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Abstract The virtual element method (VEM) was developed not too long ago, starting with the paper [2]
related to elasticity in solidmechanics. The virtual elementmethod allows to revisit the construction of different
elements; however, it has so far not applied to one-dimensional structures like trusses and beams. Here we study
several VEM elements suitable for trusses and beams and show that the virtual element methodology produces
elements that are equivalent to well-known finite elements but also elements that are different, especially for
higher-order ansatz functions. It will be shown that these elements can be easily incorporated in classical
finite element codes since they have the same number of unknowns as finite beam elements. Furthermore, the
formulation allows to compute nonlinear structural problems undergoing large deflections and rotations.

Keywords Virtual element method (VEM) · Euler–Bernoulli beams · trusses · Higher-order ansatz · Large
deflections

1 Introduction

Beams and trusses are components of many engineering structures. Thus, many analytical and numerical
simulation schemes were developed over the last century that can predict the displacements, deflections and
normal, shear forces and bending moments in these structural members. Classical truss and beam models
are described in any textbook on engineering mechanics, see, e.g., [6] and [4]. These models are based on
kinematical assumptions which relate for beams to the names of Euler and Bernoulli for beams neglecting
shear deformation. Equilibrium, kinematical relations and linear elastic behavior lead in the case of trusses to
second-order ordinary differential equations and for beams to fourth-order ordinary differential equations in
case of statics.

For the trusses, it is possible to use C0-continuous ansatz spaces that classically can be formulated in a
finite element environment using the isoparametric concept. The Euler–Bernoulli theory requires for beams
C1-continuous ansatz functions which, for a finite element formulation, is easily available using Hermite
polynomials, see, e.g., [8], [16] and [12]. Thus, a virtual element formulation for trusses and beams does not
necessarily provide any advantages. However, based on the virtual element method beam and truss elements of
any order can be formulated easily as shown in Sects. 2.3 and 3.2. These higher-order elements provide better
approximations of the deflections and stress resultants within the elements. An extension of the Euler–Bernoulli
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Fig. 1 Simple bar problem, geometry, data and discretization

beam elements is provided by the Kirchhoff–Love theory for plate. Different formulations have already been
discussed in [3], [5], [11] and [15] in this context .

The developed virtual truss and beam elements only introduce displacements, deflections and rotations as
nodal unknowns at the end of the elements, even for higher-order ansatz spaces where additional unknowns
have to be introduced, but these are only internal variables that are not attached to any node. Thus, the virtual
elements can be easily incorporated in finite element software. Based on simple examples, it can be concluded
that these structural virtual element are accurate and provide analytical solutions, for the kinematical variables
and the stress resultants depending on the order of the ansatz.

An extension of the formulation to nonlinear problems in structural mechanics can be constructed in a
straightforward way using the approaches derived for the linear problems. The related formulation is shown
at the end of this contribution for different orders of ansatz functions.

2 Virtual element formulation of trusses

The truss or bar depicted in Fig. 1 can be modeled for constant cross section A
by the ordinary differential equation

E A u′′(x) = − f (x) (1)

where u(x) is the longitudinal displacement of the bar, E A the stiffness, f (x) the loading along the bar and x
the coordinate. This differential equation can be recast in its weak form leading to

l∫

0

E A u′(x) η′(x)dx −
l∫

0

f (x) η(x)dx = 0 . (2)

Equivalently a potential can be formulated

1

2

l∫

0

E A[u′(x)]2dx −
l∫

0

f (x) u(x)dx −→ MI N . (3)

To solve the bar problem (1) with a discretization scheme, the bar of length l will be subdivided in ne elements
of length le such that

∑ne
i=1 le = l, see Fig. 1. Either the weak form (2) or the potential (3) can be starting point

for a discretization scheme.
In this simple example, for a linear ansatz, the finite element and the virtual element method yield the same

matrices and hence produce the same results.
However, the methodology for deriving virtual elements is different from the finite element method. Math-

ematical details can be found, e.g., in [2] for solids in elasticity. It is based on the following ingredients:

• An ansatz space in which the displacements are known at the nodal points i and i + 1. see Fig. 1, and at
the element edges (which actually do not exist in our case of one-dimensional problems).

• The approximation uh is not known within the domain of the element le.
• A projection �[uh] of the ansatz space uh onto a polynomial space of order n will be used to formulate
the virtual element. This leads to the approximation uh = �[uh] + (uh − �[uh]) where the last term is a
remainder.
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Fig. 2 Element in initial and reference configuration

This ansatz space is totally different from the finite element method, see below, where the ansatz for the
displacement field is defined in the entire domain le of the element.

The question is now: how can we derive an ansatz for the displacement field? The idea is to compute the
projection �(uh) of the displacement uh from the two conditions for the first derivative (gradient) and the
average of the displacements related to uh and �[uh]

∫ le

0
p′(u′

π − u′
h) dx = 0 and

∫ le

0
(uπ − uh) dx = 0 (4)

Here, to shorten notation, the projected part is defined by uπ = �[uh]. The weighting function p in the first
equation has the same polynomial order as the projection uπ .

2.1 Finite element method for trusses

Here the ansatz functions are classically defined on the basis of an isoparametric mapping such that for an
element �e a linear ansatz is defined in a reference space −1 ≤ ξ ≤ 1, see Fig. 2,

uh(ξ) =
2∑

k=1

Nk(ξ)uk with N1 = 1

2
(1 − ξ) and N2 = 1

2
(1 + ξ) . (5)

This ansatz approximates the displacement field in the element �e and thus can be inserted, e.g., in (3) for
all ne elements leading to

ne
A
e=1

⎡
⎣1

2

1∫

−1

E A [u′
h(ξ)]2 Je dξ −

1∫

−1

f (ξ) uh(ξ) Je dξ

⎤
⎦ −→ MI N (6)

where Je is the Jacobian of the isoparametric mapping Je = dx
dξ

= le
2 . Both integrals can be evaluated using

numerical integration. In the special case of the bar problem, the first integral is with

u′
h(ξ) = duh(ξ)

dx
= duh(ξ)

dξ

dξ

dx
= duh(ξ)

dξ

2

le
= u2 − u1

le
(7)

simply given by the constant term for an element e

Ue(ui ) = 1

2

1∫

−1

E A [u′
h(ξ)]2 Je dξ = E A

2

[
u2 − u1

le

]2
le . (8)

By introducing the unknown vector ue = 〈u1 , u2〉T , the term in the square bracket can be written as (u2 −
u1)/ le = 1

le
〈−1 , 1〉ue = Bue which yields the matrix form of (8)

Ue(ue) = 1

2

1∫

−1

E A [u′
h(ξ)]2 Je dξ = E A

2
uTe B

TBue le (9)
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and the element stiffness matrix

KFEM = ∂2Ue(ue)
∂ue∂ue

= E A

le

[
1 −1

−1 1

]
. (10)

The second integral in (6) which relates to the potential of the distributed load f can be evaluated at element
level using numerical integration, like the Gauss quadrature. The number of integration point depends then on
the polynomial degree of f (ξ), taking into account that u(ξ) is a linear function.

2.2 Virtual element method with linear ansatz

In the standard isoparametric formulation used in the finite element method, an additional coordinate system
is employed in the reference configuration, see (5). On the contrary, the virtual element method is formulated
directly with respect to the coordinate system in the initial configuration.

With a linear ansatz uπ = a1 +a2x , one can compute the gradient of the projected part, here the derivative
u′

π = a2, from the orthogonality condition (4)1 within an element

le∫

0

p′ ( u′
h − u′

π ) dx = 0 →
le∫

0

p′ u′
π dx =

le∫

0

p′ u′
h dx (11)

where p is a weighting function that has the same polynomial degree as the ansatz uπ . Since uh is not known
within the element, the integral on the right side of (11) cannot be computed. However, based on the identity
(p′ uh)′ = p′ u′

h + p′′ uh (11) can be reformulated

le∫

0

p′ u′
π dx = (p′ uh)

∣∣le
0 −

le∫

0

p′′ uh dx . (12)

For the chosen linear ansatz p′ is constant as well as u′
π , it follows that p′′ = 0. With uh(0) = u1 and

uh(le) = u2, see Fig. 2, we obtain the projected gradient from (12)

a2 = u′
π = u2 − u1

le
(13)

which is now a function of the nodal displacements u1 and u2.
Thus, it is possible to compute the gradient u′

π without knowing the function uh inside the element �e.
In this simple case, the result u′

π matches exactly u′
h provided by the finite element method and hence the

remainder is zero: u′
h −u′

π = 0. But in general the results are different, see e.g. [2]. Finally, u′
π can be inserted

in (3) which provides the same result as given in (8). Thus, also the stiffness matrix of the virtual element
KV EM is exactly the same as KFEM in (10).

A problem is now to compute the loading term in (3) since uh is not known inside the element. A possibility
is to compute an approximation of uh by the projected displacement uπ using the linear ansatz.Mathematically,
it can be shown that this approximation of uh by uπ in the loading term will result in optimal error estimates,
see, e.g., [1].

The complete projection uπ follows from (4)2 where the average displacement uπ is equal to the average
displacement uh . Instead of evaluating the integrals, a sum of the values at the vertices of the element is
employed. This yields for the two nodes of the bar element with x1 = 0 and x2 = le

2∑
n=1

uπ (xn) =
2∑

n=1

uh(xn) → a1 + (a1 + a2le) = u1 + u2 (14)

and together with (13) we obtain a1 = u1. Thus, uπ = u1 + u2−u1
le

x . This function can be used to evaluate the

integral associated with the loading potential in (3). As an example, we compute the potential energy U f
e of
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the loading term for f (x) = fc = const.

U f
e =

le∫

0

fc uπ (x) dx = fc

le∫

0

(u1 + u2 − u1
le

x) dx = fc le
2

(u1 + u2) (15)

which yields with the definition ue = 〈u1 , u2〉T the matrix form

f = ∂U f
e

∂ue
= fc le

2

{
1
1

}
. (16)

This loading term is exactly the same as the one for the finite element formulation in (6). Thus, so far the virtual
element formulation produces equivalent results as the FEM.Thiswill, however, change for higher-order ansatz
functions.

2.3 Quadratic ansatz for a one-dimensional virtual truss element

The simplest possible higher-order ansatz function that can be used to derive a virtual truss element is provided
by a quadratic ansatz for the problem E Au′′(x) = − f (x), see Fig. 2.

Analogous to the case of the linear ansatz, we select a quadratic function (ansatz order n = 2) for the
projection

uπ = a1 + a2 x + a3 x
2 . (17)

This projection function has three unknown parameters and the question is: how will it be possible to derive
a virtual element since we have only two points at the edges of the element with nodal displacements u2 and
u1?
The solution follows from a closer look at the Galerkin projection (12)

le∫

0

p′ u′
π dx = (p′ uh)

∣∣le
0 −

le∫

0

p′′ uh dx (18)

where now p has the same polynomial degree as (17) and thus is a quadratic polynomial with p′′ = const.
Hence the last integral

∫
uh dx on the right-hand side does not vanish. But it is also not computable since

uh is not known inside the element. The way out is to define a new (internal) variable. This variable is not
associated with any node and is called moment in the virtual element literature since for higher-order ansatz
functions (n ≥ 2) integrals

∫
xn−2 uh dx up to the order n − 2 appear. These can be associated with moments

in mechanics. Here we introduce

m0 = 1

le

∫ le

0
uh dx (19)

which is scaled by the element length such that m0 has the same dimensions as u1 and u2. With this new
variable the projection in (18) is computable, as we will see next.

It is convenient to introduce a matrix formulation in order to shorten notation. This leads to the derivative
of uπ

u′
π = a2 + 2a3 x = 〈1 2x〉

{
a2
a3

}
. (20)

With the matrix form p′ = 〈1 2x〉T , the left-hand side of (18) yields
le∫

0

p′ u′
π dx =

le∫

0

{
1
2x

}
〈1 2x〉 dx

{
a2
a3

}
=

le∫

0

[
1 2x
2x 4x2

]
dx

{
a2
a3

}
. (21)
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The polynomials can be integrated exactly leading to

le∫

0

p′ u′
π dx =

[
le l2e
l2e

4
3 l

3
e

]{
a2
a3

}
= Ga (22)

The right-hand side in (18) can be evaluated with p′′ = 〈0 2〉T resulting in

(p′ uh)
∣∣le
0 −

le∫

0

p′′ uh dx =
[{

1
2x

}
uh

]le
0

−
{
0
2

} le∫

0

uh dx (23)

With the unknown defined in (19), the right-hand side of (18) follows as

(p′ uh)
∣∣le
0 −

le∫

0

p′′ uh dx =
{
u2 − u1
2 leu2

}
−
{

0
2 lem0

}
= r(ui ,m0) (24)

The projection Eq. (18) can now be solved for the unknowns a by combining (22) and (23)

Ga = r(ui ,m0) →
{
a2
a3

}
=
{− 2

le
(2u1 + u2 − 3m0)

3
l2e

(u1 + u2 − 2m0)

}
. (25)

Furthermore, the constant a1 can be obtained by the condition that the average of the projection uπ is equal
to the average of the ansatz uh over the element

le∫

0

uπdx =
le∫

0

uhdx . (26)

This leads with the definition of the unknown m0, the ansatz (17) and (25) after some algebra to

a1le + 1

2
a2 l

2
e + 1

3
a3 l

3
e = le m0 → a1 = u1 (27)

Equations (25) and (27) determine the projection and its first derivative in terms of the unknowns u1 , u2 and
m0

uπ = 〈1 x x2〉

⎧⎪⎨
⎪⎩

u1
− 2

le
(2u1 + u2 − 3m0)

3
l2e

(u1 + u2 − 2m0)

⎫⎪⎬
⎪⎭ and u′

π = 〈1 2x〉
{− 2

le
(2u1 + u2 − 3m0)

3
l2e

(u1 + u2 − 2m0)

}
(28)

This result can be written in a more compact matrix form by introducing the matrices

N(2)
π (x) = 〈1 x x2〉 and ∇N(2)

π (x) = 〈1 2x〉 (29)

together with the unknown vector ûe = 〈u1 , u2 ,m0〉T and the projection operators

P
(2) = 1

l2e

⎡
⎣ l2e 0 0

−4le −2le 6le
3 3 −6

⎤
⎦ and B

(2) = 1

l2e

[−4le −2le 6le
3 3 −6

]
, (30)

leading to

uπ = N(2)
π (x)P(2) ûe and u′

π = ∇N(2)
π (x)B(2) ûe . (31)
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The derivative u′
π from (31) can now be inserted into the potential energy and integrated using the result from

(22)

Ue = 1

2

le∫

0

E A (u′
π )2 dx = 1

2
ûTe [B(2)]T

le∫

0

[∇N(2)
π (x)]T∇N(2)

π (x) dx B(2) ûe

= 1

2
ûTe [B(2)]TGB

(2) ûe .

(32)

Now the stiffness matrix of the virtual truss (T) element follows by differentiation with respect to ûe as

KT,V = ∂2Ue

∂ûe∂ûe
= [B(2)]TGB

(2) = 2 E A

le

⎡
⎣ 2 1 −3

1 2 −3
−3 −3 6

⎤
⎦ (33)

It is interesting to note that the VEM stiffness matrix is not equivalent to the FEM matrix for a quadratic
element which can be computed from the potential (6) using the quadratic ansatz uF

h = ∑3
I=1 NI (ξ)ui with

N1(ξ) = 1
2ξ(1 − ξ), N2(x) = 1

2ξ(1 + ξ) and N3 = (1 − ξ2) with the reference space −1 ≤ ξ ≤ 1 and the
procedure in Sect. 2.1

KT,F = 2 E A

le

⎡
⎣

7
6

1
6 − 4

3
1
6

7
6 − 4

3− 4
3 − 4

3
8
3

⎤
⎦ . (34)

When looking at the eigenvalues ω of both stiffness matrices we obtain ωT,V = 2 E A
le

{0 , 1 , 9} and ωT,F =
2 E A
le

{0 , 1 , 4}which are different. These have the same subset 2 E A
le

{0 , 1}which are actually the two eigenvalues
of the stiffnessmatrix for the virtual and the finite truss element with linear ansatz function. The zero eigenvalue
is associated with the rigid body translation. Both stiffness matrices have the correct rank. Thus, a stabilization
for the virtual element is not necessary.

The loading term follows from the potential, see (15),

U f =
le∫

0

f (x) uh dx . (35)

Interestingly, for the case of f (x) = fc = const. the integral
∫
uh dx can be approximated directly by the

variable m0 introduced in (19) leading to

U f = fc

le∫

0

uh dx = fc m0 le . (36)

Thus the matrix form of the loading term is

fT,V = ∂U f

∂ûe
= fcle

⎧⎨
⎩
0
0
1

⎫⎬
⎭ (37)

which is counterintuitive since no load term is assigned to the nodal degrees of freedom u1 and u2. The loading
term for finite elements is given for a constant load by

fT,F = fcle
6

⎧⎨
⎩
1
1
4

⎫⎬
⎭ (38)

which is clearly different to (37).
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In order to verify the correctness of the virtual element formulation leading to (33) and (37), a simple
example of a bar under constant load fc is considered that is fixed at the left end (u1 = 0) , see Fig. 1. Using
only one virtual element for the discretization yields with (33) and (37)

2 E A

le

[
2 −3

−3 6

]{
u2
m0

}
= fcle

{
0
1

}
→

{
u2
m0

}
= fcL2

e

6 E A

{
3
2

}
. (39)

This result can be introduced in (31) to compute the displacement uπ and normal force N = E Au′
π which

leads after some simple algebra to

uπ = fc
2 E A

(2le − x)x and N = fc(le − x) . (40)

These results are equivalent to the exact analytical solution of the differential equation E Au′′ = − fc. Thus
the projected displacement uπ of the quadratic virtual truss element delivers an exact solution in this special
case. Actually, the exact analytical solution is also recovered when using the finite element formulation in (34)
with the load vector in (38). We note that exact solutions are even recovered for the linear ansatz in Sect. 2.2,
however, only for the nodal values, see, e.g., [13]. Finally, we observe that stiffness matrix and load vector of
the virtual element are different from the finite element formulation and that the finite element formulation
includes a third node at the center of the element.

2.4 Generalization for higher-order ansatz functions

The virtual element formulation for a truss element can be easily generalized to ansatz functions of any order.
With the polynomial

uπ =
n∑

k=0

ak+1 x
k (41)

where n is the highest polynomial degree of the ansatz function, the projection can be computed. As before, a
matrix Bπ (x) can be introduced

Bπ (x) = 〈1 2x · · · k xk−1〉 (42)

with 1 ≤ k ≤ n. The derivative of the ansatz uπ is then given by

u′
π = Bπ (x) â with âT = 〈a2 a3 . . . ak+1〉T (43)

for 1 ≤ k ≤ n. Furthermore the internal variable, moment, is introduced

mk−2 = 1

lk−1
e

∫ le

0
xk−2wh dx for 2 ≤ k ≤ n . (44)

Here a scaling of the moment performed by lk−1
e such that mk−2 has the same dimension as the displacement.

From the right-hand side of the projection (23), it is clear that moments only appear when the ansatz order is
at least 2.

By using the same polynomial ansatz for p as for uπ , the derivative yields in matrix form p′ = BT
π =

〈1 2x · · · kxk−1〉T and the left-hand side of (21) follows as

le∫

0

p′ u′
π dx =

le∫

0

[Bπ (x)]TBπ (x)] dx â

=
le∫

0

⎡
⎢⎢⎢⎣

1 2x · · · kxk−1

2x 4x2 · · · 2kxk
...

...
...

...

kxk−1 2kxk · · · k2x2k−2

⎤
⎥⎥⎥⎦ dx

⎧⎪⎪⎨
⎪⎪⎩

a2
a3
...

ak+1

⎫⎪⎪⎬
⎪⎪⎭

.

(45)
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All polynomials can be integrated exactly which yields

le∫

0

p′ u′
π dx =

⎡
⎢⎢⎢⎣

le l2e · · · 2lke
l2e

4
3 l

3
e · · · 2k

k+1 l
k+1
e

...
...

...
...

lke
2k
k+1 l

k+1
e · · · k2

2k−1 l
2k−1
e

⎤
⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

a2
a3
...

ak+1

⎫⎪⎪⎬
⎪⎪⎭

= G â (46)

The right-hand side in (23) can be evaluated with p′ using (42) and p′′ = 〈0 2 . . . k(k − 1)xk−1〉T where p′′
only exist for k ≥ 2. This results in

r(uh ) = (p′ uh)
∣∣le
0 −

le∫

0

p′′ uh dx

=

⎡
⎢⎢⎣

⎧⎪⎪⎨
⎪⎪⎩

1
2x
...

k xk−1

⎫⎪⎪⎬
⎪⎪⎭
u′
h

⎤
⎥⎥⎦

le

0

−

⎧⎪⎪⎨
⎪⎪⎩

0
2le m0

...

k(k − 1) lk−1
e mk−2

⎫⎪⎪⎬
⎪⎪⎭

(47)

With the unknowns, ue = (u1 , u2), defined in the right part of Fig. 3, uh(0) = u1, uh(le) = u2 and the
moments m = 〈m0 · · · mk−2〉 the right-hand side of (47) follows for an ansatz up to order n with 2 ≤ k ≤ n
as

r(ue,m) =

⎧⎪⎪⎨
⎪⎪⎩

(u2 − u1)
2le u2

...

klk−1
e u2

⎫⎪⎪⎬
⎪⎪⎭

−

⎧⎪⎪⎨
⎪⎪⎩

0
2le m0

...

k(k − 1) lk−1
e mk−2

⎫⎪⎪⎬
⎪⎪⎭

(48)

The projection equation (69) can now be solved for the unknowns a by combining (46) and (48)

G â = r(ue,m) (49)

Once the parameters â are known as function of the nodal and internal variables, the parameter a1 can be
obtained from (27). But due to the construction of the virtual element a1 = u1 since uπ (0) = u1.

3 Virtual element formulations for Euler–Bernoulli beams

We consider a beam of length l with a stiffness of E I where E is the Young’s modulus and I the moment of
inertia of the cross section. The beam is loaded by a line load of magnitude q , see Fig. 3. The fourth-order
ordinary differential equation for the deflection w of the Euler–Bernoulli beam with a constant cross section
is given by

E I w′′′′(x) = q(x) (50)

By introducing a potential, the differential equation (50) can be written as a minimization problem

1

2

l∫

0

E I [w′′(x)]2dx −
l∫

0

q(x)w(x)dx −→ MI N . (51)
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Fig. 3 Beam under constant line load and degrees of freedom of the associated element

3.1 Cubic ansatz for a one-dimensional virtual beam element

As for the truss element, the approximation of the deflection wh is not known along the beam axis within a
virtual element formulation. The unknown function wh is only known at the nodal points of the element. For
a fourth-order differential equation not only the deflection but also the rotations have to be approximated. The
unknowns of a beam element are depicted in the right-hand side of Fig. 3.

The four unknownsw1, θ1,w2 and θ2 lead to a choice of a cubic ansatz which has four unknown coefficients
ai

wπ = a1 + a2x + a3x
2 + a4x

3 = 〈1, x, x2, x3〉

⎧⎪⎨
⎪⎩
a1
a2
a3
a4

⎫⎪⎬
⎪⎭ = N(3)

π (x) a . (52)

As in the truss formulation, the parameters can be determined from a L2-projection. In case of the beam, we
have to perform this for the curvature w′′

le∫

0

p′′ ( w′′
h − w′′

π ) dx = 0 →
le∫

0

p′′ w′′
π dx =

le∫

0

p′′ w′′
h dx . (53)

Again p is a polynomial of the same order as wπ . Since second derivatives appear on the left-hand side of the
projection, only the coefficients a3 and a4 can be determined from (53). Differentiation of (52) yields

w′′
π = 〈2 6x〉

{
a3
a4

}
= B(3)

π â and p′′ = 〈2 6x〉 = B(3)
π (54)

which provides after integration a 2 × 2 matrix for the left side of the projection (53)

le∫

0

p′′ w′′
π dx =

le∫

0

[B(3)
π ]TB(3)

π dx â = le

[
4 6le
6le 12l2e

]
â = Gπ â . (55)

with the vector containing the coefficients â = 〈a3 a4〉T .
The right-hand side of the projection (53) cannot be computed directly since wh is not known along the

beam axis. However, by using partial integration twice we are able to shift wh to single values at the boundary
of the element which are known,

le∫

0

p′′ w′′
h dx = (p′′w′

h)
∣∣le
0 − (p′′′wh)

∣∣le
0 +

le∫

0

p′′′′ wh dx . (56)

In (52), we use a cubic polynomial hence the fourth derivative p′′′′ is zero. Noting that the derivative p′′′ can
be written as ∇B(3)

π = 〈0, 6〉 the matrix form of (56) follows with the right side of (54) as

le∫

0

p′′ w′′
h dx = ([B(3)

π ]Tw′
h)

∣∣∣le
0

− ([∇B(3)
π ]Twh)

∣∣∣le
0

. (57)
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The rotation w′
h is known at the nodes of the beam element: w′

h(x = 0) = θ1 and at w′
h(x = le) = θ2, see

Fig. 3. The same is true for the deflection wh : wh(x = 0) = w1 and wh(x = le) = w2. By introducing these
relations into the above equation and combining the result with (55), the explicit matrix form of (53)

Gπ â =
{
2
6le

}
θ2 −

{
2
0

}
θ1 −

{
0
6

}
(w2 − w1) (58)

is obtained. The solution of this equation yields the coefficients a3 and a4 as a function of the nodal unknowns
we

â = 1

l2e

[−3 −2le 3 −le
2
le

1 − 2
le

1

]
we = P̂

(3) we (59)

with wT
e = 〈w1 θ1 w2 θ2〉. Based on this result, the curvature w′′

π can be expressed with (54) as w′′
π = Bπ â =

Bπ P̂we. Now the strain energy of the beam element (51) will be approximated using w′′
π

UB = 1

2

l∫

0

E I [w′′
π (x)]2dx = 1

2
wT
e [P̂(3)]T E I

le∫

0

[B(3)
π ]T B(3)

π dx P̂(3) we . (60)

We note that the integral in this equation was already evaluated in (55). Thus, the stiffness matrixKB,V of the
virtual Euler–Bernoulli beam element can be computed explicitly by a second derivative of the potential with
respect to the nodal unknowns

KB,V = ∂2UB

∂w∂w
= E I [P̂(3)]T Gπ P̂

(3) = E I

l3e

⎡
⎢⎣

12 6le −12 6le
6le 4l2e −6le 2l2e−12 −6le 12 −6le
6le 2l2e −6le 4l2e

⎤
⎥⎦ (61)

which is exactly the stiffness matrix that is obtained when using the finite element method with a cubic
Hermitian ansatz function, see, e.g., [12].

What remains is to compute the loading term in the potential (51). Sincewh is not known inside the element,
it can be approximated by wπ in (52). So far only a3 and a4 are known. To compute coefficients a1 and a2, the
relation (14) in Sect. 2 has to be extended to include also the derivative of the deflection (the rotations). The
idea is to equalize not only the average of the nodal degrees of freedom of wh and the value of the projection
wπ at the element nodes but also the rotations w′

h and w′
π . Hence, the following conditions can be employed

to compute the remaining coefficients

2∑
i=1

wh(xi ) =
2∑

i=1

wπ(xi ) and
2∑

i=1

w′
h(xi ) =

2∑
i=1

w′
π (xi ) . (62)

By evaluating these equations at x = 0 and x = le, we obtain for the deflections

w1 + w2 = a1 + (a1 + a2le + a3l
2
e + a4l

3
e ) (63)

and the rotations

θ1 + θ2 = a2 + (a2 + 2a3le + 3a4l
2
e ) . (64)

By inserting a3 and a4 from (59), the result a2 = θ1 and a1 = w1 follows. This result could also be obtained
by just looking at the ansatz wπ in (52) since for x = 0 the ansatz function has the value wπ(0) = a1 = w1.
The same is true for the first derivative w′

π which has to be for x = 0: w′
π (0) = a2 = θ1.

Now all coefficients are known as functions of the nodal degrees of freedom we which can be expressed
by the projection

a = P
(3) we 	⇒

⎧⎪⎨
⎪⎩
a1
a2
a3
a4

⎫⎪⎬
⎪⎭ = 1

l2e

⎡
⎢⎢⎣
l2e 0 0 0
0 l2e 0 0

−3 −2le 3 −le
2
le

1 − 2
le

1

⎤
⎥⎥⎦
⎧⎪⎨
⎪⎩

w1
θ1
w2
θ2

⎫⎪⎬
⎪⎭ (65)
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With (52) the ansatz wπ is complete

wπ(x) = N(3)
π (x)P(3) we . (66)

By inserting this ansatz into the loading term in (51), here written for the element e, we derive for q(x) =
q0 = const.

le∫

0

q(x)wπ(x)dx = q0

le∫

0

N(3)
π (x) dx P(3) we = q0 le

2

〈
1 le

6 1 − le
6

〉
we (67)

which is exactly the same result as provided by a cubic Hermitian finite element ansatz, see, e.g., [12].
Also in the case of the Euler–Bernoulli beam, the virtual element method leads to an identical result as the

finite element method which has full rank. Thus, the remainder (wh − wπ) in wh = wπ + (wh − wπ) is zero.

3.2 Fourth-order ansatz for a one-dimensional virtual beam element

This simple example will underline the methodology used to derive virtual elements for higher-order ansatz
function. For this purpose, wewill discuss a fourth-order (quadratic) ansatz for the problem E Iw′′′′(x) = q(x),
see Fig. 2.

Analogous to the case of the cubic projection, we select a fourth-order function

wπ = a1 + a2 x + a3 x
2 + a4 x

3 + a5 x
4 = N(4)

π a (68)

with N(4)
π (x) = 〈1 x x2 x3 x4〉 and aT = 〈a1 , a2 , a3 , a4 , a5〉. This projection function has five unknown

parameters and the question is: how will it be possible to derive a virtual element since we have only two
points at the edges of the element with nodal displacements w1 and w2 and the nodal rotations θ1 and θ2?
The solution is the same as in Sect. 2.3. We look at the Galerkin projection (53) together with (56)

le∫

0

p′′ ( w′′
h − w′′

π ) dx = 0 →
le∫

0

p′′ w′′
π dx = (p′′w′

h)
∣∣le
0 − (p′′′wh)

∣∣le
0 +

le∫

0

p′′′′ wh dx (69)

where now p has the same polynomial degree as (68) and thus is a fourth-order polynomial with p′′′′ = const.
Hence the last integral

∫
wh dx does not vanish. But it is also not computable since wh is not known inside

the element. As in Sect. 2.3, we introduce an internal variable (so called moment)

m0 = 1

le

∫ le

0
wh dx (70)

which is scaled by the element length such that m0 has the same dimensions as w1 and w2. With this new
variable, the projection in (69) can be determined.

It is convenient to introduce a matrix formulation in order to shorten notation. This leads to the second
derivative of wπ

w′′
π = 2a3 + 6a4 x + 12a5 x

2 = B(4)
π (x) â (71)

where B(4)
π (x) = 〈2 6x 12x2〉 and âT = 〈a3 a4 a5〉. By writing the second derivative of the polynomial p in

matrix form p′′ = [B(4)
π ]T = 〈2 6x 12x2〉T the left-hand side of (69) yields

le∫

0

p′′ w′′
π dx =

le∫

0

[B(4)
π (x)]TB(4)

π (x) dx â =
le∫

0

⎡
⎣ 4 12x 24x2

12x 36x2 72x3

24x2 72x3 144x4

⎤
⎦ dx

⎧⎨
⎩
a3
a4
a5

⎫⎬
⎭ . (72)
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The polynomials can be integrated exactly, leading to

le∫

0

p′′ w′′
π dx =

⎡
⎣4le 6l2e 8l3e
6l2e 12l3e 18l4e
8l3e 18l4e

144
5 l5e

⎤
⎦
⎧⎨
⎩
a3
a4
a5

⎫⎬
⎭ = G â . (73)

The right-hand side in (69) can be evaluated with p′′′ = 〈0 6 24x〉T and
p′′′′ = 〈0 0 24〉T

r(whi ) = (p′′ w′
h)
∣∣le
0 − (p′′′ wh)

∣∣le
0 +

le∫

0

p′′′′ wh dx

=
⎡
⎣
⎧⎨
⎩

2
6x
12x2

⎫⎬
⎭w′

h −
⎧⎨
⎩

0
6

24x

⎫⎬
⎭wh

⎤
⎦
le

0

+
⎧⎨
⎩

0
0
24

⎫⎬
⎭

le∫

0

wh dx (74)

With the unknowns, defined in the right part of Fig. 3,wh(0) = w1,wh(le) = w2,w′
h(0) = θ1 andw′

h(le) = θ2,
the right-hand side of (74) follows as

r(wi , θi ,m0) =
⎧⎨
⎩
2(θ2 − θ1)
6 leθ2
12l2e θ2

⎫⎬
⎭−

⎧⎨
⎩

0
6 (w2 − w1)

24lew2

⎫⎬
⎭+

⎧⎨
⎩

0
0

24lem0

⎫⎬
⎭ (75)

The projection equation (69) can now be solved for the unknowns a by combining (73) and (75)

G â = r(wi , θi ,m0) →
⎧⎨
⎩
a3
a4
a5

⎫⎬
⎭ =

⎧⎪⎪⎨
⎪⎪⎩

− 3
2l2e

(12w1 + 3leθ1 + 8w2 − leθ2 − 20m0)

2
l3e

(16w1 + 3leθ1 + 14w2 − 2leθ2 − 30m0)

− 5
2l4e

(6w1 + leθ1 + 6w2 − leθ2 − 12m0)

⎫⎪⎪⎬
⎪⎪⎭

. (76)

Furthermore, the constants a1 and a2 can be obtained by the conditions that the average of the projection
wπ and its derivativew′

π evaluated at the nodal points is equal to the average of the ansatzwh and its derivative
w′
hat the nodal points for one element

∫ le

0
wπ(x)dx =

∫ le

0
wh(x)dx ,

∫ le

0
w′

π (x)dx =
∫ le

0
w′
h(x)dx . (77)

The first equation leads with x1 = 0, x2 = le and the ansatz (68) to

a1 le + 1

2
a2 l

2
e + 1

2
a3 l

3
e + 1

4
a4 l

4
e + 1

5
l5e = le m0 (78)

and the second condition results in

a2 lea3 l
2
e + a4 l

3
e + a5 l

4
e =

∫ le

0
w′
h(x)dx = wh |le0 = w2 − w1 . (79)

The two equations above yield a matrix system from which a1 and a2 can be determined

[
le

1
2 l

2
e

0 le

]{
a1
a2

}
=
{

le m0
w2 − w1

}
−
[
1
2 l

3
e

1
4 l

4
e

1
5 l

5
e

l2e l3e l4e

]⎧⎨
⎩
a3
a4
a5

⎫⎬
⎭ . (80)

By inserting a3 to a5 from (76) this equation system leads after some algebra to a1 = w1 and a2 = θ1. The
result is obvious since for x = 0 the ansatz function should give the nodal values w1 and θ1 at this point.
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As in the case of the virtual beam element with cubic ansatz in section 3 a projector, see (65), can be defined
which maps expresses the constants aT = 〈a1 , a2 , a3 , a4 , a5〉 in terms of the nodal values and the moment
ŵT
e = 〈w1 , θ1 , w2 , θ2 ,m0〉 as

a = P
(4) ŵe 	⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1
a2
a3
a4
a5

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 1

l4e

⎡
⎢⎢⎢⎢⎣

l4e 0 0 0 0
0 l4e 0 0 0

−18l2e − 9
2 l

3
e −12l2e

3
2 l

3
e 30l2e

32le 6l2e 28le −4l2e −60le
−15 − 5

2 le −15 5
2 le 30

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1
θ1
w2
θ2
m0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(81)

The definitions in (68) and (71) together with

B
(4) = 1

l4e

⎡
⎣−18l2e − 9

2 l
3
e −12l2e

3
2 l

3
e 30l2e

32le 6l2e 28le −4l2e −60le
−15 − 5

2 le −15 5
2 le 30

⎤
⎦ (82)

yield the matrix form of the projection of the ansatz function and its second derivative

wπ = N(4)
π (x)P(4) ŵe and w′′

π = B(4)
π (x)B(4) ŵe (83)

The derivative w′′
π from (83) can now be inserted into the potential energy and integrated using the result from

(73)

Ue = 1

2

le∫

0

E I (w′′
π )2 dx = 1

2
ŵT
e [B(4)]T

le∫

0

[B(4)
π (x)]TB(4)

π (x) dx B(4)ŵe

= 1

2
ŵT
e [B(4)]TGB

(4)ŵe .

(84)

Now the stiffness matrix of the virtual element follows by differentiation with respect to ue as

KB,V = ∂2Ue

∂ŵe∂ŵe
= [B(4)]TGB

(4) = E I

l3e

⎡
⎢⎢⎢⎣

192 36le 168 −24le −360
36le 9l2e 24le −3l2e −60le
168 24le 192 −36le −360

−24le −3l2e −36le 9l2e 60le
−360 −60le −360 60le 720

⎤
⎥⎥⎥⎦ (85)

It is interesting to note that there is no adequate FEM formulation that yields the a finite beam element with 5
degrees of freedom.

The loading term follows from the potential, see (51),

Uq =
le∫

0

q(x)wh dx (86)

Interestingly, for the case of q(x) = q0 = const. the integral
∫

wh dx can be evaluated directly using the
definition (70) of the variable m0. This yields

Uq = q0

le∫

0

wh dx = q0 m0 le (87)

Thus, the matrix form of the loading term is simply given by

f B,V
0 = q0 le

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
0
0
0
1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(88)
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Fig. 4 On beam under linearly varying line load

which is similar to the constant loading term of the truss element with quadratic ansatz function, see (37). One
can evaluate Uq in a different way by inserting the ansatz for wπ , see (83) into the integral in (87). This will
actually lead after some algebraic manipulations to exactly the same result.

For a load that varies linearly in the virtual element given as q(x) = (1− x
le

) q1 + x
le
q2 with two constants

q1 and q2 describing the load at the nodes, the potential of this loading term is obtained by inserting wπ from
(83)

Uq =
le∫

0

[
(1 − x

le
)q1 + x

le
q2

]
N(4)

π (x) dx P(4) ŵe

= le
120

[(q1 − q2)[12(w1 − w2) + le(θ1 + θ2)] + 60 (q1 + q2)m0]

(89)

This result yields the load vector for one element

f B,V
1 = ∂Uq

∂we
= le

120

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

12(q1 − q2)
(q1 − q2)le

−12(q1 − q2)
(q1 − q2)le

60(q1 + q2)le

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (90)

For an assessment of the accuracy of the developed element, a beam that is clamped at the left side is
investigated. Only one element is considered for the case of the constant load, q1 = q2 = q0 leading to f0,
and the linear varying load, f1. The boundary conditions for the clamped beam are (w1 = θ1 = 0) , see Fig. 4.
In that case, the element stiffness matrix (135) can be used where the first and second rows and columns are
eliminated. Furthermore, the first two rows of the load vector are deleted leading for the constant load to the
equation system with the solution

⎡
⎣ 192 −36le −360

−36le 9l2e 60le
−360 60le 720

⎤
⎦
⎧⎨
⎩

w2
θ2
m0

⎫⎬
⎭ =

⎧⎨
⎩

0
0

q0 le

⎫⎬
⎭ 	⇒

⎧⎨
⎩

w2
θ2
m0

⎫⎬
⎭ = q0 l3e

E I

⎧⎨
⎩

le
8
1
6
le
20

⎫⎬
⎭ (91)

The nodal values w2 and θ2 match the analytical results. Furthermore, the solution can be used to compute
the moment distribution along the beam M(x) = −E I w′′

π . For that, the results of (91) are introduced in (83)
which leads to

M(x) = E I B(4)
π (x)B(4) ŵe = −q0

2
(le − x)2 . (92)

Also this result matches the analytical solution which is related to the fact that the analytical solution is a
fourth-order polynomial, and hence, the fourth-order ansatz (68) can approximate this solution exactly.

For the linearly distributed load, we obtain

⎡
⎣ 192 −36le −360

−36le 9l2e 60le
−360 60le 720

⎤
⎦
⎧⎨
⎩

w2
θ2
m0

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

−(q1 − q2)
le
10

(q1 − q2)
l2e
120

(q1 + q2)
le
2

⎫⎪⎬
⎪⎭ 	⇒

⎧⎨
⎩

w2
θ2
m0

⎫⎬
⎭ = l3e

24E I

⎧⎨
⎩

le
5 (4q1 + 11q2)
q1 + 3q2

le
15 (5q1 + 13q2

⎫⎬
⎭ (93)
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Here w2 and θ2 coincide with the analytical solution at the beam end which actually can be shown for all
complete polynomial ansatz functions that fulfil the homogeneous differential equation of the beam. The result
(93) leads to bending moment distribution in the beam

MB,V
1 (x) = −E I B(4)

π (x)B(4) ŵe = −(19q1 + 41q2)
l2e
120

+ (2q1 + 3q2)
lex

5
− (q1 + q2)

x2

4
(94)

that does not match the distribution computed from the analytical solution

MB,A
1 (x) = − (le − x)2

6le
[(q1 + 2q2)le + (q2 − q1)x] (95)

which is a cubic function. However, the difference is not large which can be seen by evaluating MB,V
1 and

MB,A
1 at x = 0 and x = le:

MB,V
1 (0) = MB,A

1 (0) − (q2 − q1)
l2e
120

MB,A
1 (0) = −(20q1 + 40q2)

l2e
120

MB,V
1 (le) = (q2 − q1)

l2e
120

MB,A
1 (le) = 0

(96)

3.3 Generalization for higher-order ansatz functions

The virtual element formulation for Euler–Bernoulli beams can be generalized for higher-order ansatz function.
For that, an ansatz is introduced

wπ =
n∑

k=0

ak+1 x
k (97)

where n is the highest polynomial degree of the ansatz function. The matrix Bπ (x) in (71) can be written as

Bπ (x) = 〈2 6x · · · c1(k) xk−2〉 (98)

with 2 ≤ k ≤ n and c1(k) = k(k − 1). The second derivative of the ansatz is then given by

w′′
π = Bπ (x) â with âT = 〈a3 a4 . . . ak+1〉T (99)

for 2 ≤ k ≤ n. Furthermore, we can introduce the moment, which is an internal variable,

mk−4 = 1

lk−3
e

∫ le

0
xk−4wh dx for 4 ≤ k ≤ n (100)

where the scaling by lk−3
e is made such thatmk−4 has the same dimension as the deflection. From the right-hand

side of the projection (69), it is clear that moments only appear when the ansatz order is at least 4.
By using the same polynomial ansatz for p as for wπ , the second derivative yields in matrix form p′′ =

BT
π = 〈2 6x · · · k(k − 1)xk−2〉T and the left-hand side of (69) follows as

le∫

0

p′′ w′′
π dx =

le∫

0

[Bπ (x)]TBπ (x)] dx â

=
le∫

0

⎡
⎢⎢⎢⎣

4 12x · · · 2k(k − 1)xk−2

12x 36x2 · · · 6k(k − 1)xk−1

...
...

...
...

2k(k − 1)xk−2 6k(k − 1)xk−1 · · · [k(k − 1)]2x2k−4

⎤
⎥⎥⎥⎦ dx

⎧⎪⎪⎨
⎪⎪⎩

a3
a4
...

ak+1

⎫⎪⎪⎬
⎪⎪⎭

.

(101)
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The polynomials can be integrated exactly, leading to

le∫

0

p′′ w′′
π dx =

⎡
⎢⎢⎢⎣

4le 6l2e · · · 2k lk−1
e

6l2e 12l3e · · · 6(k − 1)lke
...

...
...

...

2k lk−1
e 6(k − 1)lke · · · [k(k−1)]2

2k−3 l2k−3
e

⎤
⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

a3
a4
...

ak+1

⎫⎪⎪⎬
⎪⎪⎭

= G â (102)

The right-hand side in (69) can be evaluated with p′′ using (98), p′′′ = 〈0 6 . . . c2(k)xk−3〉T and p′′′′ =
〈0 0 24 . . . c3(k)xk−4〉T where p′′′ and p′′′′ only exist for k ≥ 3 and k ≥ 4, respectively. Here the constants
c2(k) = k(k − 1)(k − 2) and c3(k) = k(k − 1)(k − 2)(k − 3), depending on the ansatz order, were introduced.
This results in

r(wh ) = (p′′ w′
h)
∣∣le
0 − (p′′′ wh)

∣∣le
0 +

le∫

0

p′′′′ wh dx

=

⎡
⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
6x
12x2

...

c1(k) xk−2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

w′
h −

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
6

24x
...

c2(k) xk−3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

wh

⎤
⎥⎥⎥⎥⎦

le

0

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0

24le m0
...

c3(k) )lk−3
e mk−4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(103)

With the unknowns, we = (u1 , θ1 , u2 , θ2), defined in the right part of Fig. 3, wh(0) = w1, wh(le) = w2,
w′
h(0) = θ1, w′

h(le) = θ2 and the moments m = 〈m0 · · · mk−4〉 the right-hand side of (103) follow for an
ansatz up to order n with 3 ≤ k ≤ n as

r(we,m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(θ2 − θ1)
6 leθ2
12l2e θ2

...

c1(k))lk−2
e θ2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
6 (w2 − w1)
24le w2

...

c2(k)lk−3
e w2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0

24le m0
...

c3(k)) lk−3
e mk−4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(104)

The projection equation (69) can now be solved for the unknowns a by combining (102) and (104)

G â = r(we,m) (105)

Once the parameters â are known as function of the nodal and internal variables, the two parameters a1 and
a2 follow from (77). But as discussed in the previous section, due to the construction of the ansatz we arrive
always at a1 = w1 and a2 = θ1. With this the projection function, wπ is completely determined.

For an ansatz of order n ≥ 4, we will obtain an exact solution for a load of q(x) = ∑n
k=4 qk−4xk−4. In

that case, the potential related to the load can be written as

Uq =
le∫

0

q(x)wh dx =
n∑

k=4

qk−4 l
k−3
e mk−4 . (106)

Thus, it is straightforward to develop Euler–Bernoulli beam elements of arbitrary order. As an example, we
provide the relevant matrices for a fifth-order ansatz in appendix.

4 Static condensation

Internal variables can be removed by static condensation. Thus, it is possible to eliminate the moments mi at
element level. For that, we split the matrix and right had side at element level in

[
KI I KI M
KMI KMM

] {
uI
mM

}
=
{
RI
RM

}
(107)
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and build the Schur complement leading with K̄I I =
(
KI I − KI M K−1

MMKMI

)
to

K̄I I uI =RI − KI MK−1
MMRM

KMM mM = (RM − KMI uI )
(108)

It can be shown for any order of the ansatz used to derive the virtual element that thematrix K̄I I is equivalent
to the matrix representing the cubic ansatz given in (61). This is consistent with the result that the third-order
ansatz exactly solves the homogeneous part of the beam equation (50) and it is a well known fact that the nodal
deflections wi and the nodal rotations θi are exact for any given right-hand side, see, e.g., [13] and [7].

However, the approximation of the deflection within the cubic beam element are only exact for q(x) =
0. Hence, as shown before, it makes sense to use the virtual element formulation to obtain higher-order
approximations and thus better a representation of the beam deflection and with this also of the bending
moment and shear force within the element.

Based on this observation, it is possible to analyze a beam problem by computing

1. the nodal deflections and rotations using the cubic beam formulationwhich is equivalent to the finite element
beam. This yields the exact nodal degrees of freedom uI .

2. Next the moments mM follow from ((108))2 which complete the unknowns for the virtual element.
3. The higher-order approximation of the deflection wπ within the element can then be computed using the

projector, e.g., (81) for the fourth or (133) for the fifth-order virtual element ansatz.

This approach is similar to a postprocessing step where first the problem is solved with the classical beam
element, and then, a step follows that produces a higher-order solution at local element level using the virtual
element formulation.

The same procedure can also be applied for the truss element. Here a linear ansatz solves the homogeneous
Eq. (1). Thus, again an elimination of the internal degrees of freedom can be performed by using (108)2 which
yields the stiffness matrix (10) related to the linear ansatz function. Again the same procedure, as mentioned
above for the beam, can be used to compute the nodal degrees of freedom ui and moments mk which yields
an enhanced approximation of uπ within the truss element by the virtual element formulation.

5 Application of the virtual element discretization to nonlinear beam formulations

The developed virtual beam elements can be applied in linear and nonlinear problems related to structural
analysis. Here we use the methodology of Sects. 2 and 3 to construct a formulation for nonlinear response of
Bernoulli–Euler beams. We assume that the beams undergo small strains but finite deflections and rotations.
In this case, the static condensation approach, see above, cannot be employed since the nonlinear truss and
beam equations will not be solved exactly by a linear and cubic polynomial, respectively.

5.1 Theoretical background and discretization

The associated strain measures for the axial strains ε and the curvature κ that can be found in textbooks, like
[14]. The elongation ε and the curvature κ are given by

ε(x) =
√

[ 1 + u′(x)]2 + w′(x)2 − 1 ,

κ(x) = [ 1 + u′(x)]w′′(x) − w′(x) u′′(x)
[ ε(x) + 1 ]2 .

(109)

Thus, the element formulations in Sects. 2 and 3 have to be combined in order to approximate the displacement
u and the deflectionw of the beam. Attention has to be paid that second derivatives of u appear in the curvature
termwhich is contrary to the linear beam theory. In case or a linear constitutive relation, the potential describing
the virtual beam element can be written in matrix form as

U (u) = 1

2

l∫

0

εT C ε dx −
l∫

0

uT f dx (110)
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with the definitions

εT = 〈ε(x) , κ(x)〉 , C =
(
E A 0
0 E I

)
,

uT = 〈u(x) , w(x)〉 and f T = 〈 f (x) , q(x)〉 .

(111)

Note that U (u) is highly nonlinear in terms of the deflection and axial displacement.
Now the strains have to be approximated by the virtual element ansatz functions where many different

possibilities exist for the choice of the order of the ansatz functions. We will vary the ansatz order nu for axial
displacements from linear to cubic (nu = 1, 2, 3) and the ansatz order for the deflection nw from 3rd to 4th

order (nw = 3, 4).
Next we provide the the projection matrices related to the axial displacement. The first-order part is given

by

N(1)
π (x) = 〈1 x〉 , P

(1) = 1

le

[
le 0
−1 1

]
with û(1)

e =
{
u1
u2

}
(112)

For the second-order ansatz, the projection operators follow from (31)

N(2)
π (x) = 〈1 x x2〉 , P

(2) = 1

l2e

⎡
⎣ l2e 0 0

−4le −2le 6le
3 3 −6

⎤
⎦ with û(2)

e =
⎧⎨
⎩
u1
u2
m0

⎫⎬
⎭ (113)

For the third-order ansatz, the projection can be obtained from the matrices in Appendix A.1. For that the
equation, system with (124) and (125) has to be solved leading to

N(3)
π (x) = 〈1 x x2 x3〉 , P

(3) = 1

l2e

⎡
⎢⎣

l2e 0 0 0
−9l2e 3l2e 36l2e −60l2e
18le −12le −96le 180le
−10 10 60 −180

⎤
⎥⎦ (114)

with [̂u(3)
e ]T = 〈u1 , u2 ,m0 ,m1〉. With these matrices, the ansatz for the axial displacement can be written in

general form

u(nu)
π = N(nu)

π (x)P(nu) û(nu)
e (115)

The first and second derivatives needed in (109) follow as

u′
π

(nu) = N′
π

(nu)(x)P(nu) û(nu)
e and u′′

π
(nu) = N′′

π
(nu)(x)P(nu) û(nu)

e . (116)

The same procedure can now be applied for the approximation of the deflection w using the third- and
fourth-order projectors in (65) and (81). Again we can write

w(nu)
π = N(nw)

π (x)P(nw) ŵ(nw)
e (117)

where now the ansatz polynomialN(nw)
π and the projectionmatrixP(nw) are related to the virtual beam elements

in Sects. 3.1 and 3.2. The first and second derivatives needed in (109) follow as

w′
π

(nw) = N′
π

(nw)(x)P(nw) ŵ(nw)
e and w′′

π
(nw) = N′′

π
(nw)(x)P(nw) ŵ(nw)

e . (118)

The previous set of equations is sufficient to establish discretizations for beams in one dimension since it
is related to the local coordinate system of the straight beam axis. For more complex structures in which the
beams are located in different positions, the matrices and vectors have to be transformed to a global coordinate
system. This can be performed by a transformation of the local nodal displacements and rotations ulocI at a

node I which then can be expressed in terms of the global variables uglobI via

⎧⎨
⎩
uI
wI
θI

⎫⎬
⎭

loc

=
⎡
⎣ cosα sin α 0

− sin α cosα 0
0 0 1

⎤
⎦
⎧⎨
⎩
uI
wI
θI

⎫⎬
⎭

glob

(119)
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(a) (b)

Fig. 5 a Frame with vertical load and b discretization

The internal variable mi is not affected by this transformation.
The ansatz functions in (115) and (117) and their derivatives in (116) and (118) can now be inserted in (109).

This yields the strains in terms of the local nodal unknowns and internal variables. These can be transformed
via (119) to the global variables. Finally, the strain measures are inserted into the potential (110)

U = 1

2

l∫

0

ε̂T C ε̂ dx −
l∫

0

uT f dx . (120)

The approximation of the strain measures for an ansatz of order nu , nw is given by

ε̂ =
√

[ 1 + N′
π

(nu) P(nu) û(nu)
e ]2 + (N′

π
(nw) P(nw)ŵ(nw)

e )2 − 1 ,

κ̂ = [ 1 + N′
π

(nu) P(nu) û(nu)
e ]N′′

π
(nw)

P
(nw) ŵ(nw)

e − N′
π

(nw)
P

(nw) ŵ(nw)
e N′′

π
(nu) P(nu) û(nu)

e

[ ε̂ + 1 ]2 .

(121)

The displacement approximation which is needed in the loading term in (120) is provided in terms of the nodal
unknowns by uT ≈ ûT = 〈N(nu)

π P
(nu) û(nu)

e ,N(nw)
π P

(nw) ŵ(nw)
e 〉.

Insertion of (121) into the potential (120) yields a nonlinear function of the nodal degrees of freedomU (̂u)
from which the residual and tangent matrix follow for the selected ansatz order

R(nu ,nw) = ∂U (̂u)

∂û
and K(nu ,nw)

T = ∂R(̂u)

∂û
. (122)

The differentiations are performed using automatic code generation tool AceGen, developed by [9], see also
[10], which then generates the residual vector and tangent matrix.

5.2 Numerical example and comparison of different discretizations

With an example, wewant to demonstrate the behavior of different formulations in the nonlinear range. A frame
as depicted in Fig. 5a is loaded by a point load in vertical direction. It is simply supported at the bottom and
the top right. The material data are given as follows: bending stiffness E I = 2 ·105, axial stiffness E A = 106.
The width of the frame is equal to its height (l = h = 300); 20 beam elements are applied to discretized the
structure, see Fig. 5b.

The solution using virtual elements with different ansatz functions is studied in this example. We apply a
classical Euler–Bernoulli beam element with linear ansatz for the axial displacement and cubic ansatz for the
deflection. This element is named ”1st/3rd”. Such ansatz is not optimal since it will neglect the terms related
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Fig. 6 Load deflection curves for several discretizations where the load is plotted versus the deflection under the load

to u′′ in the curvature term in (109). To account for a better approximation of u, an element is generated that
uses a cubic ansatz for the axial displacement besides the cubic one for the deflection. This element is labeled
”3rd/3rd”. In order to see how a higher-order ansatz for the deflection affects the convergence behavior of the
virtual beam elements a 4th- order ansatz is selected for the deflection together with a quadratic and cubic
ansatz for the axial displacement. The related elements are named ”2nd/4th” and "3rd/4th,” respectively. For
all formulations, the same discretization is used in order to investigate the effect of different ansatz orders.

All these element formulations are based on the Euler–Bernoulli theory. The results will be compared
with with a simple finite element based on a Timoshenko theory, see, e.g., [14], which has a linear ansatz for
the axial displacement, the deflection and the rotation. It is denoted by ”1st/1st.”. Different formulations are
compared with respect to the response of the frame due to an increasing load. The load is increased in steps of
F = 5 which yields the load deflection curves depicted in Fig. 6

It is interesting to see that the virtual element ”1st/3rd” which does not approximate all terms in the strain
measure correctly yields a too stiff response. This is also true for the ”2nd/3rd” and ”2nd/4th” virtual element
which has a quadratic ansatz for the axial displacement and only yields a constant term for u′′. Thus, the axial
displacement in the nonlinear strain measure has to be approximated with at least a cubic ansatz to obtain
results that are equivalent to the Timoshenko–Reissner finite beam element with linear ansatz functions for all
terms for the given coarse mesh resolution. However, by raising the ansatz order for the deflection the virtual
element produces better results which are also better than the ones using Timoshenko beam element with the
same discretization. We remark that the result of the discretization using the ”3rd/4th” element with 20 virtual
elements is equivalent to the converged solution of the Timoshenko–Reissner beam formulation with 2000
finite elements, as depicted in Fig. 6.

The deformed configuration at a load level of F = 45, solved by using the ”3rd/4th” virtual element, is
shown in Fig. 7 which underlines the capability of the virtual elements to model nonlinear behavior leading to
large deflections and rotations with high coarse mesh accuracy.

6 Conclusion

Virtual element formulations were developed for truss and beam elements using different ansatz orders. The
elements have the advantage that only the nodal values at the ends of the elements enter the formulation together
with internal variables (moments) for higher-order ansatz functions. For the ansatz with lowest possible order
(truss linear, beam cubic), the virtual elements coincide with classical finite elements. For higher-order ansatz
functions, the virtual elements differ from known finite element formulations. The new virtual elements can
be applied to linear and nonlinear problems.

Funding Open Access funding enabled and organized by Projekt DEAL.
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Fig. 7 Deformed configuration for F = 45 using the virtual element ”3rd/4th”
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A Appendix

In the appendix, we summarize two higher-order element formulations for the truss and the beam element.

A.1 Cubic ansatz for a virtual truss element

The necessary equations to obtain a fifth-order beam element are summarized below.

• Ansatz: uπ = a1 + a2 x + a3 x2 + a4 x3 = N(3)
u a.

• Nodal variables û(3)
e = 〈u1 u2 m0 m1〉

• Derivative: u′
π = a2 + 2a3x + 3a4 x2

• Matrix G and its inverse:

G =
le∫

0

⎡
⎣ 1 2x 3x2

2x 4x2 6x3

3x2 6x3 9x4

⎤
⎦ dx =

⎡
⎣le l2e l3e
l2e

4
3 l

3
e

3
2 l

4
e

l3e
3
2 l

4
e

9
5 l

5
e

⎤
⎦ (123)

G−1 = 1

l5e

⎡
⎣ 9l4e −18l3e 10l2e

−18l3e 48l2e −30le
10l2e −30le 20

⎤
⎦ (124)

• Right-hand side r(ue,m):

r(ue,m) =
⎧⎨
⎩

(u2 − u1)
2leu2
3l2e u2

⎫⎬
⎭−

⎧⎨
⎩

0
2le m0
6l2em1

⎫⎬
⎭ (125)

http://creativecommons.org/licenses/by/4.0/
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• Projection matrix, displacement uπ depending on the element unknowns

P
(3) = 1

l3e

⎡
⎢⎣

l3e 0 0 0
−9l2e 3l2e 36l2e −60l2e
18le −12le −96le 180le
−10 10 60 −120

⎤
⎥⎦ and uπ = N(3)

u P
(3)û(3)

e (126)

• Potential Ue:

Ue = E A

2
âT G â (127)

with â = G−1 r(ue,m).
• Stiffness matrix KT,V :

KT,V = ∂2Ue

∂û(3)
e ∂û(3)

e

= E A

le

⎡
⎢⎣

9 −3 −36 60
−3 9 24 −60
−36 24 192 −360
60 −60 −360 720

⎤
⎥⎦ (128)

• Potential for a load vector of a linear varying load q(x) = f1(1 − x
le

) + f2
x
le

U f = f1 lem0 + ( f2 − f1)le m1 	⇒ fT1 = ∂U f

∂û(3)
e

= 〈0, 0, f1 le, ( f2 − f1)le〉 (129)

A.2 Fifth-order ansatz for a virtual beam element

The necessary equations to obtain a fifth-order beam element are summarized below.

• Ansatz: wπ = a1 + a2 x + a3 x2 + a4 x3 + a5 x4 + a6 x5 = N(5)
w a.

• Nodal variables: ŵe = 〈w1, θ1, w2, θ2, m0, m1〉
• Curvature: w′′

π = 2a3 + 6a4 x + 12a5 x2 + 20a6 x3

• Matrix G and its inverse:

G =
le∫

0

⎡
⎢⎢⎣

4 12x 24x2 40x3

12x 36x2 72x3 120x4

24x2 72x3 144x4 240x5

40x3 120x4 240x5 400x6

⎤
⎥⎥⎦ dx =

⎡
⎢⎢⎣

4le 6l2e 8l3e 10l4e
6l2e 12l3e 18l4e 24l5e
8l3e 18l4e

144
5 l5e 40l6e

10l4e 24l5e 40l6e
400l7e
7

⎤
⎥⎥⎦ (130)

G−1 = 1

6 l7e

⎡
⎢⎢⎣

24l6e −60l5e 60l4e −21l3e
−60l5e 200l4e −225l3e 84l2e
60l4e −225l3e 270l2e −105le

−21l3e 84l2e −105le 42

⎤
⎥⎥⎦ (131)

• Right-hand side r(we,m):

r(we,m) =

⎧⎪⎨
⎪⎩
2(θ2 − θ1)
6 leθ2
12l2e θ2
20l3e θ2

⎫⎪⎬
⎪⎭−

⎧⎪⎨
⎪⎩

0
6 (w2 − w1)
24le w2
60l2ew2

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩

0
0

24le m0
120l2em1

⎫⎪⎬
⎪⎭ (132)

• Projection matrix, deflection wπ depending on the element unknowns

P
(5) = 1

l5e

⎡
⎢⎢⎢⎢⎢⎢⎣

l5e 0 0 0 0 0
0 l5e 0 0 0 0

−60l3e −8l4e 30l3e −2l4e 240l3e −420l3e
200l2e 20l3e −140l2e 10l3e −900l2e 1680l2e

−225le −20l2e 195le −15l2e 1080le −2100le
84 7le −84 7le −420 840

⎤
⎥⎥⎥⎥⎥⎥⎦

(133)

and wπ = N(5)
w P

(5)ŵ(5)
e
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• Potential Ue:

Ue = E I

2
âT G â (134)

with â = G−1 r(we,m).
• Stiffness matrix KB,V , with ŵe = 〈we,m〉 = 〈w1, θ1, w2, θ2, m0, m1〉:

KB,V = ∂2Ue

∂ŵe∂ŵe
= E I

l3e

⎡
⎢⎢⎢⎢⎢⎣

1200 120le −840 60le −5400 10080
120le 16l2e −60le 4l2e −480le 840le
−840 −60le 1200 −120le −4680 −10080
60le 4l2e −120le 16l2e −360le 840le

−5400 −480le 4680 −360le 25920 −50400
10080 840le −10080 840le −50400 100800

⎤
⎥⎥⎥⎥⎥⎦

(135)

• Potential for a load vector of a linear varying load q(x) = q1(1 − x
le

) + q2
x
le

Uq = q1 lem0 + (q2 − q1)le m1 	⇒ fT1 = ∂Uq

∂ŵe
= 〈0, 0, 0, 0, q1 le, (q2 − q1)le〉 (136)
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