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Abstract: We investigate the properties of a dilute gas of impurities embedded in an ultracold gas of
bosons that forms a Bose–Einstein condensate (BEC). This work focuses mainly on the equation of
state (EoS) of the impurity gas at zero temperature and the induced interaction between impurities
mediated by the host bath. We use perturbative field-theory approaches, such as Hugenholtz–
Pines formalism, in the weakly interacting regime. In turn, for strong interactions, we aim at
non-perturbative techniques such as quantum–Monte Carlo (QMC) methods. Our findings agree
with experimental observations for an ultra dilute gas of impurities, modeled in the framework of
the single impurity problem; however, as the density of impurities increases, systematic deviations
are displayed with respect to the one-body Bose polaron problem.

Keywords: polaron–polaron interaction; induced interaction; gas of impurities; quantum–Monte
Carlo

1. Introduction

In a non-relativistic framework, interactions mediated by a scalar bosonic field are in
general attractive in 3D. This paradigm maps into a system of impurities interacting with
an ultra-cold bosonic gas. In the case of a single impurity, the problem is known as the Bose
polaron problem. In solid state systems, polarons are relevant to describe specific properties
in materials. For instance, understanding the motion of electrons in a polar crystal gives
insight into how good a material conducts. Yet, a complete microscopical description of
the problem is unfeasible due to the complexity and imperfections in solids. Landau and
Pekar introduced the concept of polaron [1,2], to give an approximate good description of
the many-body problem in terms of quasiparticles—a strongly correlated system maps into
a weakly interacting gas of elementary excitations. Thus, the particles in the system are
modeled as almost non-interacting particles with a renormalized energy and mass. This
simplification yields that the latter problem is more trackable within analytical, yet robust,
approaches. For instance, electrons in a polarizable lattice [3] and electrons in 3He and 4He
have been prominent candidates to test Landau theory [4,5].

Besides the single-particle renormalization quantities, quasiparticles may interact
among them because they are not in free space and ripples in the medium interfere, i.e., its
host medium could mediate interactions. Restoring to the concept of adiabaticity—also in
the heart of Landau’s theory—one can consider a system of non-interacting particles at t = 0
and suddenly quench the interaction; thus, a one-to-one correspondence is established
between particles and the low-energy excitations of the non-interacting system in the
neighborhood of the Fermi surface and even yet-excited states are occupied, the interaction
between quasiparticles is not negligible. In the case of bosons, the Pauli principle is no
longer a constraint, and the interaction between bosonic quasiparticles are more significant
with respect to its fermionic counterpart [6].

Detection of quasiparticles, as well as their experimental control, is achievable by
using ultracold quantum gases. Impurities embedded in a degenerate quantum gas form
either a Fermi polaron [7–13] or a Bose polaron [14–19] depending on the statistical nature
of the host bath. In addition, tunability on the impurity–bath interaction [20,21] allows
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exploring the strongly interacting regime, inaccessible in the solid-state realm. Theo-
retically, the problem of a single impurity in a quantum gas have been addressed with
several techniques such as mean-field, perturbation theory, renormalization group, modi-
fied Gross-Pitaevskii equation, variational ansatzes and field-theory approaches [22–36]
and numerical approaches such as quantum Monte-Carlo methods [37–40]. Interestingly,
the single-particle polaron problem agrees very well with experiments, where the number
of impurities is on the order of five up to ten percent with respect to the total number of
atoms of the host gas. A priori, one of the conclusions drawn from this observation is that
the interaction between polarons appears to be negligible. Recently, it has been shown
that polaron–polaron interaction can manifest only when the impurity–bath interaction is
sizable in slow impurities [41]. The typical scenario is the strongly interacting regime where
the scattering length is much larger than the interparticle distance between host atoms
(the bath becomes more compressible favoring the effective interaction). In the particular
case of two impurities, induced interactions are attractive, and bound-states known as
bipolaron are expected to be formed [42–44]. Recently, the ground state properties of a gas
of impurities in a BEC have been extracted from the structure factor of the impurity gas by
using variational methods [45]. Strong induced interactions can also be manifested in the
weakly interacting regime if the momentum of the impurity is resonant with a mode of
the condensate [6], however, in this work we are interested in the case of slow polarons
(momentum zero).

In this work, we turn our attention to the case of many impurities, where impurity
statistics plays an important role. Here we investigate the ground state properties of bosonic
impurities immersed in a Bose–Einstein condensate at zero temperature using perturbative
approaches such as Hugenholtz–Pines for weak coupling. At the same time, QMC tech-
niques are employed to study the strongly interacting regime. From an experimental point
of view, a system of few impurities immersed in a quantum gas is more realistic than the
case of a single one. Yet, there is an open question of whether the interactions between
polarons are relevant for the different time scales in the system.

The article is organized as follows. In Section 2, we present the EoS for a multi-impurity
system in the weakly interacting regime. Here we employ the Hugenholtz–Pines formalism,
and we derive an expression for small polarization and coupling strength. Furthermore,
we introduce the general form of the Jastrow wave function and the specific potentials used
in QMC calculations. Section 3 discusses the results, and finally, conclusions are drawn in
Section 4.

2. Methods

The system consists of a two-component quantum gas formed by bosons. The first
component (host gas) is a Bose–Einstein condensate (BEC) characterized by a density n1,
while the second component is embedded into the host gas and is formed by atoms of
density n2 termed from now on, as impurities. The Hamiltonian in the second quantization
of the system reads,

H = ∑
p

P̂2

2mI
ĉ†

p ĉp + ∑
k

h̄2k2

2mB
â†

k âk +
1

2V ∑
k,k′ ,q

V11(q)â†
k+q â†

k′−q âk′ âk

+
1

2V ∑
k,k′ ,q

V22(q)ĉ†
k+q ĉ†

k′−q ĉk′ ĉk +
1
V ∑

k,k′ ,q
V12(q)â†

k+q ĉ†
k′−q ĉk′ âk , (1)

the operators ĉp (ĉ†
p) annihilate (create) an impurity atom of mass mI and momentum P,

whereas âk (â†
k) annihilates (creates) a boson of mass mB and momentum h̄k. The intra-

and interspecies interactions are short-range and without loss of generality we consider
the equal mass case mI = mB = m. The boson–boson and impurity–boson interaction
terms can be written as V11(k) = 4πh̄2a11/m and V12(k) = 4πh̄2a12/m respectively; the
impurity-impurity term reads V22(k) = 4πh̄2a22/m. Where a11, a12 and a22 are the s-wave
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scattering lengths. In current experiments a22 is finite, however in order to disentangle an
induced interaction effect form the bare impurity–impurity interactions we may consider
the case a22 = 0, such as the case of bi-polarons [42,44].

2.1. Weakly Interacting Regime

In this section, we estimate the polaron energy for the gas of impurities interacting
with a majority condensate. The system can be accurately described by using the Gross–
Pitaevskii theory in the regime, where the coupling strength impurity–bath is small or
comparable with the one of the host bath. For a large number of atoms in the condensate
and slow-moving impurities, one writes the chemical potential of the mixture as:

µ1 = − h̄2∇2

2m ψ1(r) + g11n1(r) + g12n2(r) + Vext,1(r) + µ
(1)
LHY(ψ1(r), ψ2(r))

µ2 = − h̄2∇2

2m ψ2(r) + g22n2(r) + g12n1(r) + Vext,2(r) + µ
(2)
LHY(ψ1(r), ψ2(r))

(2)

Here, µ2 is identified as the polaron energy in the weakly interacting regime and Vext,i
is the external potential experienced by the components in the mixture. Components 1 and
2 can be chosen as two hyperfine states and one can safely use the same external potential.
The beyond mean-field or Lee–Huang–Yang (LHY) contribution reads, µLHY

2 = ∂n2 εLHY,
where εLHY is the density energy computed within the Hugenholtz–Pines formalism [46]
and coincides with the results for the chemical potential in a two-component quantum
mixture [47]. Thus, the polaron energy up to the second-order reads

µLHY
2 =

32
√

π

3
√

2

(
n1a3

11

)3/2 h̄2

ma2
11

∑
λ=±

Q3/2
λ ∂n2Qλ, (3)

with the term Q± = 1 + P a22
a11
±
√(

1− P a22
a11

)2
+ 4P

(
a12
a11

)2
and the polarization P = n2/n1.

Computing explicitly the derivative in Equation (3) one has

µLHY
2 =

32
√

π

3
√

2
h̄2

ma2
11
(n1a3

11)
3/2 ∑

λ=±
Wλ, (4)

with the function Wλ defined as

Wλ =
a22

a11
Q3/2

λ

1 + λ

(
P a22

a11
− 1
)
+ 2 a2

12
a11a22√(

1− P a22
a11

)
+ 4P

(
a12
a11

)2

. (5)

The results derived so far are exact for a weakly interacting mixture and they coincide
with [47]. The beyond-single impurity limit can be obtained by expanding out the energy
in terms of P and keep, as well, the terms up to the second-order in the coupling strength
(a12/a11)

2; thus, the polaron energy reads

µ2 =

[
µsingle +

32
√

π

3
√

2

(
n1a3

11

)3/2
(

a22

a11

)
F(P)

]
h̄2

ma2
11

(6)

where the single polaron energy [25,37] in the weakly interacting regime is recovered

µsingle = 4πn1a3
11

a12

a11

(
1 +

32
3
√

π
(n1a3

11)
1/2 a12

a11

)
(7)

and the function taking into account the effects of the impurity concentration is

F(P) = k1P + k2P3/2 + k3P2, (8)
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where k1 = 8
√

2
(

a12
a11

)2
, k2 = 4

√
2
(

a22
a11

)1/2
((

a22
a11

)
− 5

2

(
a12
a11

)2
)

and k3 = 12
√

2
(

a22
a11

)(
a12
a11

)2
.

Note that, for a22 = 0, the interactions vanishes in the weakly interacting regime. If we
consider a11 = a22 = a, the polaron energy reads, µ2 = µsingle +

32
√

π

3
√

2

(
n1a3)3/2F(P),

F(P) = 8
√

2
( a12

a

)2
P + 4

√
2
(

1− 5
2

( a12

a

)2
)

P3/2 + 12
√

2
( a12

a

)2
P2. (9)

In the derivation of the previous equation it is important to highlight that results

are reliable in weak coupling, namely
√

n1a3
11

a12
a11
� 1 and small polarization, M/N � 1.

In the strongly interacting regime, one expects a large condensate depletion because of the
strong presence of impurities. Hence, we use non-perturbative methods, such as Monte
Carlo techniques. The method implementation for a system of impurities is discussed in
the next session.

2.2. Strongly Interacting Regime

In this section, we exclusively use QMC methods to compute the ground-state energy
of a system of M impurities immersed in a bath of N bosonic atoms. In QMC simulations
we use a box of size L = (N/n1)

1/3 > ξ, being ξ = (8πn1a11)
−1/2 the healing length of the

bath. In addition, periodic boundary conditions are employed. The general Hamiltonian of
the system reads

H = − h̄2

2m

(
N

∑
i=1
∇2

i +
M

∑
α=1
∇2

α

)
+ ∑

i<j
V11(rij) + ∑

α<β

V22(rαβ) +
N

∑
i=1

M

∑
α=1

V12(riα), (10)

and the previous Hamiltonian is written in a similar way to the one in Equation (1).
However, we employ different model potentials in our definitions, corresponding to finite
and short-range potentials. In particular, we use a hard-sphere potential where the radius
of the sphere corresponds to the boson–boson and impurity–impurity scattering lengths,
respectively. Instead, the impurity–boson potential is modeled by a square well for both
attractive and repulsive interactions, namely V(r) = −V0 for r ≤ R0, being R0 the range
of the potential and V(r) = 0 otherwise [37,48]. We fix the strength of the potential V0
and the impurity–boson scattering length depends on the range of the potential via a12 =

R0

[
1− tan θ(R0)

θ(R0)

]
with θ(R0) =

√
V0

h̄2/mR2
0
. In addition, rαβ =

∣∣rβ − rα

∣∣ and rij =
∣∣ri − rj

∣∣
is the intra-particle distance between impurities and bosons respectively. Whereas riα =
|ri − rα| is the interparticle distance between the impurity and the host bath component.
The trial wave function for this system is written as the product,

ψT(R1, R2) = Πα<β f1(rαβ)Πi<j f2(rij)ΠiΠα f12(riα) (11)

Here R1 and R2 represent the positions of the impurities and bosons, respectively.
The Jastrow wave function is obtained by solving the two-body problem with the pairwise
potentials aforementioned. Explicit expressions for the trial wave functions are widely
discussed in references [37,48]. The local energy in QMC algorithms is defined as

EL = − h̄2

2m

(
∇2

R1
+∇2

R2

)
ψT(R1, R2)

ψT(R1, R2)
+

V(R1, R2)ψT(R1, R2)

ψT(R1, R2)
, (12)

here R1 ={r1, r2, · · ·, rN} and R2 ={s1, s2, · · ·, SM} are the position of the atoms of compo-
nent 1 and component 2 respectively and V(R1, R2) is an external potential. By using the
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definition of the trial wave-function in Equation (11), the gradients in the previous equation
can be computed explicitly,

∇2
R1

ψT(R1, R2) = Ψ2(R2)
[(
∇2

R1
Ψ1(R1)

)
Ψ12(R1R2) + Ψ1(R1)

(
∇2

R1
Ψ12(R1, R2)

)
+ 2∇R1 Ψ1(R1) · ∇R1 Ψ12(R1, R2)]] (13)

and

∇2
R2

ψT(R1, R2) = Ψ1(R1)
[(
∇2

R2
Ψ2(R2)

)
Ψ12(R1R2) + Ψ2(R2)

(
∇2

R2
Ψ12(R1, R2)

)
+ 2∇R2 Ψ2(R2) · ∇R2 Ψ12(R1, R2)] (14)

and plugging into the local energy and rearranging terms one obtains

EL = − h̄2

2m

∇
2
R1

Ψ1(R1)

Ψ1(R1)
+
∇2

R2
Ψ2(R2)

Ψ2(R2)
+

(
∇2

R1
+∇2

R2

)
Ψ12(R1, R2)

Ψ12(R1, R2)

+ 2
∇R1 Ψ1(R1)

Ψ1(R1)
·
∇R1 Ψ12(R1, R2)

Ψ12(R1, R2)
+ 2
∇R2 Ψ2(R2)

Ψ2(R2)
·
∇R1 Ψ12(R1, R2)

Ψ12(R1, R2)

}
+ V(R1, R2) (15)

the local energy is finally obtained as

EL = EA
L (R1) + EB

L (R2) + EA
L (R1, R2) + EB

L (R1, R2) + F1 · F12 + F2 · F21 + V(R1, R2) (16)

with the local energies and quantum force terms written as

(
EA

L (R1) EA
L (R1, R2)

EB
L (R1, R2) EB

L (R2)

)
= − h̄2

2m

 ∇2
R1

Ψ1(R1)

Ψ1(R1)

∇2
R1

Ψ12(R1 ,R2)

Ψ12(R1 ,R2)
∇2

R2
Ψ12(R1 ,R2)

Ψ12(R1 ,R2)

∇2
R2

Ψ2(R2)

Ψ2(R2)

 (17)

and (
F1(R1) F12(R1, R2)

F21(R1, R2) F2(R2)

)
= − h̄2

2m

 2
∇R1 Ψ1(R1)

Ψ1(R1)

∇R1 Ψ12(R1 ,R2)

Ψ12(R1 ,R2)
∇R2 Ψ12(R1 ,R2)

Ψ12(R1 ,R2)
2
∇R2 Ψ2(R2)

Ψ2(R2)

 (18)

respectively. Thus, the EoS of the impurity gas is computed as,

µ = E(M, N)− E(N). (19)

Here, E(N, M) is the ground state energy of the full system, whereas E(N) depicts
the energy of the host bosons. The “quantum force” can be used to build an alternative
estimator to check the correct implementation of the trial wave function in a similar
way to the single-impurity case [49]. In addition, to use the numerical method in the
regime where the Bogoliubov theory breaks down, our numerical technique includes all
possible correlations in the system and includes the critical role of the Bose–Bose interaction
and the quantum nature of both impurities and bath [50], which ultimately defines the
compressibility of the bath that is relevant for mediated interactions.

3. Results and Discussion

In this section, we compute the EoS µ of the impurity gas for weak and strong cou-
pling using QMC methods and compare the polaron energy expansion in the Fröhlich
regime. The latter is obtained within the Hugenholtz–Pines formalism and derived under
the assumption that the depletion of the condensate is small enough to justify the use of
the Bogoliubov approximation. In contrast, QMC techniques allow computing the accu-
rately the polaron EoS within statistical uncertainly. This non-perturbative technique does
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not rely on the Bogoliubov approximation and it is suitable for describing the strongly
interacting regime.

In Figure 1 we plot the total polaron energy (Equation (19)) as a function of the di-
mensionless coupling strength 1/(kna12) with kn =

(
6π2n1

)1/3. For a gas parameter,
n1a3

11 = 10−5 we scan all the coupling strengths from the weak to the strong coupling
regime. Comparison with the perturbative results in Section 2.1 is affordable in the weak
coupling and low polarization limits. The polaron energy is computed for different po-
larizations ranging from P = 0.05 to P = 0.15. Note that current experiments in polaron
physics with ultra-cold atoms rely on impurity polarization of the order of P = 0.1 or less
and resemble our current case as the inter-species impurity–impurity scattering length is
finite and repulsive. The latter is important to guarantee the mechanical stability of the
system as P increases.

0.8 1 1.2 1.4 1.6 1.8 2
���������

8

10

12

14

16

18

�
�
�

�
�

P=0.047
P=0.078
P=0.11
P=0.15

1 1.5 2
1

2

3

�
�
�

�

x=0.15P = 0.15

Figure 1. Total polaron energy µ (excited state) as a function of the coupling strength for different
polarization P = M/N in the weak and intermediate coupling. The gas parameter is taken to
be na3

11 = 10−5. Inset: comparison between perturbation theory and the QMC result for highest
polarization P = 0.15. The red squares represents the theoretical results using perturbation theory
in [37] (Subfigure adapted from [49]), whereas the black dashed line depicts the calculation in this
work (see Equation (9)), here a11 = a22. Error bars are smaller than the size symbol.

The single impurity regime holds for values of the coupling strength |1/(kna12)| � 1,
yet deviations from this limit are displayed as both the impurity–boson coupling (kna12)
and the polarization increases. In fact, the analytical result obtained in Equation (6) is strictly
valid for |1/(kna12)| � 1 and small polarization, i.e., P� 1. Higher correlations play an
important role in the beyond mean-field regime and are captured by our numerical method.
The bare polaron energy µ increases with the number of impurities, as similarly observed
in [45]. The repulsive mean-field energy of the impurity gas ∼g22n2 is much larger than
any attractive induced interaction mediated by the bath. The upwards shift of the energy
agrees with recent results in reference [45]. For small polarization, for example, P = 0.047,
the theory agrees reasonably with the numerical calculation up to values of 1/kna12 � 1,
noticeable as the polarization increases, the agreement between the perturbative approach
and the simulations still prevails for larger values of 1/kna12. Up to a concentration near
to the 15%, the critical value where no dependence is observed is around 1/(kna12)� 1.4
for these specific parameters. Similarly to the single-polaron case, the unitary limit is not
reachable from this repulsive branch.

In Figure 2a, we compute the EoS, see Equation (19), for a system of a few impurities
with a negative coupling strength a12 and null direct interacting between impurities a22 = 0.
Similarly to Figure 1 where the EoS is normalized to the polarization at weak coupling,
all lines overlap; however, in the strongly interacting regime, small deviations are pre-
sented, which are better displayed when the induced interaction is computed. In Figure 2a,
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the green symbols depict QMC calculations for the polaron energy in the single impurity
case [19]. The polaron energy has a negligible dependence with the number of impurities
for values of polarization P < 0.1 in current experiments [15], however by considering no
net inter-impurity interaction as in the current calculation, the dependence appear to be
considerable from values of polarization larger than the 5%. In experiments, a positive
impurity-impurity interaction dominates over any residual interaction and the system
is stable.

-6 -5 -4 -3 -2 -1
1=(kna12)

-10 0

-10 -1

7
=
7

0

P!0
P=0.047
P=0.078
P=0.109

(a)

-3 -2.5 -2 -1.5 -1
1=(kna12)

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

"
7
=7

0

(b)

Figure 2. (a) EoS for polarons (ground-state) we added a and b for subfigure, please check. as a
function of the number of impurities and coupling strength. Error bars are smaller than the size
symbol. (b) Induced interaction for a ultra dilute gas of impurities computed as in Equation (20) for a
polarization P = 0.109.

However, for a22 = 0, the system has two possibilities, either (i) the attractive induced
interaction drives the impurity system into a collapse, for a large polarization—similarly to
the case of a condensate with attractive interactions in a homogeneous space [51] or (ii) a
few-particle bound-state such as multi-polaron can stabilize the system [52]. The reason
is that impurities tend to attract to each other regardless of the sign of a12. A naive way
to understand the induced interaction is considering two impurities interacting with a
homogeneous condensate. If a12 > 0, there is a local hole in the density, thus creating a local
density depletion in the impurities neighborhood and therefore, the energy minimizes as the
impurities get closer. Contrary, for a12 < 0, the local depletion caused by the impurity atoms
creates a local bump and the energy is minimized as the two approaches the high-density
regions. In the weakly interacting regime, the induced interaction corresponds to a Yukawa-
type of interaction in 3D [42] or exponential trend in 1D [44,53]. A two-body impurity–
impurity (bipolaron state) bound state always exist for −1 < 1/kna12 < 0, hence it may
favor the formation of few-body bound states, akin to the case of ionic polarons [54,55]
where a many-body bound state emerges from bound two-body correlations. In fact,
from our calculations, higher concentrations of impurities may drive the system into
clusterization. To compute the effective interaction, we calculate the ground-state energy
of the whole system consisting of M impurities and N bosons, E(M, N) with respect to
the energy of the host bath in the absence of impurities, namely µM = E(M, N)− E(0, N),
and compare it with the binding energy of the single polaron (µ1 = E(1, N)− E(0, N)).
If polarons do not interact, E(M, N) equals ME(1, N), which is the typical case of weak
coupling. Thus an attractive induced interaction appears when

∆µ = E(M, N)−ME(1, N) + (M− 1)E(0, N) < 0 (20)

In Figure 2b, we compute the induced interaction ∆µ as a function of the coupling
strength. As expected, the attractive induced interaction increases as a function of the
coupling strength. In the weakly interacting regime, it is negligible, in stark contrast,
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to the strong coupling, where few-body bound states of impurities arise similar to the
bi-polaron (in the case of two impurities). Although the induced interaction is relevant
in the strongly interacting regime, there might be a critical number for the polarization
where the system undergoes a dynamical collapse, similar to an ideal gas with underlying
attractive interactions. Another interesting point is the attractive interaction between
polarons that can compete with the direct repulsion between impurities which is set
by imposing a positive a22 and the system may undergo into amorphous nucleation of
impurities, forming thus an ultra dilute liquid of impurities. Both the transition and the
role of impurity interaction need to be addressed carefully in the future. Additional quasi-
particles properties such as the residue can be obtained by computing the limit at larges
distances of the one-body density matrix of the impurity gas [54,56].

4. Conclusions

In this work, we have studied the role of an impurity gas in a Bose–Einstein condensate
and the possibility of creating multipolaronic states. Our studies focused on the role of
the impurity–bath and impurity–impurity interaction, which is the situation in current
experiments of polarons and mixtures. The single polaron limit in the Fröhlich framework
is recovered for very weak impurity–boson coupling and low polarization. The EoS of the
polaron gas strongly depends on both the polarization and the impurity–boson couplings.
In this work, we compute this equation for impurities in the ground state and excited state.
In the former, multi-polaron states or few-body impurity states are expected to be formed
in the neighborhood of the resonance. We explicitly compute the induced interaction
and compare the results with mean field approaches in the weakly interacting regime.
A significant problem arises in the strongly interacting regime as still remains a question on
the stability of the impurity gas as interactions and polarization grow out of the impurity
limit. Another exciting avenue, as an outlook, is the role of thermal fluctuations. Contrary to
the single impurity case, statistics and temperature play essential roles. Finite temperature
effect may favor the stabilization of the system against collapse [57]. In addition, both a
non-negligible concentration of impurities and finite temperature effects may combine,
changing the polaron properties drastically in comparison with the single impurity case
at T = 0, as recently revealed for Fermi polarons [58]. Finally, another avenue is studying
the role of the direct impurity–impurity interaction and its influence on forming a gas or
liquid of polarons and the role of bosonic quasi-particles in the formation of self-bound
structures [59–61].
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39. Bombín, R.; Cikojević, V.; Sánchez-Baena, J.; Boronat, J. Finite-range effects in the two-dimensional repulsive Fermi polaron. Phys.
Rev. A 2021, 103, L041302. [CrossRef]

40. Grusdt, F.; Astrakharchik, G.E.; Demler, E. Bose polarons in ultracold atoms in one dimension: Beyond the Fröhlich paradigm.
New J. Phys. 2017, 19, 103035. [CrossRef]

41. Slow impurities are defined as impurities with a momentum P� mc where c is the speed of sound of the condensate a m is the
mass of the impurity.

42. Camacho-Guardian, A.; Peña Ardila, L.A.; Pohl, T.; Bruun, G.M. Bipolarons in a Bose-Einstein Condensate. Phys. Rev. Lett. 2018,
121, 013401. [CrossRef]

43. Naidon, P. Two Impurities in a Bose–Einstein Condensate: From Yukawa to Efimov Attracted Polarons. J. Phys. Soc. Jpn. 2018,
87, 043002. [CrossRef]

44. Will, M.; Astrakharchik, G.E.; Fleischhauer, M. Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the Strong
Coupling Regime. Phys. Rev. Lett. 2021, 127, 103401. [CrossRef]

45. Van Loon, S.; Casteels, W.; Tempere, J. Ground-state properties of interacting Bose polarons. Phys. Rev. A 2018, 98, 063631.
[CrossRef]

46. Bisset, R.N.; Ardila, L.A.P.; Santos, L. Quantum Droplets of Dipolar Mixtures. Phys. Rev. Lett. 2021, 126, 025301. [CrossRef]
[PubMed]

47. Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Phys. Rev. Lett. 2015, 115, 155302. [CrossRef]
[PubMed]

48. Ardila, L.A.P.; Giorgini, S. Bose polaron problem: Effect of mass imbalance on binding energy. Phys. Rev. A 2016, 94, 063640.
[CrossRef]

49. Ardila, L.A.P. Impurities in a Bose-Einstein Condensate Using Quantum Monte-Carlo Methods: Ground-State Properties. Ph.D.
Thesis, University of Trento, Trento, Italy, 2015.

50. Levinsen, J.; Ardila, L.A.P.; Yoshida, S.M.; Parish, M.M. Quantum Behavior of a Heavy Impurity Strongly Coupled to a Bose Gas.
Phys. Rev. Lett. 2021, 127, 033401. [CrossRef]

51. In trapped experiments the situation may be different since the high increase of the density to reduce the interaction energy
may overcome the kinetic energy of the impuriy gas. The situation is completely analogous to attarctive particle is an harmonic
potential, however in this case the trapping potential due to the deformation of the condensation sets a different scalings for the
stability.

52. Santamore, D.; Timmermans, E. Multi-impurity polarons in a dilute Bose–Einstein condensate. New J. Phys. 2011, 13, 103029.
[CrossRef]

53. Brauneis, F.; Hammer, H.W.; Lemeshko, M.; Volosniev, A.G. Impurities in a one-dimensional Bose gas: The flow equation
approach. SciPost Phys. 2021, 11, 8. [CrossRef]

54. Astrakharchik, G.E.; Ardila, L.A.P.; Schmidt, R.; Jachymski, K.; Negretti, A. Ionic polaron in a Bose-Einstein condensate. Commun.
Phys. 2021, 4, 94. [CrossRef]

55. Christensen, E.R.; Camacho-Guardian, A.; Bruun, G.M. Charged Polarons and Molecules in a Bose-Einstein Condensate. Phys.
Rev. Lett. 2021, 126, 243001. [CrossRef]

56. Ardila, L.A.P.n.; Astrakharchik, G.E.; Giorgini, S. Strong coupling Bose polarons in a two-dimensional gas. Phys. Rev. Res. 2020,
2, 023405. [CrossRef]

57. Ospelkaus, C.; Ospelkaus, S.; Sengstock, K.; Bongs, K. Interaction-Driven Dynamics of 40K−87Rb Fermion-Boson Gas Mixtures in
the Large-Particle-Number Limit. Phys. Rev. Lett. 2006, 96, 020401. [CrossRef] [PubMed]

58. Ness, G.; Shkedrov, C.; Florshaim, Y.; Diessel, O.K.; von Milczewski, J.; Schmidt, R.; Sagi, Y. Observation of a Smooth Polaron-
Molecule Transition in a Degenerate Fermi Gas. Phys. Rev. X 2020, 10, 041019. [CrossRef]

59. Cabrera, C.R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in a mixture of
Bose-Einstein condensates. Science 2018, 359, 301–304. [CrossRef] [PubMed]

60. Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M.
Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Phys. Rev. Lett. 2018, 120, 235301. [CrossRef] [PubMed]

61. Naidon, P.; Petrov, D.S. Mixed Bubbles in Bose-Bose Mixtures. Phys. Rev. Lett. 2021, 126, 115301. [CrossRef]

http://dx.doi.org/10.1103/PhysRevA.95.023619
http://dx.doi.org/10.1103/PhysRevA.103.L041302
http://dx.doi.org/10.1088/1367-2630/aa8a2e
http://dx.doi.org/10.1103/PhysRevLett.121.013401
http://dx.doi.org/10.7566/JPSJ.87.043002
http://dx.doi.org/10.1103/PhysRevLett.127.103401
http://dx.doi.org/10.1103/PhysRevA.98.063631
http://dx.doi.org/10.1103/PhysRevLett.126.025301
http://www.ncbi.nlm.nih.gov/pubmed/33512237
http://dx.doi.org/10.1103/PhysRevLett.115.155302
http://www.ncbi.nlm.nih.gov/pubmed/26550732
http://dx.doi.org/10.1103/PhysRevA.94.063640
http://dx.doi.org/10.1103/PhysRevLett.127.033401
http://dx.doi.org/10.1088/1367-2630/13/10/103029
http://dx.doi.org/10.21468/SciPostPhys.11.1.008
http://dx.doi.org/10.1038/s42005-021-00597-1
http://dx.doi.org/10.1103/PhysRevLett.126.243001
http://dx.doi.org/10.1103/PhysRevResearch.2.023405
http://dx.doi.org/10.1103/PhysRevLett.96.020401
http://www.ncbi.nlm.nih.gov/pubmed/16486544
http://dx.doi.org/10.1103/PhysRevX.10.041019
http://dx.doi.org/10.1126/science.aao5686
http://www.ncbi.nlm.nih.gov/pubmed/29242233
http://dx.doi.org/10.1103/PhysRevLett.120.235301
http://www.ncbi.nlm.nih.gov/pubmed/29932719
http://dx.doi.org/10.1103/PhysRevLett.126.115301

	Introduction
	 Methods
	Weakly Interacting Regime
	Strongly Interacting Regime 

	Results and Discussion
	Conclusions
	References

