ ω) ∼= Hom(E, E) and H1(ω) are both one-dimensional,
which means that they can be omitted as tensor factors. Hence, the degree 2 part of
(26) is, for n ≥ 3, isomorphic to

∧2 H0(ω) ⊕ Hom(E, E ⊗ ω) ⊗ H0(ω) ⊕ Hom(E, ω) ⊗ H0(E ⊗ ω)

⊕ Ext1(E, ω) ⊗ H0(E ⊗ ω) ⊗ H0(ω)

which is the source of the dual of the differential E
1−1,2 → E

1
0,2 as asserted in the

lemma. The other sources and targets asserted follow analogously from Lemma 4.3.
Now, the description of the maps comes from Lemma 4.5. To illustrate this, let us

consider in detail the last componentExt1(E, ω)⊗H0(E⊗ω)⊗H0(ω) → Ext1(E, ω)⊗
H0(E ⊗ ω2) of the dual of E

1−1,2 → E
1
0,2 which is asserted to be idExt1(E,ω) ⊗∪. This

component is given by the p = 0 case of the map D of Lemma 4.5. Note that we
omitted the one dimensional space H1(ω) = 〈t〉 in the notation, which means that
ϑ ⊗ s ⊗ u ∈ Ext1(E, ω) ⊗ H0(E ⊗ ω) ⊗ H0(ω) corresponds to the element

ϑ ⊗ s ⊗ u ∧ t ∧ · · · ∧ t ∈ Ext1(E, ω) ⊗ H0(E ⊗ ω) ⊗ ∧n−2 H∗(ωX ) (27)

in the description of D. Even though t occurs multiple times in the wedge product,
the expression (27) is usually non-vanishing. The reason is that t is of cohomological
degree 1, so the graded wedge product t ∧ · · · ∧ t is really the symmetric power tn−3;
see (1). Now, by Lemma 4.5 and the fact that s∪ t = 0 for degree reasons, the element
(27) is sent to

2

n − 2
ϑ ⊗ (s ∪ u) ⊗ (t ∧ · · · ∧ t) ,

which, after hiding the factor H1(ω) again, is 2
n−2ϑ ⊗ (s ∪u) ∈ Ext1(E, ω)⊗H0(E ⊗

ω2). We see that our component is given by 2
n−2 idExt1(E,ω) ⊗∪, and the factor 2

n−2
can be absorbed by our choice of the component of the vertical isomorphisms as in
(25). All the other components of the duals of the differentials can be read off from
Lemma 4.5 analogously. ��
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For F ∈ VB(X), we consider the cokernel of the multiplication map

K0,2(F, ω) := coker
(
H0(F ⊗ ω) ⊗ H0(ω)

∪−→ H0(F ⊗ ω2)
)

.

If F = O, we simply write K0,2(ω) := K0,2(O, ω). This is a special case of Koszul
cohomology; see e.g. Green (1984), Aprodu and Nagel (2010) for general information
on this topic. Famously, there is a close relationship between Koszul cohomology of
line bundles on X and global sections of tautological bundles, which was used to prove
the Gonality Conjecture; see Voisin (2002), Voisin (2005), Ein and Lazarsfeld (2015).
Hence, it should not come as a surprise that Koszul cohomology also shows up in our
computations of extension groups of tautological bundles.

Let ∪: Hom(E, ω) ⊗ H0(E ⊗ ω) → K0,2(End(E), ω) be the composition of the
cup product followed by the quotient map Hom(E, E ⊗ω2) → K0,2(End(E), ω). We
set

WE := coker
(
∪: Hom(E, ω) ⊗ H0(E ⊗ ω) → K0,2(End(E), ω)

)
. (28)

Lemma 5.6 Let OX �= E ∈ VB(X) be a stable bundle with deg(E) ≥ 0. Then

(i) E
∞
0,1

∼= Ext1(E, E) ⊕ H1(OX ) ⊕ (
H0(E) ⊗ H1(E∨)

)
,

(ii) E
∞−1,2

∼=
{
W∨

E for n = 2,

W∨
E ⊕ (

H0(E) ⊗ K0,2(E, ω)∨
)

for n ≥ 3.
(iii) If g ≥ 3, then E

∞−p−1,2+p
∼= 0 for all p ≥ 1. If g = 2, then E

∞−p−1,2+p
∼= 0 for

all p ≥ 2.

Proof By Lemma 5.1, we have E
∞
0,1 = E

1
0,1. Thus, (i) follows by Lemma 4.4.

By Lemma 5.1, we also have E
∞−1,2 = E

2−1,2 = ker
(
d : E

1−1,2 → E
1
0,2

)
. Thus (ii)

follows from the first part of Lemma 5.5.
For (iii), it suffices to proof the injectivity of the differentialE1−p−1,2+p → E

1−p,2+p
or, equivalently, the surjectivity of its dual. Both multiplication maps,

Hom(E, E ⊗ ωp+1) ⊗ H0(ω) → Hom(E, E ⊗ ωp+2),

H0(E ⊗ ωp+1) ⊗ H0(ω) → H0(E ⊗ ωp+2)

are surjective for every p ≥ 1 (every p ≥ 2 if g = 2) by Butler (1994, Prop. 2.2): For
the first map, set F = Hom(E, E ⊗ ωp+1) and E = ω in loc. cit., and for the second
F = E ⊗ ωp+1 and E = ω. The surjectivity of the dual of E

1−p−1,2+p → E
1−p,2+p

follows now from the second part of (5.5). ��
Remark 5.7 The condition g ≥ 3 is really necessary for the vanishing ofE2−2,3 if n ≥ 3.

Let E = L be a line bundle on a curve of genus g = 2 with Hom(L, ω) ∼= H1(L) = 0.
ThenE

2−2,3 �= 0 as the multiplication map H0(ω2)⊗H(ω) → H0(ω3) is not surjective
(its cokernel is one-dimensional; see the diagram (32) below).

123



Beitr Algebra Geom

Theorem 5.8 Let OX �= E ∈ VB(X) be a stable bundle with deg(E) ≥ 0 on a curve
of genus g ≥ 3. Then there is a short exact sequence of vector spaces

0 → Ext1(E, E) ⊕ H1(OX ) ⊕ (
H0(E) ⊗ H1(E∨)

) → Ext1(E [n], E [n]) → K → 0

with

K ∼=
{
W∨

E for n = 2,

W∨
E ⊕ (

H0(E) ⊗ K0,2(E, ωX )∨
)

for n ≥ 3.

The n = 2 case is also valid on a curve of genus g = 2.

Proof By part (iii) of Lemma 5.6, we have a short exact sequence

0 → E
∞
0,1 → Ext1(E [n], E [n]) → E

∞−1,2 → 0

The outer terms of this sequence are described by part (i) and (ii) of Lemma 5.6. ��
Remark 5.9 The cokernel K in the above description of Ext1(E [n], E [n]) often van-
ishes. If degE ≥ 3, then K0,2(E, ωX ) = 0. In other words, the product ∪: H0(E ⊗
ω) ⊗ H0(ω) → H0(E ⊗ ω2) is surjective, as follows form (Butler 1994, Prop. 2.2) if
we set F = E ⊗ ω and E = ω in loc. cit..

If E = L is a line bundle, and X is not hyperelliptic, then we have K0,2(E, ωX ) = 0
already for degL ≥ 2; see (Butler 1999, Thm. 1).

The vector space WE is a quotient of K0,2(End(E), ωX ). If E = L is a line bundle,
we have End(L) = OX , hence K0,2(End(E), ωX ) = K0,2(ωX ). The latter vector space
vanishes if X is non-hyperelliptic by the Max Noether Theorem; see e.g. (Arbarello
et al. 1985, p. 117). We also have K0,2(ωX ) = 0 if g = 2; see Remark 5.14 below.

Corollary 5.10 Let X be non-hyperelliptic. Then, for every line bundle L on X of degree
deg(L) ≥ 2, we have

Ext1(L [n], L [n]) ∼= Ext1(L, L) ⊕ H1(OX ) ⊕ (
H0(L) ⊗ H1(L∨)

)
. (29)

In particular, for any two line bundles L1, L2 ∈ Pic(X) of the same degree deg(L1) =
deg(L2) ≥ 2 and every n ≥ 2, we have

h0(L1) < h0(L2) ⇐⇒ ext1(L [n]
1 , L [n]

1 ) < ext1(L [n]
2 , L [n]

2 ) . (30)

As mentioned in the introduction, this can be interpreted as follows:

Corollary 5.11 Let X be a non-hyperelliptic curve, and let n ≤ d ≤ 2(g − 1). Then,
under the closed embedding ϕ : Picd(X) ↪→ MX (n) , [E] �→ [E [n]], the stratification
onMX (n) given by the dimension of the tangent spaces pulls back to the Brill–Noether
stratification on Picd(X).
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Denote the first Chern class of L [n] for any degree d line bundle L on X by c1(d, n).
Then, there is an isomorphism

Picd(X)
∼=−→ Picc1(d,n)(X

(n)) , [L] �→ [detL [n]] ; (31)

see (Sheridan 2019, Sect. 3.2).

Corollary 5.12 The embedding ϕ : Picd(X) → MX (n) , precomposed by the inverse of
the isomorphism (31), is a section of det : M′

X (n) → Picc1(d,n)(X (n)) whereM′
X (n) ⊂

MX (n) denotes the component containing the image of ϕ.

Remark 5.13 The equivalence (30) still holds on a non-hyperelliptic curve X if
deg(L1) = deg(L2) = 1. The only difference is that, in (29), there is the addi-
tional summand H0(L) ⊗ K0,2(L, ω)∨, which is 1-dimensional for deg(L) = 1 and
h0(L) = 1; compare diagram (34) below.

For a hyperelliptic curve, the description of Ext1(L [n], L [n]), according to Theorem
5.8, becomes more complicated than for non-hyperelliptic curves, due to the non-
vanishing of K0,2(L, ωX ). However, we can still prove one of the implications of (30).

Corollary 5.14 Let X be a hyperelliptic curve of genus g ≥ 3 and deg(L1) =
deg(L2) > 0. Then, for every n ≥ 2, we have

h0(L1) < h0(L2) 	⇒ ext1(L [n]
1 , L [n]

1 ) < ext1(L [n]
2 , L [n]

2 ) .

Proof Wefirst compute K0,2(ω) = coker
(
H0(ω)⊗H0(ω)

∪−→ H0(ω2)
)
for X a hyperel-

liptic curve of genus g. Let h : X → P
1 be a double cover and L := h∗OP1(1) (which

is usually denoted by L = O(g12) in the literature). Let V := H0(P1,O(1)) ∼= C
2.

Then, for every a ∈ N, the pull back

h∗ : SaV ∼= H0(P1,O(a)) → H0(X , Ln)

is injective, and a dimension count shows that it is an isomorphism if and only if a ≤ g.
For all a, b ∈ N, we get a commutative diagram

H0(X , La) ⊗ H0(X , Lb)
∪−−−−→ H0(X , La+b)

h∗⊗h∗
�
⏐⏐ h∗

�
⏐⏐

SaV ⊗ SbV
∪−−−−→ Sa+bV

(32)

where the bottom arrow is surjective and the two upwards arrows are injective. We
have ωX ∼= Lg−1. Hence, considering diagram (32) for a = g− 1 = b, in which case
the left upward arrow is an isomorphism, gives

k0,2(ω) = h0(ω2) − dim(S2(g−1)V ) = 3(g − 1) − 2(g − 1) − 1 = g − 2 .
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In particular, K0,2(ω) = 0 for a curve of genus 2.
Now, let us prove that ext1(L [n]

1 , L [n]
1 ) < ext1(L [n]

2 , L [n]
2 ) for d = deg(L1) =

deg(L2) > 0 and h0(L2) = h0(L1) + 1. By Theorem 5.8, for every line bundle L of
positive degree we have a (non-canonical) direct sum decomposition of vector spaces

Ext1(L[n], L[n]) ∼= H1(OX )⊕H1(OX )⊕(
H0(L)⊗H1(L∨)

)⊕W∨
L ⊕(

H0(L)⊗K0,2(L, ωX )∨
)

(33)
where the last summand vanishes in the n = 2 case.
The dimension of the third summand H0(L)⊗H1(L∨) of (33) grows by h1(L∨) =

d + g − 1 when we pass from L1 to L2. The dual WL of the fourth summand of (33)
is a quotient of K0,2(ω). Hence, its dimension can shrink by at most k0,2(ω) = g − 2
when we pass from L1 to L2. Hence, it suffices to proof that the fifth summand
H0(L) ⊗ K0,2(L, ωX )∨ cannot shrink when we pass from L1 to L2. This summand is
zero if H0(L) = 0 and also if d ≥ 3; see Remark 5.9. Hence, the only case to consider
is d = 2, h0(L1) = 1, and h0(L2) = 2. Let 0 �= s ∈ H0(L1). Then, we have the
commutative diagram

H0(L1 ⊗ ω) ⊗ H0(ω)
∪−−−−→ H0(L1 ⊗ ω2)

s∪
�⏐⏐ s∪

�⏐⏐

H0(ω) ⊗ H0(ω)
∪−−−−→ H0(ω2)

(34)

where the left vertical map is an isomorphism, and the right vertical map is injective
with image of codimension 1. Hence k0,2(L1, ω) = k0,2(ω)+1 = g−1. It follows that
the fifth summand in (33) for L1 has dimension at most g−1. To compute k0,2(L2, ω),
we note that L2 = L = O(g12). Hence, we can consider the a = g and b = g− 1 case
of (32). In this case, the left vertical arrow is still an isomorphism. Hence

k0,2(L2, ω) = h0(L2g−1) − dim S2g−1V = 4g − 2 − g + 1 − 2g = g − 1 ,

and the fifth summand in (33) is bigger for L = L2 than for L = L1. ��

5.3 Stable bundles of negative degree

We now come to the case of stable bundles of negative degree.

Lemma 5.15 Let OX �= E ∈ VB(X) be a simple bundle with deg(E) < 0. The dual
of the differential E

1−1,2 → E
1
0,2 is isomorphic to

(∪ , ∪) :
Hom(E, E ⊗ ω) ⊗ H0(ω)

⊕
Hom(E, ω) ⊗ H0(E ⊗ ω)

→ Hom(E, E ⊗ ω2) for n = 2,

and isomorphic to
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(
0 ∪ 0 ∪
0 0 id⊗∪ id⊗δ

)

:

∧2 H0(ω)

⊕
Hom(E, E ⊗ ω) ⊗ H0(ω)

⊕
Hom(E, ω) ⊗ H1(E ⊗ ω) ⊗ H0(ω)

⊕
Hom(E, ω) ⊗ H0(E ⊗ ω)

−→
Hom(E, E ⊗ ω2)

⊕
Hom(E, ω) ⊗ H1(E ⊗ ω2)

for n ≥ 3, where δ is the productwith a generator ofH1(ω) (note, however, that the only
case whenH0(E⊗ω) andH1(E⊗ω2) are both non-vanishing is E = ω−1, in all other
cases δ = 0). For p = 1, . . . , n−3, the dual of the differentialE1−p−1,2+p → E

1−p,2+p
is isomorphic to

(
∪ 0 ∪
0 id⊗∪ id⊗δ

)

:

Hom(E, E ⊗ ωp+1) ⊗ H0(ω)

⊕
Hom(E, ω) ⊗ H1(E ⊗ ωp+1) ⊗ H0(ω)

⊕
Hom(E, ω) ⊗ H0(E ⊗ ωp+1)

−→
Hom(E, E ⊗ ωp+2)

⊕
Hom(E, ω) ⊗ H1(E ⊗ ωp+2)

.

Again, δ is multiplication by a generator of H1(ω), but either its domain or its
codomain vanishes except for E = ω−(p+1).
The dual of the differential E

1−n+1,n → E
1−n+2,n is isomorphic to

(∪ ∪) :
Hom(E, E ⊗ ωn−1) ⊗ H0(ω)

⊕
Hom(E, ω) ⊗ H0(E ⊗ ωn−1)

−→ Hom(E, E ⊗ ωn) .

Proof This is analogous to Lemma 5.5. Note that now Ext1(E, ω) ∼= H0(E) = 0
vanishes. ��
Lemma 5.16 Let OX �= E ∈ VB(X) be a simple bundle with deg(E) < 0 and n ≥ 2.
Then

(i) E
∞
0,1

∼= Ext1(E, E) ⊕ H1(OX ) ⊕ (
H1(E) ⊗ H0(E∨)

)
.

(ii) With WE as in (28), we have E
∞−1,2

∼= W∨
E for every n ≥ 2.

(iii) If g ≥ 3, then E
∞−p−1,2+p

∼= 0 for all p ≥ 1. If g = 2, then E
∞−p−1,2+p

∼= 0 for
all p ≥ 2.

Proof The first part is analogous to Lemma 5.6. Let now 0 �= s ∈ H0(ω), and consider
the short exact sequence

0 → E ⊗ ωp+1 s−→ E ⊗ ωp+2 → O⊕r
K → 0 .

where K = Z(s) ⊂ X is a canonical divisor. Since H1(OK ) = 0, the map

_ ∪ s : H1(E ⊗ ωp+1) → H1(E ⊗ ωp+2)
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is surjective. It follows that

∪: H1(E ⊗ ωp) ⊗ H0(ω) → H1(E ⊗ ωp+2)

is surjective. This shows that the dual of the differential E
1−p−1,2+p → E

1−p,2+p, as

described in Lemma 5.15, surjects to the second direct summand of (E1−p,2+p)
∨. The

case p = 0 proves the second part of our lemma. For the third part, we recall from the
proof of Lemma 5.6 that, by Butler (1994, Prop. 2.2), the multiplication map

Hom(E, E ⊗ ωp+1) ⊗ H0(ω) → Hom(E, E ⊗ ωp+2)

is surjective for p ≥ 1 (p ≥ 2 if g = 2). Hence, the dual of the differential
E
1−p−1,2+p → E

1−p,2+p is surjective. ��
Theorem 5.17 LetOX �= E ∈ VB(X) be a stable bundle with deg(E) < 0. Then there
is a short exact sequence

0 → Ext1(E, E) ⊕ H1(OX ) ⊕ (
H1(E) ⊗ H0(E∨)

)→ Ext1(E [n], E [n]) → W∨
E → 0 .

Proof This follows from Lemma 5.16 the same way as Theorem 5.8 followed from
(5.6). ��

5.4 Singular points in themoduli space

Let E �= OX be a stable vector bundle. Our above computations show that, in almost
all cases, E

∞
0,2 ⊂ Ext2(E [n], E [n]) is strictly bigger than H2(OX (n) ) ∼= ∧2 H1(OX ),

which means that the obstruction space

Ext20(E
[n], E [n]) := ker

(
Ext2(E [n], E [n]) tr−→ H2(OX (n) )

)

does not vanish. However, for n = 2, there are a few exceptions where
Ext20(E

[2], E [2]) = 0.

Proposition 5.18 Let X be either of genus g = 2 or non-hyperelliptic of genus
g = 3 and let L be a line bundle on X with Hom(L, ω) ⊗ H0(L ⊗ ω) = 0. Then
Ext20(L

[2], L [2]) = 0. In particular [L [2]] is a smooth point of MX (2) .

Proof Since the trace map has the right-inverse α �→ α ∪ idL , it suffices to show that
ext2(L [2], L [2]) = h2(OX (2) ) = (g

2

)
. By the vanishing of Hom(L, ω) ⊗ H0(L ⊗ ω)

and the description of the differential E
1−1,2 → E

1
0,2 in Lemma 5.5 and Lemma 5.15,

we have

ext2(L [2], L [2]) = dim(E2
0,2) ≥ h0(ω)2 − h0(ω2) = g2 − 3(g − 1) .

with equality in the middle if and only if ∪: H0(ω) ⊗H0(ω) → H0(ω2) is surjective,
which is the case if and only if X is non-hyperelliptic or g = 2. Furthermore, we have
g2 − 3(g − 1) = (g

2

)
if and only if g = 2 or 3. ��
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Question 5.19 For |d| = |deg(L)| � 0, the condition Hom(L, ω) ⊗H0(L ⊗ ω) = 0
is always satisfied. Hence, for X of genus g = 2 or non-hyperelliptic of genus g = 3,
and |d| � 0, the image of the map ϕ : Picd(X) ↪→ MC(2) is contained in the smooth
locus. Since in most other cases the image of (_)[n] is contained in the singular locus of
MX (n) (see Theorem 5.20 below), one can question whether the whole component of
MX (2) containing ϕ(Picd(X)) for |d| � 0 and X of genus g = 2 or non-hyperelliptic
of genus g = 3 is smooth.

Theorem 5.20 Let E ∈ VB(X) be a stable vector bundle on a curve of genus g ≥ 3.
For |μ(E)| � 0, the point [E [n]] is a singular point ofMX (n) for every n ∈ N, except
(possibly) if n = 2, and X is of genus g = 3.

Proof For n = 2, the component of MX (2) containing E [2] is irreducible of the
expected dimension if |μ(E)| � 0; see (Krug 2021, Cor. 1.3). But, by a generali-
sation of the computation of the proof of Proposition 5.18, we have

ext2(E [2], E [2]) ≥ hom(E, E ⊗ ω)h0(ω) − hom(E, E ⊗ ω2)

= (
r2(g − 1) + 1

)
g − 3r2(g − 1)

= (g − 3)r2(g − 1) + g

which for g ≥ 4 is bigger than h2(ωX (2) ) = (g
2

)
. Hence, for g ≥ 4, we have

ext20(E
[2], E [2]) > 0. This means that the tangent space TMX(2) ([E [2]]) is of higher

dimension than the expected dimension, which is the dimension ofMX (2) in the point
[E [2]].

For n ≥ 3, we note that it suffices to prove the non-vanishing of the Yoneda square
map

q : Ext1(E [n], E [n]) → Ext2(E [n], E [n]), q(α) = α ◦ α ,

as q(α) is the obstruction to extending the first order deformation corresponding to α

over C[t]/t3; see (Manetti 1999, Exa. 2.16), (Wandel 2016, Sect. 4.2). Since π
Sn∗ is a

functor, hence compatible with the Yoneda product, we have a commutative diagram

Ext1Sn
(C0E ,C0E )

q−−−−→ Ext2Sn
(C0E ,C0E )

⏐
⏐�

⏐
⏐�

Ext1(E [n], E [n]) q−−−−→ Ext2(E [n], E [n]) .

(35)

where the horizontal maps are the Yoneda squares, and the vertical maps are the edge
morphisms of the spectral sequence of Proposition 4.2. Let us first consider the case
deg(E) > 0, where Lemma 4.4 gives isomorphisms

Ext1(C0E ,C0E ) ∼= Ext1(E, E) ⊕ (
Hom(E, E) ⊗ H1(O)) ⊕ (

H1(E∨) ⊗ H0(E)
)
,

Ext2(C0E ,C0E ) ∼=
(
Ext1(E, E) ⊗ H1(OX )

) ⊕ (
Hom(E, E) ⊗ ∧2 H1(OX )

)

⊕(
H1(E∨) ⊗ H0(E) ⊗ H1(OX )

) ⊕ (
H1(E∨) ⊗ H1(E)

)
.

(36)
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Under these isomorphisms, the component q̂ : H1(E∨)⊗H0(E) → H1(E∨)⊗H0(E)⊗
H1(OX ) of q is (up to a non-zero scalar multiple) given by

q̂(ϑ ⊗ s) = ϑ ⊗ s ⊗ (ϑ ◦ s) . (37)

The formula (37) can be verified by a computation similar to the one in the proof of
Lemma 4.5. Alternatively, the reader may consult (Krug 2014, Prop. 4.2). There, a
general formula for the Yoneda product on tautological bundles on Hilbert schemes of
points on surfaces is given. Furthermore, in the surface case, there is an isomorphism
Ext∗Sn

(C0E ,C0F ) ∼= Ext∗(E [n], F [n]) where the definition of C0E as an Sn-equivariant

bundle is the same as in the curve case: C0E = IndSn
Sn−1

pr∗1 E . Hence, (Krug 2014,

Prop. 4.2) also provides a formula for the Yoneda product on C0E and this formula has
to be the same independently of the dimension of X .

By Lemma 5.6(iii), the edge morphism Ext2Sn
(C0E ,C0E ) ∼= E

1
0,2 → E2 ∼=

Ext2(E [n], E [n]) is identified with the cokernel of d : E
1−1,2 → E

1
0,2. Hence, con-

sidering (35), it is enough to proof that

im(q̂) �⊂ im(d̃), d̃ : E
1−1,2

d−→ E
1
0,2

c−→ H1(E∨) ⊗ H0(E) ⊗ H1(OX )

where c is the projection to the third direct summand of the decomposition (36). By the
description of the dual of d : E

1−1,2 → E
1
0,2 in Lemma 5.5, we have im(d̃) = im(d̂),

where d̂ = d̃|H0(E)⊗Ext1(E,ω−1). Note that im(d̂) ⊂ H1(E∨) ⊗ H0(E) ⊗ H1(OX ) is a
linear subspace. Hence, it suffices to prove

〈im(q̂)〉 �⊂ im(d̂) (38)

where 〈im(q̂)〉 is the linear hull. Again by Lemma 5.5, we know that d̂ = idH0(E) ⊗u

for some2 linear map u : Ext1(E, ω−1) → H1(E∨) ⊗ H1(OX ). The equality d̂ =
idH0(E) ⊗u is understood by permuting the first two tensor factors in the target space.
By Serre duality and Riemann–Roch,

dim(im u) ≤ ext1(E, ω−1) = h0(E ⊗ ω2) = d + 3r(g − 1) . (39)

We now choose μ � 0 (hence d � r ) such that

d + 3r(g − 1) <
(
d + (r − 1)(g − 1)

)
g (40)

We fix some 0 �= s ∈ H0(E). Since s : OX → E is injective, the induced map

s∗ : H1(E∨) → H1(OX ) , ϑ �→ ϑ ◦ s

2 Concretely, under the isomorphisms Ext1(E, ω−1) ∼= Ext1(E ⊗ ω,O) and H1(E∨) ⊗ H1(OX ) ∼=
HomC

(
H0(ω),H1(E∨)

)
, we have u(ϕ)(t) = t ◦ (idE ⊗t), but this is not important for our argument.
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is surjective. Now, choose a basis

ϑ1, . . . , ϑg, ϑ
′
g+1, . . . , ϑ

′
d+r(g−1)

of H1(E∨) with ker(s∗) = 〈ϑ ′
g+1, . . . , ϑ

′
d+r(g−1)〉, and set ti := s∗ϑi = ϑi ◦ s. Then,

by (37), we have

q̂(ϑi ⊗ s) = ϑi ⊗ s ⊗ ti , q̂((ϑi + ϑ ′
j ) ⊗ s) = (ϑi + ϑ ′

j ) ⊗ s ⊗ ti .

Since all of the above vectors are linearly independent for varying i = 1, . . . , g and
j = g + 1, . . . , d + r(g − 1), we have

dim
(
〈im(q̂)〉 ∩ (

H1(ϑ) ⊗ 〈s〉 ⊗ H1(O)
)) ≥ (

d + (r − 1)(g − 1)
)
g .

On the other hand, im(d̂)∩ (
H1(ϑ)⊗〈s〉⊗H1(O)

) = 〈s〉⊗ im(u) where the equality
has to be understood by switching the first two tensor factors. Hence, (39) and (40)
imply (38).

As the degE < 0 case is similar, we will keep the explanation a bit shorter. In this
case, we consider the component q̌ : H0(E∨)⊗H1(E) → H0(E∨)⊗H1(E)⊗H1(OX )

of the Yoneda square q : Ext1(C0E ,C0E ) → Ext2(C0E ,C0E ). We still have the formula

q̌(ϑ ⊗ s) = ϑ ⊗ s ⊗ (ϑ ◦ s) , (41)

only that the classes ϑ and s are now of different cohomological degree than in (37).
By Lemma 5.15, the image of the differential d : E

1−1,2 → E
1
0,2 followed by the

projection to H0(E∨) ⊗ H1(E) ⊗ H1(OX ) equals the image of the component

ď : H1(E) ⊗ Hom(E, ω−1) → H0(E∨) ⊗ H1(E) ⊗ H1(OX )

Because of the vanishing in Lemma 5.16(iii), it is again sufficient to prove that
〈im(q̌)〉 �⊂ im(ď). Again by Lemma 5.15, we have ď = idH1(E) ⊗v for some lin-
ear map

v : Hom(E, ω−1) → H0(E∨) ⊗ H1(OX ) .

This means that, for ϑ ∈ H0(E∨), s ∈ H1(E), and t ∈ H1(O), we have

ϑ ⊗ s ⊗ t ∈ im(ď) 	⇒ ϑ ⊗ t ∈ im(v) . (42)

Let 0 �= ϑ : E → O. We claim that ϑ∗ : H1(E) → H1(O), s �→ ϑ ◦ s is surjective.

Write K := ker(ϑ). Since ϑ factors as E → E/K
ϑ−→ O, the push-forward ϑ∗ on H1

factors as

H1(E) → H1(E/K )
ϑ∗−→ H1(O) (43)
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The first map H1(E) → H1(E/K ) is surjective since H2(K ) = 0. Since coker(ϑ)

has zero-dimensional support, we have H1(coker(ϑ)) = 0 and the second map ϑ∗ is
surjective too.

We now assume for a contradiction that 〈im(q̌)〉 ⊂ im(ď). The surjectivity of
ϑ∗ (for every ϑ �= 0), together with (41) and (42) imply that every pure tensor
ϑ ⊗ t ∈ H0(E∨) ⊗ H1(O) is contained in the linear subspace im(v). It follows
that v : Hom(E, ω−1) → H0(E∨) ⊗ H1(OX ) is surjective. But this cannot hold as
hom(E, ω−1) < h0(E∨) ⊗ h1(O). ��
Remark 5.21 Proposition 5.18 shows that the case n = 2 and C non-hyperelliptic of
genus 3 must necessarily be excluded from Theorem 5.20.

For n = 2 and C hyperelliptic, we can see, following the first paragraph of the
proof of Theorem 5.20, that [E [n]] with |μ(E)| � 0 is a smooth point of the moduli
space if and only if the map

∪: Hom(E, E ⊗ ω) ⊗ H0(ω) → Hom(E, E ⊗ ω2)

is surjective. This map is never surjective, if E = L is a line bundle on a hyperelliptic
curve of genus 3. The author did not pursue the question whether it might be surjective
for some stable vector bundle of higher rank.

6 The genus 1 case

In this section, let X be curve of genus g = 1.

Lemma 6.1 Let OX �= E ∈ VB(X) be a simple vector bundle. Then

H0(E) ⊗ H0(E∨) = 0 = H1(E) ⊗ H1(E∨) .

Proof If H0(E) �= 0 �= H0(E∨), we would have a non-trivial endomorphism of E .
The statement for H1 follows by Serre duality. ��

Let us describe the leftmost differentials of the spectral sequence of Proposition
4.2 for E = F a simple bundle and g = 1.

Lemma 6.2 Let OX �= E ∈ VB(X) be a simple vector bundle. Then, for every p ≥ 1
the dual of the differential E

1−p,p → E
1−p+1,p is isomorphic to

(∪ , id , ∪ , ∪) :
(
Hom(E, E) ⊗ H1(O)

) ⊕ Ext1(E, E)

⊕(
H0(E) ⊗ H1(E∨)

) ⊕ (
H1(E) ⊗ H0(E∨)

) → Ext1(E, E) .

In particular, the first two components are isomorphisms between one-dimensional
vector spaces.

Proof This is found to be a special case of Lemma 4.5, analogously to the proof
of Lemma 5.5. Lemma 6.1 is used for the vanishing of certain direct summands of
(E1−p,p)

∨ and (E1−p+1,p)
∨. Also note that we again hide the one-dimensional vector

space H1(ω) and its symmetric powers from the notation. ��
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Corollary 6.3 For OX �= E ∈ VB(X) simple, we have E
2−p,p = 0 for all p =

1, . . . , n − 1.

Proof By definition E
2−p,p is the kernel of the differential E

1−p,p → E
1−p+1,p. By

Lemma 6.2, this differential is injective as its dual is surjective. ��
Theorem 6.4 Let OX �= E ∈ VB(X) be simple. Then E [n] is again simple for all
n ∈ N.

Proof By Corollary 6.3, we have Hom(E [n], E [n]) ∼= E0 ∼= E
∞
0,0

∼= E
1
0,0 which by

Lemma 4.3 and Lemma 6.1 is E
1
0,0

∼= Hom(E, E). ��

Remark 6.5 Independently of the genus of X , the tautological bundle O[n]
X is never

simple as it has the structure sheaf OX (n) as a direct summand. This is because
prX (n) : � → X (n) is flat and finite, hence the pull-back of regular functions
OX (n) → prX (n)∗ O�

∼= O[n]
X has 1

n times the trace map as a left-inverse.

Remark 6.6 Note that simplicity is not preserved for genus g = 0. For example,
OP(1)[2] ∼= OP2 ⊕ OP2 ; see (Nagaraj 2017, Sect. 3) or (Krug 2018, Sect. 6.1).

Proposition 6.7 Let E �= OX ∈ VB(X) be a simple vector bundle. Then

(_)[n] : Ext1(E, E) → Ext1(E [n], E [n])

is injective for all n ∈ N.

Proof By Remark 4.7 and Corollary 6.3, it is enough to prove that, for every ψ ∈
Ext1(E, E), the class C(ψ) is not contained in the image of the differential E

1−1,1 →
E
1
0,1. Under the isomorphism

Ext1(C(E),C(E)) ∼= Ext1(E, E) ⊕ (
Hom(E, E) ⊗ H1(O)

)

⊕(
H1(E∨) ⊗ H0(E)

) ⊕ (
H0(E∨) ⊗ H1(E)

) (44)

we have C(ψ) = (ψ, 0, 0, 0). But, by Lemma 6.2, the differential maps E
1−1,1

∼=
Hom(E, E) isomorphically to both of the first two summands of (44). Hence, an
element of the form (ψ, 0, 0, 0), with a zero in the second component but a non-zero
first component, can not be in the image of the differential. ��

As explained in Remark 2.2, this finishes the proof of Theorem 1.2; compare also
Corollary 5.4.

Corollary 6.8 Let X be an elliptic curve. Then, for all d ∈ Z, n, r ∈ N with d /∈
[−r , (n − 1)r ] and gcd(d, r) = 1, the morphism

ϕ : MX (d, r) → MX (n) , [E] �→ [E [n]]

is a closed embedding.
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