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Abstract: Laser beam welding is used in many areas of industry and research. There are many
strategies and approaches to further improve the weld seam properties in laser beam welding.
Metallography is often needed to evaluate welded seams. Typically, the images are examined
and evaluated by experts. The evaluation process qualitatively provides the properties of the
welds. Particularly in times when artificial intelligence is being used more and more in processes,
the quantization of properties that could previously only be determined qualitatively is gaining
importance. In this contribution, we propose to use deep learning to perform semantic segmentation
of micrographs of complex weld areas to achieve the automatic detection and quantization of weld
seam properties. A semantic segmentation dataset is created containing 282 labeled images. The
training process is performed with DeepLabv3+. The trained model achieves a value of around 95%
for weld contour detection and 76.88% of mean intersection over union (mIoU).

Keywords: weld seam; weld defects; deep learning; semantic segmentation; dataset creation;
quantization; automatic detection

1. Introduction

The weld quality has a direct impact on the performance and lifespan of welded
components. Weld defects reduce the weld quality and deteriorate its properties, which
is why they should be avoided. There are many approaches to reduce the occurrence of
weld defects such as cracks, pores, lack of fusion or incomplete penetration. Therefore, an
effective and efficient method of detection and analysis of weld defects is an important
topic. To study the physical structure of metals, metallography is typically used for this
purpose. After the preparation of the specimens, an expert has to identify the weld seam’s
properties qualitatively. This evaluation of welds is done manually with the aid of software.
The area is marked with lines, whereupon the program specifies it in accordance with the
scale. This procedure is time-consuming, and the result depends on the operator. The
software cannot reliably distinguish between cracks, pores and other microstructures. It
looks for transitions from light to dark areas depending on the set limit, and it can only
indicate the roundness of dark particles in bright unetched matrix. For better analysis
and comparison between different welds, it is beneficial to describe the weld properties as
scalar quantities. However, since the artificial intelligence is being applied more and more
in research and industry, quantized values are needed, especially for machine learning.
By determining the ratio of significant areas within a micrograph, the effects of parameter
changes can be investigated better and compared to each other.
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Researchers are gradually applying artificial intelligence to the field of laser welding,
such as using the quality inspection system to achieve non-destructive weld measurement
and defect detection [1], in-process monitoring based on deep learning [2] or using the se-
mantic segmentation algorithm to detect weld defects in safety vents of power batteries [3].
Long et al. [4] opened the era of fully convolutional networks (FCN) for semantic segmen-
tation. There are currently many variants of FCN-based models that have contributed to
the exploration of semantic segmentation [5–9]. Gyasi et al. provide an overview of the
use of artificial intelligence in welding technology [10]. Tantrapiwat describes a method
of defect detection using a synthetic image dataset if a large number of input images on
convolutional neural networks is not accessible [11].

Due to the non-uniformity of the shape, position and size of weld defects, it is a
complicated task to manually analyse and evaluate the recorded weld defect patterns.
For example, cracks are sometimes wide and sometimes narrow, and there is no fixed
standard for length. The pore is not always an ideal circle, and sometimes cracks and pores
are connected. These are some of the difficulties in artificially distinguishing the types
of weld defects. There are cases in which it is difficult to identify weld defects, such as
identifying the boundary of the weld area from the fuzzy heat-affected zone. At the same
time, a fair quantitative analysis is also particularly important for the evaluation of welding
performance. Therefore, human participation is still always necessary for the analysis of
complex weld defects. Hence, it is a very time-consuming and therefore expensive task.

This contribution provides a weld contour and weld defect identification and analysis
based on a self-created data set. This leads to convenience for further research in the
future. This preliminary work is used to create datasets suitable for processing with
machine learning algorithms. From these, predictions can be made about weld quality
under different parameter configurations. While many AI-based methods focus on real-
time data during the welding process, the deep learning-based detection of structures in
the micrographs simplifies the link between real-time data recorded during the welding
process and the micrographs evaluated afterwards.

2. Methodology

There are many studies on laser weld defect detection. Since different studies require
different data sets, a data set of deep welds has been created in order to broaden the
application of deep learning in welding processes. It contains micrographs of different
welding situations to ensure a wide range of applications in the field of weld property
detection. The methodology includes obtaining the micrographs from welds, labeling
the obtained micrographs, building the training environment of the neural network and
quantifying and analyzing the prediction results.

2.1. Data Set Creation and Training Process

Round bars were welded on their circumference either in the form of a bead on
plate welds or as dissimilar butt joints. The bars were rotated while a fixed laser beam
was used for partial penetration welding. The detailed description of the experimental
setup is available in [12]. After welding, the round bars were prepared for metallurgical
investigations. Therefore, a cut was made longitudinally with the use of a wet cutting
grinder; see Figure 1a. After treatment with an etchant, two high-resolution micrographs
were obtained out of one weld; see Figure 1b. To ensure a proper training process, only
welds whose weld depth did not reach the center of the round bars were used, since
otherwise it is difficult to train the recognition of the outer contour of the weld.

The training process includes image preprocessing, image labeling, neural network
training and automatic analysis of prediction results. In this work, the popular model
DeepLabv3+ [13] was used, which combines the advantages of multi-scale context informa-
tion and spatial information, which is very suitable for the task, since the micrographs have
weld defects of different shapes and sizes. Some weld defects are very small, which makes
identification at high resolutions necessary. DeepLabv3+ combines multi-scale contextual
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information and rich spatial information. The model is already packaged in MATLAB [14],
and the corresponding backbone pre-trained network can be easily downloaded. All data
were split into a training dataset, validation dataset and test dataset using random sam-
pling, but in order to reproduce the results, the random seed was fixed. The training process
was carried out with the created dataset using MATLAB version R2020a on a total of four
GPUs of model 2080Ti and at least 160 GB of hard disc space reserved. The epochs were
set to 50, which turned out to be large enough, because the accuracy of the model hardly
changed as the epochs became larger than 20.

C
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g 
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e

Picture 1

Picture 2

(a) (b)Weld seam

Figure 1. Obtaining images from welds: (a) Circumferential welds formed during welding of two
cylindrical specimens cut as preparation for metallography. (b) Two micrographs resulting from
metallography.

2.2. Preprocessing

Since the size and shape of each class in the micrographs are different and uncertain, in
order to allow the neural network to learn the characteristics of each class and distinguish
them sufficiently, it is necessary to make the model have a different receptive field. The
“atrous spatial pyramid polling” (ASPP) in the DeepLabv3+ model solves this problem.
Different dilation rates are used to extract features from images, which gives the model a
good understanding of features of different sizes. The use of atrous or dilated convolution
ensures that the receptive field is expanded without increasing computational pressure [15].
In the traditional direct upsampling operation, semantic information and spatial informa-
tion contradict each other. As the number of network layers increases, the feature map
will gradually become smaller and the semantic information will become more and more
abundant. One pixel covers more information from the original image, but it comes along
with the loss of more spatial information. Making a reasonable weight distribution between
semantic information and spatial information is very important. In the DeepLabv3+ model,
Chen et al. [13] introduced a novel decoder module, which is different from the traditional
direct upsampling operation. The low-level feature map is cascaded with the output from
the encoder that contains multi-scale rich semantic information.

2.3. Image Labeling

At present, the popular image labeling tools for computer vision are “labelme”, “labe-
lImg” or “CVAT”. In this work, the image labeling tool “Image Labeler” that comes along
with the MATLAB software was used. The semantic segmentation model used belongs to
supervised learning. In order for the neural network to achieve better results in learning
and to clearly identify weld defects and weld metal, each class was labeled. An original
image and a labeled image are shown in Figure 2. Both were used as input to the neural
network. The original image was needed for the training of the neural network. Finally, the
predicted segmented image was compared with the labeled image.
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Original image Labeled image Classes

Seam shape 
defect

Cracks

Pores

Background

Weld metal

Figure 2. Original image, labeled image and class differentiation.

Five classes were initially defined for the classification, as follows:

• The part inside the base material having a clear weld boundary belongs to the weld
area, while the rest belongs to the background colored in red;

• A weld reinforcement or sagging that causes a deviation in the expected weld seam
shape requirements is defined as a seam shape defect. The label color is pink;

• The remaining parts that are in the weld area without defects are weld metal. The
label color of weld metal is blue;

• If there is a long and thin weld defect within the weld area, it is defined as crack. The
label color is green;

• Weld defects formed like a bubble are defined as pores. The label color of pores
is purple.

Since some defects are very small, image labeling is done pixel-by-pixel. Although
there is a clear rule for image labeling, there is still the problem of ambiguous error in the
process of image labeling, which can mainly be divided into the following three situations:

• Ambiguous defects between weld metal and background:
From the original image in Figure 3a, it can be seen that the fusion line of weld metal
is difficult to distinguish from the background. The reason is that the colors of weld
metal and base metal or heat affected zone are very similar, so no clear boundary can
be obtained. In this case, image labeling requires enlarging the image to obtain a finer
texture for an artificially based estimation of the position of the boundary;

• Ambiguous defects between pores and cracks:
The purple label in Figure 3b represents pores. According to the definition, pores are
spherical cavities formed by gas inclusions. It should be spherical, but in the actual
image labeling, it refers to voids that do not match the thin and long properties of
cracks and which are located in the weld area;

• Ambiguous defects between seam shape defects and the background:
The pink label stands for seam shape defects. Seam shape defects describe the devi-
ation between the actual weld geometry and the expected weld geometry, but it is
difficult to determine a fixed shape standard for a weld reinforcement. To solve this
problem, in the case that the weld metal is higher than the base metal, it is assumed
that there is no seam shape defect. In the case that the weld metal is lower than the
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base metal, the rest is artificially filled according to the shape of weld metal, forming a
full arc.

Seam shape 
defect

Cracks

Pores

Background

Weld metal

(a) (b)

Unclear fusion line

Elongated hollow
space defined 

as cracks

Round hollow space
defined as pores

Sagging defined as 
seam shape defect 

Figure 3. Ambiguous defects between weld metal and background (a), between porosity and cracks
and seam shape defects and background (b).

2.4. Evaluation Methods

After training the segmentation model, the performance needs to be analysed. Al-
though machine learning technology is advancing, every prediction result has errors. There
are some types of evaluation methods that can used to perform a quantitative error consid-
eration of the trained model. A better model can be attained only if the error analysis is
continuously combined with the adjustment of the model parameters.

In the field of machine learning and statistical classification problems, the confusion
matrix is a visualization tool especially for supervised learning. When evaluating standard
machine learning models, the confusion matrix typically is used to divide predictions into
four categories: true positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN). Taking the segmentation result 1 from Section 4.1, Table 1 results as an
example of a confusion matrix. With this matrix, it is easy to see if the machine is confusing
different classes. Each row of the confusion matrix represents the predicted category and
each column represents the true category of the data.

Table 1. Confusion matrix example for segmantation result 1; see Section 4.1. TP = blue, FP = yellow,
FN = green and TN = red.

Seam Shape Defect Background Pores Cracks Weld Metal

Seam shape defect 661,478 pixels 7327 pixels 446 pixels 13,065 pixels 170 pixels

Background 4415 pixels 1,285,278 pixels 0 pixels 2 pixels 1009 pixels

Pores 1793 pixels 41 pixels 2318 pixels 1541 pixels 94 pixels

Cracks 5413 pixels 21 pixels 3011 pixels 25,964 pixels 8 pixels

Weld metal 878 pixels 14,913 pixels 0 pixels 155 pixels 67,812 pixels

Using these categories, the Intersection over Union (IoU) can be calculated as the
overlap rate between the prediction area generated by the model and the area of ground
truth. This overlap rate can comprehensively account for the correctly predicted and
incorrectly predicted pixels in the prediction results, which fully shows the credibility of
the predicted results. It is therefore often used as an important evaluation criterion in the
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field of image semantic segmentation. The model can be evaluated using the following
equations [16,17]:

Accuracy =
TP + TN

FP + TP + FN + TN
(1)

Precision =
TP

FP + TP
(2)

IoU =
TP

FP + TP + FN
(3)

As there are different methods used to evaluate the model, the results can be seen
in Table 2. Equation (1) calculates the ratio of all correctly predicted pixels to all pixels.
Equation (2) calculates the probability of being correct among all outcomes predicted for a
specific class. Equation (3) calculates the ratio of the intersection of the predicted result and
the ground truth to the union of the predicted result and the ground truth for a specific
class, but it only considers all cases related to a specific class (TP, FP and FN), and it does
not consider the positive effects brought by other classes (TN). As shown in Table 1 with
colored cells (TP = blue, FP = yellow, FN = green and TN = red), the use of Equation (3)
only considers the results in relation to a particular class. In order to evaluate the welds,
the calculation method of Equation (3) is chosen.

Table 2. Comparison of different values calculated with the Equations (1)–(3) based on the confusion
matrix in Table 1.

Equation (1) (2) (3)

Value 97.41% 80.96% 79.74%

An example is given in Figure 4 as a visual representation. It shows the ground truth
and the predicted area as well as the intersection and the union between these two areas.

Ground truth
A

Prediction
B

Intersection 
A ∩ B

Union 
A    B

∩

Original 
image

Figure 4. Ground truth and prediction area.

As multiple images are considered in general, the IoU of each image in the test set is
averaged. Therefore, the “mean IoU” (mIoU) is defined as shown in Equation (4).

mIoU =
1
n
(IoU1 + IoU2 + · · ·+ IoUn) =

1
n

n

∑
i=1

IoUi (4)

To analyse the IoU, the empirical mean and empirical variance are used. The empirical
mean is the statistic obtained from one or more random variables, and the empirical
variance is an estimate of the variance of the random variable based on the given sample.

2.5. Analysis Methods for Prediction Results

With the aid of the trained model, micrographs of laser-beam-welded, semi-finished
products are automatically segmented semantically. Each pixel is assigned to a predicted
class, which allows the resulting weld to be quantified. Firstly, the weld is analysed using
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the number of pixels corresponding to each weld defect. For example, the calculation for
the ratio of pores is shown in Equation (5).

Ratio(Pores) =
PixelCount(Pores)

PixelCount(Weld metal+Cracks+Pores+Seam shape de f ect)
(5)

With this calculation, it is possible to compare multiple pictures with different resolu-
tions with each other as the predicted area is related in ratio to the size of the weld area.

3. Experimental Results

To evaluate the perfomance of the deep learning model, an ablation study was carried
out. Therefore, the influence of different factors on the experimental results, the analysis of
the final model and the achievements with the final model are described in detail.

3.1. Initialization of Weights

The essence of the deep learning model training process consists of updating the
weights. Each parameter must have an appropriate initial value for network training. Poor
initialization parameters can cause gradient propagation problems and reduce training
speed, while good initialization parameters can speed up convergence and are more
likely to find better solutions. In addition, the output of the middle layer of the model
is intransparent, and the influence of the previous weights on the output of subsequent
neurons is not unique. Even with such advanced parameter passing and updating, an
inappropriate initialization of weights can cause laborious parameter learning and even the
output loss gradient of the layer activation function to explode or vanish during forward
propagation of the deep neural network. In either case, if the loss gradient is too large or
too small, it cannot effectively backpropagate, and even if it can backpropagate, it takes
longer for the network to reach convergence.

To ensure that low-frequency classes can be learned during the training process,
weights were initialized according to the proportion of pixels occupied by each class in
all images. The higher the proportion, the lower the initial weight of the class. Artificial
adjustments were then made according to the results of the generated images. For example,
if the class “cracks” was under-predicted, it was multiplied by a coefficient greater than
one in the initial weight. Therefore, many different initial weights were tested. The best
combination of initial weights in comparison with the unweighted combination is shown
in Table 3. In the case that the backbone was “Xception”, the result after adjustment was
significantly improved. The initial weights from left to right stand for the weld metal,
background, pores, cracks and seam shape defects.

Table 3. Comparison of training results with different initial weights.

Initial Weights Backbone Image Resolution mIoU

1, 1, 1, 1, 1 Xception 2048 × 1024 60.96%
0.95, 1.14, 0.15, 0.014, 0.062 Xception 2048 × 1024 76.88%

3.2. Optimization Algorithm

The function of the optimization algorithm is to minimize or to maximize the loss
function by improving the training method. When adjusting the weighting and deviation
parameters for model updating, a suitable optimization algorithm can make the model
achieve better and faster results. Due to the choice of the DeepLabv3+ model, three
optimization algorithms were available: “SGDM”, “RMSprop” and “Adam”. Details of all
optimization algorithms can be found in [18].

To investigate the influence of the pre-trained network on the prediction result, a
certain data set of micrographs was used with a variation of the network. From the neural
network training results in Table 4, it can be seen that the optimization algorithm of SGDM
was more suitable for this project requirements, so SGDM was finally adopted.
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Table 4. Comparison of training results with different optimization algorithms.

Optimization Algorithm Backbone Image Resolution mIoU

SGDM Xception 2048 × 1024 76.88%
RMSprop Xception 2048 × 1024 17.40%

Adam Xception 2048 × 1024 38.08%

3.3. Backbone

The backbone is a pre-trained network used by neural networks for simple feature
extraction of the original image. In the Deeplabv3+ model, there are five pre-trained
networks available, namely “ResNet-18”, “ResNet-50”, “MobileNet-v2”, “Xception” and
“Inception-ResNet-v2”. The depth gradually increases from ResNet-18 to Inception-ResNet-
v2, and the model needs to learn more parameters. The deeper the pre-trained network,
the stronger the learning ability, but therefore the more training data that are needed. For
the training process, an image resolution of 2048 × 1024 was used. The neural network
was trained with different pre-trained networks with 169, images which is about 60% of
the total amount of images of the data set. The results are shown in Table 5.

Table 5. Comparison of results with different pre-trained networks with improved parameters.

Backbone Image Resolution mIoU

ResNet-18 2048 × 1024 51.14%
ResNet-50 2048 × 1024 71.53%

MobileNet-v2 2048 × 1024 66.15%
Xception 2048 × 1024 76.88%

Inception-ResNet-v2 2048 × 1024 57.92%

3.4. Hyperparameter

Hyperparameters include the initial learning rate, the learning rate drop factor, the
learning drop period and the regularization coefficient. Adjusting the hyperparameters is
computationally intensive and time consuming. With “Xception” as a pre-trained network,
two different hyperparameters were used to train the neural network. Specifically, the
Nesterov momentum optimizer was parameterized with momentum = 0.9, initial learning
rate = 0.05, learning rate drop factor = 0.94, learning drop period = 2 and regularization
coefficient = 4 × 10−5. The results are shown in Table 6. After comparison, it can be found
that hyperparameters have a great impact on the performance of the model.

Table 6. Comparison of results with different hyperparameters.

Hyperparameter Image Resolution mIoU

Original Xception 2048 × 1024 56.49%
Improved Xception 2048 × 1024 76.88%

3.5. Amount of Data for Training

Training data were used for the neural network model to learn the properties of each
class. The larger the amount of training data, the stronger the ability for the neural network
to generalize the properties of each class. An inadequate amount of data can easily lead
to overfitting of the neural network because it cannot summarize the rules from more
data. To improve the training accuracy, the neural network continuously adapts the model
parameters to the characteristics of the training data set, which eventually leads to a high
training accuracy, but the test accuracy is not ideal. As the training error decreases, the test
error increases instead and overfitting occurs.

To evaluate the influence of the amount of data on the performance of the model, 5%,
10%, 30% and 60% of the total data were used as the training data set. The comparison
results are shown in Table 7.
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Table 7. Comparison of results with different amounts of training data using the pre-trained network
“Xception” with improved hyperparameters.

Amount of Data for Training Backbone Image Resolution mIoU

14 (5% of the whole images) Xception 2048 × 1024 37.13%
28 (10% of the whole images) Xception 2048 × 1024 56.95%
85 (30% of the whole images) Xception 2048 × 1024 70.12%

169 (60% of the whole images) Xception 2048 × 1024 76.88%

Because the amount of 5% is very small, choosing this sample set randomly may
lead to different results. To investigate this, the training was conducted with 10 runs in
which the sample set was randomly selected from the total data. In this regard, a standard
deviation of mIoU of 0.36% has been obtained. Figure 5 shows two original images and
the prediction results with different training sets. The larger the training set, the better the
prediction results. An increase in the amount of training data improved the overall results.
In this case, due to using a pre-trained network and because the change in performance is
small in the range from 85 to 169 images, an amount of about 85 images already led to a
good compromise between performance and calculation time. Whether a neural network
can learn better in a particular detail cannot be answered by the amount of training data,
but the more training data that are available, the more statistically significant and stable
the training results are.

Original image 14 images 28 images 85 images 169 images

Figure 5. Prediction results depending on the amount of training data of 14 to 169 images.

3.6. Image Resolution

The image resolution used for neural network training is an important indicator that
affects the performance. The micrographs used were high resolution images, and almost
every image had a pixel count of 3000 × 2000. If the image is compressed, it is helpful
to improve the training speed, but a too low resolution weakens or even destroys some
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features; see Figure 6. A crack is a thin and long weld defect. If the resolution of the image
is decreased to 512 × 256, most of the crack disappears. If the resolution is further changed
to 256 × 128, almost all of the cracks are not learned. The target is to achieve a good balance
of training speed and performance. According to the relationship between the side length
of an image and the refinement quality investigated in [19], images with a large resolution
are important for the segmentation accuracy. For this reason, the resolution of 2048 × 1024
in this case comes along with a sufficient training speed while ensuring that all features are
learned as well as possible.

2048 x 1024 pixels512 x 256 pixels256 x 128 pixels

Pores

Cracks

Seam shape
defect

Background

Weld metal

Figure 6. Comparison of labeled micrographs with different image resolutions.

4. Analysis of the Model

After studying the effect of different factors on the learning ability of neural networks,
the DeepLabv3+ model achieved a performance of 76.88% of mIoU on the dataset. Ac-
cording to Equation (3) the following quantitative values for the prediction classes can be
obtained; see Tables 8 and 9. The empirical mean and empirical variance of “Weld metal”
and “Background” are better than the average, while the other classes are worse. Because
of the bigger pixel count of the classes “Weld Metal” and “Background”, they are easier to
learn in terms of appearance than the other classes.

Table 8. Comparison of five classes with image resolution 2048 × 1024 based on 57 micrographs.

Class Mean Value of IoU Variance of IoU

Weld metal 94.42% 0.0021
Background 96.99% 0.0004

Pores 65.33% 0.0905
Cracks 59.05% 0.1747

Seam shape defects 68.59% 0.1485

Table 9. Comparison of five classes with image resolution 1024 × 512 based on 57 micrographs.

Class Mean Value of IoU Variance of IoU

Weld metal 93.47% 0.0031
Background 96.82% 0.0005

Pores 59.91% 0.1021
Cracks 51.43% 0.1804

Seam shape defects 72.75% 0.1431

Comparing the two resolutions, it can be seen that a higher resolution leads to a more
stable and accurate model. The comparison can be visualized by Figure 7. This decrease in
resolution does not seem to have much effect on the overall image, but details are going to
be lost. With an enlargement of some areas, some loss of features can be seen, such as some
cracks becoming less coherent.
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1024 x 512 pixels 2048 x 1024 pixels

Figure 7. Comparison of prediction results with different image resolutions.

4.1. Analysis of the Micrographs

With the trained neural network a segmentation result of any micrograph can be
parsed as shown in Figure 8. Using the segmentation results, a determination of the pixel
counts for each class is possible. The determined pixel counts reflect the severity of the
weld defects and according to the IoU algorithm, the reliability of the segmentation results
can be seen. The parsed results of Figure 8 are shown in Table 10.

Segmentation result 1 Segmentation result 2 Segmentation result 3

Figure 8. Segmentation results.
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Table 10. Numerical values of segmentation results.

Segmentation Result Class Predicted Pixel Count Labeled Pixel Count IoU

Weld metal 8.6303 × 105 8.5214 × 105 95.17%
Background 1.6287 × 106 1.6501 × 106 97.89%

1 Pores 7329 7284 25.18%
Cracks 43,485 51,612 52.67%

Seam shape defects 1.0602 × 105 87,489 79.76%

Weld metal 1.0318 × 106 1.0313 × 106 96.20%
Background 1.5617 × 106 1.5646 × 106 98.13%

2 Pores 2033 6410 15.94%
Cracks 70,341 70,487 67.09%

Seam shape defects 92,548 85,578 84.28%

Weld metal 1.0517 × 106 1.0315 × 106 93.85%
Background 1.8082 × 106 1.84 × 106 97.30%

3 Pores 35,269 18,796 47.90%
Cracks 1.0546 × 105 1.0574 × 105 65.57%

Seam shape defects 59,646 64,209 51.59%

With the aid of the standardized pixel numbers, the parsed results are comparable
despite different scaling of the images. When the certain pixel numbers of defects are
known, the ratio of each defect in the weld area can be calculated by Equation (5). According
to the data in Table 10, the quantitative values given in Table 11 are calculated. Afterwards,
the different parsed results can be compared.

Table 11. Comparison of parsed results using the ratio of each defect in the weld area.

Segmentation Result Pores Cracks Seam Shape Defect

1 0.72% 4.26% 10.40%
2 0.17% 5.88% 7.73%
3 2.82% 8.42% 4.76%

5. Conclusions

This contribution aims to introduce the current state-of-the-art deep learning tech-
niques to detect weld metal and weld defects. A pre-trained neuronal network was trained
and optimized according to the initialization of weights, optimization algorithm, backbone
and hyperparameters. By pre-processing the data and adjusting the neural network model,
a value of 76.88% of the mIoU was finally obtained for the defined classes. The neural
network can automatically detect different areas within micrographs. The detection of
weld metal has a high reliability, with an IoU of around 95%. Throughout the research
process, a high-definition data set containing 282 images was created. It can be applied to
any semantic segmentation model, which has significant implications for future research.
Further research can continuously improve the neural network model based on the created
data set to achieve better process improvement and quality assurance. With the automated
detection of certain features within the weld area, it would also be possible to evaluate
the quality of the welds. The results from the deep learning-based weld contour and
defect detection could be compared with the established standards, such as DIN EN ISO
13919-1:2020-03, and the weld seam could be evaluated accordingly [20].
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