
Adv. Appl. Clifford Algebras (2022) 32:24
c© The Author(s) 2022
0188-7009/020001-41
published online February 22, 2022
https://doi.org/10.1007/s00006-022-01207-1

Advances in
Applied Clifford Algebras

Deep Learning Gauss–Manin Connections

Kathryn Heal , Avinash Kulkarni and Emre Can Sertöz∗

Abstract. The Gauss–Manin connection of a family of hypersurfaces gov-
erns the change of the period matrix along the family. This connection
can be complicated even when the equations defining the family look
simple. When this is the case, it is expensive to compute the period
matrices of varieties in the family via homotopy continuation. We train
neural networks that can quickly and reliably guess the complexity of the
Gauss–Manin connection of pencils of hypersurfaces. As an application,
we compute the periods of 96% of smooth quartic surfaces in projective
3-space whose defining equation is a sum of five monomials; from the
periods of these quartic surfaces, we extract their Picard lattices and
the endomorphism fields of their transcendental lattices.

Mathematics Subject Classification. 68T07, 32J25, 14Q10, 14C22, 32G20.

Keywords. Artificial Intelligence, K3 Surface, Neural Network, Numer-
ical and Symbolic Computation, Period, Picard Group.

Contents

1. Introduction 3
1.1. Application to Quartic Surfaces 3

1.1.1. Using Periods Rigorously 4
1.1.2. Comparison with Other Methods for Computing Picard

Numbers 4
1.2. Neural Network Heuristics for Rigorous Computations 5
1.3. Software 5
1.4. Main Problem: Computing Periods of Hypersurfaces 5
1.5. Deep Learning in Algebraic Geometry 6
1.6. Outline 7

2. Period Computation 7
2.1. The Integral Structure 7
2.2. The Hodge Structure on Cohomology 8

This article is part of the Topical Collection on Machine-Learning Mathematical Structures
edited by Yang-Hui He, Pierre Dechant, Alexander Kasprzyk, and Andre Lukas.

∗Corresponding author.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00006-022-01207-1&domain=pdf
http://orcid.org/0000-0003-1390-4589
http://orcid.org/0000-0002-4567-0396
http://orcid.org/0000-0001-7450-7494

24 Page 2 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

2.3. The Period Matrix 8
2.4. The Griffiths Basis for Cohomology 8
2.5. Transition Matrices for Periods 10

2.5.1. Period Transition Matrices of Linear Translates 11
2.5.2. First Order Gauss–Manin Connection 11

3. Computational Scheme 12
3.1. Two Types of Problems and a General Framework 12

3.1.1. First Problem: Computing Periods for One Target
Polynomial 12

3.1.2. Second Problem: Computing Periods for Many
Hypersurfaces 12

3.1.3. General Framework 13
3.2. Searching a Computation Graph for an Efficient Tree 13

3.2.1. Brute-Force Strategy 14
3.2.2. Informed Brute Force 15

4. Deep Learning Models 15
4.1. Neural Networks to Approximate Functions 16
4.2. The Class of Functions Associated to a Neural Network 16
4.3. Gradient Descent using Neural Networks 18

4.3.1. Loss Function 18
4.3.2. Gradient Descent 18
4.3.3. Stochastic Minibatch Gradient Descent 19
4.3.4. Hyperparameter Selection 19

5. A Computability Scoring Function for Estimation 19
5.1. Input Space E 20
5.2. The Subjective CSF φ 20
5.3. Input Augmentation 22

5.3.1. Studying the Complexity of the Input 22
5.3.2. Complexity of Cohomology Matrices 22

5.4. Dataset Preprocessing 24
5.4.1. Dimension Reduction: Principal Component Analysis 24
5.4.2. Balancing the Dataset 26

5.5. Comparison of Learning Models 26
5.5.1. Classical Statistical Methods 27
5.5.2. Deep Neural Networks 28

5.6. Implementation 29
5.6.1. Four-Monomial Quartics 29
5.6.2. Extrapolating from Four-Monomial to Five-Monomial

Quartics 30
6. Application 30

6.1. Five Monomials 30
6.2. List of Results 31

6.2.1. The Missing Vertices 32
6.2.2. Isomorphism Classes 32
6.2.3. Endomorphism Fields 33

6.3. Methodology 34
6.3.1. Additional Simplifications 34

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 3 of 41 24

6.3.2. Computing Isomorphism Classes 34
6.4. Performance on Applications 35
6.5. Costs of Collecting the Training Data and Training the Network 36

References 39

1. Introduction

There are two ways to study deformations of algebraic varieties. One is purely
algebraic, through the explicit polynomial equations of the family. The other
is transcendental, through the variation of Hodge structures. The translation
of the algebraic to the transcendental is achieved through the Gauss–Manin
connection associated to the family. The differential equations governing the
flat sections of the connection are those that trace out the variation of Hodge
structures in the corresponding flag variety.

Experimentation suggests that algebraic deformations defined by sim-
ple equations can give rise to unwieldy differential equations that are well
beyond our ability to integrate. This article is concerned with the following
two questions: Why are these Gauss–Manin connections so complicated? How
can we choose deformations with more approachable connections?

We approach these questions from a practical point of view, outlined
as follows. The algorithm presented in [29] computes the variation of Hodge
structures of a given pencil of hypersurfaces. A practical measure for the
complexity of a Gauss–Manin connection for a pencil is the amount of time
it takes for this algorithm to terminate.

We show evidence that data-driven feedforward models (e.g. an ensem-
ble of deep neural networks) can estimate a proxy for such a practical measure
of complexity, see Sects. 5.6 and 6.4. This performance can be further im-
proved by providing a local snapshot of the Gauss–Manin connection at a
few points, as in Sect. 2.5.2.

Our feedforward models outperform classical methods, see Fig. 6. We
also test the neural network on datasets that are outside the scope of its
training. It performs significantly better than random choice, even without
training, see Figs. 10 and 11.

This paper’s principal novelty is the observation that deep neural net-
works can capture the complexity of a Gauss–Manin connection by learning
from data that are easy to compute. Furthermore, in developing a proof-of-
concept calculation, we also collected a significant amount of information on
quartic surfaces, which should be interesting in its own right. Naturally, we
anticipate that the idea of using neural networks to optimize algorithm de-
cisions will have a wider application in computational mathematics beyond
this proof-of-concept.

1.1. Application to Quartic Surfaces

One use of computing the variation of Hodge structures is to transport the
Hodge structure (i.e. periods) from one variety onto another. A high preci-
sion approximation of the period matrix of a hypersurface reveals delicate

24 Page 4 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

holomorphic invariants that are very difficult to compute otherwise [22]. We
will apply the techniques in loc. cit. to calculate the Picard numbers of the
quartic surfaces considered here. This is a classical problem that has received
a great deal of attention in the last two decades, see [22, 562]. Using approxi-
mate periods, one computes the Picard number with a small chance of error,
as studied in loc. cit.

The periods allow us to compute not just the Picard number, but also
the Picard lattice. Here, the Picard lattice is the Picard group together with
its intersection product as well as the coordinates of a hyperplane section.
This data allows one to count smooth rational curves on quartics [22, §3], for
instance. Moreover, we can also check which of the quartic surfaces in our list
are isomorphic by comparing their periods, and compute the endomorphism
algebra of each quartic surface (Sect. 6).

We computed the periods of 96% of the smooth quartic surfaces in P3

that can be expressed as the sum of five monomials, each with coefficient
1. In turn, we determine their Picard lattices, their endomorphism algebras,
and isomorphism classes. Although the set of quartics that we consider here
appears to be small, we find 139 distinct isomorphism classes. This should be
compared to the 127 isomorphism classes found amongst the 184, 000 quartics
found by random search in the database produced in [22].

1.1.1. Using Periods Rigorously. The lattice and endomorphism computa-
tions depend on finding integer relations between approximately known com-
plex numbers (the periods). The results can, therefore, be incorrect. Never-
theless, when working with high-precision approximations one expects the
chance of error to be small. We leave the results in Sect. 6 in this territory
of being “unproven but most-likely correct”.

On the other hand, equipped with a potential answer, there are ways
to prove any one of the results in Sect. 6 with some effort. By computing
periods to a few thousand digits, one can expect to prove the Picard ranks
computations by constructing algebraic curves representing the generators of
the Picard group as in [27].

In principle, the relations between periods of quartic surfaces can be
proven just by checking the relations to very high precision [23] without any
additional work. However, the precision for this generic proof is unreasonably
large at the moment.

Once proven, the discovered relations establish rigorous lower bounds
on the Picard number. Combined with the finite characteristic techniques—
see below—one can thus prove that the entire Picard lattice computation is
correct, e.g. as in [27].

1.1.2. Comparison with Other Methods for Computing Picard Numbers.
There is a vast literature on using finite characteristic methods to compute
upper bounds on the Picard number, see the references in [6]. The most recent
p-adic techniques are fast (see loc. cit.), and in fact, we used these methods
to corroborate our Picard number computations, see Remark 6.1. However,
these techniques do not reveal the Picard lattice—they only determine its
rank.

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 5 of 41 24

Aside from a rigorous computation using the periods, the only methods
that we are aware of to establish lower bounds are searching for algebraic
cycles algebraically or geometrically. The former is an expensive procedure,
while the latter requires human ingenuity and cannot be automated.

1.2. Neural Network Heuristics for Rigorous Computations

One of the main questions we sought to address in this article is how neural
networks can be used rigorously for mathematical computation. Our strategy
is not to use the network to predict what the value of the periods are for a
given hypersurface. Rather, we train our neural network to recognize optimal
choices within a high precision computation, namely, the algorithm of [29].
The choices in the algorithm in loc. cit. can be modelled as a graph traversal
problem (see Sect. 3) where the cost of traversing an edge is unknown until
a traversal is attempted. Because these choices have no bearing on the final
result, but only on the speed of execution, we retain the reliability of the
original method.

1.3. Software

The associated code is available for general use.1 Our neural network training
software is also available in this code base. In order to carry out a computation
at this scale, we added a parallelization layer, data caching mechanisms,
checkpointing, and fault-tolerance to the software in [29], which is used as an
underlying engine.

1.4. Main Problem: Computing Periods of Hypersurfaces

The Hodge structure on a smooth hypersurface Y = Z(g) ⊂ Pn+1
C of degree

d can be represented by a matrix of periods Pg ⊂ Cm×m, where m depends
only on (n, d), as in Sect. 2.3. The method given in [29] of computing Pg

involves deforming g to another smooth hypersurface X = Z(f) ⊂ Pn+1
C of

degree d whose periods are already known. To begin, one may take X to be a
Fermat type hypersurface whose periods can be expressed by closed formulas.

Given such a pair (f, g) we will consider the pencil of hypersurfaces
defined by (1 − t)f + tg, which deforms X to Y . Explicitly representing the
variation of Hodge structures from X to Y as in Sect. 2.5, one can compute
(i.e. numerically approximate) a matrix Pf,g ∈ Cm×m such that if Pf is a
period matrix of X then Pf,g · Pf is a period matrix of Y . We call such Pf,g

a period transition matrix. If Z(h) ⊂ Pn+1
C is another smooth hypersurface

of degree d, the product of the period transition matrices Pf,h and Ph,g gives
a period transition matrix from X to Y .

There is a large variation on the time to compute Pf,g in the inputs
f, g. The computation of Pf,g is often time consuming, taking hours or days,
but for some inputs the computation of Pf,g could take only a few seconds.
A critical observation is that it is sometimes faster to compute Pf,h Ph,g

than it is to compute Pf,g directly. This suggests searching for a sequence of
polynomials f=s0, s1, . . . , sk=g for which Psi,si+1 is easy to compute for each

1The software package is available at: https://github.com/a-kulkarn/period graph.

https://github.com/a-kulkarn/period_graph

24 Page 6 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

i. A random search based on simple heuristics was employed in [29, §3.1] to
find such sequences.

Unfortunately, it is difficult to predict whether the computation of each
Psi,si+1 will terminate within k seconds without actually running the com-
putation for k seconds. Instead, we wish to anticipate the difficulty of such
a computation so that we may discard difficult pencils in favor of friendlier
ones. In this article, we approach this prediction problem with deep learning.

We cast the problem of discovering a good sequence into one of finding
a short path in a weighted graph. Let W be a finite set of homogeneous poly-
nomials, all of the same degree, containing f and g. Consider the complete
graph G with vertex set W and some weight function ϕ defined on the edges.
For an edge e of G, one may define ϕ(e) to be the number of seconds it takes
to compute the transition matrix Pe. Our ultimate goal is to identify a path
in G that connects f and g and has small total weight. (We elaborate on how
to choose W in Sect. 3.1.3.)

If the weight function ϕ was known, then finding such an optimal path
could be solved using standard graph traversal strategies such as Dijkstra’s
algorithm or the A∗-algorithm [4,28]. The problem we face is that the cost
of evaluating ϕ at an edge e is just as expensive as computing Pe itself. To
address this, we enlist data-driven learning models to help us guess whether
ϕ(e) is reasonably small or not.

We train our models on a random subset E′ of the edge set of the
graph G. We collect information on E′ by attempting a computation on each
edge e in E′ that is a representative fragment of the computation needed
to evaluate Pe. The models learn to recognize if, given an edge e of G, the
computation e �→ Pe will terminate in a reasonable amount of time. Informed
by the predictions of these models we then traverse a path in G from f to
g. See Sect. 3 for more details on the general method and Sect. 5 for our
implementation of the models.

Unfortunately, the edges e for which Pe can be readily computed are
generally rare. Consequently, when k is a reasonably small threshold, the
spanning subgraph of G whose edge set is {e ∈ E(G)|ϕ(e) ≤ k} is often
sparsely connected or disconnected. One drawback of our method is that
there may not exist any good path from f to g inside G, in which case we
will have wasted time trying to discover one. Enlarging the polynomial set W
or the threshold k may solve this problem, but at the cost of a longer training
time. Further improvements may require theoretical advances into the nature
of the Gauss–Manin connection. Nevertheless, what we give here significantly
improves the computation time spent searching for a good connection when
one exists, see Sect. 6.4.

1.5. Deep Learning in Algebraic Geometry

Deep learning can be used to find elliptic fibrations [17], to recognize isomor-
phism classes of groups and rings [16], and for approximating the solutions of
high-dimensional partial differential equations [31]. Although there are sym-
bolic algorithms for these tasks, they are impractical; deep learning methods

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 7 of 41 24

are employed to boost performance. The tradeoff for this gain in compu-
tation speed is an unreliability of the output, e.g. a natural intolerance to
unavoidable approximation error.

However, directly predicting the solution to a problem is not the only
way one can apply deep learning methods to mathematical computations.
Instead, deep learning methods can be used to assist a more robust method by
providing dynamically generated heuristics, thereby improving performance
while preserving reliability—see for instance [19]. This is our approach here,
see Remark 4.1.

1.6. Outline

In Sect. 2 we give an overview of the period computation strategy for hyper-
surfaces. In Sect. 3 we explain the problem from a computational point of
view and describe the resource management strategy we employ. Section 4
gives an overview of deep learning methodology for the non-specialist. In
Sect. 5 we describe our implementation of deep learning methods. In Sect. 6
we apply our code to five-monomial quartics and list their Picard numbers
as well as their isomorphism classes.

2. Period Computation

Let X = Z(fX) ⊂ Pn+1
C be a smooth hypersurface where fX ⊂ C[x0, . . . , xn+1]

is a degree d homogeneous polynomial. By the Lefschetz hyperplane theorem
all cohomology groups of X are trivial (either 0 or Z), except for the middle
(singular) cohomology group Hn(X,Z).

We need to represent two kinds of structure on the cohomology groups:
the integral structure and the Hodge decomposition on Hn(X,C). We recall
their definition and summarize their method of computation here. For an
exhaustive account, see [32,33]. The definitions that are more specific to this
article are introduced in Sect. 2.5.

For a computation oriented—and, therefore, explicit—presentation of
the material in this section, we refer to [29].

2.1. The Integral Structure

As an abstract group, Hn(X,Z) is isomorphic to Zm for some m. After
choosing an identification ψ : Hn(X,Z) ∼→ Zm the intersection product on
Hn(X,Z) can be represented by an m×m matrix I with integral entries. An
integral structure on Hn(X,C) = Hn(X,Z) ⊗Z C refers to an identification
of the sublattice Hn(X,Z) ⊂ Hn(X,C).

Although we will suppress this from notation, whenever we refer to a
trivialization ψ of the integral cohomology, we also mean a determination of
the intersection product I on Zm. The integral structure on Hn(X,C) can
be represented by the map ψC := ψ ⊗ C.

24 Page 8 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

2.2. The Hodge Structure on Cohomology

The Hodge decomposition on Hn(X,C) = Hn(X,Z) ⊗Z C � Cm is a direct
sum decomposition:

Hn(X,C) =
n⊕

p=0

Hp,n−p(X), (2.1)

where Hp,q(X) is the space of (p, q)-forms.
The Hodge pieces Hp,q(X) do not vary holomorphically in X. Therefore,

it is more natural for variational problems to consider the Hodge filtration
F �(X) =

⊕n
p=� Hp,n−p(X) for � = 0, . . . , n. Of course, on an individual hy-

persurface, one can recover the decomposition from the filtration and vice
versa.

Using a generic hyperplane section of X, we can define the hyperplane
class h ∈ H2(X,Z) in cohomology. If n = dim X is even then hn/2 ∈ Hn(X,Z)
is called a polarization. In this case, the primitive part of the cohomology
Hn(X,K)0 is the orthogonal complement of hn/2, where K is any ring. If
n is odd then we set Hn(X,K)0 := Hn(X,K). Let m0 := dimC Hn(X,C)0.
The restrictions F �(X) ∩ Hn(X,C)0 of the Hodge filtrations to the primitive
cohomology will be denoted by F �(X)0.

2.3. The Period Matrix

The integral structure or the Hodge structure in isolation would be discrete
invariants. After all, we know Hn(X,Z) � Zm and we know the dimensions
of the pieces of the Hodge decomposition (e.g. [2, §17.3]). The difficulty is
putting these pieces together, which requires transcendental invariants; the
periods of X.

Definition 2.1. Let us call P ∈ Cm×m a period matrix on X if there is an
isomorphism ψ : Hn(X,Z) � Zm such that for each � = 0, . . . , n, the first
dimC F �(X) rows of P span ψC

(
F �(X)

)
⊂ Cm. Similarly, we define a prim-

itive period matrix P0 ∈ Cm0×m0 .

Remark 2.2. A particular matrix transformation computes the period ma-
trix P from the primitive period matrix P0, and vice versa. See [22, §7] for
the determination of this matrix transformation, which depends only on the
degree and dimension of the hypersurface.

2.4. The Griffiths Basis for Cohomology

Different identifications of Hn(X,Z) with Zm will change P by the action of
the discrete group GL(m,Z). However, there is a continuous family of choices
to be made in choosing a basis for F �(X). We now eliminate this indeter-
minacy by specifying a construction for a well-defined basis for cohomology
compatible with the filtration F �(X). In particular, through these bases, the
period transition matrices of Sect. 2.5 become uniquely defined.

Let S = C[x0, . . . , xn+1], Jac(fX) = (∂0fX , . . . , ∂n+1fX) be the Jaco-
bian ideal and R = S/ Jac(fX). Since X is smooth, R is a finite dimensional
algebra over C. Let us write R� for the quotient of the homogeneous part
S�/ Jac(fX)�.

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 9 of 41 24

For each � ≥ 0, Griffiths [14,15] defines a residue map:

Res : S(n+1−�)d−n−2 → F �(X)0 : p �→ res
p

fn+1−�
volPn+1

C
, (2.2)

where volPn+1
C

is the natural generator of the twisted canonical bundle
Ωn+1

Pn+1/C(n + 2) and is given by

volPn+1
C

:=
n+1∑

i=0

(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1. (2.3)

For an (n+1)-form η on Pn+1 with pole on X, and an n-cycle η ∈ Hn(X,Z)
one computes the pairing of γ and res η by integrating η on a small S1-bundle
around γ lying in the complement of X [14].

These residue maps descend to an isomorphism on the quotients:

R(n+1−�)d−n−2
∼→ F �(X)0/F �+1(X)0, ∀� = 0, . . . , n.

Impose the grevlex ordering on S and consider the ideal of leading terms
lt(Jac(fX)) of Jac(fX). The grevlex ordering gives a well defined sequence
of monomials which descend to a basis of S/lt(Jac(fX)), and therefore to a
basis of R. Their residues ω1, . . . , ωm′ in appropriate degrees yield a basis of
the primitive cohomology Hn(X,C)0.

Definition 2.3. The basis ω1, . . . , ωm′ of the primitive cohomology constructed
above is a well defined basis which respects the filtration. We will call this
basis the (grevlex) Griffiths basis on X.

Definition 2.4. A primitive period matrix P0 as in Definition 2.1 will be called
a primitive grevlex period matrix of X = Z(fX) if the i-th row of P0 equals
ψ0,C(ωi), where ψ0 : Hn(X,Z)0

∼→ Zm0 and {ωj}m0
j=1 is the grevlex Griffiths

basis on X. Any period matrix obtained by extending P0 as in Remark 2.2
will be called a grevlex period matrix of X.

Example 2.5. Consider the Fermat quartic X = Z(f) ⊂ P
4, with f = x4 +

y4 + z4 + w4. The primitive grevlex Griffiths basis for X is given by the
differentials ω1, . . . , ω21, which are the residues of:
volPn+1

C

f
,

z2w2
volPn+1

C

f2
, yzw2

volPn+1
C

f2
, xzw2

volPn+1
C

f2
, y2w2

volPn+1
C

f2
,

xyw2
volPn+1

C

f2
, x2w2

volPn+1
C

f2
, yz2w

volPn+1
C

f2
, xz2w

volPn+1
C

f2
, y2zw

volPn+1
C

f2
,

xyzw
volPn+1

C

f2
, x2zw

volPn+1
C

f2
, xy2w

volPn+1
C

f2
, x2yw

volPn+1
C

f2
, y2z2

volPn+1
C

f2
,

xyz2
volPn+1

C

f2
, x2z2

volPn+1
C

f2
, xy2z

volPn+1
C

f2
, x2yz

volPn+1
C

f2
, x2y2

volPn+1
C

f2
,

x2y2z2w2
volPn+1

C

f3
.

24 Page 10 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

Upon choosing some identification ψ0 : Hn(X,Z)0
∼→ Zm0 (viewed as a row

vector), the grevlex primitive period matrix of X is the square matrix

P0 =

⎡

⎢⎣
ψ0(ω1)

...
ψ0(ω21)

⎤

⎥⎦ .

Any two grevlex period matrices of X differ by the action of the discrete
group GL(m,Z). Moreover, after fixing a coordinate system on the integral
primitive cohomology, the grevlex period matrix is uniquely defined. The
choice of convention made here is purely to ensure that period transition
matrices discussed in the following section are well-defined objects.

2.5. Transition Matrices for Periods

Consider a pair of smooth hypersurfaces X = Z(f) and Y = Z(g) with
f, g ∈ C[x0, . . . , xn+1]d.

Definition 2.6. We will call a matrix Pf,g ∈ Cm0×m0 a period transition ma-
trix if for any grevlex primitive period matrix Pf on X = Z(f), the product
Pf,g · Pf is a primitive grevlex period matrix on Y = Z(g).

A method for computing a period transition matrix Pf,g is explained
in [29]. A much simpler method is available when g is a linear translate of f
and we will do this example in Sect. 2.5.1. We will briefly outline the general
method of [29] here.

1. Take a one parameter family of hypersurfaces Xt = Z(ft) where ft ∈
C(t)[x0, . . . , xn+1]d with X = X0 and Y = X1.

2. Find polynomials p1, . . . , pm′ ∈ C(t)[x0, . . . , xn] which descend to a
basis for

⊕n
�=0 C(t)[x0, . . . , xn](n+1−�)d−n−2/ Jac(ft)(n+1−�)d−n−2 and

also to bases when t = 0 and t = 1. Often pi are monomials or a sum of
two monomials (with constant coefficient 1).

3. Find the matrix B expressing the change of basis from the basis above
to the grevlex basis at t = 1. This is done by the computation of normal
forms.

4. For each i = 1, . . . ,m′ find a differential operator Di ∈ C(t)[∂
∂t] such

that Di · Res(pi) = 0. These differential equations annihilate the rows
of the grevlex period matrix of Xt.

5. Find a path γ from 0 to 1 in C \ S where S is the set of values of t for
which Xt is singular.

6. Compute the transition matrix for the space of solutions of Di at t = 0
and t = 1 obtained by homotopy continuation along γ.

7. Using the indicial equation of Di, find the set of derivatives of Res(pi)
whose values at t = 0 would determine Res(pi).

8. Express the derivatives of Res(pi) at t = 0 in terms of the grevlex
Griffiths basis at t = 0. Multiply this expression on the right with the
transition matrix of (2.5) and take the first row.

9. Form the m′ ×m′ matrix whose i-th row is the row obtained at the step
above and multiply it by B on the left to get P0,1.

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 11 of 41 24

The most time expensive step is step (2.5). (The complexity of step (2.5)
depends on the γ chosen in step (2.5); fortunately, there is a heuristic to
choose γ optimally—see [29].) However, most attempts to compute the pe-
riod transition matrix fail on step (2.5). This is because it requires a Gröbner
basis computation for Jac(ft), numerous normal form computations, and ex-
pressions of elements in Jac(ft) in terms of the generators (∂0ft, . . . , ∂n+1ft).
We provide statistical evidence for the claim regarding step 2.5 on our main
dataset in Sect. 5.2, see the paragraph before Definition 5.1.

2.5.1. Period Transition Matrices of Linear Translates. If two hypersurfaces
are linear translates of one another, then a period transition matrix between
them can be easily computed. We will do this here as an instructive example.
This is also a computation we will use later in the article in Sect. 6.

The general linear group GL(n+2,C) acts on the coordinates on Pn+1

linearly. The induced action on the coordinate ring S = C[x0, . . . , xn+1] is
given by u·f(x) = f(x·ut) where u ∈ GL(n+2,C), f ∈ S, ut is the transpose
of the matrix u, and x = (x0, . . . , xn+1) is treated as a row vector.

With X = Z(f) a smooth hypersurface as before, suppose that Y =
Z(g) with g = u · f for some u ∈ GL(n + 2,C). If PX is a period matrix of
X then it certainly works as a period matrix for Y . However, even if PX is
a grevlex period matrix on X it need not be grevlex on Y . We describe the
computation of a period transition matrix Pf,g below.

Let p1, . . . , pm′ ∈ S be the polynomials whose residues give the grevlex
Griffiths basis on X. Let φ : Y

∼→ X be the isomorphism induced by u. If
PX is a primitive grevlex period matrix on X then PX is a primitive period
matrix on Y whose rows represent the residues of u · p1, . . . , u · pm′ .

We can use Griffiths–Dwork reduction (see [14,15] or a summary [29,
§2.4]) on Y to write each Res(u·pi) in terms of the grevlex Griffith basis on Y .
If N is a matrix whose rows store the coordinates of Res(u ·pi) in the grevlex
basis then N−1 · PX will be a primitive grevlex period matrix on Y . In other
words, N−1 is a period translation matrix from X to Y . This computation is
implemented in PeriodSuite2 as the function translate period matrix.

2.5.2. First Order Gauss–Manin Connection. We would like to detect which
of the differential operators Di appearing in Item (2.5) of Sect. 2.5 would be
easy to integrate, before we compute Di.

Collectively, these Di define flat sections of the Gauss–Manin connection
of the family Xt (see for example [32, §9.3]). Computing the Gauss–Manin
connection itself is simpler than computing its flat sections, but still not quite
fast enough for rapid testing. Computing the Gauss–Manin connection eval-
uated at a single point, however, is very fast. Furthermore, these evaluations
give an impression of how complicated Di might be (see Sect. 5.5).

Let {ωi = Res(pi)}m′
i=1 be a basis for primitive cohomology on a hyper-

surface X. Say X is the fiber of a family Xt at t = t0. Then the residue of the
polynomials pi on the family Xt will give a basis for primitive cohomology for
all t near t = t0. Differentiating these forms with respect to t and evaluating

2https://github.com/emresertoz/PeriodSuite.

https://github.com/emresertoz/PeriodSuite

24 Page 12 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

at t = t0 gives new elements in the cohomology of X. Expressing these new
forms in terms of {ωi}m′

i=1 gives an m′ × m′ matrix. We call this matrix the
first order Gauss–Manin matrix.

Let us note that if X and the polynomials pi are defined over a subfield
K ⊂ C then the corresponding first order Gauss–Manin matrix will have
entries in K. See [20] for more on this topic. In our applications, we will take
K = Q.

3. Computational Scheme

We will now describe our approach to the problem of searching for a good path
between polynomials, with the goal of transferring their periods from one to
the other. There are two variations of this problem that we are interested in
solving. We will state and explain these variations and then generalize them
to a common framework in Sect. 3.1. In Sect. 3.2 we will explain how we
operate in this abstract framework.

3.1. Two Types of Problems and a General Framework

We are interested in solving two types of problems. In the first problem, we
are given a pair of polynomials V = {f, g} depicting smooth hypersurfaces of
the same degree, and our goal is to compute the period transition matrix Pf,g.
In the second problem, we are given a (possibly large) set of polynomials V ,
and our goal is to compute the periods of all elements in V given the periods
of any one of them. We will now present some example problems that we will
solve later on.

3.1.1. First Problem: Computing Periods for One Target Polynomial. For
a general (f, g), a direct computation of Pf,g is infeasible even with low
precision. The path from f to g must be broken into simpler pieces. The
strategy we discussed in Sect. 1.4 is to find a sequence of polynomials f =
h0, h1, . . . , hs = g such that each intermediate period transition matrix Phi,hi+1

is easily computable. Their product would then give Pf,g. This problem was
already investigated in [29, §3.1] and a crude heuristic was developed there.
We will develop this heuristic further in this section.

3.1.2. Second Problem: Computing Periods for Many Hypersurfaces. Here
we are given a (possibly large) set of polynomials V and we would like to be
able to compute the periods of all elements in V given the periods of any one
of them. For example, the set V may be the set Vn consisting of all smooth
quaternary quartics that are expressed as the sum of n distinct monomials
with coefficients equal to 1, e.g.

V4 = {x4 + y4 + z4 + w4, x3y + xy3 + z3w + w4, . . . }.

The set V4 has 108 elements, and V5 has 3348 elements. There is a natural
action of S4 on these sets given by permuting the variables, and any two poly-
nomials related by an element of S4 define isomorphic quartic hypersurfaces.
We have that #(V4/S4) = 10 and #(V5/S4) = 161.

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 13 of 41 24

An attempt to compute the periods, and therefore the Picard numbers,
of all elements in V5 was made in [22]. Many of the elements in V5 were out
of reach at the time. We apply our methods to compute the periods of most
elements in V5, see Sect. 6.

Given a sequence of polynomials f = h0, h1, . . . , hs = g such that each
intermediate period transition matrix Phi,hi+1 is easily computable, and such
that the periods of f are known to some precision, we easily obtain the periods
of each intermediate quartic by the partial products Phi,hi+1 . . . Ph0,h1Pf .
Thus, it suffices to determine a set of paths which connect the vertices of V
as opposed to computing the periods one by one.

3.1.3. General Framework. Both problems can be slightly generalized to fit
into the following framework. Suppose we are given a set V containing one
element whose periods are known and the periods of all the others are sought.

The set V may not have enough pairs f, g ∈ V such that Pf,g is directly
computable. In this case, we need to construct a larger set W containing
V which introduces many pairs (f, g) ∈ W × W such that Pf,g is directly
computable. The construction of this W can be based on human heuristics.

Letting KW be the complete graph with vertex set W , we now wish to
solve the following problem: Given V ⊂ W , find a tree T ⊂ KW such that
the vertex set of T contains V and the computation of the period transition
matrix for each edge in T is feasible. Constructing W is a balancing act. If
the search space W is too large, it may be impractical to find a good tree
T inside KW , even though one may exist. Conversely, if W is too small, we
may be able to search the entire space but find that there is no good tree T
inside KW .

For our first type of problem (Sect. 3.1.1), with V = {f, g}, one may
take the following set:

W = {h| supp(h) ⊂ supp(f) ∪ supp(g), coefs(h) ⊂ coefs(f) ∪ coefs(g)}
where supp denotes the monomial support of a polynomial and coefs denotes
the set of coefficients of a polynomial. For the second type of problem we will
consider V = V5. In this case, it seems natural to take something in between
W = V4 ∪ V5 and W = V4 ∪ V5 ∪ V6.

Remark 3.1. There are numerous modifications to this problem that can help
attain the final goal. We will only point out one: it is often sensible to prune
the graph KW by a problem-specific heuristic before embarking on a search
for tree T .

3.2. Searching a Computation Graph for an Efficient Tree

In this section, we will set aside our discussion of period computations. We
are interested only in abstracting the problem laid out in Sect. 3.1.3 to, es-
sentially, a problem in resource management in a computational exploration.

Let G = (W,E) be a graph with vertex set W and edge set E. Consider
a computationally expensive program P which takes as input an edge e ∈ E
and returns an output Pe. We will consider a cost function ϕ : E → R+ that
measures the difficulty of performing the computation e �→ Pe. Common

24 Page 14 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

examples of ϕ(e) would be the number of arithmetic operations needed to
complete the program e �→ Pe or the amount of memory required to execute
the program. For our purposes, it is important that a lower bound for ϕ can
be determined in finite time. Henceforth, we fix one such ϕ and refer to it as
a complexity function.

Remark 3.2. In the context of this paper, W is a set of polynomials. For each
edge e, our procedure outputs a period transition matrix Pe to a fixed degree
of precision. The value of ϕ(e) may then be the number of seconds it took to
perform the computation e �→ Pe on a fixed computer. These specifics will
not be relevant for the rest of this section, as we continue with the abstraction
above.

One could rephrase the problem introduced in the previous section as
follows: Given V ⊂ W , find a tree T ⊂ G such that V is contained in the
vertex set of T and ϕ(T) =

∑
e∈T ϕ(e) is small, if not minimal.

If we know the value of ϕ on each edge, then this problem becomes a
standard minimization problem. However, at the outset, the evaluation of
ϕ is just as expensive as the computation e �→ Pe itself. This leads to the
following brute-force strategy.

3.2.1. Brute-Force Strategy. The brute force method (Algorithm 1) attempts
to compute every edge in the graph until the desired tree is constructed. If
the computation of an edge takes too long, then the computation is aborted
and the computation for the next edge is begun.

In practice, we perform the computations in the job queue in parallel,
but the size of the edge set (≈ 106) is so much larger than the number of

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 15 of 41 24

cores available to us (≈ 102) that this serial conceptualization is not too far
off the mark.

3.2.2. Informed Brute Force. It is clear that the choice of the ordering Q
on the edge set will make a dramatic impact on the total time it takes to
find T . In ideal cases, the first few edges in the sequence might be easily
computable and sufficient to form a usable tree T . In this case, we could stop
searching early. In unfortunate cases, all of the edges e for which ϕ(e) > k
might be queued up first in the list, and all of our time would be spent trying
to compute impossible edges.

For this reason, we consider finding a good edge ordering Q our top
priority. Equivalently, our task is to find an efficiently computable weight
function φ : E → [0, 1] for which sorting the edges by weight gives a favorable
ordering. In Sect. 5, we discuss how to use a neural model as such a function.
As we perform computations, we can refine our weight function in order
to improve the reliability. This suggests the modification of the brute force
algorithm given by Algorithm 2.

4. Deep Learning Models

In this section we provide a brief overview of neural networks for the mathe-
matician who does not specialize in applied or computational mathematics.
An excellent reference for this subject is [13].

24 Page 16 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

4.1. Neural Networks to Approximate Functions

A neural network is essentially a framework for approximating functions. Let
ϕ : Rn → Rm be an unknown “targe” function that we wish to approximate,
and let Γϕ ⊂ Rn+m be the graph of ϕ. Suppose that we have access to a
finite subset T sampled from Γϕ. Assuming strong hypotheses on T and ϕ,
we can in some cases closely approximate or even recover ϕ.

A classical example of such a scenario is univariate polynomial inter-
polation. If the target function ϕ is known to be a polynomial with degree
bounded above by some known k, then we can closely approximate ϕ from T
(provided T is sampled sufficiently well) by solving a reasonably-sized linear
system. This example demonstrates a good use-case for polynomial inter-
polation. However, the linear system could be defined by a Vandermonde
matrix that is extremely ill-conditioned, making a solution very difficult and
sensitive to noise.

Thus interpolation may not always be the most appropriate way to
learn ϕ. In many real-world scenarios (e.g. that encountered in this work),
we cannot assume that ϕ is polynomial. A function ϕ that is not sufficiently
regular may require interpolating polynomials of very high degree. This can
result in a high-dimensional linear system requiring a large matrix inversion,
which can be a computationally prohibitive task. In this work, we relax our
requirement of a perfect fit between model and data, and use a neural network
architecture with a variation of gradient descent to solve such a regression
problem.

In mathematical analysis, it is common practice to construct a class of
functions C which exhibits so-called good approximating properties. Once
an appropriate class has been chosen, one seeks a sequence of functions
{ϕn}∞

n=1 ⊂ C which converges in some sense to ϕ. As will be discussed
below, many chosen neural network architectures determine such a class C
[8,12,18,25] and the training regime provides an algorithm for constructing
an approximating sequence {ϕn}∞

n=1 using T ⊂ Γϕ that will hopefully con-
verge to ϕ. Note that the class C is by no means guaranteed to be unique
or best for the task at hand. This framework is more generally referred to in
computer science as regression analysis.

Remark 4.1. We seek to approximate a complexity function (as in Sect. 3.2)
associated to the period computations, rather than approximating the pe-
riod function itself. This is because our intended use for the periods require
hundreds of digits of accuracy and, ideally, rigorous bounds on error. Approx-
imating functions with neural networks typically capture large scale features
of a function. Attaining high precision, let alone bounding the error, is not
one of the highest priorities of the method. Furthermore, we can better tol-
erate error in the complexity function as we will use it only as a heuristic to
order our computations (Sect. 3.2.2).

4.2. The Class of Functions Associated to a Neural Network

We define a neural network as a triplet N = (V, E,A) where V = (V0, . . . ,Vk+1)
is a sequence of real vector spaces with a fixed coordinate system Vi = Rni ,

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 17 of 41 24

E = (E1, . . . , Ek+1) is a sequence of non-linear transformations Ei : Vi → Vi

and A = (A0, . . . , Ak) is a sequence of affine transformations Ai : Vi → Vi+1.
By an affine transformation we mean the composition of a linear map Vi →
Vi+1 with a translation Vi+1 → Vi+1.

V0 V1 . . . Vk Vk+1

fA

A0

linear

E1

A1

affine

Ak−1

affine

Ek

Ak

affine

Ek+1

The non-linear transformations Ei are typically chosen to be of a very
specific form in order to facilitate computations and to enable gradient prop-
agation. They do not all need to be the same function.

Definition 4.2. For any x ∈ R the function x+ = max(0, x) is called the
rectifier. For W = Rn, the rectified linear unit (ReLU) on W is the non-
linear map W → W defined by (x1, . . . , xn) �→ (x+

1 , . . . , x+
n).

Unless specified otherwise, we will always take each Ei to be a ReLU.
The architecture of a neural network consists of the choice of V and E.

During the training of the neural networks, the architecture remains fixed and
only the affine transformations A are changed. The entries of the matrices
representing Ai’s are called parameters of the neural network N .

When the architecture (V, E) is fixed, we suppress it from notation
and associate to each neural network (V, E,A) the function fA : V0 → Vk+1

defined as follows:

fA : v �→ Ek+1 ◦ Ak︸ ︷︷ ︸
output layer

◦Ek−1 ◦ · · · ◦ A1 ◦ E1 ◦ A0︸ ︷︷ ︸
input layer

(v) (4.1)

for some fixed k of choice. Networks are defined in part by their hyperpa-
rameters, i.e. certain characteristics (e.g. the depth k of the network and the
width dim(Vi) of each layer) that define the class C of functions allowed by
the neural network. We will call each Ai ◦ Ei+1 a layer of the neural net-
work N . We refer to layer i = 0 (resp. i = k) as the input (resp. output)
layers; the remaining layers are called hidden layers. The naming suggests
the layers’ use and the asymmetry apparent in the construction of fA. The
affine transformations Ai are parametrized by variables called weights and
variables called biases. In this setting we will equate a neural network simply
with a composition of such layers.

It is remarkable that something as simple as the incorporation of ReLU
functions vastly expands the space of functions that can be represented by
neural networks. Without the non-linearity of the transformations E, the
function fA would simply be an affine transformation.

24 Page 18 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

4.3. Gradient Descent using Neural Networks

Fixing the architecture (V, E) of a neural network yields a parametrized
family of neural networks (V, E,A), which can be associated to the family
of functions C = {fA|A}. For each i > 0, the affine transformation Ai has
nini+1 + ni+1 trainable parameters, so the total number of parameters in fA

is

N =
k∑

i=0

(ni + 1)ni+1. (4.2)

That is, we have a parametrization RN � C = {fA|A}. A choice of transfor-
mation A(0) ∈ RN induces a neural network function fA(0) : V0 → Vk+1.

Our immediate goal is to find a sequence A(k) ∈ RN , k ≥ 0, such that
the sequence of functions {fA(k)}∞

k=0 converges in a sense to an approximation
of our target function ϕ : V0 → Vk+1. We will first describe the distance
measure that defines convergence for our experiments.

4.3.1. Loss Function. Given a function g : V0 → Vk+1 we wish to quantify
the goodness of our network’s function approximation, i.e. how far g is from
being equal to ϕ. The only information we are given about ϕ is the finite
subset T ⊂ Γϕ ⊂ V0 × Vk+1 of its graph; this subset is called the network’s
training set. As we have a fixed coordinate system on Vk+1, we will use the
induced Euclidean norm ‖·‖ : Vk+1 → R≥0.

Let P (Γϕ) denote the set of finite subsets of Γϕ. Let L : RN ×P (Γϕ) →
R≥0 be the loss function defined as follows:

L(A; T) :=
∑

(t1,t2)∈T
‖fA(t1) − t2‖2. (4.3)

As in the classical philosophy of regression, we say that to fit ϕ well given T
is to minimize L with respect to A. In the following we discuss two variations
of a popular iterative method with the aim of achieving the minimization

arg minA∈RN L(A; T).

The following class of algorithms provides a sequence {fA(k)}∞
k=0 whose L-

values will hopefully (and in some limited cases, provably) be decreasing.

4.3.2. Gradient Descent. Given T ⊂ Γϕ we wish to find A ∈ RN minimizing
the error function L(·, T). Our restriction to feedforward networks forbids
feedback loops and, therefore, allows for an easy evaluation of the gradient
∇L(·, T) of L(·, T) at any given point A via backpropagation—see [13] for
definitions and details.

Choose an initial point A(0) ∈ RN and a sequence of step sizes γ : N →
R>0. This sequence is typically either constant, or converging to zero. Induc-
tively define the following sequence:

A(k) := A(k−1) − γ(k)∇L(A(k−1); T), k > 0. (4.4)

In the applications we have in mind, the size of T will be too large
to make the execution of this method feasible. In examples where #T is

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 19 of 41 24

large, one might opt for some variant of stochastic gradient descent ; one such
method is described below.

4.3.3. Stochastic Minibatch Gradient Descent. Stochastic minibatch gradi-
ent descent differs from gradient descent in that one trains on a random
subset of T at each step, instead of T itself. To do this, fix a batch size
b ∈ N, and define A(k) inductively as follows:

Choose a random subset Tk ⊂ T of size b and let

A(k) := A(k−1) − γ(k)∇L(A(k−1); Tk), k > 0. (4.5)

4.3.4. Hyperparameter Selection. In order to use a neural network architec-
ture (V, E) to approximate the function ϕ, for which a subset T ⊂ Γϕ is
known, one requires the following: An error function L, step sizes γ, batch
sizes b, distributions to randomly choose subsets of T and to choose a start-
ing point A(0). These choices (V, E,L, γ, b) are the hyperparameters of the
network. This defines the class C as described in Sect. 4.1.

Selecting hyperparameters can be more of an art than a science. Al-
though principled selection strategies have been proposed ([5] provides an
excellent survey of some such methods), this problem remains largely un-
solved for general learning problems. The rate of convergence of an iterative
algorithm, and even whether the algorithm converges at all, can depend heav-
ily on parameter choice. For example, a step size chosen too small will cause
the algorithm to crawl slowly to a local minimum, whereas a step size that is
too large might cause the algorithm to diverge. Experimentation is required
to select hyperparameters in a way so that the stochastic gradient converges
rapidly and to a reasonable approximation of ϕ.

5. A Computability Scoring Function for Estimation

Section 3.2 introduced two problems related to the traversal of a graph whose
weights are partially unavailable to us. In the current section, we explore
various methods to learn a computability scoring function (CSF) φ that is
a reasonable proxy for the complexity function ϕ. The design space for our
experiments includes a choice of labelled training dataset T and a statistical
model (classical or deep neural).

Toward our comparison of statistical models, we refer the reader to
Sect. 4 for a brief introduction to deep neural networks. In that section,
we offer definitions and outline standard training procedures. In the cur-
rent section we will describe our implementation of such deep learning mod-
els (e.g. hyperparameter selection) for the computational problems at hand.
Sections 5.1 and 5.2 are concerned with the design of the dataset on which
we will learn. Section 5.3 compares useful intermediate representations of
this dataset, a subproblem known as feature extraction. Section 5.6 discusses
the experiments with 4-and 5-monomial quartic surfaces that motivated our
choice of hyperparameters.

24 Page 20 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

5.1. Input Space E

Assuming the kind of function φ we seek is sufficiently smooth, we can ap-
proximate it via statistical learning methods using only finitely many pairs
(e, φ(e)). We will choose a random subset E′ ⊂ E and assign a value φ(e) for
each e ∈ E′. The resulting set of pairs

T = {(e, φ(e))|e ∈ E′} (5.1)

will be used to train a statistical model to obtain a modest guess for what φ
should be. The remaining pairs E\E′ will be used for testing and validation
of the trained model.

The abstract discussion in this chapter applies in the full generality
of Sect. 3.1. Recall the notation of Sect. 3.1.2, where Vk ⊂ Q[x, y, z, w]4
denotes the k-nomial data set, that is, the set of four-variable homogeneous
polynomials that are the sum of k distinct monomials all with coefficient 1.
For this section, we will constrain ourselves to fixed sets of polynomials—
i.e. to the complete graphs on V4 and V5. We denote by E the edges of the
graph Vk that is eventually to be traversed. For instance, the 4-nomial data
set is defined by the complete graph on V4 and thus #E =

(
V4
2

)
.

5.2. The Subjective CSF φ

Since we are interested in sorting edges by complexity, we actually want to
learn a weight function φ : E → [0, 1] which assigns to each edge e ∈ E
a probability that the complexity ϕ(e) of the computation e �→ Pe is low.
One could, in principle, define the weighting function φ = 1

1+ϕ where ϕ is
the complexity function introduced in Sect. 3.2. However, the difficulty in
explicitly computing ϕ motivates us to find a more practical, data-driven
solution.

While the complexity ϕ(e) reflects some objectively defined feature of
an edge, namely the number of operations and amount of memory used by
a particular algorithm with input e, in practice we can only glimpse ϕ(e)
through the subjective lens of running the algorithm on a specific piece of
hardware. From an engineering standpoint, this is the only relevant measure-
ment of complexity if one is principally concerned with the results of the
computation (in this case, periods of quartic hypersurfaces in P

3). Our gen-
eral methodology is obviously not tied to specific features of our hardware,
but the computability scoring function we discuss here is inexorably biased
by our available resources.

Experimentally we find that one critical subroutine of our larger al-
gorithm e → Pe tends to present a computational bottleneck. The global
computation of Pe requires computing 21 ODEs and then numerically in-
tegrating them. In our 5-nomial dataset, the period transition matrix could
only be computed for 2373 edges out of 5.97 million. An efficient way to iden-
tify these “needles in the haystack” is clearly needed. A quick way to identify
a successful case is to consider only the first ODE out of 21, since in order for
the computation to succeed all 21 ODEs need to be computed. In the same
dataset, the first ODE could be computed for 112,380 edges, meaning that

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 21 of 41 24

Figure 1. We experimented with including additional la-
bel information in training, such as the degree and order of
the first ODE. However, we did not observe an advantage to
using this additional data in training our neural networks.
This may be attributed to the visible relation between time,
degree, and order, shown here for the 5-nomial dataset. No-
tice the squared axes; this shows a very loosely quadratic
relationship between time and order, and between order and
degree

the conditional probability of success improves the baseline probability by a
factor of approximately 53.

This observation leads to the following heuristic choice.

Definition 5.1. (The subjective CSF) Let φ′ represent how long it takes to
compute only the first of these ODEs on a fixed computer. That is, φ′ : E →
R≥0 is defined so that φ′(e) is the computation time for the first ODE required
for Pe. We define our (subjective) computability scoring function (CSF) as

φ : E → [0, 1]
e �→ min{φ′(e)/30, 1}.

Remark 5.2. Since φ′(e) can be arbitrarily large, we opt to terminate the
computation of φ′(e) after 30 seconds. Our choice of a 30-second threshold is
entirely heuristic, but necessary for the sake of practicality; even considering
only the 4 or 5-nomial quartics with a 30-second threshold required roughly
a CPU decade of computation time on our system to compute the CSFs (see
Sect. 6.4) (Fig. 1).

We generate many training samples of φ, evaluated on edges of the
graphs based on V4 and V5. We define a binary label β(e) ∈ {0, 1}, where
β(e) = 0 if φ(e) < 1 (successful computation, with respect to the chosen
threshold of 30 seconds) and β(e) = 1 if φ(e) ≥ 1 (failed computation).

Definition 5.3. Define the binary computability scoring function (BCSF) as

β : E → {0, 1}
e �→ 1 if φ(e) < 1, 0 otherwise.

We will refer to the resulting edge-time correspondences {(e, β(e))} for
Vk as k-nomial data sets. These pairs will be partitioned into training or

24 Page 22 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

testing, in which case we may refer to e as an input data sample, and to
β(e) as that sample’s label. Our architecture choice is in part guided by
the structure of this data. In our learning task, it ends up being easier to
learn the binary classification β rather than the nuanced function φ itself; in
fact, in learning we obtain a proxy for φ given by the per-class probability
distribution on E. Thus we replace our regression problem (approximate φ)
with a binary classification problem (approximate β, and get a proxy for φ en
route). We refer to these two functions interchangeably in the development
of our strategy. We must be careful with how we represent an edge (f, g)
(i.e, a pair of quartic surfaces); as the following section details, we are able
to compute extra data associated to (f, g) that empirically relates to the
complexity ϕ(f, g).

5.3. Input Augmentation

We approximate the CSF via a statistical model that takes as input two
features of an edge e ∈ E. We first represent each edge e by the concatenation
of the coefficient vectors of the two polynomials that are the endpoints of
that edge. It must be noted that in using this vector representation, we have
discarded some information: the value of φ is linked inextricably to the fact
that endpoints of e are polynomials, a characteristic of which the model is
no longer aware. This guides the idea that our chosen learning method can
better guess the value of φ(e) if it is provided more than just the coordinate
representation of e.

One additional piece of domain information that we found useful was
the first-order Gauss–Manin connection, see Sect. 2.5.2. We can efficiently
compute the first-order Gauss–Manin connection at a few points of the pencil
corresponding to e. In practice, the complexity of these matrices correlates
with the computability score of e, as shown in Sects. 5.3.2 and 5.5.

We will use the following notation for these matrices. First, fix t1, . . . , ts ∈
C. For each e let Me = (Me,1, . . . ,Me,s) be a sequence of such matrices, where
Me,i is the first order Gauss–Manin connection evaluated at t = ti on the
pencil corresponding to e. We will design our models to work with (e,Me). In
practice, we take s = 1 or s = 2 with t1 = 0 and t2 = 1 because we observed
little benefit in increasing s further.

5.3.1. Studying the Complexity of the Input. The polynomials defining E
have rational coefficients, and therefore the connection matrices Me are also
rational-valued. For example, when we are dealing with quartic surfaces
defined over Q, we have that (e,Me) is an element of Qn, where n =
2 × 35 + s × 21 × 21. In this section, we will consider various measures of
complexity of the matrix Me. Any correlation between “easy” statistics (de-
fined in the next section) of Me, and the algorithm-fragment runtime φ(e), is
not obvious. This motivates the use of more expressive data-driven models.

5.3.2. Complexity of Cohomology Matrices. Because the standard imple-
mentation of neural networks work with floating point arithmetic, the sub-
tleties of computing with a rational number are lost. As a large portion of
the computation e �→ Pe is exact, the computation time is affected by the

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 23 of 41 24

Table 1. Three of the examined complexity measures

Measure Definition

Sum Ψs(M) :=
∑

i,j,k ψ(Mijk)
Entropy Ψe(M) := −

∑
ijk ψentropy(Mijk)

Length nonzero Ψl(M) := len(m ∈ ψM : m �= 0)

“height” of the rational numbers involved. For this reason, we will modify
the entries of Me to better represent the complexity of its entries.

Let us define the following function on rational numbers:

ψ : Q → R≥0
m1
m2

�→ log(|m1|) + log(m2)
(5.2)

where m1,m2 ∈ Z, m2 > 0 and lcm(m1,m2) = 1. The value ψ(m) of a
rational number m is a more faithful representation of the complexity of
computing with m then would be a floating point approximation of m. The
following variation will also be used:

ψentropy :
m1

m2
�→ log(|m1|)2 + log(m2)2. (5.3)

Various complexity statistics can be extracted from a complexity ma-
trix M . Each statistic is a function Ψ: Qs×21×21 → R. We list three options
in Table 1.

Each column of Fig. 2 corresponds to an entry in Table 1. For each Ψ,
we plot Ψ(Me) against the time it takes to compute the algorithm fragment
defining φ, for those edges such that β(e) = 1. The edges for which β(e) = 0
are omitted from the top row of Fig. 2 because we had to terminate their
computation prematurely, effectively assigning them all the same value of
30. The bottom row of Fig. 2 shows that successful edges do tend to have
lower matrix statistics than failing edges. However, these distributions are
not bimodal enough to make the statistics good classifiers in isolation.

On the other hand, we see no striking patterns between φ(e) and Ψ(Me)
in the first row of Fig. 2. From this we conclude that the matrices Me are
useful in terms of classifying successes from failures (i.e. approximating β),
but their statistics alone are not sufficient to regress (i.e. approximate φ)
within the class of successes.

We can gain more insight by viewing each tensor Me as a multi-channel
image. We can visualize a matrix (Mij) as a rectangular image with the
ij-th entry colored a shade of blue: the darker the shading, the larger the
value of ψ(Mij). See Fig. 3, which has Me,1 in the first row and Me,2 in the
second row for four e from the 4-monomial data set. We will see that this
interpretation of the tensor as a multi-channel image lends itself naturally
to learning with convolutional neural networks, as we wish to preserve the
spatial relationships between matrix entries.

24 Page 24 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

Figure 2. Complexity measure versus time. Dependence
between the matrix statistics and computation time on the
4-nomial dataset. Top row: Ψ(Me) versus φ(e) on successful
edges. Bottom row: Histograms of matrix statistics Ψ(Me),
with the successful-edge distribution (β(e) = 1) denoted in
blue, and the failing-edge distribution (β(e) = 0) denoted in
orange (color figure online)

Figure 3. Inputs to the convolutional component of our
ensemble. Top row: ψ(Me,1), bottom row: ψ(Me,2), with ψ
in (5.2) evaluated entrywise. Darker shades indicate larger
values of ψ

5.4. Dataset Preprocessing

5.4.1. Dimension Reduction: Principal Component Analysis. For the quar-
tics we consider, the pair of polynomials in e for each e ∈ E are sparse.
As a result, a standard coordinate-space embedding represents e in an un-
necessarily large (70-dimensional, for quartic surfaces) ambient space. This
in turn, can complicate the learning problem: it can increase the number of
parameters required to learn, and can introduce spurious local minima in

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 25 of 41 24

Figure 4. The eigenvalues (right) obtained during PCA de-
scribe the intrinsic dimensionality of the dataset (left). This
can be used to effectively compress the dataset via orthog-
onal projection onto the most important principal compo-
nents. The graphs in this figure are fictious and are for illus-
trative purposes only

the cost function. To reduce the dimension of the input space without losing
information, we perform a principal component analysis (PCA) on a given
E.

In short, PCA finds the “best fitting linear space” that almost contains
all the points in E. The process also minimizes the dimension of this best
fitting linear space. More precisely, PCA is an orthogonal linear transforma-
tion that compresses the data stored in e, by projecting it onto a subspace
with minimal loss of dataset variance. For more information about PCA and
its derivation, see [30].

The “principle components” are the eigenvectors of a covariance matrix
of the dataset. Each associated eigenvalue describes how much the dataset
aligns with the direction of the corresponding eigenvector. Thus, the relative
“importance” of each direction in data compression can be found by reading
off these eigenvalues.

A pictorial example of this concept is given in Fig. 4, where we can
associate a significant dropoff in covariance-matrix eigenvalues to an ability
to losslessly compress the dataset. In this example, the point cloud is nearly
planar, and this is reflected in the sudden dropoff in eigenvalues on the right.

Figure 5 shows that from the first 23 principal components, one can
almost entirely recover the coordinates of edges in the complete graph over
V4. This value of 23 also appears to apply to V5. We thus compress each e
to a 23 dimensional vector, decreased from 70 dimensions. In doing so, we
make no claim about this new 23-dimensional space being interpretable as the
same kind of polynomial space as before; it is an abstract albeit convenient
coordinate space.

24 Page 26 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

Figure 5. The distribution of the eigenvalues coming from
the PCA applied to the complete 4-nomial graph dataset

5.4.2. Balancing the Dataset. A mark of how difficult the integration step can
be is that even the algorithm fragment of Sect. 5.2 fails to terminate in the
vast majority of pairs we considered. As a result, a training set T as in (5.1)
will consist almost entirely of failed edges of the form (e, 0). This incentivizes
the neural network to produce the constant 0 function as an approximation
of φ. As a remedy, we employ a standard method to disincentivize the neural
network from converging to a constant. This method is done by over-sampling
the under-represented class (here, edges e with β(e) = 1) so that the training
set consists of an equal portion of both classes.

5.5. Comparison of Learning Models

As with many learning challenges, a crucial decision is whether to use neu-
ral networks at all. Classical statistical methods are simpler to implement,
but neural networks can be preferable for vision-related tasks. Section 5.5.1
demonstrates that in the context of this problem, the neural networks we
have tried consistently outperform the classical methods. The discussion in
this section will center around the 4-monomial dataset, i.e. the complete
graph on V4.

We experimented with several regression techniques as candidates for
learning the quite irregular CSF φ, and found that we could get a better
estimate for φ through a simple binary classification, i.e. approximation of
the BCSF β. The methods we consider output functions f : E → [0, 1] that
map to probabilities of edges being “computable”. We turn the function f
into a binary classifier by choosing a cut-off value τ such that f(e) ≤ τ should
be correlated with β(e) = 0.

We will compare the performance of various statistical models via their
receiver operating characteristic (ROC) curves [11] on the 4-nomial dataset.
We direct the reader to [1] for a comprehensive text that defines and dis-
cusses the classical statistical models we used in this section. An ROC curve
is a standard tool to compare the performance of binary classifiers on the
same dataset. Each curve corresponds to a single binary classifier, and can
be traced by varying the threshold τ from 0 to 1. In this curve, performance
is measured by comparing the classifier’s true positive rate and false positive
rate. The closer a curve is to the top left vertex, i.e. the point (0, 1), the
better the corresponding method performs. The dotted line is the idealized

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 27 of 41 24

Figure 6. Receiver operating characteristic curves of vari-
ous choices of “computability scoring functions” (CSF), on
4-nomials. Given a CSF, a choice of threshold τ ∈ [0, 1] gives
a binary CSF which in turn yields a single True/False Pos-
itive rate. Each curve is formed by varying this threshold
value τ . The top performers, i.e. those reaching closest to
the point (0, 1), are deep learning methods

curve for the method of random guessing. The ROC curves in Fig. 6 show the
ranking of ten different methods. The best-performing method, deep ensem-
ble, is a composition of the next best two neural network strategies, namely
a multilayer perceptron and a convolutional neural network. The remaining
seven are classical methods, all of which underperform in this task.

5.5.1. Classical Statistical Methods. We used seven standard binary classi-
fiers to approximate φ using the 4-nomial training set T . Since they were
clearly outperformed by the neural networks, we will not discuss them in
depth. The methods we used are: logistic regression with an L2 penalty; a
regularized support vector classifier with a linear kernel and regularization
parameter 1; a regularized support vector classifier with degree-2 radial ba-
sis function kernel and regularization parameter 1; a random forest with 10
trees, per-tree maximum depth 5; an AdaBoost classifier with at most 50
estimators; linear discriminant analysis; and Gaussian Naive Bayes. Figure 6
suggests that the deep classifiers will outperform the classical methods. This
may simply be caused by our deep learning methods having more internal
parameters and therefore providing better approximations.

24 Page 28 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

Figure 7. Architecture exploration for the MLP on the 4-
nomial data. The key associated to this set of ROC curves
denotes the widths for the first three layers of the MLP. This
data is helpful in selecting a network size

5.5.2. Deep Neural Networks. We will introduce two neural models and then
combine their results into an ensemble method. The first model is a multi-
layer perceptron (MLP), which follows the standard formulation in Sect. 4.
In dealing with the 4-nomial dataset, we decided on an architecture with five
hidden layers, each of width 100. As input, it takes only the edges e ∈ E after
compression via principal component analysis as in Sect. 5.4.1. Its output
is a single value in R. To restrict the codomain to the interval [0, 1] we
apply the inverse logit function. After training, the neural network gives
an approximation φMLP : E → [0, 1] of the computability score. Figure 7
shows the consequence of changing the dimension of the first three hidden
layers. Other parameters have also been chosen by considering such figures
to optimize predictive power against performance.

Our second neural network is a two-channel convolutional neural net-
work, a variation of the standard neural network explained in Sect. 4 to
better detect patterns in visual data. This neural network will be trained
using the 3-tensors Me encoding the first order Gauss–Manin connections.
We will however apply the complexity function ψ from Sect. 5.3.2 to each
entry of Me before giving it as input. The output is adjusted as with the first
neural network (MLP) above so that, after training, we obtain an approxi-
mation φCNN : E → [0, 1]. More details about both network architectures are
available in the supplementary code.3

We improve on the approximations of the two neural networks by defin-
ing the function

φensemble := φMLP · φCNN . (5.4)

3See https://github.com/a-kulkarn/period graph.

https://github.com/a-kulkarn/period_graph

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 29 of 41 24

Figure 8. Schematic of the deep ensemble binary classifier

This is what we call the “deep ensemble” method (or just ensemble method),
as illustrated in Fig. 8. Being the product of two functions, which are es-
sentially probability functions, the function φensemble is more cautious in re-
turning a value close to 1. We chose this approach because attempting the
computation e �→ Pe for edges that do not terminate can be very costly. We
prefer a computability score that has a low false positive rate.

5.6. Implementation

We now describe our experimental setup and the performance of our neural
learners. Recall that Vn is the set of smooth quartics that are the sum of n
monomials.

5.6.1. Four-Monomial Quartics. Consider the edges E of the complete graph
with vertices V4. Note #V4 = 108 and #E =

(
108
2

)
= 5778. These numbers

are so small that we could run our test computation (as in Sect. 5.2) on all
edges in E. This gives us complete information and allows us to evaluate the
performance of our neural network.

For α ∈ (0, 1) ⊂ R take a random subset E′ ⊂ E for which #E′ ∼
α ·#E. We train the ensemble neural network defined in (5.4) on E′ and test
it on E′′ := E \ E′. We wish to know whether the neural network correctly
predicts whether the first ODE (out of 21) associated to an edge e′′ ∈ E′′

can be successfully computed within our prescribed threshold of 30 seconds.
For various values of α we list in Table 2 the percentage of true negatives
(TN), false positives (FP), false negatives (FN) and true negatives (TN)—
the “positive” label means that the ODE computation for the edge can be
completed within 30 seconds. The ensemble classifier learns to predict the
answers with good accuracy even with training on a small fraction of the
available dataset.

As discussed for input dimension reduction, having too many network
parameters (i.e. weights and biases) can lead to unwieldy computations and
local minima. We see this behavior when we work with networks that are

24 Page 30 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

Table 2. The performance of the ensemble neural network
on V4 with varying proportion α of edges used for training

α TN (%) FP (%) FN (%) TP (%) (TP+TN)/(FP+FN)

0.3 74.87 4.43 7.42 13.27 7.43
0.5 68.38 3.87 6.97 20.78 8.22
0.7 64.54 2.59 6.76 26.11 9.70

Table 3. The performance of the ensemble neural network
on V5

α TN (%) FP (%) FN (%) TP (%) (TP+TN)/(FP+FN)

0.3 83.06 1.80 0.69 14.44 39.05
0.5 84.48 1.63 0.49 13.40 46.19
0.7 83.70 1.52 0.46 14.32 49.48

too large and we find small networks not to be expressive enough. To find
the appropriate size, we compare the performance of networks with different
sizes, and choose the smallest such model with good accuracy.

Taking α = 0.9, on Fig. 7 we plotted the ROC curves of the multilayer
perceptron component of the ensemble for different widths of its first three
layers. We decided on a width of 500 based on this figure.

5.6.2. Extrapolating from Four-Monomial to Five-Monomial Quartics. The
performance of the ensemble method trained solely on V4 did not perform
well on V5, an observation that we did not find particularly surprising. One
plausible reason is that the first order Gauss–Manin connections on V4 are all
quite simple, whereas on V5 there is a broader range of complexity displayed
by these matrices. In other words, the structure in set V4 does not necessarily
extrapolate well to V5.

To address this, we retrained the ensemble method on 5-monomials.
Consider the edges E of the complete graph with vertices V5. This is a much
larger set, since 3348 = #V5 � #V4 = 108, so #E = 5, 602, 878. With the
ratio α defined as in Sect. 5.6.1, we display the performance for various α on
Table 3.

6. Application

In this section we will give an application of our software package and analyze
the performance improvement of using neural networks.

6.1. Five Monomials

One application of our software is to the set V5 of smooth polynomials, each
of which are the sum of five coefficient-1 monomial terms; see Sect. 3.1.2 for

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 31 of 41 24

Figure 9. Picard number frequency for 5-nomial quartics.
This histogram does not include any 4-nomial data

this notation. Our goal in this section is to compute the Picard numbers of
these 5-nomial quartics and to find unexpected isomorphisms in this set.

6.2. List of Results

We first note that the results of this section depend on finding integral lin-
ear relations between periods that are only known approximately. Therefore,
the results below may contain errors due to insufficient precision; we have
attempted to mitigate this risk by working with 300 digits of precision, when
we could attain it.

Of 3348 smooth 5-nomial quartics, there are only 161 S4-symmetry
classes, and of this 161 we were able to reach 154. Their Picard numbers
and frequencies are listed in the following table.

In contrast to the 184, 000 quartics in the database given in [22], it seems
we are targeting a small set of quartics. Indeed, there are only 161 smooth
quartics that are the sum of five monomials upto permuting the variables.
However, the database in [21] was built by random exploration to find quartics
that are easy to compute. Moreover, that set contains only 127 isomorphism
classes of quartics! Here, we found 139 distinct isomorphism classes amongst
the 154 quartics we could reach. The main difference is that our target set
of quartics V5 is fixed, and includes quartics that are difficult to reach. We
are thus forced to use an order of magnitude more computation time to build
our graph (a CPU year versus decade). In fact, some of these quartics are
so difficult to reach that our “optimal” tree T spanning 154 S4-classes has a
diameter of length 21.

Remark 6.1. The Picard number for every 5-nomial quartic in this database
was verified using a complementary method that uses the crystalline cohomol-
ogy of finite reductions [7]. This method produces guaranteed upper bounds.
For each of our polynomials, we ran through as many prime reductions as

24 Page 32 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

Table 4. Picard numbers for the 7 missing quartics

Polynomial Picard number

x3y + y3z + y3w + z3w + xw3 ≤ 2
xy3 + z4 + x3w + y2zw + xw3 ≤ 2
x4 + y3z + xz3 + x3w + yw3 ≤ 2
y3z + xyz2 + xz3 + x3w + yw3 ≤ 3
x3y + y3z + z3w + z2w2 + xw3 ≤ 3
x2y2 + x3z + yz3 + y3w + xw3 ≤ 18
xy3 + x3z + xyzw + z3w + yw3 ≤ 19

was necessary to have the minimum of the upper bounds attained thrice. In
each case, this minimum agreed with the Picard numbers we computed.

Remark 6.2. The method using crystalline cohomology took about 10 min-
utes on average per polynomial. This compares favorably to computing period
transition matrices, which can take anywhere between seconds and hours (in-
cluding finding a good path of deformation). On the other hand, using the
periods we can compute the entire Picard lattice (not just its rank), compute
endomorphism fields, and isomorphism classes.

Remark 6.3. Using the Picard lattice, we can use [22, §3] to find smooth
rational curves in the surface. For instance, all but seven of the 154 quartics
had Picard groups that could be generated over Q by classes of smooth
rational curves of degree ≤ 3 and the hyperplane class. For the remaining
seven, two of them need smooth rational curves of degree ≤ 4, three need
degree ≤ 5, and two need ≤ 6 (in addition to the hyperplane class).

6.2.1. The Missing Vertices. While our search method succeeded for the vast
majority of quartics, we were unable to reach seven of the 5-nomial quartics in
V5, up to isomorphism. These seven quartics are listed in Table 4. Moreover,
we used crystalline obstruction [7] as explained in Remark 6.1 to give
upper bounds for their Picard numbers.

We also tried to brute force every edge from V4 ∪ V5 to establish a
connection to the three quartics in this table with Picard number 2. In each
connection attempt, we allowed the computation for the first ODE to proceed
for 3 hours before terminating; even with this generous threshold, we only
succeeded in connecting these vertices to one another but not to the main
component. Naturally we could not try every edge with the three hour time
limit. Therefore, it is conceivable but very unlikely that good connections
exist.

This prompts us to ask: Which feature of these quartics is responsible
for making them inaccessible?

6.2.2. Isomorphism Classes. Using the Torelli theorem for K3 surfaces [26] we
can check if the K3 surfaces in our list admit non-trivial isomorphisms. Here,
we work only with 154 (of 161) representatives of the S4-symmetry classes

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 33 of 41 24

Table 5. The 11 non-trivial isomorphism classes

y3z + yz3 + x3w + xw3 + w4 y4 + z4 + x3w + xw3 + w4

y4 + y2z2 + z4 + x3w + w4 y3z + y2z2 + yz3 + x3w + w4

y4 + z4 + x3w + yzw2 + w4 y3z + yz3 + x3w + yzw2 + w4

y4 + z4 + x3w + xz2w + xw3 x4 + y4 + z4 + yzw2 + w4

y4 + z4 + x3w + xyzw + w4 y3z + yz3 + x3w + xyzw + w4

x4 + y4 + z4 + zw3 + w4 y4 + yz3 + z4 + x3w + xw3

y4 + x2yz + z4 + x3w + w4 y4 + yz3 + x3w + xz2w + xw3

y3z + y2z2 + z4 + x3w + xw3 y4 + z4 + x3w + x2w2 + w4

y3z + yz3 + x3w + yzw2 + xw3 y4 + z4 + x3w + yzw2 + xw3

y3z + y2z2 + yz3 + x3w + xw3 y4 + y2z2 + z4 + x3w + xw3

y4 + z4 + x3w + x2w2 + xw3 x4 + y4 + z4 + z2w2 + w4

x4 + y4 + z4 + xyzw + w4 y4 + z4 + x3w + xyzw + xw3

y3z + yz3 + x3w + xyzw + xw3 y4 + xz3 + x3w + xyzw + zw3

Table 6. Frequency of endomorphism fields

Frequency Number field

60 t − 1
35 t2 + 1
43 t2 + t + 1
8 t4 − t2 + 1
7 t6 + t3 + 1
1 t12 − t6 + 1

for which we could compute the periods. We compared their period vectors
modulo an integral change of basis for homology. The method of computation
is described in Sect. 6.3.2. We found 9 isomorphism classes of size 2 and 2
isomorphism classes of size 4, all other isomorphism classes appear to be of
size 1. This gives 139 isomorphism classes in total. We display the non-trivial
isomorphism classes in Table 5.

6.2.3. Endomorphism Fields. We also computed the endomorphisms of the
transcendental lattice of a K3 from its periods. We use the argument in
Sect. 6.3.2 with X1 = X2 in order to compute these. The endomorphism
ring E of the transcendental lattice of a K3 is always a field, either of real or
complex multiplication [34]. Except when E = Q, we did not observe any real
multiplication surfaces. These are notoriously hard to find [10]. In Table 6 we
list the polynomials f(t) for which E � Q[t]/f(t) and the number of times
this endomorphism was realized among our 154 S4-symmetry classes in V5.

24 Page 34 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

6.3. Methodology

Once the period matrix of a quartic is approximated, we follow [22] to com-
pute the Picard numbers. In order to facilitate the computation of the pe-
riods, there are two tricks we used besides the general strategy outlined in
Sect. 3.1.3.

6.3.1. Additional Simplifications. The symmetric group S4 acts on the 5-
nomials by permuting the four variables. This is a linear action of the projec-
tive space and we can use Sect. 2.5.1 to compute period translation matrices
at essentially no cost. This connects the elements in each S4-equivalence class.

In order to translate the periods of one polynomial p to another q, we
need the period matrix of p. However, if p is particularly resistant to our
computations then we can compute only the first row of the period matrix of
p—reducing the work load by a factor of 21. With this first row we are still
able to compute the Picard number and isomorphism class of p. However,
p becomes a dead-end; we can no longer use p to compute the periods of
another polynomial q.

6.3.2. Computing Isomorphism Classes. The isomorphism class of a K3 sur-
face depends only on its periods [26]. In particular, that of the first row of
its period matrix.

Suppose w1, w2 ∈ C22 � H2(X,C) are periods of two K3s X1 and X2.
To detect if X1 and X2 are isomorphic, we need to determine if there exists
a constant c ∈ C∗ and an isometry N ∈ Z22×22, N : H2(X1,Z) ∼→ H2(X2,Z),
such that

w1 · N = cw2. (6.1)

Using approximations of w1 and w2, this can be translated into a problem of
finding short lattice vectors as we describe below.

The integral relations annihilating w1 and w2 cause a difficulty here. So
we first compute the Picard groups Pic(Xi) � w⊥

i ⊂ Z22. If the rank of the
Picard groups are distinct then X1 and X2 are not isomorphic.

If ρ := rkPic(X1) = rkPic(X2), construct T (Xi) = Pic(Xi)⊥ ⊂ Z22.
We can view wi as an element in T (Xi) ⊗C � C22−ρ. Let vi ∈ C22−ρ be the
new vector corresponding to wi. The surfaces X1 and X2 are isomorphic if
and only if there exists c ∈ C∗ and N ′ ∈ Z22−ρ×22−ρ that satisfy

v1 · N ′ = cv2. (6.2)

If such an N ′ exists, then 〈v2, v1 · N ′〉 = 〈v2, v2〉c, where 〈·, ·〉 denotes the
intersection product on T (X2). Then,

〈v2, v1 · N ′〉v2 = 〈v2, v2〉v1 · N ′, (6.3)

which eliminates the unknown c. As in [22, §2.3] we use LLL [24] to find
possible integral solutions for (6.3) in N ′. The function isomorphisms of k3s
in PeriodSuite implements this procedure.

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 35 of 41 24

6.4. Performance on Applications

Our objective in this work was to use a neural ensemble method to improve
the computation time for periods. In Sect. 5.6, we analyzed the predictive
power of the ensemble method on a dataset that we were able to label via
substantial computational effort. In this section, we apply the ensemble clas-
sifier to a dataset more reflective of the intended use-case. Specifically, we
explore the classifier’s ability to predict which edges between 5-nomial and
6-nomial quartics are traversable. The number of edges in the complete bi-
partite graph with vertex sets (V5, V6) is far too large for us to generate a
traversable/intraversable label for every edge. Our results in this section indi-
cate that transfer learning is effective in detecting traversable edges between
5-nomial and 6-nomial quartics.

We demonstrate the effect of using our ensemble method on two small
examples (Figs. 10, 11). The problem here was faced on a larger scale, and
faced repeatedly, as we sought to complete the calculations for Fig. 9. Given
a 5-nomial f ∈ V5, we look for 4-or 6-nomials g ∈ V4 ∪ V6 such that the
period transition matrix for the edge (f, g) is easy to compute. We used such
connections to zig-zag from V5 to V4 or V6 and back to V5 in order to establish
new connections between 5-nomials.

For this example, we chose a random subset S ⊂ V5 with 100 elements
so that the elements of S are pairwise distinct under the action of S4, i.e.,
#(S/S4) = 100. For each f ∈ S we consider the edge set

Ef = {(f, g) ∈ V5 × V6|f − g is a monomial}. (6.4)

The average size of Ef for f ∈ S is 29. Such an edge set is illustrated in
Fig. 12.

We compare two methods of exploring the edges Ef , one aided by our
neural model and one unaided. We used the neural model that was trained
on V5 but not on V6 so that there is no extra training time. In particular,
the neural model is faced with a data set for which it has not been trained ;
nevertheless it performs well.

For the unaided strategy, we picked 10 elements from each Ef randomly
and tried to compute these edges. For the aided strategy, we sorted Ef using
our neural network and picked the top 10. The unaided strategy had a 54.4%
failure rate as opposed to 33.9% for the aided strategy. Consider the table
below that records the frequency of elements in S that had n successful edges
for n ∈ {0, . . . , 10}. The first column of this table shows that, in both cases,
21 vertices had 0 successful edges.

This demonstrates the fact that some vertices are intrinsically difficult
to move away from; this reminds us even the best statistical model will not
succeed if every edge is impossible. On the other hand, we see that the aided
method establishes far more connections to V6. For instance, 47 vertices in S
had all 10 of their chosen edges successful with the aided method as opposed
to 13 with the unaided method. In practice, this computation would then
be repeated for each successful connection, which means that the advantage
grows exponentially.

24 Page 36 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

Figure 10. We demonstrate the efficacy of our proposed
algorithm with the following experiment: A trial consists of
the following steps: (1) Choose a random central vertex given
by a sparse polynomial f . (2) Construct the set of edges Ef

as in (6.4). (3) Select 10 edges (orange: using our neural
model, blue: selected randomly) and count how many are
successful. Figure 12 is an illustration of a single trial. The
histogram above depicts the results of 100 trials using each
strategy. The aided strategy is a substantial improvement
over the unaided strategy, achieving a maximum score of 10
far more often than random

The second experiment is analogous to the first one. Except the random
set of vertices S is chosen from V6, the set of edges is constructed similarly
to (6.4); for each f ∈ S we consider

Ef = {(f, g) ∈ V6 × V6|#terms(f − g) = 2}. (6.5)

The result is given in Fig. 11. This result is more striking since the neural
network was not trained on 6-nomials and yet it clearly outperforms the
random method. Once again, a large portion of the edges are inaccessible to
our methods.

Our computations for the Picard ranks of V5 took a CPU decade. The
approach presented in this paper allowed us to repeatedly pare down hundreds
of thousands of possible edges to a manageable, but likely to succeed, subset.
The mini-computation in this section demonstrates the benefit of including
a neural ensemble model in the algorithmic pipeline en route to computing
period matrices of smooth quartic hypersurfaces.

6.5. Costs of Collecting the Training Data and Training the Network

The training data for our neural network comes essentially for free, in the
sense that, even an “unaided” period computation method that randomly
searches for good deformations will produce the training data as a byproduct.

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 37 of 41 24

Figure 11. We conduct a trial similar to the experiment in
Fig. 10. This time we pick S ⊂ V6 as a random subset of 100
6-nomial quartics and construct edges in V6 ×V6 as in (6.4).
The neural network was not trained on 6-nomials. The his-
togram depicts the results of 100 trials using each strategy.
Again, the aided strategy is a substantial improvement over
the unaided strategy. Once again, many edges appear to be
inaccessible

Figure 12. Left: Illustration of a set of edges Ef according
to our sampling method. Right: A randomly sampled subset
of 10 edges, with 7 successful edges and 3 failed edges

For our 4-and-5-nomial dataset set, we performed 10 CPU years of computa-
tions. Our neural network was trained on the by-product of this computation.
In comparison, the time to train the neural model took 21 CPU days. Clearly,
the cost of training is negligible in comparison to the primary computations.
For this reason, and with the results of Sect. 6.4 in mind, the neural network
has a net positive impact on period computations.

We now clarify the strategy of training a neural network alongside a ran-
dom search to achieve this net positive impact. Consider a graph G = (W,E)
in which we are trying to compute the periods of some (or all) of the ver-
tices. Without prior training data, we need to begin exploring G by trying

24 Page 38 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

to compute period transition matrices for randomly selected e ∈ E. The
cohomology matrices associated to an edge are a by-product of the period
transition computation, and the label for the edge is known based on the
result of the computation. Over time, the exploration process accumulates a
labelled dataset that can be used to train a neural model. After a compara-
tively short time for training, the neural model can be deployed to accelerate
the search for traversable edges in G. This process can be repeated as training
data grows larger.

Acknowledgements

We would like to thank the referees for a careful reading of the manuscript
and for their valuable comments. We are grateful to the following institutions
for allowing us to use their computational resources: Dartmouth College, Har-
vard University, Leibniz University Hannover, and Max Planck Institute for
Mathematics in the Sciences (MPI MiS) Leipzig. This project began while
all three authors were at MPI MiS. We thank MPI MiS for providing a stim-
ulating environment. Also, we thank Pierre Lairez for his helpful comments.

Funding All three authors were partially funded by Max Planck Institute
for Mathematics in the Sciences (MPI MiS) Leipzig. In addition to that:
K. Heal was funded by Harvard University and C. S. Draper Laboratory. A.
Kulkarni was funded by Dartmouth College and the Simons Collaboration on
Arithmetic Geometry, Number Theory, and Computation (Simons Founda-
tion grant 550033). E.C. Sertöz was funded by Leibniz University Hannover.
All of the educational institutions provided computational resources.

Declarations

Conflict of interest There is no conflict of interest.

Data availability The periods of all the few monomial quartics that we have
been able to compute are available on our Dropbox repository. We also in-
cluded our Picard lattice computations in that repository.

Code availability The software package developed for this project is avail-
able at github: period graph. This software depends on the custom package
PeriodSuite. These packages are written to work in an environment running
SageMath [9] and Magma [3].

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by

https://www.dropbox.com/sh/a9dq3wa6dr61ahf/AADfn1L1QYZ5-ajDUrxISsnBa?dl=0
https://github.com/a-kulkarn/period_graph
https://github.com/emresertoz/PeriodSuite

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 39 of 41 24

statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Aggarwal, C.C.: Data classification. In: Data Mining, pp. 285–344. Springer
(2015)

[2] Arapura, D.: Algebraic Geometry over the Complex Numbers. Springer, Berlin
(2012)

[3] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symb. Comput. 24(3–4), 235–265 (1997). Computational algebra
and number theory (London, 1993)

[4] Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: the-
ory and experimental evaluation. Math. Program. 73(2), 129–174 (1996)

[5] Claesen, M., De Moor, B.: Hyperparameter search in machine learning. Proc.
of the 11th Metaheuristics International Conference (2015)

[6] Costa, E., Harvey, D., Kedlaya, K.S.: Zeta functions of nondegenerate hyper-
surfaces in toric varieties via controlled reduction in p-adic cohomology. In:
Proceedings of the Thirteenth Algorithmic Number Theory Symposium, pp.
221–238. Mathematical Sciences Publishers (2019)

[7] Costa, E., Sertöz, E.C.: Effective obstruction to lifting Tate classes from pos-
itive characteristic. In: Arithmetic Geometry, Number Theory, and Computa-
tion. Simons Symposia. Springer (2022)

[8] Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2(4), 303–314 (1989)

[9] Developers, T.S.: SageMath, the Sage Mathematics Software System (Version
9.3) (2021). http://www.sagemath.org

[10] Elsenhans, A.S., Jahnel, J.: Examples of K3 surfaces with real multiplica-
tion. LMS J. Comput. Math. 17(A), 14–35 (2014). https://doi.org/10.1112/
S1461157014000199

[11] Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8),
861–874 (2006)

[12] Girosi, F., Poggio, T.: Networks and the best approximation property. Biol.
Cybern. 63(3), 169–176 (1990)

[13] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016).
http://www.deeplearningbook.org

[14] Griffiths, P.A.: On the periods of certain rational integrals. I. Ann. Math. (2)
90, 460–495 (1969)

[15] Griffiths, P.A.: On the periods of certain rational integrals. II. Ann. Math. (2)
90, 496–541 (1969)

[16] He, Y.H., Kim, M.: Learning algebraic structures: preliminary investigations
(2019). arXiv:1905.02263

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.sagemath.org
https://doi.org/10.1112/S1461157014000199
https://doi.org/10.1112/S1461157014000199
http://www.deeplearningbook.org
http://arxiv.org/abs/1905.02263

24 Page 40 of 41 K. Heal et al. Adv. Appl. Clifford Algebras

[17] He, Y.H., Lee, S.J.: Distinguishing elliptic fibrations with AI. Phys. Lett. B
798, 134889 (2019). https://doi.org/10.1016/j.physletb.2019.134889

[18] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are
universal approximators. Neural Netw. 2(5), 359–366 (1989)

[19] Huang, Z., England, M., Wilson, D.J., Bridge, J., Davenport, J.H., Paulson,
L.C.: Using machine learning to improve cylindrical algebraic decomposition.
Math. Comput. Sci. 13(4), 461–488 (2019)

[20] Katz, N.M., Oda, T.: On the differentiation of De Rham cohomology classes
with respect to parameters. J. Math. Kyoto Univ. 8, 199–213 (1968)

[21] Lairez, P., Sertöz, E.: A database of quartic surfaces. http://pierre.lairez.fr/
quarticdb/ (Accessed 21 Jan 2022) (2018)

[22] Lairez, P., Sertöz, E.C.: A numerical transcendental method in algebraic ge-
ometry: computation of Picard groups and related invariants. SIAM J. Appl.
Algebra Geom. 3(4), 559–584 (2019). https://doi.org/10.1137/18M122861X

[23] Lairez, P., Sertöz, E.C.: Separation of periods of quartic surfaces (2020).
arXiv:2011.12316

[24] Lenstra, A.K., Lenstra, H.W., Jr., Lovász, L.: Factoring polynomials with ra-
tional coefficients. Math. Ann. 261(4), 515–534 (1982)

[25] Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function.
Neural Netw. 6(6), 861–867 (1993)

[26] Looijenga, E., Peters, C.: Torelli theorems for Kähler K3 surfaces. Compos.
Math. 42(2), 145–186 (1980)

[27] Movasati, H., Sertöz, E.C.: On reconstructing subvarieties from their periods.
Rendiconti del Circolo Matematico di Palermo Series 2 (2020). https://doi.
org/10.1007/s12215-020-00562-x

[28] Russell, S., Norvig, P.: Artificial intelligence: a modern approach. Prentice Hall
series in artificial intelligence. Pearson Education (2016)

[29] Sertöz, E.C.: Computing periods of hypersurfaces. Math. Comput. 88(320),
2987–3022 (2019)

[30] Shlens, J.: A tutorial on principal component analysis. Int. J. Adv. Res. Com-
put. Sci. Manag. Stud. (2005)

[31] Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving
partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018). https://
doi.org/10.1016/j.jcp.2018.08.029

[32] Voisin, C.: Hodge theory and complex algebraic geometry. I, Cambridge Studies
in Advanced Mathematics, vol. 76, English edn. Cambridge University Press,
Cambridge (2007). Translated from the French by Leila Schneps

[33] Voisin, C.: Hodge theory and complex algebraic geometry. II, Cambridge Stud-
ies in Advanced Mathematics, vol. 77, English edn. Cambridge University
Press, Cambridge (2007). Translated from the French by Leila Schneps

[34] Zarhin, Y.G.: Hodge groups of K3 surfaces. J. Reine Angew. Math. 341, 193–
220 (1983)

https://doi.org/10.1016/j.physletb.2019.134889
http://pierre.lairez.fr/quarticdb/
http://pierre.lairez.fr/quarticdb/
https://doi.org/10.1137/18M122861X
http://arxiv.org/abs/2011.12316
https://doi.org/10.1007/s12215-020-00562-x
https://doi.org/10.1007/s12215-020-00562-x
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029

Vol. 32 (2022) Deep Learning Gauss–Manin Connections Page 41 of 41 24

Kathryn Heal
School of Engineering and Applied Sciences
Harvard University
29 Oxford Street
Cambridge MA02138
USA
e-mail: kathematical@gmail.com

Avinash Kulkarni
Department of Mathematics
Dartmouth College
Kemeny Hall, 27 N Main St
Hanover NH03755
USA
e-mail: avinash.a.kulkarni@dartmouth.edu

Emre Can Sertöz
Institut für Algebraische Geometrie
Leibniz Universität Hannover
Welfengarten 1
30167 Hannover
Germany
e-mail: emre@sertoz.com

Received: August 18, 2021.

Accepted: January 25, 2022.

	Deep Learning Gauss–Manin Connections
	Abstract
	1. Introduction
	1.1. Application to Quartic Surfaces
	1.1.1. Using Periods Rigorously
	1.1.2. Comparison with Other Methods for Computing Picard Numbers

	1.2. Neural Network Heuristics for Rigorous Computations
	1.3. Software
	1.4. Main Problem: Computing Periods of Hypersurfaces
	1.5. Deep Learning in Algebraic Geometry
	1.6. Outline

	2. Period Computation
	2.1. The Integral Structure
	2.2. The Hodge Structure on Cohomology
	2.3. The Period Matrix
	2.4. The Griffiths Basis for Cohomology
	2.5. Transition Matrices for Periods
	2.5.1. Period Transition Matrices of Linear Translates
	2.5.2. First Order Gauss–Manin Connection

	3. Computational Scheme
	3.1. Two Types of Problems and a General Framework
	3.1.1. First Problem: Computing Periods for One Target Polynomial
	3.1.2. Second Problem: Computing Periods for Many Hypersurfaces
	3.1.3. General Framework

	3.2. Searching a Computation Graph for an Efficient Tree
	3.2.1. Brute-Force Strategy
	3.2.2. Informed Brute Force

	4. Deep Learning Models
	4.1. Neural Networks to Approximate Functions
	4.2. The Class of Functions Associated to a Neural Network
	4.3. Gradient Descent using Neural Networks
	4.3.1. Loss Function
	4.3.2. Gradient Descent
	4.3.3. Stochastic Minibatch Gradient Descent
	4.3.4. Hyperparameter Selection

	5. A Computability Scoring Function for Estimation
	5.1. Input Space E
	5.2. The Subjective CSF φ
	5.3. Input Augmentation
	5.3.1. Studying the Complexity of the Input
	5.3.2. Complexity of Cohomology Matrices

	5.4. Dataset Preprocessing
	5.4.1. Dimension Reduction: Principal Component Analysis
	5.4.2. Balancing the Dataset

	5.5. Comparison of Learning Models
	5.5.1. Classical Statistical Methods
	5.5.2. Deep Neural Networks

	5.6. Implementation
	5.6.1. Four-Monomial Quartics
	5.6.2. Extrapolating from Four-Monomial to Five-Monomial Quartics

	6. Application
	6.1. Five Monomials
	6.2. List of Results
	6.2.1. The Missing Vertices
	6.2.2. Isomorphism Classes
	6.2.3. Endomorphism Fields

	6.3. Methodology
	6.3.1. Additional Simplifications
	6.3.2. Computing Isomorphism Classes

	6.4. Performance on Applications
	6.5. Costs of Collecting the Training Data and Training the Network

	Acknowledgements
	References

