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Abstract
The complexity of many problems in computational mechanics calls for reliable programming codes and accurate sim-

ulation systems. Typically, simulation responses strongly depend on material and model parameters, where one distin-

guishes between backward and forward models. Providing reliable information for the material/model parameters, enables

us to calibrate the forward model (e.g., a system of PDEs). Markov chain Monte Carlo methods are efficient computational

techniques to estimate the posterior density of the parameters. In the present study, we employ Bayesian inversion for

several mechanical problems and study its applicability to enhance the model accuracy. Seven different boundary value

problems in coupled multi-field (and multi-physics) systems are presented. To provide a comprehensive study, both rate-

dependent and rate-independent equations are considered. Moreover, open source codes (https://doi.org/10.5281/zenodo.

6451942) are provided, constituting a convenient platform for future developments for, e.g., multi-field coupled problems.

The developed package is written in MATLAB and provides useful information about mechanical model problems and the

backward Bayesian inversion setting.

1 Introduction

Bayesian inversion has been used in different applied and

engineering problems to identify specific material param-

eters that either cannot be measured with usual techniques,

or for which significant experimental efforts are needed to

provide a reasonable estimation. In mechanical systems,

the uncertainty arises from the spatial fluctuation (varying

properties within space), uncertainty in the dimensional

measurements, model structural errors, or misalignment of

the specimen or measurement device [1]. Therefore, con-

sidering the effect of uncertainties is crucial for having a

reliable model.

Markov chain Monte Carlo (MCMC) methods are

among the most effective sampling techniques for obtain-

ing knowledge and estimating posterior densities in
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Bayesian inversion. These methods are effective since they

can be implemented easily for different scientific and

engineering problems [2]. However, traditional methods

are computationally inefficient in high-dimensional

parameter spaces. There are effective improvements to

enhance MCMC convergence to the target density. An

efficient remedy is the adaptation of the proposal, which

can be done locally and globally [3, 4]. In this work, we

introduce some common MCMC techniques and discuss

their computational features. Then, they will be used to

identify the unknown material parameters in different

mechanical problems.

In computational mechanics, a Bayesian framework,

employing the Metropolis–Hastings algorithm was intro-

duced in [5] to accurately capture the mechanical behavior

of solids. In the context of continuum thermodynamics, a

fundamental study for model calibration in solid mechanics

was given in [6]. The MCMC based on the Metropolis–

Hastings algorithm has been employed to facilitate the

Bayesian system identification of a nonlinear dynamical

system from experimentally observed acceleration time

histories [7]. The delayed acceptance Metropolis–Hastings

has been used in geomechanics [8, 9] to estimate the

posterior density, where the forward model describes the

flow in porous media with or without fractures as well as

coupled hydro-mechanical processes. The Bayesian

parameter identification of viscoplastic-damaging models

was designed in [10] by developing a polynomial chaos

expansion version of Kalman filter. This has been further

evaluated with a CT-test and by considering the model

error [11]. Subsequently, different Bayesian inversion

models including Transitional Markov Chain Monte Carlo

method and Gauss-Markov Kalman filter approach were

used to compare and identify the material parameters of

viscoplastic damaging materials [12]. An overview on

Bayesian inversion in solid mechanics to incorporate sev-

eral uncertainty sources in the model problem is provided

in [1].

In this work, strong emphasis is put on identifying the

material parameters involved in fracture problems based on

the phase-field approach that has gained significant popu-

larity in the past decade. The phase-field approach to

fracture is rooted in the variational formulation of Griffith’s

fracture [13] and the subsequent gradient-based regular-

ization of the resulting free discontinuity problem [14, 15].

Later, from a more mechanically inclined perspective,

several developments in different research groups [16–26]

initiated a series of studies on the phase-field modeling of

fracture including a wide variety of extensions and appli-

cations (see [27–31] for overviews). Developments that are

relevant in the present study include ductile frac-

ture [32–37] and its extensions to gradient plasticity

[38, 39], the introduction of thermal effects [40–42], and

the recent phase-field approach to fatigue [43–49].

Due to the complexity of these mechanical problems, an

efficient parameter estimation setting provides means to

enhance the accuracy and reliability of the computations.

Employing Bayesian inversion enables us to calibrate the

forward model and provides an accurate estimation of the

model parameters. In [50], the authors use MCMC methods

in ductile fracture, where a Bayesian setting is developed to

infer the mechanical characteristics. Here, we use the local

and global proposal adaptation to improve the MCMC

efficiency and employ it in different mechanical and ther-

momechanical systems. The approach provides informative

knowledge about the influence of the mechanical charac-

teristics, i.e., which parameter has more effect on the sys-

tem. Furthermore, the convergence study (here R̂-statistics)

monitors the fast convergence of the MCMC chains to the

target density and guarantees that all parameters converge

accurately at the same time.

In mechanical problems, uncertainties in parameters

arise from several sources, e.g., spatial variability and

thermal diffusivity. As an example, the material stiffness

usually presents strong spatial fluctuation. Direct estima-

tion of these parameters is often difficult and gives rise to

significant experimental efforts. Therefore, providing a

robust and efficient computational framework to estimate

reliable information of the mechanical parameter is of

utmost importance. In [51], we presented a probabilistic

method to identify the parameters in brittle fracture using

the Metropolis–Hastings algorithm. Later, we extended the

parameter identification to a more complicated PDE-based

model for hydraulic fracture in the isotropic and aniso-

tropic setting [9]. The efficient MCMC approach enabled

us to identify several parameters at the same time.

Recently, the authors extended the idea of parameter esti-

mation to ductile materials in the context of a unified

phase-field framework [50], where experimental data was

considered for parameter identification.

An important part of this paper is the accompanying

open-source programming codes published on zenodo1. In

recent years, we have published several studies in com-

putational mechanics and phase-field fracture without

explicitly providing codes2. However, we strongly believe

and agree with the reasons for open-source research soft-

ware initiatives outlined in [53–55], that is, that codes must

be available at some point. In order to demonstrate the

1 The compact open-source code that can be used to reproduce all the

examples is available online at https://doi.org/10.5281/zenodo.

6451942.
2 In our C?? developments for phase-field fracture, we published

some codes in recent years on https://github.com/tjhei/cracks, which

are documented in [52].
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problem statements, numerical experiments, implementa-

tion and documentation, we concentrate in this work on

one-dimensional model problems. The purpose is two-fold:

firstly, to verify the results of the current work, and sec-

ondly, to provide prototype codes of our previous pub-

lished studies [49–51]. Together with the algorithms

published in these papers, the current codes allow for

extensions towards two- and three-dimensional problems.

In summary, the objectives of this work are:

1. To provide compact open-source codes 2 for the

Bayesian inversion method for one-dimensional anal-

ysis in the context of:

i Elasticity,

ii Heat equation with convection,

iii Elastoplasticity,

iv Phase-field fracture for brittle materials,

v Phase-field fracture for ductile materials (gradi-

ent-extended plasticity),

vi Phase-field fracture for thermoelasticity,

vii Phase-field fatigue fracture.

2. To investigate convergence performance of different

MCMC techniques in the aforementioned boundary

value problems.

The paper is structured as follows. In Sect. 2, we introduce

different MCMC techniques and compare their computa-

tional features. In Sect. 3, we introduce seven mechanical

problems and employ the presented probabilistic inverse

technique to precisely estimate the effective material

parameters for the associated boundary value problems.

Specifically, in this section, we highlight the efficiency of

the MCMC techniques. An overview of the codes including

convergence analysis is given in Sect. 4. Finally, some

concluding remarks are elaborated in Sect. 5.

2 Parameter Estimation Based on Bayesian
Inference

In this section, we review the how efficient MCMC tech-

niques can be used to provide accurate information of

material parameters. As a probabilistic model, Bayesian

inversion is used to update the available information (prior

knowledge) and provide more accurate data (i.e., the pos-

terior density). As a result, a very good agreement between

the measurement and the model response (as an aim of the

inference) can be achieved.

First of all, we define the following statistical model

S ¼ Lðx; hÞ þ e; ð1Þ

where S denotes an n-dimensional measurement/reference

vector, L refers to the model response affected by the k-

dimensional model parameters h which belong to the ran-

dom field H and the position x, and e is the observation

error, e.g., a Gaussian independent and identically dis-

tributed error e�N ð0; r2 IÞ, including the parameter r2.
In Bayesian estimation, a parametric forward model

(e.g., a PDE-based model) is used to update the available

data (considered as random variables) based on the avail-

able information (denoting the prior knowledge). Having a

measurement S ¼ obs, the conditional density has the

following form:

pðobsÞ ¼
Z
Rn

pðobsjhÞp0ðhÞ dh: ð2Þ

Considering the parameter estimation setting, by a specific

observation m, we strive to estimate the posterior distri-

bution pðhjmÞ, where prior information is available.

Employing the statistical model (1), the likelihood function

can be estimated as

pðSjhÞ ¼ Lðh; r2jSÞ ¼ 1

ð2pr2Þn=2
exp �EES=2r

2
� �

ð3Þ

where

EES ¼
Xn
j¼1
½Sj � Ljðx; hÞ�2 ð4Þ

is the sum of square errors.

The random walk Metropolis (RWM) algorithm was

introduced by Metropolis et al. [56]. The algorithm starts

with a given initial guess h0 according to the prior density.

Then, based on the proposal distribution (the current state

of the chain is perturbed randomly) a new candidate that

depends on the chain (the previous candidates) hH is pro-

posed. The acceptance rate is computed by

kðhj�1; hHÞ ¼ min 1;
pðhHÞ
pðhj�1Þ

 !
; ð5Þ

where the likelihood function is given in (4). Either the

new candidate is accepted, or the MCMC chain follows in

the current way. Here, a symmetric proposal density is

used. A generalized form of the algorithm using a non-

symmetric was introduced by Hastings [57], where the

probability of the forward jump is not equal to the back-

ward one. This algorithm has been widely used to estimate

the desired distribution of the parameters, specifically when

the problem dimensionality is low. In contrast, in the high-

dimensional case, the rejection rate increases dramatically.

Furthermore, since the proposal density has no tunning, the

convergence is significantly slow. It will be more pro-

nounced when an unsuitable initial guess is used. Although

the algorithm is easy to implement and versatile, its com-

putational drawbacks (mostly in multi-dimensional

Bayesian Inversion with Aopen-Source Codes for Various One-Dimensional... 4287

123



domains) motivate to develop improvements to the

Metropolis–Hastings (MH) algorithm.

In the algorithmic treatment, we first determine a range

for each parameter (based on the prior information). Con-

sidering N iterations, we assign an initial guess (prior

knowledge) h0 for the proposals. During the iterations

(j ¼ 2; . . .;N) the next proposal hH is estimated as

hH ¼ hj�1 þ COV � randn(k,1); ð6Þ

where COV denotes the Cholesky decomposition of the

given proposal function and randn(k,1) is a k-dimensional

normally distributed random variable. The function

hH ¼ check boundðhH; rangeÞ ð7Þ

controls whether the new candidate is in the determined

range. If each element of the proposal exceeds the maxi-

mum value, this element is replaced by the upper bound. If

the value is less than the minimum of the range, it is

replaced by the minimum. In the MH algorithm, the fixed

(not adopted) covariance matrix is used during the MCMC

chain. If the acceptance rate k is greater than a produced

random variable between 0 and 1 (rand), the proposal is

accepted, and the chain is followed with the new proposal.

Otherwise, we continue with the previous candidate hj�1. A
summary of the algorithm is given in Algorithm 1.

Algorithm 1 The Metropolis-Hastings algorithm.
Initialization: set prior data θ0 and number of samples N .
while j < N

1. Propose a new candidate based on the proposal distribution θ∗ ∼ K(θ∗| θj−1).

2. Compute the acceptance/rejection probability

υ(θ∗| θj−1) = min

(
1,

π(θ∗|m)
π(θj−1|m)

K(θj−1| θ∗)
K(θ∗| θj−1))

)
.

3. Generate a random number R ∼ Uniform (0, 1).

4. if V < υ then

accept the proposed candidate θ∗ and set θi := θ∗

else

reject the proposed candidate θ∗ and set θj := θj−1

end if

5. Set j = j + 1.
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2.1 Adaptive Metropolis (AM)

The adaptive Metropolis algorithm [3] is based on tuning

the proposal density. This is done based on the obtained

information from the previous samples (path of the MCMC

chain) by computation of the covariance function.

According to the available information, we can adapt the

proposal distribution as

Vj ¼ KpCov h0; h1. . .; hj�1
� �

þ �Ij: ð8Þ

Here, the parameter � is chosen close to zero to guarantee

that the covariance is positive definite, and Kp ¼ 2:382

j is

chosen according to [2]. The covariance function is given

by

COVj ¼ Covðh0; h1; . . .; h jÞ

¼ 1

j

Xj

i¼0
hi hi
� �T�ðnþ 1Þ ĥj ĥ

j
� �T !

;
ð9Þ

where ĥ
j ¼ 1

jþ1
P j

i¼0 h
j, see [2]. To enhance the efficiency

of the method, the proposal can be adapted after a specific

number of iterations, e.g., 100. We introduce a new pro-

posal employing the Cholesky decomposition of the

covariance function (9):

h� ¼ hj�1 þ COVjI j;

where I j is the identity matrix. In contrast to (6), we adopt

the proposal iteratively (e.g., each 100 iterations). By using

the updated proposal, the chain will have sufficient infor-

mation from the accepted candidates which enhances the

method efficiency. In this step we employ the code intro-

duced in [4], named covupd. Finally, the acceptance/re-

jection probability is estimated by

k1ðh�j hj�1Þ ¼ min 1;
pðh�jmÞ /ðhj�1j h�Þ
pðhj�1jmÞ /ðh�j hj�1ÞÞ

� �
: ð10Þ

2.2 Delayed Rejection (DR)

As previously mentioned, the MH algorithm suffers from

computational disadvantages, mostly in a high-dimensional

parameter space. The delayed rejection [58] is based on

giving another chance to the rejected candidate by using a

second stage move. For this, we change the proposal

density to increase the acceptance probability of the

rejected candidate. The essential parameter is c2, which
will be selected in the range c2\1 such that the next stage

has a narrower proposal function (normally, c2 ¼ 1=5 is

chosen). The alternative proposal h�� is chosen using the

proposal function

/ðh��jhj�1; h�Þ ¼ N ðhj�1; c22VjÞ; ð11Þ

where Vj is the covariance matrix estimated by the adaptive

algorithm [58]. We use the following acceptance ratio

k2ðh��jhj�1; h�Þ

:¼ min 1;
pðh��jmÞ/ðh�jh��Þ/2ðhj�1jh��; h�Þ½1� kðh�jh��Þ�

pðhj�1jmÞ/ðh�jhj�1Þ/2ðh��jhj�1; h�Þ½1� kðh�jhj�1Þ�

� �

¼ min 1;
pðh��jmÞ/ðh�jh��Þ½1� kðh�jh��Þ�

pðhj�1jmÞ/ðh�jhj�1Þ½1� kðh�jhj�1Þ�

� �
:

ð12Þ

The DR process can be carried out once, or at random/fixed

number of iterations.

2.3 Delayed Rejection Adaptive Metropolis
(DRAM)

In the DRAM algorithm, we follow two steps in order to

reduce the rejected candidates and enhance the conver-

gence. Globally, we adapt the proposal density based on

the already obtained information from the chain (AM).

Locally, we pursue the DR strategy that in each iteration,

the rejected candidate will have at least one additional

chance. In the case that the initial values are too far from

the desired density (target distribution), the adaptive

strategy may not be started appropriately. This is due to the

large variance of a near singular covariance matrix. As a

solution, the DR strategy reduces the variance in different

delayed stages, so that some accepted proposals are

available, enabling the AM to start appropriately. There-

fore, the DRAM technique can effectively overcome the

drawbacks of the MH algorithm [4]. A summary of the

process is given in Algorithm 2.
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The algorithm includes two important aspects

• Increasing the acceptance rate by a local adaptation

(DR).

• Increasing MCMC chain accuracy by a global adapta-

tion (AM).

2.4 MCMC with Ensemble-Kalman Filter (EnKF-
MCMC)

As previously mentioned, a good detection of the proposal

density will enhance the Markov chain movement to the

target density. EnKF represents the error covariance matrix

by a large stochastic ensemble of model realizations [59].

In this method, to have an accurate estimation of posterior

density, a Kalman gain (similar to a weighting matrix in

particle filter) is calculated employing the mean and the

covariance of the prior distribution and the cross-covari-

ance between parameters and observations. Here, we

introduce another proposal distribution detection technique

using an ensemble-Kalman filter [60], where one has

hH ¼ hj�1 þ Dh; ð13Þ

where Dh indicates the jump of Kalman-inspired proposal.

For updating the proposed candidates, we can rewrite (13)

as

Dh ¼ K yj�1 þ sj�1
� �

: ð14Þ

Here K points out the so-called Kalman gain,

K ¼ ChM CMM þRð Þ�1; ð15Þ

where ChM denotes the covariance matrix between the

identified unknowns and the PDE-based model, CMM is the

covariance matrix of the model solution (i.e., the PDE

response), and R indicates the measurement noise covari-

ance matrix [61]. Furthermore, yj�1 indicates the residual

of candidates with respect to the model and sj�1�N ð0;RÞ
refers to the density of measurement. Denoting obs as an

observation, yj�1 ¼ obs� f ðhj�1Þ. In order to enhance the

method efficiency, i.e., reduce the effect of the initial

guess, different MCMC chains instead of a single chain can

be employed.

Algorithm 2 The DRAM algorithm.

Initialization (j = 0): Produce the initial parameter θ0 ∼ π(θ0| m).

while j < N

1. Propose a new candidate θ∗ = θj−1+RjZj where Rj is the Cholesky decomposition

of Vj and Zj ∼ Uniform (0, Ij) where Ij denotes the identity matrix.

2. Calculate the acceptance/rejection probability λ1(θ∗| θj−1).

3. Draw a random number R ∼ Uniform (0, 1).

4. if R < λ1 then accept the candidate θ∗ and set θj = θ∗

else (i) Calculate the alternative candidate θ∗∗ = θj−1 + γ2
2RjZj.

(ii) Calculate the acceptance/rejection probability λ2(θ∗∗| θj−1, θ∗).

(iii) if R < λ2 then accept the candidate θ∗∗ and set θj = θ∗∗

else reject the candidate θ∗∗ and set θj = θj−1

5. Update the covariance matrix as Vj = Cov(θ0, θ1, . . . , θj) and Rj.

6. Set j = j + 1.
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After the estimation of hH, we check its bounds, and

calculate its acceptance rate k that determines if the new

proposal is rejected or if the chain should be continued with

hj�1 (the previous candidate). We summarized the proce-

dure in Algorithm 3. The main advantage of EnKF-MCMC

lies in using the covariance between the model response

and between parameters and the PDE-response. This

approach increases the possibility of acceptance of the

candidate noticeably.

Table 1 provides an informative summary of the com-

putational characteristics of the discussed MCMC tech-

niques. The MH algorithm yields a more efficient

performance when compared to RWM since an asymmetric

proposal density is used. Also, the implementation of the

method is very simple. AM overcomes the drawback of

MH by adapting the proposal based on the obtained

information. The DR method improves AM, specifically

when the initial guess is not suitable and a local adaptation

is used. DRAM takes advantage of the benefits of both AM

and DR (global and local chain adjustment). EnKF-MCMC

has an effective proposal improvement and leads to sig-

nificant improvements for large number of unknowns. The

theoretical results show that DRAM and EnKF perform

effectively compared to other methods. In the sequel, we

will validate this discussion with practical examples.

3 One-Dimensional Examples

In this section, we aim at describing how Bayesian infer-

ence can be employed to identify material parameters in

computational mechanics. Seven different boundary value

problems including complex coupled multi-field (and

multi-physics) systems are considered. Moreover, compact

open-source codes are provided.

In order to introduce Bayesian inference as simply as

possible, one-dimensional analyses of uniaxial tests are

performed. This can be extended to a multidimensional

setting in a straightforward manner. Additionally, Bayesian

inference codes to reproduce all the examples are given in

detail.

Spatial and temporal gradients are denoted as

h0ðx; tÞ ¼ ohðx; tÞ
ox

and _hðx; tÞ ¼ ohðx; tÞ
ot

:

3.1 Example 1: Linear Elasticity

This example provides a brief illustrative parameter esti-

mation based on Bayesian inference for one-dimensional

linear elasticity. Specifically, we estimate Young’s modu-

lus as the single uncertain parameter in the given problem.

The observation, i.e., the reference response, is taken as the

analytical solution of the governing second-order ordinary

differential equation.

3.1.1 State Variables and Kinematics

Let us consider the one-dimensional boundary value

problem (BVP) shown in Fig. 1a. An isothermal elastic rod

is completely fixed on the left side and subjected to an

imposed traction per unit area �t on the right side. The

external body force qA �bðxÞ has the sinusoidal form

qA �bðxÞ ¼ �qðxÞ ¼ q0 sinð2px=lÞ, as shown in Fig. 1b, where
�b is a body force per unit mass. Moreover, the deformation

process is assumed to be quasi-static, such that inertial

effects can be neglected.

The material is assumed to obey linear elasticity in the

small strain setting. Consequently, letting B :¼ ½0; L�, the
displacement field u : B! R constitutes the only primary

variable. To elaborate the corresponding variational for-

mulation, we employ the function space for the displace-

ment field:

Wu
�u :¼ fu 2 H1ðBÞ : u ¼ �u on oDBg; ð16Þ

In particular, we denote Wu
0 when we have zero boundary

condition (i.e., u ¼ 0). Additionally, the strain field is

obtained as

eðxÞ ¼ u0ðxÞ: ð17Þ

The stress field then follows from Hooke’s law as

rðxÞ ¼ EeðxÞ; ð18Þ

where E is Young’s modulus, assumed to be constant

throughout the bar for the sake of simplicity. With these

Table 1 A comparison of the

computational features of

different MCMC methods

Method Proposal DR strategy Convergence Initial guess

RWM [56] Symmetric – Low-dimensional Sensitive

MH [57] Asymmetric – Low-dimensional Sensitive

AM [3] Global adaption – High-dimensional Less-sensitive

DR-MH [58] Local adaption Once/multiple High-dimensional Less-sensitive

DRAM [4] Adaptive Once/multiple High-dimensional Less-sensitive

EnKF-MCMC [59] Kalman filter – High-dimensional Less-sensitive
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definitions at hand, the quasi-static mechanical balance

problem takes the following strong form:

Find uðxÞ s.t. : EA
d2uðxÞ
dx2

þ q0 sin

�
2px
L

�
¼ 0;

ð19Þ

along with the Dirichlet boundary condition u ¼ 0 at x ¼ 0

and the Neumann boundary condition du=dx ¼ �t=E at

x ¼ L. Here, A is the cross-sectional area of the bar,

assumed to be constant for simplicity. The second-order

ordinary differential Eq. (19) has the exact solution for the

displacement field:

uðxÞ ¼ q0L
2

4EAp2
sin

�
2p
L
x

�
þ
�

�t

E
� q0L

2pEA

�
x 8 0� x� L:

ð20Þ

The analytical solution is taken here as the reference

response. For the numerical solution, the finite element

method is employed, for which the variational formulation

of the BVP is presented below.

3.1.2 Energy Quantities and Variational Principles

The strain energy density for one-dimensional linear elas-

ticity reads

WelasðeÞ :¼
1

2
Ee2 ¼ 1

2
E

�
du

dx

�2

: ð21Þ

The total energy functional EðuÞ is then given by

Fig. 1 Geometry and loading setup for the one-dimensional bar. a Boundary value problem and b sinusoidal body force with constant amplitude

q0 ¼ 14N/m

Algorithm 3 Bayesian inversion with ensemble-Kalman filter.

Initialization (j = 0): Produce the candidates according to the prior density θ0

while j < N

1. Solve the model equations and estimate the its response f(θj−1) considering θj.

2. Update the Kalman gain K = CθM (CMM + R)−1.

3. Shift the ensemble θ� = θj−1 + K (yj−1 + sj−1)

4. Accepted/rejected the forecast.

5. Set j = j + 1.
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EðuÞ ¼
Z L

0

WelasðeÞAdx�
Z L

0

qA �bu dx� A�tu
��
oNB

;

ð22Þ

where the external forces evaluated at the Neumann

boundary oNB � fLg have been used (Fig. 1a). Mini-

mization of the energy functional (22) with respect to the

displacement field leads to the following weak formulation.

Formulation 3.1 (F1: Bayesian inversion for linear elas-

ticity) Consider a given open bounded one-dimensional bar

on an interval B :¼ ð0; LÞ with boundary oB defined at

x ¼ 0 and x ¼ L, and constant E� 0. Find u 2Wu
�u satis-

fying the following Euler–Lagrange equation in weak

form:

Euðu; duÞ ¼
Z L

0

	
EA

�
du

dx

��
dðduÞ
dx

�
� qA �bdu



dx

� A�tdu
��
oNB
¼ 0 8 du 2Wu

0:

Here, the aim of the Bayesian inversion is to determine

Young’s modulus E.

3.1.3 Bayesian Inference

In the present example, we consider a bar of unitary length

L ¼ 1 with x 2 B :¼ ½0; 1� that is initially unstretched, q0 ¼
14 N/m, and a unit cross-sectional area throughout the bar

(A ¼ 1 m2). The minimum finite element size in the

domain B is h ¼ 0:005 mm. The left end (x ¼ 0) is fixed.

The statistical problem consists of identifying Young’s

modulus E. Bayesian inference is then applied to determine

the target value, while no specific information (other than

its positivity) is available a priori.

From now on, in order to estimate the model response,

the function

½response� ¼ forwardmodelðhHÞ ð23Þ

is employed. Then, response is used to calculate the

likelihood of the given proposal. The main script for the

present example is named elasticity 1D. We assume

Young’s modulus is between E ¼ 0:1GPa and

E ¼ 20GPa, the initial guess is h0 ¼ 3, and we use

r2 ¼ 0:1. As a synthetic measurement, we employ E ¼
4:259 to estimate the displacement.

As a one-dimensional Bayesian inversion (k ¼ 1), we

plan to compare the performance of all methods, including

the convergence of the MCMC chain, elapsed CUP time,

and the convergence rate. Figure 2 shows the evolution of

the MCMC chain using different Bayesian techniques. All

chains converged effectively and EnKF shows a signifi-

cantly lower fluctuation. As a result, as Fig. 3 illustrates

that a narrow posterior distribution has been obtained using

the MCMC techniques. Again, EnKF-MCMC shows a

better performance (a narrower density) compared to

others.

Fig. 2 Example 1. The MCMC chain of E obtained by different Bayesian techniques. Form left to right: MH, AM, and DR (the first row), and

DRAM as well as EnKF (the second row)
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The posterior density provides informative knowledge

about the parameter. We extract the median of the accepted

candidates as the inferred solution. Table 2 shows the

computational features of our Bayesian inversion.

Although all methods estimate the Young’s modulus with a

reasonable accuracy, using DRAM and EnKF results in a

more precise inference. As expected, the acceptance rate of

MH is minimum and it increases by a global adaptation

(adaptive Metropolis). The delayed rejection increases

significantly the acceptance ratio; however, it also raises

the computational time. Combining AM and DR again

increases the acceptance ratio by 10%. Since we adopt the

proposal every 100 iterations, AM does not noticeably

increase the computational time. Regarding EnKF-MCMC,

the CPU time is much higher; however, using Kalman

again leads to an excellent ratio and a very low uncertainty

in MCMC; see Fig. 2.

3.2 Example 2: Heat Equation with Convection
Contribution

The heat equation is a convection-diffusion equation used

to model heat transfer from regions of higher temperature

to regions of lower temperature. Convective transport is a

physical process that takes place along the streamlines in

the flow field. In the second example, we apply Bayesian

inversion to a one-dimensional convection-diffusion

equation. Herein, the goal is to estimate thermal diffusivity

and thermal velocity.

3.2.1 State Variables and Kinematics

In the context of the one-dimensional bar treated in the

previous example, we now consider a thermal process

occurring in a time interval T :¼ ½0; T �. In particular, at

material points x 2 B and time t 2 T, the BVP solution

provides the temperature field T : B 	 T! R. To elabo-

rate the corresponding variational formulation, we employ

the function space for the temperature field

WT
�T
:¼ fT 2 H1ðBÞ : T ¼ �T on oTDBg: ð24Þ

In particular, we use WT
0 when we have zero boundary

condition ( �T ¼ 0). In the present one-dimensional prob-

lem, the Dirichlet boundary is set at the left boundary and

the ending points (right boundary), and the problem

includes the following boundary conditions:

Table 2 Example 1: The median of the posterior density and its

elapsed CPU time and the acceptance rate using different MCMC

methods

Method MH AM DR DRAM EnKF

E 4.243 4.255 4.257 4.259 4.26

CPU time [s] 11.9 12.68 23.36 22.01 66

Acceptance rate (%) 16.1 30.1 50.4 60.2 91.8

Fig. 3 Example 1. The posterior distribution of E obtained by different Bayesian techniques. Form left to right: MH, AM, and DR (the first row),

and DRAM as well as EnKF (the second row)
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T ð0; tÞ ¼ T 1 T ðL; tÞ ¼ T 2 8 t[ 0 on oTDB;

ð25Þ

along with Neumann boundary conditions

Qn ¼ �q on oTNB; ð26Þ

where Q is the thermal volume flux and �q is the thermal

transport on the Neumann boundary, where n ¼ 1 for x ¼ L

and n ¼ �1 for x ¼ 0, and �T is the imposed temperature

on the Dirichlet boundary. Moreover, the heat flux in (26)

can be described by the negative direction of the thermal

heat gradient T 0 (denoting o
ox T ) through Fourier’s law of

heat conduction as

Q ¼ �K T 0; ð27Þ

where K is the thermal conductivity.

3.2.2 Time Discretization of the Temporal Variables

In the following, we shortly comment on the time-dis-

cretization of the temporal variables. To do so, let the

interval T :¼ ðt0; TÞ be discretized using the discrete time

(loading) points

0 ¼ t0\t1\. . .\tn\tnþ1\. . .\tN ¼ T ; ð28Þ

with the end time value T[ 0. The parameter t 2 T

denotes for rate-dependent problems the time, and for rate-

independent problems an incremental loading parameter. In

the following, to formulate the incremental problems, we

denote the current time t :¼ tnþ1 [ 0 with known fields at

tn. In order to advance the solution within a specific time

step, we focus on the finite time increment ½tn; tnþ1�, where

Dt ¼ tnþ1 � tn [ 0 ð29Þ

denotes the time step length.

3.2.3 Strong Formulation and Variational Principles

The one-dimensional diffusion equation with convection

can be written as

q c _T þ j T 0 þ Q0 ¼ 0 in B 	 T ð30Þ

where c is the heat capacity, q is the heat density, and j
indicates the thermal velocity.

Typically, to identify the relative importance between

convection and diffusion in a heat equation, the dimen-

sionless quantity called Péclet number is estimated by

Pe :¼ ðj hÞ=ð2KÞ, where h is the element size. This value

expresses the ratio of convective to diffusive transport in a

heat flow problem.

For test functions dT 2WT
0 (see (24) with zero

boundary condition), the heat problem given in (30) has the

following variational form:Z L

0

q c _T dT dxþ
Z L

0

jT 0dT dxþ
Z L

0

KT 0
� �


 dT 0 dx

¼ KT 0dT
� �L

0
:

ð31Þ

The standard variational equation (initiated from a Galer-

kin formulation) for the heat equation including convection

and diffusion effects where convection is dominant com-

pared with diffusion typically leads to unstable results, and

thus numerical stabilization has to be used [62, 63]. More

specifically, without stabilization techniques, some spuri-

ous oscillations (or wiggles) appear, which prevent the

numerical solution from converging to a physical response.

It can be observed that stronger convective effects lead to

larger oscillations in time. It is shown for the value Pe[ 1,

where convective response is dominating, that the solution

obtained through standard FEM presents spurious oscilla-

tions [64, 65]. To remedy these shortcomings, we consider

here the modified test function

fdT ¼ dT þ bopt
h

2
dT 0; ð32Þ

where bopt is given by

bopt :¼ cothjPej � 1

jPej ; ð33Þ

and coth indicates the hyperbolic cotangent. Observe that

for the linear interpolation basis functions used for the

finite element discretization, we have

gdT 0 ¼ dT 0; ð34Þ

such that the modified weak formulation reads:

Z L

0

q c _T fdT dxþ
Z L

0

jT 0fdT dxþ
Z L

0

KT 0
� �


gdT 0 dx
¼ KT 0fdTh iL

0
:

ð35Þ

This variational equation typically refers to the Streamline-

Upwind (SU) formulation.

An algorithm for the update of the temperature field T

in the increment ½tn; tnþ1� results in time-discrete field

variables in an incremental setting of the convection-dif-

fusion equation. Equation (36) then becomes
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Z L

0

q c _T fdT dxþ
Z L

0

jT 0
� �xfdT dxþ

Z L

0

KT 0
� �x
gdT 0 dx

¼ KT 0fdTh iL
0
;

ð36Þ

in terms of the x-algorithmic expressions given by

_T ¼ 1

Dt
ðT � T nÞ and ð�Þx ¼ ð1� xÞð�Þn þ xð�Þ;

ð37Þ

with

x :¼

Z tnþ1

tn

GðtÞt=Dt dt
Z tnþ1

tn

GðtÞ dt
; ð38Þ

such that GðtÞ is a temporal weighting function. The scalar

value x for different variations of GðtÞ is given in Table 3.

Regarding the analytical solution, we will consider

T 1 ¼ 1� C and T 2 ¼ 0� C in (25). Thus, the solution has

the following form:

T ðt; xÞ ¼ exp

�
j
2K

x� K2 t

4Kqc

�

X1
i¼1

ffiffiffi
2
p

sinðipxÞ exp
�
�KðipÞ2 t

qc

�
ki

þ
1� exp

�
j
K

x� 1ð Þ
�

1� exp

�
� j
K

�

ð39Þ

where

ki ¼ �
ð�1Þi 4

ffiffiffi
2
p

K2 ip
ffiffiffiffi
K
p

expð� j
2KÞ

j2 þ 4K2 ðipÞ2K
: ð40Þ

The reader is referred to [67] for further details.

Formulation 3.2 (F2: Bayesian inversion for convection-

diffusion) Consider an open bounded one-dimensional bar

on an interval B :¼ ð0; LÞ with boundary oB defined at

x ¼ 0 and x ¼ L. Let constants ðj;K; q; cÞ� 0 be given

with the initial conditions T 0 ¼ T ðx; 0Þ. For the loading

increments n ¼ 1; 2; . . .;N, find T :¼ T n 2WT
0 satisfying

the following Euler–Lagrange equation in weak form:

ET ðT ; dT Þ ¼
Z L

0

q c ðT � T nÞfdT dx

þ
Z L

0

ð1� xÞDtjT 0nfdT dx

þ
Z L

0

ð1� xÞDtKT 0n 
gdT 0 dx

þ
Z L

0

ðxÞDtjT 0fdT dxþ
Z L

0

ðxÞDtKT 0 
gdT 0 dx

� DtKT 0fdTh iL
0
¼ 0: 8 dT 2WT

0

The unknown material parameters for the convection-dif-

fusion problem denoted as F2 then follow from the prob-

abilistic Bayesian inversion

P BI

�
F2ðuÞ

�
with u :¼ T and P :¼ ðj;KÞ:

3.2.4 Bayesian Inference

For the simulation, we consider a bar of unitary length

L ¼ 1 with x 2 B :¼ ½0; 1�. The right end (x ¼ 1) is iso-

lated, while a prescribed temperature �h is imposed on the

left end, i.e., x ¼ 0; see Fig. 4b. Temperature boundary

conditions are set according to (25) such that T 1 ¼ 1� C
and T 2 ¼ 0� C. Additionally, we set initial temperature as

T ¼ 0 at t ¼ 0. The reference simulation is performed for

t ¼ 0:2 s.

The Bayesian inversion aims to determine two thermal

parameters, namely (j, K). We set c ¼ 1:2 J/K and q ¼
1:6W=m2 and use the online MATLAB codes presented in

[68]. We assume j is between 5 and 20 m=s with K varying

from 0.5 to 2 W=mK uniformly. The script heat 1D has a

comparison between all methods considering a two-di-

mensional Bayesian inversion (simultaneous interference

of j and K). Finally, we set h0 ¼ ð1:2; 15Þ and r2 ¼ 0:05.

Table 3 Different versions of

the x-algorithmic based on

different weight functions GðtÞ
[65, 66]

Scheme Weight function GðDtÞ x Stability condition

Explicit dðt � tiÞ; ti ¼ 0 0 Conditional

Crank–Nicolson 1 0.5 Unconditional

Galerkin type 2 t=Dt 0.666 Unconditional

Liniger dðt � tiÞ; ti ¼ 0:878Dt 0.878 Unconditional

Implicit dðt � tiÞ; ti ¼ Dt 1 Unconditional
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In order to provide a reference observation, we use K ¼
0:9 and j ¼ 15, which can be found in reference:mat.

We plot the evolution of the MCMC chain of K and j as

shown respectively in Figs. 5 and 6. MH shows a signifi-

cant uncertainty in both parameters. However, EnKF and

DRAM estimated K and j with a low fluctuation. Figure 7

depicts a comparison between the posterior densities using

all MCMC techniques. As shown, the MH method failed to

estimate the parameters effectively since a wide distribu-

tion is obtained, and the estimated values are relatively far

from the true values. The proposal adaptation enhanced the

performance of MH; however, the results are similar to a

bimodal distribution. The local adaptation (DR) gives rise

to a better inference and the peak point of both distributions

was located very close to the true values. In general, EnKF

and DRAM showed an excellent performance.

The computational features of the methods are listed in

Table 4. The median of the posterior densities of all

methods are close to the true values. Here, MH and AM

have a low (less than 10%) acceptance rate and EnKF has

an excellent ratio. Finally, the evolution of the temperature

using the estimated parameters from DRAM and EnKF is

shown in Fig. 8. The results are compared with the ana-

lytical solution, where a very good agreement is observed.

3.3 Example 3: Elastoplasticity

As a third example, we apply Bayesian inversion to a one-

dimensional elastoplasticity problem. Herein, the goal is to

estimate Young’s modulus E, in addition to the material

parameters characterizing the elastoplastic response,

namely, the plastic yield strength rY and the hardening

modulus H. Moreover, due to the dissipative nature of the

problem, time evolution is explicitly considered [69].

Fig. 4 Geometry and loading setup for the one-dimensional bar. a Example 3,4,7, b Example 2, and c Example 6

Fig. 5 Example 2. The MCMC chain of K obtained by different Bayesian techniques. Form left to right: MH, AM, and DR (the first row), and

DRAM as well as EnKF (the second row)
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Fig. 6 Example 2. The MCMC chain of j obtained by different Bayesian techniques. Form left to right: MH, AM, and DR (the first row), and

DRAM as well as EnKF (the second row)

Fig. 7 Example 2. The posterior

distribution of K (left) and j
(right) obtained by different

Bayesian techniques. The true

values are shown with a black

dashed line

Table 4 Example 2: The median of the posterior density of K and j
as well as the elapsed CPU time and the acceptance rate using dif-

ferent MCMC methods

Method MH AM DR DRAM EnKF

K 0.878 0.879 0.912 0.902 0.896

j 14.91 14.8 15.14 15.01 14.98

CPU time [s] 12.61 14 28.05 22.01 27

Acceptance rate (%) 4.5 5.8 10.9 9 72.5

Fig. 8 Solution of the heat equation in Example 2 using the inferred

values at t ¼ 0:2
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3.3.1 State Variables and Kinematics

In the context of the one-dimensional bar treated in the

previous examples, we now consider an elastoplastic

deformation process occurring in a time interval

T :¼ ½0; T �. The strain defined in (17) is additively

decomposed into an elastic part ee and a plastic part ep:

eðx; tÞ ¼ eeðx; tÞ þ epðx; tÞ: ð41Þ

The plastic strain ep : B 	 T! R is considered as a local

internal variable. Moreover, to account for phenomeno-

logical hardening effects, a hardening variable a : B 	
T! Rþ is introduced as a second local internal variable.

For simplicity, a is assumed to coincide with the equivalent

plastic strain, such that

_aðx; tÞ ¼ j _epðx; tÞj: ð42Þ

The hardening variable starts to evolve from the initial

condition aðx; 0Þ ¼ 0. The elastoplastic response of the bar

is thus characterized by the displacement field u, the plastic

strain ep, and the hardening variable a.
With the purpose of stating variational principles, we

further introduce the function spaces for the plasticity

variables

Wp :¼ L2ðBÞ; Wa
an; q

:¼ fa 2 H1ðBÞ : a ¼ an þ jqj;

q 2Wpg:
ð43Þ

The hardening law (42) is then enforced in incremental

form as a 2Wa
an; ep�epn and an 2Wa

an�1; ep�epn�1
. In particular,

we use Wu
0, and Wa

0;q when we have zero boundary con-

dition (i.e., u ¼ 0, and an ¼ 0 respectively).

3.3.2 Energy Quantities and Variational Principles

Let us define the following pseudo-energy density per unit

volume:

Wðe; ep; aÞ :¼ Welasðe; epÞ þWplasðaÞ: ð44Þ

The elastic contribution is assumed to have the simple

quadratic form

Welasðe; epÞ :¼
1

2
Eðe� epÞ2: ð45Þ

Accordingly, the plastic contribution in (44) is assumed to

have the form

WplasðaÞ :¼ rYaþ
H

2
a2; ð46Þ

with the initial yield stress rY � and the isotropic hard-

ening modulus H� 0. Note that Welas can be viewed as a

stored energy density, while Wplas can be viewed as a

dissipated energy density, defined here as a state function.

From the strain energy density, the constitutive stress-

strain relation and the generalized stress follow as

r ¼ oWelas

oe
¼ Eðe� epÞ and sp ¼ � oWelas

oep
� r: ð47Þ

The elastoplasticity model additionally requires evolution

equations for the plastic strain. To this end, the yield

function is first defined in terms of the generalized stress sp

and the resisting force Rp as

b :¼ jspj � Rp with Rp :¼ RpðaÞ ¼ oWplas

oa
: ð48Þ

With the yield function at hand, an associative flow rule is

adopted for the plastic strain, such that

_ep ¼ kpospb ¼ kpsignðspÞ; ð49Þ

where kp� 0 is the plastic multiplier. The flow rule is

complemented with the set of Kuhn–Tucker conditions

b� 0; kp� 0; and b kp ¼ 0: ð50Þ

To derive the weak form of the evolution problem, the total

energy functional for the elastoplasticity model is defined

as

Eðu; ep; aÞ ¼
Z L

0

A
�
Welasðe; epÞ þWplasðaÞ

�
dx

�
Z L

0

qA �bu dx� A�tu
��
oNB

:

ð51Þ

Minimization of the energy functional (22) with respect to

the displacement field leads to the following weak

formulation.

Formulation 3.3 (F3: Bayesian inversion for elastoplas-

ticity) Consider an open bounded one-dimensional bar on

an interval B :¼ ð0; LÞ with boundary oB defined at x ¼ 0

and x ¼ L. Let constants (E ;H; rYÞ� 0 be given with the

initial conditions u0 ¼ uðx; 0Þ and ep ¼ aðx; 0Þ. For the

loading increments n ¼ 1; 2; . . .;N, find u :¼ un 2 H1
0ðBÞ

satisfying the following Euler–Lagrange equation in weak

form:

Euðu; ep; a; duÞ ¼
Z L

0

�
Ar
�
eðuÞ; ep

�
eðduÞ � qA �bdu

�
dv

� A�tdu
��
oNB
¼ 0 8 du 2 H1

0ðBÞ;

where epðx; tÞ evolves according to the evolution Eqs. (49)

and (50), while aðx; tÞ evolves according to the hardening

law (42). The unknown material parameters for elasto-

plasticity denoted as F3 then follow from the probabilistic

Bayesian inversion
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P BI

�
F3ðuÞ

�
with u :¼ ðu; ep; aÞ

and P :¼ ðE;H; rYÞ:

One can show that the evolution Eqs. (42), (49)

and (50), which completely determine the evolution of the

plasticity variables ðep; aÞ, can also be obtained in weak

from through minimization of the energy functional (51)

with respect to ðep; aÞ. Due to the local nature of the

plasticity variables in the present example, only the weak

form of the mechanical balance equation is included in

Formulation 3.3.

3.3.3 Bayesian Inference

In this numerical example, we consider a bar of unitary

length L ¼ 1 with x 2 B :¼ ½0; 1� that is initially unstret-

ched and unplasticized. Its left end is fixed, i.e., x ¼ 0,

while on its right end, i.e., x ¼ 1, a monotonic displace-

ment increment D�u ¼ 5	 10�4 mm is applied for 151 time

steps; see Fig. 4a. We set ða; epÞ ¼ ð0; 0Þ at t ¼ 0.

Regarding the finite element mesh size, 100 elements are

used. The main script is EP_1D.m and the code for-

wardmodel.m computes the solution with respect to the

given candidates.

This problem is a good example to compare EnKF-

MCMC and DRAM. The unknown ranges are mentioned in

Table 5. The true values are used to produce the reference

observation (reference.mat). We use

h0 ¼ ðE0; H0; r0YÞ ¼ ð60 000; 200; 300Þ. In order to

implement the Bayesian inversion, we require the available

range for the parameters (the prior density), for which we

adopt the uniform distribution summarized in Table 5.

The inferred values were used to estimate the load-dis-

placement curve shown in Fig. 10. Here, we use 8 000

samples to estimate the posterior density. As Fig. 9 shows,

the chains estimated by the DRAM algorithm have a low

uncertainty for E and rY ; however, the variation for H is

notable. On the other hand, the fluctuation of all unknowns

in EnKF is negligible. Of course, this is an important

advantage of using the Kalman filter compared to DRAM.

The posterior densities verify this statement, where a wide

distribution is achieved for H. For the yield stress, both

methods performed similarly and have a relatively similar

distribution. Also, the acceptance rate of EnKF is 98.4%

and DRAM is 6.9%. The medians are summarized in

Table 5, indicating the accuracy of both techniques (there

is an excellent agreement between the simulations and the

true values). In total, due to the higher acceptance ratio and

significantly lower uncertainty (specifically of hardening),

we conclude that EnKF is more suitable for the elasto-

plasticity example. Finally, we use the estimated values of

EnKF and DRAM to plot the load-displacement curve

during different time-steps; see Fig. 10.

3.4 Example 4: Phase-Field Fracture for Brittle
Materials

The fourth example addresses the variational phase-field

modeling of brittle fracture. Starting with the work of

[13, 15] and the subsequent developments [16–19, 21–23],

this framework has gained significant popularity in the past

decade due to its ability to naturally handle the complex

behavior of fractured solids.

A Bayesian inversion framework was applied to phase-

field modeling of brittle fracture in [51]. In the present

illustrative example, we consider a one-dimensional set-

ting, where the objective is to estimate Young’s modulus E

and the fracture toughness Gc for a fixed length scale

parameter (although the length scale can also be

estimated).

3.4.1 State Variables and Kinematics

The response of a fracturing solid obeying a brittle phase-

field model is governed by a two-field system of PDEs. In

particular, at material points x 2 B and time t 2 T, the

solution of the coupled system provides the displacement

field u : B 	 T! R and the phase-field fracture variable

d : B 	 T! ½0; 1�. Here, dðx; tÞ ¼ 0 and dðx; tÞ ¼ 1 char-

acterize an undamaged and a completely fractured material

point, respectively. With the purpose of stating variational

principles, we introduce the function spaces

Wu
�u :¼ fu 2 H1ðBÞ : u ¼ �u on oDBg;

Wd
dn
:¼ fd 2 H1ðB; ½0; 1�Þ : d� dng:

ð52Þ

In particular, we use Wu
0 and Wd

0 when we have zero

boundary condition (i.e., u ¼ 0 and d ¼ 0, respectively).

Here, oDB � f0; Lg denotes the Dirichlet boundary, with

�uð0; tÞ ¼ 0. On the other hand, Wd
dn
is a non-empty, closed,

and convex subset of H1ðBÞ. This function space

Table 5 Example 3. The computational features and the results of the

Bayesian inversion

Parameter E ½MPa� H ½MPa� rY ½MPa�

Min 30 000 200 200

Max 100 000 400 400

DRAM 71 201 251 350

EnKF 71 300 250 350

True value 71 300 250 350
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introduces the evolutionary character of the phase-field,

incorporating an irreversibility condition in incremental

form, where dn is the damage value at a previous time

instant.

3.4.2 Energy Quantities and Variational Principles

The energy density per unit volume in the present model is

additively decomposed into stored elastic strain energy and

crack-surface dissipated energy. In particular, one has

Wðe; dÞ :¼ Welasðe; dÞ þWfracðd; d0Þ: ð53Þ

The elastic contribution is assumed to have the simple

quadratic form

Welasðe; dÞ :¼
1

2
gðdÞEe2; ð54Þ

where g(d) is a degradation function for which the usual

quadratic form

gðdÞ :¼ ð1� dÞ2 ð55Þ

is adopted. On the other hand, the fracture contribution

represents the regularized crack-surface energy density,

expressed in terms of the current damage state as well as its

spatial gradient, and modulated by a length scale parame-

ter. In particular, we adopt the so-called AT-2 version of

[28], where

Wfracðd; d0Þ :¼ Gc

�
d2

2lf
þ lf

2
d02
�
: ð56Þ

In (56), Gc [ 0 is the fracture toughness (more specifi-

cally, Griffith’s critical energy release rate) and lf [ 0 is

the fracture length scale parameter that governs the

regularization.

With the above definitions, a global energy functional is

defined as

Eðu; dÞ ¼
Z L

0

A
�
Welasðe; dÞ

þWfracðd; d0Þ
�
dx:

ð57Þ

Minimization of the energy functional (57) with respect to

the displacement field and the crack phase-field leads to the

following weak formulation.

Fig. 9 Example 3. The evolution of the MCMC chains obtained by DRAM and EnKF for E, H, and rY (the first row) and the corresponding pdf

(the second row). The true values are shown with green dashed lines. (Color figure online)

Fig. 10 Load-displacement curve for the elastoplasticity problem in

Example 3, obtained using the inferred values
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Formulation 3.4 (F4: Bayesian inversion for phase-field

brittle fracture) Consider an open bounded one-dimen-

sional bar on an interval B :¼ ð0; LÞ with boundary oB

defined at x ¼ 0 and x ¼ L. Let constants (E ;Gc; lf Þ� 0 be

given with the initial conditions u0 ¼ uðx; 0Þ and

d0 ¼ dðx; 0Þ. For the loading increments n ¼ 1; 2; . . .;N,

find u :¼ un 2Wu
�u and d :¼ dn 2Wd

dn�1
satisfying the

following Euler–Lagrange equations in weak form:

Euðu; d; duÞ ¼
Z L

0

ð1� dÞ2EeðuÞeðduÞ dx

¼ 0 8 du 2Wu
0;

Edðu; d; ddÞ ¼
Z L

0

h
� ð1� dÞEeðuÞ2dd þ Gc

lf
d dd

þ lf d
0ðddÞ0

i
dx� 0 8 dd 2Wd

0:

8>>>>>>>>>>><
>>>>>>>>>>>:
The unknown material parameters for phase-field fracture

denoted as F4 then follow from the probabilistic Bayesian

inversion

P BI

�
F4ðuÞ

�
with u :¼ ðu; dÞ and P :¼ ðE;GcÞ:

The inequality in ()2 is a consequence of the irre-

versibility condition represented by the constraint

dn 2Wd
dn�1

. To resolve this issue and solve ()2 as an

equality, the history field approach, proposed in [20] and

widely employed in the phase-field literature, is adopted in

this work.

3.4.3 Bayesian Inference

In this numerical example, we consider a bar of unitary

length L ¼ 1 with x 2 B :¼ ½0; 1� that is initially unstret-

ched and undamaged. Its left end is fixed, i.e., x ¼ 0, while

on its right end, i.e., x ¼ 1, a monotonic displacement

increment D�u ¼ 1	 10�5 mm is applied for 151 time

steps. The example setup is shown in Fig. 4a. Regarding

the finite element mesh size, 300 elements are used.

We use a two-dimensional Bayesian inversion to iden-

tify (E, Gc). The reference solution is a 1	 151 vector

computed by E ¼ 70 500MPa and Gc ¼ 0:027 kN/mm2

(the true values). For the Bayesian inference, we assume E

is between 50 000 and 100 000 and Gc is between 0.02 and

0.03. As the initial guess, we set h0 ¼ ð60 000; 0:025Þ. The
script name is brittle 1D:m.

Using EnKF-MCMC with 1 000 iterations leads to the

estimation of MCMC and also the posterior density. Fig-

ure 11 depicts the MCMC evolution for both parameters. A

narrow posterior density for both unknowns points out the

low uncertainty and fast convergence obtained employing

EnKF-MCMC. The acceptance ratio of the chain is 12.2%.

The estimated medians are E ¼ 70493 and Gc ¼ 0:027,

which highlights the method accuracy. Finally, we use

these values to estimate the load-displacement curve, and

the results are shown in Fig. 12.

3.5 Example 5: Phase-Field Fracture
for Gradient-Extended Ductile Materials

In this example, the phase-field model for brittle fracture

explored above is extended to the ductile case. To this end,

the evolution of the phase-field variable is coupled to

elastoplasticity, allowing for the initiation and propagation

of ductile cracks. Initial works on this topic

include [32–36, 38] (see [29, 50] for an overview). More-

over, to achieve a regularized plastic response, the exten-

sion to gradient-extended plasticity [27, 39] is considered,

which has shown to ensure mesh-objective and physically

meaningful responses in the post-critical stage.

The present Bayesian inversion framework was applied

to the phase-field modeling of ductile fracture in our recent

work [50], where three dimensional simulations were per-

formed and compared to experimental observations.

Herein, we present an illustrative one-dimensional exam-

ple, where the objective is to estimate the parameters

involved in both the elatoplasticity example (Sect. 3.2) and

the brittle fracture example (Sect. 3.4).

3.5.1 State Variables and Kinematics

The response of a fracturing solid obeying the present

ductile phase-field model with gradient plasticity is gov-

erned by a three-field system of PDEs and a local plastic

evolution equation. In particular, at material points x 2 B

and time t 2 T, the solution of the coupled system provides

the displacement field u : B 	 T! R, the phase-field

fracture variable d : B 	 T! ½0; 1� introduced in

Sect. 3.4, and the plasticity variables ep : B 	 T! R and

a : B 	 T! Rþ introduced in Sect. 3.2. Being a phase-

field model, as in Sect. 3.4, the constitutive state includes

the gradient of Notethe crack phase-field d0ðx; tÞ. More-

over, in contrast with Sect. 3.2, we now render the equiv-

alent plastic strain a a non-local internal variable to

regularize the plastic response in post-critical stages. As

such, the constitutive state further includes the spatial

gradient a0ðx; tÞ.
Note, with the purpose of stating variational principles,

we consider the function spaces (52) for the displacement

field, the crack phase-field, and further for plasticity vari-

ables by (43).
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3.5.2 Energy Quantities and Variational Principles

The energy density per unit volume in the present model is

additively decomposed into stored elastic strain energy and

the sum of plastic and crack-surface dissipation. In par-

ticular, one has

Wðe; ep; a; d; a0; d0Þ :¼ Welasðe; ep; dÞ
þWplasða; d; a0Þ þWfracðd; d0Þ:

ð58Þ

In agreement with (45) and (54), the elastic contribution

reads

Welasðu; ep; dÞ :¼
1

2
gðdÞEðe� epÞ2; ð59Þ

where g(d) is the quadratic degradation function defined

in (55). The stress-strain relation then reads

rðe; ep; dÞ ¼ oWelas

oe
¼ ð1� dÞ2Eðe� epÞ: ð60Þ

The plasticity contribution is defined as a gradient-ex-

tended damaged version of (46):

Wplasða; d; a0Þ :¼ gðdÞ
�
rYaþ

1

2
Ha2 þ 1

2
rY lp a

02
�
;

ð61Þ

where, for simplicity, and as commonly done in the liter-

ature, the same quadratic degradation function (55) is

employed to degrade the plastic energy density. Finally, the

fracture contribution reads

Fig. 11 Example 4. The posterior densities of different parameters estimated by the EnKF method. The true values are shown with green dashed

lines. (Color figure online)

Fig. 12 Load-displacement curve for the brittle phase-field problem

in Example 4, estimated by the inferred values
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Wfracðd; d0Þ :¼ w0d þ
1

2
w0 l

2
d d
02: ð62Þ

Note that, as opposed to (56), the fracture energy density is

here defined as a linear function of d, representing a so-

called AT-1 type formulation, where an elastic stage is

included in the deformation process [29]. In (56), w0 [ 0 is

a critical fracture energy density, which can be directly

related to the fracture toughness in the case of brittle

fracture, while ld [ 0 is the fracture length scale parameter.

It is worth mentioning that (61) and (62) imply that the

dissipated energy in the present model is a state function.

With the above definitions, a global energy functional is

defined as

Eðu; ep; a; dÞ ¼
Z L

0

A
�
Welasðe; ep; dÞ þWplasða; d; a0Þ

þWfracðd; d0Þ
�
dx:

ð63Þ

Minimization of the energy functional (63) with respect to

the displacement field, the crack phase-field, and the

plasticity variables leads to the following weak

formulation.

Formulation 3.5 (F5: Bayesian inversion for phase-field

ductile fracture with gradient plasticity) Consider an open

bounded one-dimensional bar on an interval B :¼ ð0; LÞ
with boundary oB defined at x ¼ 0 and x ¼ L. Let con-

stants (E ;H; rY ;w0; ld; lpÞ� 0 be given with the initial

conditions u0 ¼ uðx; 0Þ, ep0 ¼ epðx; 0Þ, a0 ¼ aðx; 0Þ, and

d0 ¼ dðx; 0Þ. For the loading increments n ¼ 1; 2; . . .;N,

find u :¼ un 2Wu
�u, e

p ¼ epn 2Wp, a :¼ an 2Wa
an�1; ep�epn�1

,

and d :¼ dn 2Wd
dn�1

satisfying the following Euler–

Lagrange equations in weak form:

Euðu; ep; a; d; duÞ

¼
Z L

0

ð1� dÞ2E
�
eðuÞ � ep

�
eðduÞ dx ¼ 0 8 du 2Wu

0;

Eaðu; ep; a; d; dep; daÞ

¼
Z L

0

�ð1� dÞ2
h
E
�
eðuÞ � ep

�
dep þ

�
Haþ rY

�
da

þ rY l
2
p a
0ðdaÞ0

i
dx� 0 8 dep 2Wp; 8 da 2Wa

0; dep ;

Edðu; ep; a; d; ddÞ

¼
Z L

0

h
� ð1� dÞ

�
E
�
eðuÞ � ep

�2 þ Ha2

þ 2rYaþ rY lp a
02
�
dd þ w0dd

þ w0 l
2
d d
0ðddÞ0

i
dx� 0 8 dd 2Wd

0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The unknown material parameters for ductile fracture

denoted as F5 then follow from the probabilistic Bayesian

inversion

P BI

�
F5ðuÞ

�
with u :¼ ðu; ep; a; dÞ

and P :¼ ðE;H; rY ;w0; lpÞ:

As in Sect. 3.4, the history field approach [20] is

employed to solve the variational inequality ()3. On the

other hand, in ()2, one makes use of the relation da ¼ jdepj
and the incremental hardening law an ¼ an þ jepn � epn�1j.
This problem can be solved in a convenient way by elim-

inating ep through the incremental flow rule

epn ¼ epn�1 þ ðan � an�1Þ signðrtrialn Þ, where

rtrialn :¼ rðen; epn�1; dnÞ, with r given in (60); see, e.g., [50].

For loading paths without plastic flow reversals, e.g.,

monotonic loading with possible elastic unloading, the 1D

problem is further simplified by setting ep � a.

3.5.3 Bayesian Inference

In this numerical example, we consider a bar of unitary

length L ¼ 1 with x 2 B :¼ ½0; 1� that is initially unstret-

ched, unplasticized and undamaged. Its left end is fixed,

i.e., x ¼ 0, while on its right end, i.e., x ¼ 1, a monotonic

displacement increment D�u ¼ 5	 10�4 mm is applied for

151 time steps; see Fig. 4a. For the spatial discretization,

we use 100 elements. The main script is named

ductile_1D.m.

In this example we use a four-dimensional Bayesian

inversion to identify ðE; rY ; w0; HÞ simultaneously. To

this end, EnKF is chosen and we set an initial guess of

E0 ¼ 60 000, r0Y ¼ 300, H0 ¼ 300, w0
0 ¼ 20. The parame-

ter ranges are listed in Table 6 including the true values.

Figure 13 shows the MCMC chains where they converge

very fast. The posterior densities are depicted in Fig. 14,

where for all unknowns, a narrow distribution is obtained.

The medians of the MCMC chains are mentioned in

Table 6, showing a very good accuracy. These values are

used to plot the load-displacement curve shown in Fig. 15.

Table 6 The uniform prior distribution of the inferred parameters in

Example 5 (ductile fracture) including the true values

Parameter E ½MPa� rY ½MPa� w0 ½MPa� H ½MPa�

Min 30 000 300 10 200

Max 100 000 400 50 400

True value 70 500 330 30 250

EnKF 70 495 329.9 30 250

4304 N. Noii et al.

123



In this example, following the new proposed the step-

wise Bayesian inversion for ductile phase-field fracture

[50], we consider four stages of Bayesian inversion to

identify the parameters E (elastic stage), rY (perfectly

plastic stage), H (hardening stage), and w0 (damaging

stage). The uniform prior densities including the true val-

ues are listed in Table 6. Such a step-wise Bayesian

framework is computationally effective since a single

parameter is estimated at each stage (and used as input in

subsequent stages). The posterior densities (using the last

4 000 iterations) are illustrated in Fig. 13. The R̂-conver-

gence of the parameters is depicted in Fig. 14 indicating

the rapid convergence of all unknowns. Finally, the load-

displacement curve obtained using the estimated parame-

ters is shown in Fig. 15, indicating a typical ductile fracture

process.

3.6 Example 6: Phase-Field Fracture
for Thermoelastic Materials

Crack propagation due to the thermal effect occurs in dif-

ferent engineering problems such laser fracture, additive

manufacturing, drying shrinking cracking of concrete.

Here, the main challenge is the estimation of the dis-

placements, the damage field, and temperature. In [42, 70],

a fully coupled phase-field approach for solving thermo-

mechanical systems was presented. This technique over-

came the computational problems related to realization of

sharp crack discontinuities, specifically in complex crack

topologies.

The authors in [71], introduced a parallel algorithm to

simulate the dynamic and quasi-static brittle fracture of

thermoelastic materials including source codes. Moreover,

in order to enhance the efficiency of the monolithic solver,

in [70], a monolithic BFGS algorithm was implemented to

solve the multi-field discretized equations.

3.6.1 State Variables and Kinematics

In this example, the given BVP is a coupled multi-field

system for fracturing solids with thermal effects. Such a

model can be formulated based on a coupled three-field

system. In particular, at material points x 2 B and time

t 2 T, the BVP solution provides the displacement field

u : B 	 T! R, the temperature field T : B 	 T! R, and

the crack phase-field d : B 	 T! ½0; 1�. Adopting the

small strain hypothesis, the strain tensor is additively

decomposed into an elastic part ee and a thermal part eT ,
that is,

Fig. 13 Example 5. The evolution of the MCMC chains using EnKF for four different material parameters in ductile fracture
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eðx; tÞ ¼ eeðx; tÞ þ eT ðx; tÞ: ð64Þ

For materials that expand isotropically when the tempera-

ture is increased, the thermal part can be computed as

eT ¼ cðT � T 0Þ; ð65Þ

where T 0 is the initial temperature and c is the thermal

expansion coefficient.

In the present one-dimensional problem, the thermal

Dirichlet and Neumann boundary conditions are described

by

T ¼ �T on oTDB and Qn ¼ �q on oTNB; ð66Þ

where Q is the thermal volume flux and �q is the thermal

transport on the Neumann boundary, where n ¼ 1 for x ¼ L

and n ¼ �1 for x ¼ 0, and �T is the imposed temperature

on the Dirichlet boundary. Moreover, the heat flux in (66)

can be described by the negative direction of the thermal

heat gradient T 0 through Fourier’s law of heat conduction

as

Q ¼ �Kd T
0 ¼ �gðdÞKT 0: ð67Þ

Here, Kd ¼ gðdÞK is the degraded thermal conductivity

with the same quadratic degradation function given in (55).

To elaborate the corresponding variational formulation,

we employ the function spaces (52) for the displacement

and the crack phase-field, and further consider the function

space (24) for the temperature field.

Fig. 14 Example 5. The posterior density of the material parameter in ductile fracture using EnKF. The true values are shown with green dashed

lines. (Color figure online)

Fig. 15 The load-displacement curve for the ductile fracture problem

in Example 5, estimated by the inferred values
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3.6.2 Energy Quantities and Variational Principles

Let B  R be open and let T :¼ ðt0; TÞ with T [ 0 being

the end time value. The strong formulation of the quasi-

static balance of linear momentum along with a prescribed

external body force �f satisfies�
EðxÞgðdÞðeðx; tÞ � eT ðx; tÞÞ

�0
þ �f ¼ 0

8 u 2Wu
�u in B 	 T:

ð68Þ

Moreover, the energy balance statement based on the

evolution of temperature yields the following strong form

q c _T þ Q0 ¼ �rT 8 T 2WT
�T

in B 	 T; ð69Þ

initialized with

T ¼ T 0 in B 	 0: ð70Þ

Additionally, the global evolution equation for the crack

phase-field in the rate-dependent form yields the following

local statement:

ð1� dÞD� ðd � l2f d
00Þ ¼ gf _d 8 d 2Wd

�d in B 	 T;

ð71Þ

together with a homogeneous Neumann condition for the

crack surface:

ond ¼ 0 in oB 	 T: ð72Þ

Here, we introduce a positive crack driving force D in

t 2 ½0; tn�. To define D, in agreement with (45) and (54),

the elastic strain energy affected by temperature reads

Welasðu; eT ; dÞ :¼
1

2
gðdÞEðe� eT Þ2; ð73Þ

such that a positive crack driving force D can be defined as

D :¼ Dðe; eT Þ ¼ oWelas

od
¼ �ð1� dÞEðe� eT Þ2; ð74Þ

where g(d) is a degradation function. The weak forms of

the local statements (68), (69), and (71) induce the fol-

lowing formulation:

Formulation 3.6 (F6: Bayesian inversion for phase-field

fracture with thermoelasticity) Consider an open bounded

one-dimensional bar on an interval B :¼ ð0; LÞ with

boundary oB defined at x ¼ 0 and x ¼ L. Let the positive

constants ð�rT ; �q;E;Gc; lf ;K; q; CÞ be given with the initial

conditions u0 ¼ uðx; 0Þ, T 0 ¼ T ðx; 0Þ, and d0 ¼ dðx; 0Þ.
For the loading increments n ¼ 1; 2; . . .;N, find

u :¼ un 2Wu
�u, T :¼ T n 2WT

�T
, and d :¼ dn 2Wd

dn
satis-

fying the following Euler–Lagrange equations in weak

form:

Euðu; T ; d; duÞ

¼
Z L

0

ð1� dÞ2E
�
eðuÞ � eT ðT Þ

�
eðduÞ dx ¼ 0 8 du 2Wu

0;

ET ðu; T ; d; dT Þ

¼
Z L

0

h�
q cðT � T nÞ � Dt �rT

�
s

þ ðDt Kd T
0Þ 
 ðdT Þ0

i
dxþ �qdT

��
oTNB
¼ 0;

8 dT 2WT
0 ;

Edðu; ep; d; ddÞ

¼
Z L

0

h
� ð1� dÞE

�
eðuÞ � eT ðT Þ

�2
dd

þ Gc

lf
d dd þ lf d

0ðddÞ0
i
dx� 0

8 dd 2Wd
0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The unknown material parameters for phase-field fracture

in thermoelastic materials denoted as F6 then follow from

the probabilistic Bayesian inversion

P BI

�
F6ðuÞ

�
with u :¼ ðu; T ; dÞ

and P :¼ ðE;Gc;K; cÞ:

3.6.3 Bayesian Inference

The range of the parameters and the true values are listed in

Table 7. The script named 1D thermoelastic:m with

EnKF is used to identify the unknown parameters. We use

the load-displacement curve (estimated by the true values)

as the reference observation for a time interval T ¼
1	 105 seconds.

Consider a bar of unitary length L ¼ 1 with x 2 B :¼
½0; 1� that is initially unstretched and undamaged. Its left

end is fixed, i.e., x ¼ 0, while on its right end, i.e., x ¼ 1, a

monotonic displacement increment D�u ¼ 1	 10�3 mm is

applied for 155 time steps; see Fig. 4c. We use 99 elements

Table 7 The uniform prior distribution of the inferred parameters in

Example 6 (phase-field fracture with thermoelasticity) including the

true values

Parameter Gc ½MPa mm� E ½MPa� K ½W=ðm 
 KÞ� c ½K�1�

Min 0.01 200 1	 10�2 7	 10�4

Max 0.10 400 1	 10�1 5	 10�3

True value 0.04 340 2	 10�2 8	 10�4

EnKF 0.0399 340.001 2:21	 10�2 7:91	 10�4
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for the spatial discretization. The initial values are

G0
c ¼ 0:05, E0 ¼ 300, K0 ¼ 5	 10�2, and c0 ¼ 1	 10�3.

For temperature boundary condition, the one dimensional

bar is restricted according to (25) such that T 1 ¼ 1� C and

T 2 ¼ 0� C. The reference simulation is performed for t ¼
1	 105 s.

The evolutions of the MCMC chains for all parameters

are shown in Fig. 16. The unknowns show a negligible

uncertainty and converge rapidly to the true values with an

acceptance rate of 71.6%. The posterior densities are

illustrated in Fig. 17. The distribution of Gc and E is

symmetric, and the true values are in the center (the

median). The medians are shown in Table 7. We compare

the load-displacement diagram using inferred and true

values, as shown in Fig. 18. An excellent agreement

between the curves points out the accuracy of the method.

As previously mentioned, the reference observation is

chosen at the last time step. We show the displacement u,

the phase-field d, and the temperature T for 100 time steps

in Fig. 19.

3.7 Example 7: Phase-Field Approach to Predict
Fatigue in Brittle Materials

The last example considers the phase-field approach to

predict fatigue, a topic that has gained attention in the

recent literature. Most works on this subject focus on brittle

materials [43, 44, 72–74], although models for rubber [75],

hydrogen-assisted fatigue [76], ductile materials [45], and

ductile materials with plastic coupling [46, 49] have also

been proposed. Here, we focus on the 1D formulation for

the brittle case, initially addressed in [43].

The brittle fracture problem presented in Sect. 3.4 is

taken as a point of departure. However, the displacements

are now imposed cyclically. To account for the effect of

cyclic loading, a fatigue degradation function is introduced,

characterized in the simplest case by two material param-

eters which are hereby estimated along with Young’s

modulus and the fracture toughness.

3.7.1 State Variables and Kinematics

As in Sect. 3.4, the primary fields in the present model

consist of the displacement field u : B 	 T! R and the

non-local phase-field fracture variable d : B 	 T! ½0; 1�,
with the corresponding function spaces given in (52).

Consequently, the fatigue mechanism does not entail the

introduction of a new internal variable, but rather, of a

history-dependent parameter, as will become clear below.

subsubsectionEnergy Quantities and Variational

Principles

The standard phase-field model for brittle fracture, i.e.,

based on the regularized crack surface energy density (56),

Fig. 16 Example 6. The evolution of the MCMC chains using EnKF for four different material parameters in thermoelastic example

4308 N. Noii et al.

123



predicts crack propagation at critical stress amplitudes. As

such, the model is not suitable to describe fatigue fracture

under cyclic loading, which may occur at repetitive load

amplitudes well below the ultimate strength of the material.

To account for fracture under such conditions, Alessi et al.

[43] proposed to progressively degrade the crack resisting

force by means of a suitable accumulation variable, for

which a measure of accumulated energy was later estab-

lished [44] and adopted in subsequent works.

In the context of the above-mentioned framework, the

definition of energy quantities that comply with the second

law of thermodynamics, i.e., non-decreasing energy dissi-

pation, requires a delicate treatment. Specifically, the def-

inition of a state function representing the regularized

dissipated energy due to fracture, as done in (56) and (62),

is no longer possible. Instead, we must rely on a path-

dependent quantity, with a fatigue degradation mechanism

acting on the rate of crack-surface energy dissipation. In

particular, we may define a total energy density of the form

Wðe; d; cÞ :¼ Welasðe; dÞ þ
Z t

0

f ðcÞ d
dt
Wfracðd; d0Þ dt:

ð75Þ

Because the crack driving force is not modified, the stored

elastic strain energy (54) is again employed in the present

model. On the other hand, the time derivative of the reg-

ularized fracture energy density (56) is scaled by a non-

negative degradation function f ðcÞ, to be defined below,

which renders the dissipated energy a path-dependent

quantity. Note that in (75), the second law of thermody-

namics is satisfied by the non-negativity of the dissipation

rate, i.e., f ðcÞ d
dt Wfracðd; d0Þ � 0.

In (75), we have introduced a fatigue accumulation

variable c : B 	 T ! Rþ and a fatigue degradation func-

tion c 7!f ðcÞ 2 ½0; 1�, endowed with the properties

f ðc� ccÞ ¼ 1, f ðc[ ccÞ 2 ½0; 1� and f 0ðdÞ� 0. In particu-

lar, we adopt the following form [44]:

Fig. 17 Example 6. The posterior density of the material parameter in thermoelastic example using EnKF. The true values are shown with green

dashed lines. (Color figure online)

Fig. 18 The load-displacement curve for the thermoelastic fracture

problem in Example 6 estimated by the inferred and true values
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f ðcÞ :¼

1 if cðx; tÞ� cc;	
1� k log

�
cðx; tÞ
cc

�
2
if cc� cðx; tÞ� cc10

1=k;

0 otherwise;

8>>><
>>>:

ð76Þ

where k[ 0 is a material parameter that controls the rate of

(logarithmic) decay of the fatigue degradation function,

and cc� 0 is a material threshold parameter, under which

no fatigue effects are triggered. The fatigue variable c is

defined as an accumulation of strain energy density during

loading stages. To this end, we define

cðx; tÞ :¼
Z t

0

_#ðx; sÞ �H
�
_#ðx; sÞ

�
ds;

with #ðx; tÞ :¼ Welasðe; dÞ;
ð77Þ

where �H is the Heaviside function.

In view of the path-dependent energy density (75), a

total energy functional can only be approximated in

incremental form. In agreement with previous incremental

treatments for state-dependent dissipation potentials

[77, 78], we consider the form

Eðunþ1; dnþ1; cnÞ ¼
Z L

0

A
�
Welasðunþ1; dnþ1Þ

þ f ðcnÞWfracðdnþ1; d0nþ1Þ
�
dx;

ð78Þ

where the current time step is denoted with a subscript

nþ 1. Note that the pseudo-time integral in (75) has been

evaluated in incremental form by fixing the fatigue variable

c at the previous time step. Minimization of the energy

functional (78) with respect to the displacement field and

the crack phase-field leads to the following weak

formulation.

Formulation 3.7 (F7: Bayesian inversion for phase-field

approach to fatigue) Consider an open bounded one-di-

mensional bar on an interval B :¼ ð0; LÞ with boundary oB

defined at x ¼ 0 and x ¼ L. Let constants (E

;Gc; lf ; cc; kÞ� 0 be given with the initial conditions u0 ¼
uðx; 0Þ and d0 ¼ dðx; 0Þ. For the loading increments

n ¼ 1; 2; . . .;N, find u :¼ un 2Wu
�u and d :¼ dn 2Wd

dn�1

satisfying the following Euler–Lagrange equations in weak

form:

Fig. 19 Example 6. The evolution of displacement (top left), phase-field (top right), and the temperature (bottom) during different time steps. The

last step which used for the Bayesian inversion is shown with a dashed black line
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Euðu; d; duÞ

¼
Z L

0

ð1� dÞ2EeðuÞeðduÞ dx ¼ 0 8 du 2Wu
0;

Edðu; d; ddÞ

¼
Z L

0

h
� ð1� dÞEeðuÞ2dd þ f ðcn�1Þ

Gc

lf
d dd

þ f ðcn�1Þlf d0ðddÞ0
i
dx� 0

8 dd 2Wd
0:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð79Þ

The unknown material parameters for phase-field approach

to fatigue denoted as F7 then follow from the probabilistic

Bayesian inversion

P BI

�
F7ðuÞ

�
with u :¼ ðu; dÞ and P :¼ ðE;Gc; cc; kÞ:

Once more, the history field approach [20] is employed

here to handle the inequality constraint in (79)2.

3.7.2 Bayesian Inference

In this numerical example, we consider a bar of unitary

length L ¼ 1 with x 2 B :¼ ½0; 1� that is initially unstret-

ched and undamaged. We set c ¼ 0 at t ¼ 0. The left end of

the bar is fixed, i.e., x ¼ 0, while cyclic displacements are

imposed on the right end , i.e., x ¼ 1, in increments D�u ¼
2	 10�4 mm. We consider 30 loading cycles with maxi-

mum and minimum values of 5 mm and -5 mm, respec-

tively; see Fig. 4a. Regarding the spatial discretization, we

use 300 elements. The cyclic displacement loading applied

to the right-edge of the bar is shown in Fig. 20.

In order to perform the Bayesian inversion, we estimate

simultaneously ðE; k; Gc; ccÞ (four-dimensional Bayesian

inversion). The assumed ranges and true values are given in

Table 8. The main script is 1D fatigue:m and we employ

the DRAM algorithm to infer the materials unknowns.

Figure 21 shows the effect of different parameters on

the load-displacement diagram. For materials with low

Young’s modulus (e.g., ductile materials), several load

cycles are needed for fracture. However, for too stiff

materials (e.g., brittle materials), fewer load cycles lead to

a full fracture. Regarding higher Gc, as more energy is

needed for fracture, more load cycles are necessary. Hence,

e.g., Gc ¼ 0:04MPa requires more time (i.e., higher cycle

number), and the difference between the peak points is

more pronounced. Inversely, less Gc facilitates full frac-

ture. As shown, the same pattern is observed for cc. Finally,
k is a phenomenological parameter used to calibrate the

fatigue degradation process once the threshold value cc is

overcome.

Figure 22 shows the homogeneous response for a uni-

axial test under the displacement loading displayed in

Fig.4c. In order to enhance the Bayesian inference effi-

ciency, we only select some critical points. In fact, as

Fig. 21 depicts, the effect of different material unknowns

on the load-displacement is more tangible on the peak

points and after the fracture. Therefore, instead of all

points, only these points are used for the Bayesian frame-

work. These points are illustrated in Fig. 22. The evolu-

tions of the MCMC chains for all parameters are shown in

Fig. 23.

We use the DRAM algorithm to identify the parameters.

Fig. 24 shows the MCMC chains of the parameters where

the acceptance rate is 3.3% and all parameters converged.

The initial values are E0 ¼ 60 000, k0 ¼ 0:4, G0
c ¼ 0:3, and

c0c ¼ 0:0075. The respective posterior densities are shown

in Fig. 24, and the medians are summarized in Table 8. It

seems that E and k are inferred correctly. However, the

estimation of Gc and cc is not sufficiently accurate. This

probably due to the similar effect of the energy parameters

on the load-displacement curve, e.g., causing an overesti-

mation of Gc and an underestimation of cc that may bal-

anced each other. We use the inferred values (Table 8) to

calculate the diagram and compare the obtained values

Fig. 20 Example 7. Cyclic displacement loading applied to the right-

edge of the homogeneous uniaxial test shown in Fig. 4c

Table 8 The computational features and the results of the Bayesian

inversion for Example 7

Parameter E ½MPa� k ½MPa� Gc ½MPa mm� cc ½MPa�

min 30,000 0.2 0.02 0.001

max 100,000 0.6 0.04 0.01

true value 71,300 0.4 0.027 0.0075

DRAM 70,320 0.396 0.035 0.00572
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with initial values (h0) and the reference values. As Fig. 25

shows, excluding the last peak point, all points are esti-

mated acceptably, showing the relative accuracy of the

model.

4 Overview Software Package

Bayesian inversion is a robust, simple, and efficient com-

putational technique to provide reliable information about

the model parameters and uncertainties. The mechanical

models given in this work constitute relevant model

problems that can be further considered in further works.

The provided codes can be introduced/discussed in aca-

demic classes and can be extended to two- or three-di-

mensional settings. Moreover, the given examples have

been considered in recent fundamental and applied studies.

Of course, there are still several open questions in these

fields, and we hope that the codes provided herein can be a

starting point for further researches

In this section, we present an overview of the codes and

discuss their performance as the forward and backward

models. Here, we strive to provide a comprehensive

package to review the common MCMC techniques.

Fig. 21 Example 7. The effect of different parameters on the load-displacement curve

Fig. 22 Example 7. The left curve is a load-displacement curves of

the homogeneous response for a uniaxial tests under displacement

loading. The right curve is homogeneous load response versus cycle

number with damage under displacement loading and the selected

critical points for the Bayesian inversion (shown in red). (Color

figure online)
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Table 9 shows the MCMC codes including their descrip-

tion. We should note that in all examples the function

forwardmodel.m is the forward model and considers

the response of the model problem to the given candidates.

An overview of the mechanical codes is given in Table 10.

We observed that for the problems with one unknown,

all MCMC techniques worked efficiently. Similar results

have been achieved for a two-dimensional probabilistic

problem, in case that the parameters do not correlate (heat

problem). For more complicated examples, MH, AMH, and

DR were not effective; therefore, DRAM and EnKF have

been employed. Due to the more efficient proposal adap-

tation when using the Kalman filter, the acceptance rate is

noticeably higher compared to DRAM. EnKF works well

for phase-field problems, including brittle and ductile

fracture. The obtained results for fatigue fracture were not

as good as for other examples, likely due to the high cor-

relation of the critical fracture and fatigue parameters.

Additionally, to evaluate the stability of our imple-

mentation, let us consider Example 3.5, i.e., phase-field

fracture for gradient-extended ductile materials, and

investigate the convergence behavior of the model prob-

lem. More specifically, we consider the residual of the

staggered solution procedure. Therefore, we assume the

solutions at the converged state as Uk :¼ ðuk; ep;k; ak; dkÞ at
iteration k, such that two options for checking the staggered

residual can be defined:

1. Balance of equilibrium equations (weak formulation)

at the converged state:

ReskStag :¼ jEuðUk; duÞj þ jEaðUk; dep; daÞj þ jEdðUk; ddÞj
� TOLStag;

ð80Þ

2. Subsequent solutions at the converged state:

ReskStag :¼ juk � uk�1j þ jak � ak�1j þ jdk � dk�1j
� TOLStag:

ð81Þ

We then define the staggered residual in logarithmic space

as

residual :¼ log10ðResStagÞ: ð82Þ

We examine the ductile phase-field fracture model through

the posterior density of the unknowns obtained with EnKF

in Table 6. We set TOLStag ¼ 1	 10�6. The convergence

performance based on (80) is shown in Fig. 26 (left), while

Fig. 23 Example 7. The evolution of the MCMC chains for different parameters
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the alternative approximation based on (81) is shown in

Fig. 26 (right). The results show that based on the user

criteria, the code reaches the desired convergence state,

thus suggesting a stable implementation.

5 Conclusion

The implementation of Bayesian inversion in different

benchmark mechanical problems has been studied in this

work. We compared the performance of different common

MCMC techniques. Random-walk MCMC and MH can be

easily used; however, they could not infer the unknowns in

Fig. 24 Example 7. The posterior density for different parameters. The true values are shown with a dashed green line. (Color figure online)

Fig. 25 Example 7. The load versus cyclic number curves of the

homogeneous uniaxial tests under displacement loading using, true,

inferred, and initial values

Table 9 The overview of the

Bayesian inversion codes
Code description

MH.m The Metropolis–Hastings techniques (Algorithm 1)

AMH.m The adaptive Metropolis (Algorithm 2.1)

MH_DR.m The delayed rejection Metropolis (Algorithm 2.2)

DRAM.m The delayed rejection adaptive Metropolis technique (Algorithm 2)

EnKF.m The EnKF-MCMC method (Algorithm 3)

check_bound.m Adjust the proposals according to the given upper/lower bounds

covupd.m Adaptation of covariance function (9), where the code is taken from [4]

prior.m The generation of the uniform prior distribution

EES.m The computation of square error (4)
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multi-dimensional cases. Using proposal adaptation and

delayed rejection (global and local adaptation) improved

the Bayesian inversion. Combing both methods gives rise

to an effective MCMC technique. The Kalman filter in

Bayesian inference leads to an accurate estimation of the

desired parameters. As observed, different material

parameters can be estimated simultaneously using the

probabilistic MCMC techniques. We presented a

MATLAB package including all codes alongside the

manuscript.

In mechanical problems, the simultaneous and accurate

inference of the parameters is crucial; otherwise, the

estimation is not reliable. We conclude that, despite their

higher complexity, DRAM and EnKF are more suit-

able MCMC techniques for parameter estimation in the

present examples when compared to the other presented

methods. Moreover, EnKF leads to less fluctuation of

MCMC in comparison with DRAM and a higher accep-

tance rate. Therefore, the posterior densities are relatively

narrower, indicating more reliable results.
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Bayesian parameter determination of a CT-test described by a

viscoplastic-damage model considering the model error. Metals

10(9):1141
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Hesch C (2020) Porous-ductile fracture in thermo-elasto-plastic

solids with contact applications. Comput Mech 65(4):941–966

43. Alessi R, Vidoli S, De Lorenzis L (2018) A phenomenological

approach to fatigue with a variational phase-field model: the one-

dimensional case. Eng Fracture Mech 190:53–73

44. Carrara P, Ambati M, Alessi R, De Lorenzis L (2020) A

framework to model the fatigue behavior of brittle materials

based on a variational phase-field approach. Comput Methods

Appl Mech Eng 361:112731

45. Seiler M, Linse T, Hantschke P, Kästner M (2020) An efficient
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Seemann G, Struck A, Achhammer E, Aggarwal P et al (2020)

An environment for sustainable research software in germany and

beyond: current state, open challenges, and call for action.

F1000Research 9

56. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH,

Teller E (1953) Equation of state calculations by fast computing

machines. J Chem Phys 21(6):1087–1092

57. Hastings WK (1970) Monte Carlo sampling methods using

Markov chains and their applications. Siam News

58. Green PJ, Mira A (2001) Delayed rejection in reversible jump

Metropolis-Hastings. Biometrika 88(4):1035–1053

59. Evensen G (2009) The ensemble Kalman filter for combined state

and parameter estimation. IEEE Control Syst Mag 29(3):83–104

60. Kalman RE (1960) A new approach to linear filtering and pre-

diction problems. J Basic Eng 82(1):35–45

61. Zhang J, Vrugt JA, Shi X, Lin G, Wu L, Zeng L (2020)

Improving simulation efficiency of MCMC for inverse modeling

of hydrologic systems with a Kalman-inspired proposal distri-

bution. Water Resources Res 56(3):e2019WR025474

62. Brooks AN, Hughes TJ (1982) Streamline upwind/petrov-galer-

kin formulations for convection dominated flows with particular

emphasis on the incompressible Navier–Stokes equations. Com-

put Methods Appl Mech Eng 32(1–3):199–259

63. Codina R (1998) Comparison of some finite element methods for

solving the diffusion–convection-reaction equation. Comput

Methods Appl Mech Eng 156(1–4):185–210

64. Padilla Montero I (2014) Numerical implementation of a mixed

finite element formulation for convection-diffusion problems,

B.S. thesis, Universitat Politècnica de Catalunya
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