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Abstract

With this paper, we present a vibration prognosis method based on finite impulse responses.

The impulse responses are identified using measurement data from an existing building and consider

a multiple-input/multiple-output topology.

Vibration prognosis in urban buildings is becoming increasingly important, since more and more

buildings are being constructed close to urban infrastructure. Combined with modern and ecological

choices of building materials and the low vibration levels required by current standards, serviceabil-

ity in terms of structural dynamics becomes an issue. Sources of vibration in urban settings include

railway and metro lines as well as road traffic. This work focuses on a method especially suited to

the three-dimensional vibration state encountered in modern timber buildings. Under the assump-

tion of linear time-invariant structural dynamic behaviour, we develop a time-domain identification

approach. The novelties of this contribution lie in the formulation of a numerically efficient method

to identify multiple-input finite impulse response filters and its application to measurement data of

a timber building.

We validate this data-driven prognosis method using measurement data from a building con-

structed from cross-laminated timber, considering the three-dimensional vibration behaviour. The

accuracy and limitations are assessed using railway-induced vibrations as a typical source of distur-

bance by infrastructure. We show that vibration data from the foundation can be used for effective

prognosis of the top floor slabs considering train types not included in the identification data set.

Based on the prognosis method, a virtual sensor concept for long-term monitoring is presented.
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1. Introduction

With an increasing demand for housing, many new building projects are planned in the vicin-

ity of urban centres and the associated transport infrastructure. Active railway lines as well as

underground metro tunnels induce significant vibrations into the soil at these sites [1]. This dy-

namic excitation is transmitted through the soil into buildings, which can lead to excessive floor5

slab vibrations. For high-value real estate near the city centres, a high comfort level is required

by the awarding authority. To ensure that structural damage and discomfort to the inhabitants do

not occur, standards, such as the German DIN 4150-2 [2], provide acceptable vibration levels by

means of guideline values. These values are determined from long-time experience and represent a

conservative approach. The German standard VDI 2038-1 [3] provides further guidelines concerning10

the application of traditional methods for vibration prognosis.

In recent years, cross-laminated timber has become a viable construction material for regular

urban housing [4]. This trend towards ecological materials is reflected by an increased demand for

cross-laminated timber on the market [5]. However, timber construction features unique challenges

with respect to vibration susceptibility. Due to the lower horizontal stiffness when compared to15

reinforced concrete buildings or steel skeleton structures [6], a three-dimensional vibration behaviour

arises. Thus, not only vertical floor vibrations can become critical, but also horizontal movements of

the whole building [7]. Additionally, the light weight of the structures leads to an increasing dynamic

excitability of timber buildings compared to conventional concrete or masonry buildings. These

circumstances can lead to elevated vibration levels which may become severe enough to disturb the20

inhabitants. Several experimental studies were thus recently conducted involving structures made

from cross-laminated timber. These include a detailed modal study of a floor panel by Kawrza et

al. [8] as well as the measurment of the three-dimensional dynamics of w whole building by Mugabo

et al. [9].

Since standards are in place which regulate the maximum permissible vibration levels [2], liability25

issues can arise when limits are exceeded. Due to the variability associated with dynamic excitation

sources in urban centres, accurate prognosis can be a challenging task. A vibration prognosis

method suitable for the aforementioned context should therefore allow for the prognosis of previously

unknown types of excitation, for example different types of trains. Additionally, the method should
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yield prognosis data for the vertical and the horizontal directions and should enable a virtual sensing30

to extend the time frame and increase the acceptability of measurement campaigns. Further, the

vibration estimation model needs to handle a wide variety of excitation scenarios, which can have

both transient as well as stationary signal characteristics. Timber buildings exhibit complex three-

dimensional vibration states, so the method should include data from multiple sensor positions and

measurement directions at once to enable a robust and stable prognosis. Since horizontal vibration35

modes of the whole building as well as vertical modes of the floor slabs have to be considered, a large

number of vibration modes are in the frequency range of interest, which need to be captured by the

method of choice. Finally, the residents usually occupy their apartments during the measurement

time frame, so signal contamination is inevitable. A common cause of signal contamination in

such a setting is the vibration caused by persons walking on the floor slabs of their apartments.40

Hence, vibration prognosis methods need to be robust against signal contamination caused by events

unrelated to the railway-induced vibration. Additionally, timber buildings are complex mechanical

structures consisting of many individual parts connected by a large amount of fasteners. A finite

element model-based approach would thus be very time-consuming due to the large number of

engineering details which would need to be considered during modelling.45

To date, much experimental experience has been gained in the field of rail traffic vibrations. For

example, Tao et al. [10] published detailed vibration and noise measurements in a typical 28-story

residence and a 4-story steel-framed office building during train pass-by events in a metro depot.

Measured points were set at ground level adjacent to the building support structures as well as on

upper floors. Transmissibiliy functions for soil-structure interactions were studied by Kouroussis et50

al. [11] focusing on vibrations caused by metro lines. A number of authors have researched vibration

and noise prediction methods for buildings excited by train traffic based on the finite element (FE)

method. Ibrahim and Nabil [12] presented a detailed FE analysis and parameter study conducted

on a ten-story reinforced concrete framed structure resting on a raft foundation. Train loads are

modelled using moving point sources considering varying distances between excitation source and55

the building as well as varying train track spacing and train speeds. To overcome the problem of

computational inefficiency, Amando-Mendes et al. [13] introduced a coupled approach to model

the interaction between trains, tracks, tunnels and the soil by solving the elastic 2.5D problem

with the meshless Method of Fundamental Solutions (MFS) in combination with an FE approach.

The latter was used to discretise the embedded structure, whereas MFS was adopted to model the60

3



unbounded soil. As an important result, the model delivers free-field responses as possible input

data for subsequent prediction models for buildings. A similar approach was proposed by Zou et

al. [14]. For the analysis of complex vibro-acoustic systems, Cicirello and Langley [15] proposed a

hybrid method consisting in a combination of Statistical Energy Analysis (SEA) subsystems and

FE components by assuming the FE components to have fully deterministic properties, while the65

SEA subsystems have a high degree of randomness. The SEA subsystems ensemble is dealt with

analytically, while the effect of the additional FE components ensemble was approximated using

Monte Carlo simulations.

For a model-based vibration prognosis, Eftekhar et al. [16] proposed a dual Kalman filtering

approach for the input and vibration estimation of a 39-story building. In their study, the Kalman70

filter was formulated using a reduced-order finite element model. A similar approach was followed

by Maes et al. [17] for Kalman filter-based virtual strain sensing on an offshore wind turbine tower.

A method which directly incorporates the mode shapes resulting from the finite element model for

virtual sensor estimation is known as modal expansion [18, 19]. Further, Kullaa [20] extended the

modal expansion method using a Bayesian approach to increase its robustness and verified it using75

a finite element model of a frame structure. While finite element-based approaches can achieve

highly accurate results, both modelling and analysis of a whole building can be time consuming.

Moreover, model updating strategies are required to match the dynamic behaviour of the regarded

structure with the finite element model [21]. In some cases, such as for Kalman filtering, model

reduction needs to be applied to enable an online processing of the simulation model. Thus, data80

driven approaches are preferable to avoid the labour-intensive physical modelling.

In parallel to the development of FE-based, hybrid FE-MFS or FE-SEA approaches, transfer

functions in combination with simplified analytical impedance models form another research branch

in the field of vibration forecast for buildings. The main advantage of analytical approaches is

the high computational efficiency and a good forecasting ability, when the analytical models are85

validated by measurements and applied to structures with similar excitation, transmission and

receiver characteristics. Sanayei et al. [22, 23] presented an analytical method to calculate the

transfer properties of columns and floor slabs inside a building. In their method, the impedance

of various structural parts of the building is calculated and the results are combined to obtain the

transfer functions. In the work of Zou et al. [24], transfer functions for multi-story buildings were90

derived from analytical 1D and 2D impedance models and validated by measured railway-induced
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vibrations at the foundation level and on upper �oors in 14-story and 25-story buildings. Auersch

[25] follows a similar methodology using a physically-based prediction scheme consisting of transfer

matrices for the rail and the building. The soil is modelled using a homogeneous half-space with a

frequency-dependent wave velocity.95

In addition to methods based on physically motivated modelling, purely data-driven approaches

for vibration estimations have been proposed. The main advantage of these methods is that no

knowledge about the mechanical properties of the building is needed in order to apply them for

vibration estimation. A data-driven approach employing multiple-input transfer functions presented

by Weijtjens et al. [26] is based on solving for the spectral contributions of multiple sensors to the100

measured signal of another sensor. This is enabled by using a H1 or H2 estimation technique

[27]. However, the frequency-domain identi�cation is limited to cases where multiple uncorrelated

excitation sources are present [28], which is not generally the case for buildings subjected to tra�c-

induced vibration. Tarpø et al. [29] proposed to use mode shapes identi�ed using operational

modal analysis in a modal expansion scheme. Another data-driven estimation method is described105

by Peeters [30], in which a state-space model is obtained using stochastic subspace identi�cation.

By coupling the estimated state-space model to a Kalman �lter, vibration estimation and virtual

sensing are enabled [31]. While operational modal analysis is a widely used technique in structural

dynamics, it often requires additional tools like stabilisation diagrams, increasing the complexity

of this strategy. The assumption of a white noise excitation as well as white noise measurement110

disturbance, which operational modal analysis methods share with Kalman �ltering [32, 33], is

often invalid for tra�c-induced vibrations of buildings. Further, modal analysis techniques perform

best with su�ciently long measurements and well-observed structures that exhibit modes which are

well-separated in terms of their frequency [34]. From a modal analysis standpoint, the identi�cation

of high-order mode shapes of complex buildings with few sensors is therefore a vague and tedious115

endeavour.

In this work, in an e�ort towards a robust data-driven vibration prognosis method, an approach

based on multiple-input �nite impulse response (FIR) �lters is presented. Special consideration is

given to the numerical performance of the identi�cation procedure. The basic idea for multiple-input

FIR �lters was presented by Powell et al. [35]. An advanced method for data-driven identi�cation120

of such �lters was introduced by Chen et al. [36] and is incorporated in MATLAB [37]. Filters

with thousands of coe�cients are required to accurately describe the vibration behaviour of the
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building investigated in this paper. However, existing approaches such as the MATLAB function

impulseest [37] require a prohibitive amount of computational e�ort for these extreme �lter orders.

Concerning the earlier-mentioned requirements for estimation of railway-induced vibration in125

timber buildings, FIR �lters are well suited due to their ability to accurately describe both transient

and stationary vibration events over a broad frequency range [38]. The adopted multiple-input

topology is able to cope with the complex three-dimensional vibration state of the building and the

robust data-driven identi�cation scheme suppresses signal contamination and disturbances. Further,

short-term vibration measurement data of �oors of an existing building can be used to derive FIR130

�lter models. These FIR �lters can then be applied to obtain virtual sensor vibration time series

using only measurement data from a small subset of sensors. In addition to its application for

vibration prognosis, the FIR �lter has been applied to observers in controller design [39, 40] and

digital signal processing [41, 42].

To validate the proposed method, vibration measurement data obtained from a timber building135

is used. The building is situated close to train tracks and data sets of various train types were

captured using vibration velocity sensors. A preliminary study to estimate the optimal �lter order

is conducted. Subsequently, the prognosis accuracy is evaluated using various combinations of train

types and sensors.

Therefore, the �rst novelty of this work is the usage of an interpolation scheme, which allows140

for computing times on a manageable level for data-driven vibration prognosis. The second nov-

elty relates to the application of this scheme to vibration prognosis of a timber building using

measurement data.

This paper is divided into three main sections: First, a derivation of a numerically e�cient

multiple-input/multiple-output FIR identi�cation method as well as an automated procedure for145

model selection is given. Second, the measurement setup and acquired data of a timber structure

are presented. Finally, the results obtained using the new method and the measurement data are

shown and discussed.

2. Identi�cation of multiple-input/multiple-output impulse responses

In digital �lter theory, FIR �lters are used to model the response of linear time-invariant systems.150

Using these �lters, a vibration time series recorded at one position of a structure can be transformed

into another time series, representing the vibration time series at a di�erent location [43]. Figure 1
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shows a schematic �gure of a building with two measurement positionsx and y, which represent the

measurement channels at the input and output of a prognosis �lter. In this example, the vertical

measurement direction is indicated by an arrow at the respective measurement positions.155

Figure 1: Schematic diagram showing a structure next to train tracks as well as soil measurement position x and

�oor slab measurement position y with vertical measurement directions.

The equations of motion of a damped linear mechanical system with multiple degrees of freedom

can be stated as [44]

M •u(t) + C _u(t) + Ku (t) = p(t), (1)

whereu(t) is the displacement vector associated with the degrees of freedom,M is the mass matrix,

C is the damping matrix, K is the sti�ness matrix and p(t) is the vector of external forces. This

mechanical formulation can be transformed to the state-space representation to make it more readily160

tractable using control theory
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Equation 2a is the state equation which is equivalent to Equation 1. Equation 2b is the output

equation, which is used to extract the vibration velocities v(t) from the state vector in this case.

The matrices A u , B u , Cu and D u can be further employed to �nd the impulse response of the

mechanical system. One can show that for a steady state, the velocities can also be expressed as165
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[45]

v(t) =
Z t

t 0

G(t � � )p(� )d� (3a)

G(t) = Cu eA u t B u , (3b)

where G(t) is the matrix of impulse response functions. The impulse responses can be obtained

using the Equation 3b. Using the convolution integral shown in Equation 3a, the dynamic response

of the mechanical system can be modelled solely the impulse response and the external forces. Since

the external forces are often unknown in structural dynamics, vibration data acquired using sensors170

a�xed to the structure can be used as a proxy. A vibration prognosis of position y can thus be

carried out by feeding vibration data recorded at position x into an appropriately identi�ed FIR

�lter. This �lter structure can also be expressed by the system model

x b ŷ ;

where the �lter coe�cients b represent the transfer function from the input to the output. Through-

out this paper, the 'hat' notation indicates that ŷ is an estimated value as opposed toy which175

represents measured data at the output.

The mathematical de�nition of the FIR �lter resembles the discrete convolution [38]

ŷ[i ] =
MX

j =0

b[j ] x[i � j ], (4)

where input and output time series are represented by the vectorsx and ŷ , respectively. Equation

4 therefore resembles the single-input/single-output discrete formulation analogous to Equation 3a.

The parameter M represents the �lter order and the vector b therefore consists ofM + 1 �lter

coe�cients where j represents an index to this vector. The indexi denotes a sample in the output180

time series ŷ as well as an o�set in the input time series x . With the formulation according to

Equation 4, we imply causality of the �lter, which means that changes at the output ŷ must not

temporally precede changes in the inputx.

2.1. Single-input �nite impulse response identi�cation

A FIR �lter is identi�ed by �nding a vector of �lter coe�cients b, which transforms the input185

signal x, so that it approximates the measured output signaly as good as possible. This means that
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the residual signal power between the �lter responsêy and the measured outputy signal has to be

minimised. Filter identi�cation also requires that the time series x and y have to be recorded using

a �xed sampling rate and be synchronised to prevent temporal drift over time. The unconstrained

linear least squares optimisation problem yieldingb can be expressed as [43]190

minimise
b

mX

i = M +1

0

@y[i ] �
MX

j =0

b[j ] x[i � j ]

1

A

2

, (5)

where m denotes the number of samples in the time seriesx and y . In order to make this problem

tractable using linear algebra, Equation 4 is rewritten using a matrix-vector multiplication [43]

T � b = ŷ , (6)

whereT is a (m � M � 1) � (M +1) Toeplitz matrix containing data from m measurement samples.

The matrix contains the samples of the �lter input x[i ] shifted to the respective temporal positions

to result in a FIR �lter, so that195

Tij = x[i � j ]. (7)

Equation 6 assumes the form of an over-determined system of equations, when the number of

samplesm is larger than the order of the FIR M . To attenuate the in�uence of measurement

noise and signal contamination, it is bene�cial to derive the coe�cients b with m � M , so that an

average solution is achieved.

Using the Moore-Penrose pseudoinverse, a least-squares optimal solution to Equation 5 is ob-200

tained, which is known as the A�ne Projection Algorithm [46]

b =
�
T T T

� � 1
T T y . (8)

Equation 8 however does usually not yield a usable �lter in practice, since measurement noise

can deteriorate the quality of the identi�cation. This can be mitigated in part by providing large

amounts of measurement data from diverse excitation states. However, the high-frequency response

usually contains artefacts caused by over�tting, since the signal-to-noise ratio worsens in the high-205

frequency domain for measurements of buildings.

The e�ects of over�tting can be reduced by employing the Tikhonov regularisation [47], which

results in a regularised form of the A�ne Projection Algorithm [48]
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b =
�
T T T + � I

� � 1
T T y , (9)

where� is a regularisation parameter andI is the identity matrix. Low values of � lead to solutions

close to those obtained without any regularisation applied. High values lead to very smooth spectra,210

while underestimating the vibration level signi�cantly. An automated procedure for determining

the numerical value of the regularisation parameter is discussed in Section 2.4.

The smoothing e�ect of the regularisation parameter � depends on the �lter order and the

amplitude of the input signal. Hence, we propose a normalised formulation

� = � 0




 T T T






F

M + 1
, (10)

where jj � jj F indicates the Frobenius norm and� 0 2 R+ is the normalised regularisation parameter.215

The Frobenius norm is linked to the energy of the input signal, hence� becomes proportional to

the signal amplitude according to Equation 10. The Frobenius norm is de�ned as

kA kF :=
s X

i

X

j

jA ij j2, (11)

where A ij are the elements of a matrixA .

The smoothing is thus invariant to the number of samples considered in the Toeplitz matrixT .

To eliminate the dependency on the �lter order as well, Equation 10 includes a division byM + 1 .220

2.2. Expansion to multiple-input/multiple-output identi�cation

The motion of buildings excited by environmental vibrations is inherently three-dimensional.

When a train passes close to a building, the soil, foundations and building �oors vibrate in both

horizontal and vertical directions. These spacial motions can be captured using triaxial sensors,

as schematically illustrated in Figure 2. An uncoupling of movements in di�erent directions is225

only possible for simple mechanical structures. In residential buildings, the motions are coupled in

complex ways, which depend on the modal parameters as well as on the wave propagation properties

of the structure. To e�ciently utilise the information contained in the recorded signals, the �lter

identi�cation method is thus extended to account for coupling e�ects from all spacial directions.

A multiple-input concept for estimation of multiple-input/multiple-output FIR �lters was pre-230

sented by Chen et al. [36]. The transfer characteristics can be expressed as
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Figure 2: Schematic diagram showing triaxial vibration measurement positions in the soil and on a �oor slab. Triaxial

sensorsx and y used as the input and output, respectively.
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where we consider the1, 2 and 3 measurement directions of triaxial sensors. The �lter coe�cient

matrix is generally unsymmetrical, thus identi�cations have to be carried out individually for each

�lter in the matrix. For the sake of convenience, we assume a triaxial case in this derivation,

however, the formulation can be readily extended to account for any number of input and output235

channels. For example, measurement data from two triaxial sensors could be used as the inputs

x1::: 6, and data from only one triaxial sensor could be used as the outputsy1::: 3.

Similar to Equation 6, there is also an equivalent matrix expression that is conducive to the

solution by a pseudoinverse

T � b =
h

T1 T2 T3

i
�

2

6
6
6
4

b11 b12 b13

b21 b22 b23

b31 b32 b33

3

7
7
7
5

= Ŷ , (12)

where T1 denotes the shift matrix associated with the �rst input channel, T2 denotes the second240

channel and so forth. The time series of the outputs are denoted using the matrix̂Y , which has

a size of(m � M � 1) � ny , where ny denotes the number of output channels. The coe�cients of

the impulse responsesb11 through b33 can therefore be determined simultaneously, as shown in the

single-input case. In the case of one triaxial input and one triaxial output, the �lter coe�cients are

obtained using245
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The normalised regularisation parameter � 0 as de�ned in Equation 10 also applies to the

multiple-input case. Since the matrix T has more elements in the multiple-input case compared to

the single-input case, the numerical value of its matrix norm increases. Consequently, the value of

the regularisation parameter � according to Equation 10 increases and thus, the smoothing e�ect of

the regularisation remains constant. Equation 13 can be used to identify FIR �lter for dynamically250

loaded structures with arbitrary excitation sources. As alluded to in Section 1, an identi�cation

of multiple-input �lters in the frequency domain, as presented by Weijtjens et al. [26], can not be

achieved unconditionally [28].

In the following sections, the equations are derived without loss of generality using the single-

input/single-output system to simplify the notation.255

2.3. Interpolated �nite impulse response �lters

It is possible to solve Equation 13 e�ciently by exploiting the Toeplitz structure of the matrix T

to evaluate the expressionT T T . However, the computer memory required to store the square matrix

T T T is in many cases prohibitively large. Therefore, the numerical �lter identi�cation can be further

improved by considering a �lter topology with less coe�cients. Sparse �nite impulse response �lters,260

also known as 'tap delay' �lters [38], can signi�cantly reduce the numerical complexity of FIR �lters

while maintaining a high �delity. Instead of identifying M + 1 �lter coe�cients for the full model

order, a smaller number ofN + 1 coe�cients is used. The non-zero coe�cients are referred to as

�lter 'taps' while the remaining coe�cients are usually set to zero.

The achievable sparsity depends on the high frequency damping of the system, where strongly265

damped systems are conducive to high reduction ratios. For band-stop �lter design, a reduction of

non-zero coe�cients exceeding50% can be achieved in practice [49].

To achieve the best possible sparse �lter quality, it is advisable to place the �lter taps where the

amplitude of the dense �lter coe�cients is highest. Generally, in mechanical systems with viscous

damping, high frequency components decay faster than low frequency components. This means270

that most of the energy and high-frequency oscillation is contained in the beginning of the impulse

response. The �lter taps should thus be placed densely at the beginning of the impulse response,
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in order to be able to capture the high frequency content. The taps in the tail of the �lter should

be placed at larger distances, since low-frequency signals dominate in this section [49]. For this

purpose, we propose a quadratic function to place the �lter taps275

tk = k + ( M � N )
�

k � 1
N

� 2

, (14)

wherek 2 [1; 2; :::; N + 1] denotes the �lter tap index and tk is the corresponding tap position. The

tap position for the index k = N + 1 coincides with the �lter coe�cient M + 1 , placing the last tap

at the end of the �lter.

The tap positions tk resulting from Equation 14 are real-valued. For a direct application of

sparse �lters, they would have to be rounded to the next integer. However, the direct application of280

sparse �lters leads to a poor spectral signal quality. This can be overcome by employing interpolated

�nite impulse response �lters (IFIR) [50]. IFIR �lters are based on interpolation functions, which

are assigned to each �lter tap. Thereby, a bandwidth limitation is achieved which improves the

spectral quality. The weighting coe�cients resulting from the interpolation functions are combined

in the interpolation matrix H , which has the sizeM � N . By applying the matrix H to the sparse285

�lter coe�cients ~b, the dense �lter coe�cients are recovered

b = H ~b. (15)

We further constrain the interpolation coe�cients to have a unit sum for each sparse coe�cient k

1X

j = �1

H jk
!= 1 . (16)

This leads to a normalisation of the signal content in each of the sparse coe�cients. The �lter

coe�cients b are only de�ned in the interval [0; M ], but the interpolation functions may extend

beyond this interval. The sum in Equation 16 is thus de�ned over the interval [�1 ; 1 ] to achieve290

a consistent formulation.

The expression in Equation 6 can be rewritten using Equation 15

T b = T H ~b = y , (17)

again representing an overdetermined system of equations. The order of multiplications in Equation

17 is modi�ed
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~T = T H =) ~Tik =
MX

j =0

H jk x[i � j ], (18)

where the shift matrix T is eliminated and replaced by a convolution of the input x with the295

interpolation matrix H to yield the sparse shift matrix ~T . A similar scheme was put forward for

adaptive IFIR �lters by Wu et al. [51]. By substituting T for ~T and b for ~b, Equation 9 can be

rewritten to yield the sparse �lter coe�cients

~b =
�

~T T ~T + � I
� � 1

~T T y . (19)

The normalised regularisation parameter� 0 also applies for interpolated �lters, since the signal

energy content in T and ~T is roughly the same. This is the case, since the constraint in Equation300

16 forces the interpolation �lters to have a unit gain in the passband.

The choice of the interpolation functions in�uences the achievable quality of the identi�cation.

While triangular interpolation functions, also known as Bartlett windows, are often used for compu-

tational resource e�ciency in real-time processing [52], we propose employing Gaussian functions.

The latter allow for smoother interpolations than Bartlett windows in exchange for slightly higher305

computing times.

The centres of the Gaussian windows� k are placed at the real-valued tap positions, such that

� k = tk . We propose a parametrisation of the window using

� k =
tk+1 � tk � 1

4
, (20)

where � k is the standard deviation of the Gaussian interpolation function associated with thek-th

�lter tap positioned at tk . This way, neighbouring tap positions tk � 1 have a distance of approxi-310

mately two standard deviations. Since the area under the curve of a Gaussian distribution is always

one, the constraint given in Equation 16 is readily ful�lled. An illustration of the interpolation ma-

trix H is shown in Figure 3. The �gure depicts the overlap resulting from the parameterisation

given in Equation 20. The shape of a single interpolation function taken from the matrix H is

shown in Figure 4 .315

A bene�t of Gaussian window functions is the theoretically in�nite side lobe suppression in the

frequency domain [53]. The frequency response of the interpolation function displayed in Figure 4

is indicated in Figure 5, where the �at section of the graph indicated for the Gaussian window close

to � 250 dB is caused by numerical round-o� error. To reduce the number of non-zero elements in
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Figure 3: Matrix of interpolation coe�cients with

N = 10 and M = 40 . Individual interpolation functions

are each highlighted with a di�erent colour.

Figure 4: Interpolation coe�cients of a single interpola-

tion function shown using a stem plot.

the interpolation matrix H and thus minimise the number of multiplications required to compute320

the sparse shift matrix (Equation 18), we propose a truncation of the Gaussian functions. This

truncation is carried out by setting the interpolation matrix coe�cients H jk with values below10� 5

to zero, which results in a side lobe suppression greater than� 100 dB. The spectrum resulting from

truncation is superimposed in Figure 5.

Figure 5: Frequency response spectrum for the Gaussian interpolation function shown in Figure 4. A truncation of

the interpolation function leads to the emergence of side lobes.

2.4. Filter order selection325

This section introduces a procedure to automatically determine the three parameters, which

govern the process of �lter identi�cation. The �rst parameter M relates to the �lter order which

determines how many coe�cients comprise the �nite impulse response. The second parameter

N relates to the number of taps of the sparse �lter and thus dictates the accuracy of the sparse
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approximation. Finally, the normalised regularisation parameter � 0 controls how much smoothing330

is applied to the �lter coe�cients.

The statistical methods employed to select appropriate parameters are based on the estimation

error of the identi�ed multiple-input/multiple-output �lter model. The error between estimated

data Ŷ (M; N; � 0) and measured dataY is expressed using the mean squared error (MSE) [54]

MSE =
1
m

�
Ŷ (M; N; � 0) � Y

� T
�
�

Ŷ (M; N; � 0) � Y
�

, (21)

where the mean value of the di�erence between the time series of the estimated output and the335

measured output is obtained with a division by the number of data samplesm. The resulting MSE

is a square matrix of the sizeny � ny with ny being the number of output channels. Without loss of

generality, � 0 is initially set to 0 in the following, as it its optimal value is unknown at �rst. Based

on the MSE, the log-likelihood function can be expressed as [54]

ln( L̂ (M; N )) = �
m
2

(ln(det( MSE(M; N ))) + 1 + ny ln(2� )) . (22)

Using the log-likelihood function, the quality of the estimation is assessed by employing the

Akaike information criterion (AIC)

AIC = � 2 ln(L̂ ) + 2( M + N )nx ny (23)

where (M + N )nx ny denotes the number of model parameters. The termnx ny expresses the340

number of distinct �nite impulse response �lters as the product of input channels nx multiplied by

the number of output channels ny . Since interpolated FIR �lters are employed, it is not entirely

clear which value to use for the model order of the individual �lters. We propose utilising the

sum M + N that relates to the dense �lter order and the number of sparse �lter taps as stated in

Equation 23. SinceM � N , the addition of N can be interpreted as a penalty applied to models345

with excessively large numbers of �lter taps.

It should be noted at this point that, similar to the AIC, other �lter order selection or information

criteria can be employed [55]. Nevertheless, we propose the using the AIC, as, in the presented

applications, it led to the most reasonable models. To obtain values for the parametersM and

N , a sweep through the parameter space is conducted by application of a grid sampling. At every350

sampling point, the identi�cation method is applied and subsequently the AIC is evaluated. The

resulting AIC values yield a two-dimensional convex surface as a function ofM and N . The global
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minimum of this surface then yields the parameters with the minimum associated information loss

and thus the optimal model.

In a second step, the last free identi�cation parameter� 0 is determined based on the previously355

determined values ofM and N . To this end, the generalised cross-validation (GCV) [56]

GCV(� ) =

�
�
�
�
�
�Ŷ (� 0) � Y

�
�
�
�
�
�
2

�
�
�
� tr

�
I � ~T

�
~T T ~T + � I

� � 1
~T T

� �
�
�
�

2 (24)

is employed. The GCV function has a global minimum at the value for � 0 which is the best

compromise between accuracy and avoidance of over�tting. To obtain this minimum, a sweep over

the parameter � 0 is conducted and the setting associated with the minimal GCV is selected.

2.5. Computational performance360

The evaluation of Equation 19 is computationally intensive, due to the matrix multiplication

~T T ~T . The computational complexity is of the order O(mN 2), where m is the number of mea-

surement data samples andN is the number of �lter taps. Due to the quadratic in�uence N , the

number of �lter taps should be as low as possible to minimise computing times. This is valid under

the assumption that the number of measurement data samples is much greater than the �lter order,365

i.e. m � M .

Further, the shift matrix ~T takes up more memory than typically available on a desktop com-

puter, even for small numbers of measurement samples. This slows down the computation of~T T ~T ,

because the speed of this matrix multiplication is limited by the memory bandwidth. To reduce

the size of the shift matrix ~T , Equation 18 is computed in a batch operation for small chunks of370

measurement data. The terms ~T T ~T as well as ~T T y can thus be summed up iteratively to minimise

the computing time. Hence, the batches can be processed independently, which enables parallel

computation and thus increases the e�ciency on many-core computers.

Due to the relatively low dimension of ~T T ~T , the matrix inversion in Equation 19 has an in-

signi�cant impact on the computing time when long measurement data time series are employed.375

Hence, no special consideration of performance aspects is required for the matrix inversion.

2.6. System theoretical considerations

The system properties stability, controllability, observability and invertability are important for

the practical usefulness of the multiple-input/multiple-output IFIR �lter topology. Since the �lter
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structure utilised in the identi�cation process is based on FIR �lters, most of its properties are380

identical to FIR �lters. In terms of the z-transformation, the structure of a single-input/single-

output FIR �lter can be expressed as

G(z) =
b[0] + b[1]z� 1 + b[2]z� 2 + : : : + b[M ]z� M

1
, (25)

where G(z) is the transfer function and b[0:::M ] are the coe�cients of the FIR �lter. The denom-

inator of the transfer function is unity, which indicates that the �lter has no poles and is thus

unconditionally stable. To examine the controllability and observability, the state-space model of385

a single-input/single-output system is formulated

x ss[i + 1] = A ssx ss[i ] + bssx[i ]

y[i ] = cT
ssx ss[i ] + dssx[i ],

(26)

where A ss is the (M � M )-dimensional state matrix, bss is the input vector, cT
ss is the output

vector and dss is the feedthrough factor. The input time seriesx and the output time series y are

incorporated into the system using the time stepi . In order to represent a FIR �lter, the parameters

are set to

Ass;kl = � k � 1;l bss;k = � k; 1

cT
ss;l = b[l + 1] dss = b[0],

(27)

where the Kronecker delta function � is used to describe the contents ofA ss and bss. In this

formulation, the state space matrix A ss has ones on the lower secondary diagonal and is zero

otherwise. This means that the entire internal state is shifted in each time step. The input

vector bss feeds the most recent inputx[i ] to the beginning of this delay line. The output vec-390

tor cT
ss contains the coe�cients b[j ] of the FIR �lter, starting from the second coe�cient. Since

the �rst coe�cient b[0] of the �lter needs to be applied without any delay, it is contained in the

feedthrough factor dss. The controllability matrix following from this state space representation is

C = [ bss A ssbss � � � A M
ss bss] = I , meaning that the output is unconditionally controllable. The

observability matrix O = [ css A T
sscss � � � (A M

ss )T css]T only has full rank if all �lter coe�cients395

are non-zero, in which case the system is observable as well.

Since there are no restrictions imposed on the �lter coe�cients contained in css, the zeros of

Equation 25 are usually not bounded to the unit circle. This means that an inverse �lter obtained

by �ipping the numerator and denominator of the transfer function is generally unstable. However,
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it is possible to obtain a stable least-squares optimal inverse �nite impulse �lter using Equation 8400

[35].

3. Structural measurements of a timber building

To validate the identi�cation scheme outlined in the previous sections, measurement data was

obtained from a timber building under construction. The building shown in Figure 6 has six �oors,

of which the �rst �oor slab is built from concrete and the upper �oor slabs are made from cross-405

laminated timber. The walls of the upper �oors are carried out using a timber frame construction.

The ceiling height is 2:7 m and the total height of the building is 23 m. As illustrated in Figure 7,

the building is situated close to several railway tracks, with tra�c from commuter and long-distance

trains. Figure 7 contains the site plan including some dimensions for reference.

Figure 6: Photograph of the timber building and the railway

embankment in Berlin, Germany. Figure 7: Site overview with railway tracks and

�oor plan of the building.

In Section 3.1 we introduce the sensor positions and the data acquisition setup which was used410

for the in-situ measurement. Further, in Section 3.2 we characterise the structural dynamics by

examining the structural eigenmodes of individuals �oors and of the building as a whole. The data

sets captured using the measurement setup as well as the train types are discussed in Section 3.3.
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3.1. Measurement setup

During the measurement campaign, the building was equipped with a measurement setup con-415

sisting of multiple triaxial as well as uniaxial geophone sensors. The sensor distribution inside the

building is similar to those presented in previous studies, such as Sanayei et al. [23] or Mugabo et

al. [9]. Triaxial geophones were placed in the soil, on the ground level and on several �oors. The

structure was additionally equipped with uniaxial sensors which measure vibrations in the vertical

direction.420

The sensors are aligned according to a global coordinate system depicted in Figure 8. The

measurement directionsd1 and d2 cover vibrations in the horizontal plane, while d3 points in the

vertical direction. Figure 8 also shows the placement of the sensors on the ground level and on the

fourth and �fth �oor. For the measurement of soil vibrations, one triaxial geophone is positioned

in the soil at position G near the east corner of the building. The building has no basement, so425

the foundations coincide with the ground level �oor, which is a reinforced concrete slab. A triaxial

geophone is thus placed at location E on the ground �oor close to the soil geophone to capture the

di�erence between soil and foundation vibrations. Two additional uniaxial geophones are placed

on the ground level near load-bearing walls at locations S and N. The �oors four and �ve are each

equipped with two triaxial geophones at the location S and W on the two main ceiling panels of430

the building, as marked in Figure 8. On the second �oor, one triaxial geophone was located at

location W and additionally three uniaxial sensors were installed. The �rst �oor is constructed

using reinforced concrete, so it is of minor interest to the topic at hand. Hence, only two vertical

measurement channels are present at the N and S positions on the �rst �oor. The 32 measurement

channels, the sensor con�guration and their distribution are summarised in Table 1.435

The geophone sensors are of type SM-6 and have a sensitivity of27 Vs=m. Due to the physical

measurement principle, di�erent versions are required for the horizontal and vertical measurement

directions. The sensors have a cut-o� frequency of4:5 Hz and are connected to equalising pre-

ampli�ers to achieve a linear frequency response down to1:0 Hz. The pre-ampli�ers are connected

to a central data acquisition system, which synchronously records all 32 channels at a sampling fre-440

quency of1000 Hz. Calibration of individual sensors is achieved using adjustable gain and frequency

response settings of the pre-ampli�ers.

Photographs of triaxial soil and �oor sensor measurement setups are displayed in Figure 9.

The three spacial directions are measured separately using individual sensors, which are manually
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