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A B S T R A C T

Entangled ensembles have been created in versatile atomic systems
and find a promising application in entanglement-enhanced metrology.
Here, entangled spin-states have been successfully applied within
interferometers that allow to measure magnetic fields and frequencies
with enhanced sensitivities. In contrast, atom interferometers for the
measurement of inertial forces and gravitational fields are operated in
external degrees of freedom and span an area in space-time. To make
use of entangled states here, the entanglement has to be generated
among momentum modes with suitable spatial extent and velocity
width.

In this thesis, a source of momentum-entangled atoms that is com-
patible with present-day light-pulse atom interferometers is presented.
Utilising a quasi-adiabatic ramp through a quantum phase transition,
highly-entangled twin-Fock states are created in the internal spin-
degree of freedom of a 87Rb Bose-Einstein condensate. Hereon, the
entanglement is successfully transferred to distinct momentum-modes
by a stimulated Raman coupling and verified by the direct measure-
ment of an entanglement criterion. The observed mode quality and
the residual expansion demonstrate that this entangled source is well-
suited to the successive application in light-pulse atom interferometers
and opens up a path to gravimetry beyond the standard quantum
limit. Furthermore could the demonstrated techniques be employed
to realise a scalable atomic Bell test. In the long run, similar entan-
gled sources could specifically enhance the performance of gravity
gradiometers, tests of the Einstein Equivalence Principle and future
atomic gravitational wave detectors.

keywords : Bose-Einstein condensate, spin-changing collisions, twin-
Fock state, entanglement, momentum-entanglement, atom interferom-
etry, Raman coupling, Bell test
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Z U S A M M E N FA S S U N G

Verschränkte Zustände wurden in vielen atomaren Systemen erzeugt
und finden ein aussichtsreiche Anwendung in der verschränkungs-
gestützten Metrologie. Hier wurden verschränkte Spinzustände er-
folgreich in Interferometern eingesetzt, mit denen Magnetfelder und
Frequenzen mit erhöhter Empfindlichkeit gemessen werden können.
Im Gegensatz dazu werden Atominterferometer zur Messung von
Beschleunigungen und Gravitationsfeldern in externen Freiheitsgra-
den betrieben und spannen eine Fläche in der Raumzeit auf. Um hier
verschränkte Zustände nutzen zu können, muss die Verschränkung
zwischen Impulszuständen mit geeigneter räumlicher Ausdehnung
und Geschwindigkeitsbreite erzeugt werden.

In dieser Arbeit wird eine Quelle für impulsverschränkte Atome
vorgestellt, die mit heutigen Atominterferometern kompatibel ist.
Unter Verwendung einer quasi-adiabatischen Rampe durch einen
Quantenphasenübergang werden hochverschränkte Zwillings-Fock-
Zustände im inneren Spin-Freiheitsgrad eines 87Rb Bose-Einstein-
Kondensats erzeugt. Die Verschränkung wird durch eine stimulierte
Raman-Kopplung erfolgreich in den Impulsraum übertragen und
durch die direkte Messung eines Verschränkungskriteriums verifiziert.
Die beobachtete Modenqualität und die Restexpansion zeigen, dass
sich diese verschränkte Quelle gut für die sukzessive Anwendung in
Atominterferometern eignet und einen Weg zur Gravimetrie jenseits
des Standard-Quantenlimits eröffnet. Darüber hinaus könnten die auf-
gezeigten Techniken zur Durchführung eines skalierbaren atomaren
Bell Tests eingesetzt werden. Langfristig könnten ähnliche verschränk-
te Quellen insbesondere die Leistung von Gravitationsgradiometern,
Tests des Einsteinschen Äquivalenzprinzips und zukünftigen atoma-
ren Gravitationswellendetektoren verbessern.

schlagwörter : Bose-Einstein Kondensat, spinverändernde Stöße,
Zwillings-Fock Zustand, Verschränkung, Impulsverschränkung, Ato-
minterferometrie, Raman-Kopplung, Bell Test
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1
I N T R O D U C T I O N

Within the last century, the perception of entanglement matured from
a disturbing artefact of quantum theory to a core recource in quantum
technology.

In 1935, physicist Erwin Schrödinger placed a cat into a steel box,
together with a flask of poison that would be destroyed upon the
random decay of a radioactive atom. As quantum mechanics does not
predict the exact time of the decay, but only the chance for the decay to
happen after some time, the quantum state of the combined atom-cat
system would at some point describe the cat as dead and alive simul-
taneously. With this, as he said "burlesque" , gedankenexperiment,
Schrödinger wanted to express what prevented him from accepting
quantum mechanics to be an image of reality [1]. To this end, he actu-
ally constructed what later would be called an entangled state between
the atom and the cat. In the same year, Einstein, Podolsky and Rosen
(EPR) expressed a similar view on quantum theory in their famous
paper titled "Can Quantum-Mechanical Description of Physical Reality
be Considered Complete?" [2]. Here, they constructed a state of two
entangled particles with correlated momentum and position. Given
this state, the measurement of either momentum or position at one
particle allows to predict with certainty the momentum or position
of the other particle, i. e. the state of the untouched particle would
change instantaneously upon the choice of the distant measurement.
As such nonlocal effects are excluded by special relativity, argued Ein-
stein, the actual state of the untouched particle cannot depend on the
chosen measurement and thus the constructed quantum state cannot
correspond to a state of reality. Therefore, quantum mechanics was
regarded to be incomplete and only a proxy of an underlying theory
that resolves the vagueness using so far hidden variables. In 1964, John
Stewart Bell refined the state and the measurement envisaged by EPR
and showed that the outcome predicted by quantum mechanics differs
from the prediction of any classical hidden variable theory assuming
locality and realism [3]. Thereby, the possibility of such an underlying
classical theory became verifiable by conducting experiments — and
has been experimentally negated since then [4–6]. This tells us that
the world as we find it on the microscopic scale cannot obey locality
and realism, but which of both assumptions fails, or if even both need
to be dropped, remains unknown [7].

Moreover, entanglement seems not only to be a feature of some
uncommon states, but also an omnipresent process. Entanglement
between subsystems has been shown to drive thermalisation and clas-
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2 introduction

sical dynamics on the level of the subsystems, i. e. a measurement
of the subsystem reveals classical outcomes, whereas on the global
scale, the system becomes more entangled [8, 9]. As we commonly
observe some sort of subsystem, interacting with a larger environ-
ment which is not controlled or monitored completely (particularly
true for macroscopic objects), we usually find states that characterise
as classical while being invisibly entangled with the environment
(known as decoherence). Hence, observing entanglement demands
a well-isolated system, such that the entanglement of a specifically
prepared state remains within the observable system and decoherence
is supressed.

As photons have less possibilities to interact with their environment
compared to atoms, they were the natural system for first experimental
observations of non-classical states [10, 11]. At this time, light inter-
ferometers have been around for nearly a century [12] and advanced
towards the realm where the quantum properties of the probe state,
i. e. the light that is send through the interferometer, became relevant
for possible limitations in precision [13]. The possibility to squeeze
the quantum noise inherent to the probe state using correlated pho-
tons was formulated in 1981 [14] and was realised experimentally
within the same decade [15, 16]. Since then, the so far insurmount-
able standard quantum limit (SQL) was overcome by using squeezed
states in many optical interferometers, most prominently in the cur-
rent gravitational wave detectors [17]. The necessity of entanglement
for interferometry beyond the SQL was shown later in Ref. [18] and
established the class of metrological useful entanglement.

The idea to prepare squeezed states in many-body atomic systems
to enhance atom interferometric measurements formed in the early
1990s [19, 20]. It took nearly 20 years for the first spin-squeezed state to
be prepared [21, 22] and to finally be applied to enhance the sensitivity
of an interferometer [23, 24]. Since then, different types of many-body
entangled states followed in Bose-Einstein condensates (BECs) as well
as cold thermal clouds [25]. For the majority of realised states, the
entanglement has been established among spin states, which allows
for a metrological enhancement for magnetometers [26] or for atomic
clocks [27, 28].

Also in the early 1990s the field of atom interferometry emerged,
where similarly to the light beam in an optical interferometer, atoms
should travel on distinct paths and recombine again for interference.
The motivation to replace photons by atoms is the fundamental sensi-
tivity enhancement due to the relatively small de Broglie wavelength
associated with massive atoms. Furthermore, the mass ensures a natu-
ral ability to sense gravity and inertial forces. Different techniques have
been realised simultaneously within one year: Atomic beams have been
spatially split and recombined by deflection on microfabricated matter
gratings [29] and double slit configurations [30] (later on also by deflec-
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Figure 1.1: Comparison of realised momentum-entangled states regarding
the ensemble size and the distinctness of the momentum modes,
both relevant quantities for the application in interferometry. The
size of the blue markers represents the inverse of the directly
observed reduction of quantum fluctuations (number squeezing).
In case of a grey marker, a value for the reduced fluctuations
was not reported. Notable additional qualities are detected Bell
correlations (Truscott group) and directly measured metrological
gain (Thompson group). The graph is based on data reported
in [41] (Schmiedmeyer), [42–44] (Westbrook), [45, 46] (Truscott),
[47] (this work) and [48] (Thompson).

tion on standing light waves [31]). The photon recoil during the optical
transition in Ramsey spectroscopy has been utilized to implement an
atom interferometer that measures the Sagnac effect [32]. The first
atom interferometer where atoms from a cold thermal ensemble are
coherently separated and recombined by stimulated two-photon Ra-
man transitions has been reported in the same year as well [33]. Based
on this principle, many light-pulse atom interferometers followed and
demonstrated the precise measurement of accelerations [34], Earth’s
rotation and gravitational acceleration [35–37], gravity gradients [38]
and the gravitational constant [39]. Naturally, it is desirable to operate
such atom interferometers also with a sensitivity beyond the SQL, as it
is possible in optical interferometry. Momentum-entangled ensembles,
as required to provide a resource of metrological useful entanglement
for this field, present a long-standing challenge [40].

So far realised momentum-entangled states are depicted in Fig-
ure 1.1. The results are compared regarding two relevant quantities
for the application in atom interferometry. The ensemble size, as it de-
termines the SQL-limited sensitivity to start with, and the distinctness
of the momentum modes given by the mean momentum difference of
the modes ∆p in proportion to the momentum spread of each mode
σp. A large momentum difference is beneficial to increase the absolute
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phase signal for a given evolution time. The momentum spread deter-
mines for example the momentum transfer efficiencies and maximally
feasible free-fall times. The physical systems employed to prepare
momentum-entanglement are quite diverse. In the Schmiedmeyer
group, BECs are used to provide correlated momentum pairs from
collisional de-excitation of an excited trap mode. Two colliding BECs

are the source for scattered atoms with correlated and Bell correlated
momentum in the Westbrook and the Truscott group. In the Thompson
group, a cavity-based atom-light interaction is employed to prepare
an entangled thermal ensemble which is then partially accelerated
by Raman light pulses and traverses a full interferometer within the
cavity.

The momentum-entangled source presented in this work aims to
demonstrate a viable path to provide useful entanglement for today’s
high-precision atom interferometers. Here, entanglement is generated
in the spin-degree of freedom of a 87Rubidium BEC by spin-changing
collisions. To prepare a major fraction of the ensemble in the entan-
gled state, a quasi-adiabatic parameter ramp over a quantum phase
transition (QPT) is employed. Thereon, the ensemble is released to
free-fall and coherently transferred to distinct momentum modes by
a stimulated Raman transition. The momentum separation of the en-
tangled modes is a factor of 29(3) larger than the residual expansion
of the ensemble, allowing for complete spatial separation within a
few milliseconds of free fall, where the atomic clouds show a number
squeezing of −3.9(6)dB beyond shot-noise. The measurement of a
conjugate observable allows to infer a generalised squeezing param-
eter of −1.9(7)dB, which constitutes a direct proof of entanglement
between the two momentum modes.

This thesis is organised as follows: In chapter 2, some basic theoreti-
cal concepts of entanglement-enhanced interferometry are presented
and the experimental achievements in this field are discussed. In chap-
ter 3, the apparatus and physical system of a spinor Bose-Einstein
condensate is briefly introduced and the various entangled states that
can be generated by spin dynamics are presented. How to precisely
control spin dynamics is discussed in chapter 4, and applied to gen-
erate a large fraction of the condensate in an entangled spin-state.
In the main part, chapter 5, the techniques implemented to realise
a highly efficient transfer of photon momenta to the atoms are pre-
sented and applied to an entangled spin-state which then proves to
be entangled in momentum space. The possible improvements of
the presented entangled source are discussed in chapter 6. Based
on the techniques utilised in this work, a possible extension to an
entanglement-enhanced measurement of gravity is presented and a
scalable atomic Bell test is sketched.



2
F U N D A M E N TA L C O N C E P T S A N D
S TAT E - O F - T H E - A RT E X P E R I M E N T S

In this chapter, the basic theoretical concepts of entangled ensembles
and their application in interferometry are introduced. A focus lies
on the key features of a specific type of entangled states, the twin-
Fock states. In addition, recent experimental achievements in cold
atom experiments are summarised, focussing on the generation of
entanglement in internal and external degrees of freedom, already
realised entanglement-enhanced interferometers and finally the pro-
posed routes towards the application of entanglement in inertial sen-
sors.

2.1 entanglement-enhanced interferometry

A common interferometer employs two modes which can be coupled
but otherwise evolve independently and can accumulate a relative
phase. Whether the modes are realised by the photons in two laser
paths of an optical interferometer or by atoms populating two different
states in an atom interferometer is conceptually equivalent. Each
particle traversing the interferometer can be described as a simple two-
state quantum system — a qubit. In contrast to experiments working
on the actual realisation of high-fidelity single qubits, in our system
the many qubits are indistinguishable and cannot be individually
addressed. Any manipulation is applied to an entire ensemble of
qubits. These many-body states are best described in the occupation
number representation, where the indistinguishability is incorporated
and the particles statistics (bosonic or fermionic) is reflected in the
commutation relation of annihilation and creation operators.

2.1.1 Collective qubits and visualisation on the Bloch sphere

A single qubit α |a〉 + β |b〉 may describe a single atom in a super-
position of state |a〉 and state |b〉. When measured, the atom would
be found with a probability of |α|2 in state |a〉 and with |β|2 in state
|b〉. The state can be visualised as a point on the surface of the well-
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6 fundamental concepts and state-of-the-art experiments

Figure 2.1: Depiction of a schematic two-mode interferometer. Here, all atoms
initially populate mode a. A π/2-coupling, e. g. a microwave
pulse, prepares the atoms in a 50/50 superposition of both modes
and enables the accumulation of a relative phase θ. The second
π/2-coupling translates the relative phase shift into a population
imbalance of the two modes. Finally, the number of atoms in each
mode is counted and the phase shift estimated from the number
difference N− = NA − NB.

known three dimensional Bloch sphere. The axes that span this three-
dimensional state space are given by

sx =
1
2
(|b〉 〈a|+ |a〉 〈b|) (2.1)

sy =
1
2i

(|b〉 〈a| − |a〉 〈b|) (2.2)

sz =
1
2
(|a〉 〈a| − |b〉 〈b|) . (2.3)

These operators are proportional to the Pauli matrices and satisfy
the SU(2) spin algebra [sl , sm] = iεlmnsn. Since the states |a〉 and |b〉
do not necessarily represent a spin-1/2 system, one speaks about
pseudo-spins here.

We can extend this description to a collection of N indistinguishable
qubits by summing up the individual pseudo-spins and applying the
formalism of second quantisation. The resulting operators

Jx =
N

∑
i=1

s(i)x =
a†b + b†a

2
(2.4)

Jy =
N

∑
i=1

s(i)y =
a†b− b†a

2i
(2.5)

Jz =
N

∑
i=1

s(i)z =
a†a− b†b

2
(2.6)

are expressed in terms of bosonic annihilation and creation opera-
tors and constitute a collective pseudo-spin J = (Jx, Jy, Jz), since the
collective operators inherit the above commutation relation

[Jl , Jm] = iεlmn Jn. (2.7)
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Figure 2.2: The many-body Bloch sphere. A coherent spin-state (CSS) of N
pseudo-spins visualised on the generalised Bloch sphere with
radius N/2. The width of the circle is connected to shot-noise
and a projection onto the Jz axis gives the expected distribution
of outcomes for a measurement of the population difference
2Jz = NA − NB. The shape of the distribution characterising the
state is retained under simple rotations, as for example due to an
interferometric sequence.

For completeness, we also note that the identity s0 = |a〉 〈a|+ |b〉 〈b|
becomes the operator of the total atom number

N̂ =
N

∑
i=1

s(i)0 = a†a + b†b, (2.8)

and the conservation of probability 〈s0〉 = |α|2 + |β|2 = 1 thereby
corresponds to the conservation of the total atom number

〈
N̂
〉
=

∑N
i=1 1 = N.
A state of indistinguishable qubits can be visualised on the surface

of a Bloch sphere (see Figure 2.2), very similar to a single qubit.
The basic operations that build up a two-mode interferometer as
schematically shown in Figure 2.1, constitute rotations of the state on
the Bloch sphere. Opening the interferometer by the generation of a
50/50 superposition of the modes a and b results in a π/2-rotation
onto the equator, let’s say around Jx. A subsequent acquirement of
a relative phase rotates the state by θ around the Jz axis. The two
modes of the interferometer are chosen such that the relative phase
depends on the quantity of interest, e. g. a magnetic field or a coupling
frequency. Finally, the interferometer is closed by another π/2-rotation
aroud the Jx axis. In total, the interferometer describes a rotation by θ

around the Jy axis.
At the north and south pole we find the states with all atoms in

mode a |N〉a ⊗ |0〉b and all atoms in mode b |0〉a ⊗ |N〉b, respectively.
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Superpositions with a 50/50 mean population of the modes are situ-
ated on the equator. A general coherent spin-state (CSS) can be attained
by rotating the polarised state at the north pole |N, 0〉 by ϑ around the
Jy axis and then by ϕ around the Jz axis

|ϕ, ϑ, N〉CSS = e−iϑJy e−iϕJz |N, 0〉 . (2.9)

The fluctuations of these states in the plane orthogonal to their mean
spin direction represent the minimal fluctuations that can be reached
with uncorrelated atoms. As a consequence of the commutation re-
lation in Equation 2.7, the standard deviation of orthogonal spin
components obey the uncertainty relation

∆Jx∆Jy ≥
1
2
| 〈Jz〉 | (2.10)

where the bound on the right hand side evaluates to N/4 for all CSS’
because | 〈Jn〉 | equals the radius N/2 of the sphere. The fluctuations
are equally distributed and easy to compute exemplarily in the Jx-Jy

plane for the state |N, 0〉, where

∆Jx = ∆Jy =

√〈
J2
y

〉
=
√

N/2. (2.11)

Simply rotating the state according to Equation 2.9 does not change
the fluctuations, therefore all CSS’ saturate the uncertainty relation and
are best visualised by a circle with a radius of ∝

√
N/2.

2.1.2 Shot noise, the standard quantum limit and beyond

A common observable at the end of an interferometer sequence is the
number difference N− = NA − NB. Quantum mechanics only predicts
the probability distribution of outcomes for this observable. As it is the
case for all stochastic processes, the outcome of a single measurement
is not certain. If N independent atoms are employed, the outcome
inherently fluctuates with the so-called shot-noise

√
N around the

mean (for a 50/50 distribution). These quantum fluctuations impose
a limit on the achievable precision in estimating the phase shift —
the standard quantum limit (SQL). This limit can only be overcome
by employing entangled states [18], i. e. many-particle states with
quantum-mechanical inter-particle correlations. These non-classical
correlations can affect the probability distribution of the measured
outcomes of the interferometer in a way that the phase estimation is
enhanced beyond the SQL and the physical quantity that is encoded in
the phase shift, such as a magnetic field strength or an acceleration,
can be measured more precisely.

Formally, an interferometer imprints a phase shift θ onto an input
state |ψ〉in → |ψ(θ)〉. The observable M describing the measurement
on the output state can be choosen at will and leads to a single
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measurement outcome. Repeating the same measurement ν times
gives us a set of outcomes x = {x1, x2, . . . , xν}. We can predict the
underlying probability distribution px(θ) = 〈ψ(θ) |x〉 〈x|ψ(θ)〉 where
|x〉 〈x| is a projector onto all states that give the outcome x when
measured by M (we can choose an arbitrary basis here). The whole set
of projectors is given by the spectral decomposition M = ∑x x |x〉 〈x|.
As an example, we can write the population imbalance in terms of two-
mode Fock states |N − x, x〉 = |N − x〉A ⊗ |x〉B and x = 0, 1, . . . N −
1, N as

NA − NB = ∑
x
(N − x) |N − x, x〉 〈N − x, x| ,

which determines the probabilty for each population imbalance p(θ)N−x =

〈ψ |N − x, x〉 〈N − x, x|ψ〉 in the range N, N − 1, · · · − (N − 1),−N.
In the experiment, full knowledge of the probability distribution

would be ideal to estimate the phase shift. However, as experiments
provide a limited set of outcomes, it is usually not feasible to fully re-
construct the underlying probability distribution and therefore global
properties such as the mean

〈M〉 = ∑
x

x p(x) (2.12)

and the variance

(∆M)2 = ∑
x

p(x) (x− 〈M〉)2 =
〈

M2〉− 〈M〉2 (2.13)

are used. As we will see, it often turns out that phase estimation based
on the mean and the variance of the number difference is already
sufficient to reach optimal phase sensitivities.

Figure 2.3 visualises the calculation of the value and the uncertainty
of the phase shift from the mean 〈N−〉 and the standard deviation
∆N− of the population imbalance for a fixed total number N. The fluc-
tuations in the measured number difference translate to fluctuations
in the phase estimation via the slope of the mean value. This simple
error propagation gives rise to the method of moments formula for
the phase uncertainty

∆θMOM =
∆N−
|∂θ 〈N−〉 |

. (2.14)

A similar approach also applies to higher moments, where for example
the signal is given by the variance (instead of the mean) and the
fluctuations by the variance thereof. This is used for the analysis of
twin-Fock states and presented in more detail in the next section.

If technical noise can be neglected and we employ states of un-
correlated atoms only, the fluctuation that remains is the shot-noise
∆N− =

√
N, fundamental to the stochastic process of N independent

atoms choosing output state A or state B with a probability of 50 %



10 fundamental concepts and state-of-the-art experiments

Figure 2.3: A noisy interferometer signal to illustrate the SQL. The phase shift
is obtained from the measurement of the number difference N−
between the output ports of an interferometer. For each phase
shift θ, the mean 〈N−〉 (blue line) and the fluctuations of the
measured distribution are shown. Its uncertainty can stem from
quantum fluctuations (dark grey area), be of technical origin (light
grey area), or a combination of both. The slope of the mean with
respect to the phase is largest at θ = π/2 (so-called mid-fringe
position, vertical orange line). The phase estimation uncertainty is
proportional to the uncertainty in the number difference and anti-
proportional to the slope of the signal. If the quantum fluctuations
dominate (that is no light grey area), the reduced fluctuation
towards the extreme points is exactly nullified by the decreasing
slope and the phase estimation uncertainty becomes the phase
independent SQL.

each. This scenario is equal to a CSS on the equator, where the uncer-
tainty of Jz directly corresponds to the shot noise in the measurement
of the population imbalance

∆N− = ∆(NA − NB) = 2∆Jz =
√

N. (2.15)

In the case shown in Figure 2.3, the mean value 〈N−〉 follows the
function N cos(θ) with maximum slope |∂θ 〈N−〉 | = N at θ = π/2.
Hence, the above phase uncertainty ∆θMOM cannot go below the
standard quantum limit (SQL) [49]

∆θSQL =
1√

ν
√

N
. (2.16)

The assumption, that each atom ends up in one state or the other
independently of all other atoms, is reflected by the equal influence of
the number of atoms N and the number of trials ν on the statistical
uncertainty of the phase estimation. The phase uncertainty is the same,
if the experiment is done once with N atoms or N times with one atom.
This limit holds for standard two-mode interferometers (imprinting
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the phase by a collective unitary rotation) and using separable states.
The limit is independent of the phase and the chosen observable, and
applies to ensembles with fluctuating total atom number [50]. Note
that in the case of a relative phase imprint between more than two
interferometric modes, the SQL generalises to [49, 51]

∆θSQL =
1√

ν
√

N(m− 1)
(2.17)

where m is the number of modes.
In a more general setting, the ideal phase uncertainty is attained by

incorporating not just the slope of the mean but the rate of change of
the whole distribution of outcomes. The quantity that does the job is
the Fisher information (FI) [49]

F (θ) = ∑
x

1
px(θ)

(
∂px(θ)

∂θ

)2

. (2.18)

It measures the rate of change of the probability of each outcome x
upon a change of the phase θ. It can be shown to be directly linked to
the phase estimation uncertainty by the Cramér-Rao bound [49]

∆θCR =
1√

ν
√

F (θ)
, (2.19)

which constitutes a lower bound to the phase uncertainty that can be
reached for a chosen input state and observable.

In the context of quantum mechanics, one can introduce an upper
bound to the FI by maximizing over all possible measurements M such
that the bound becomes independent from the chosen observable. For
a general input state ρin = ∑k pk |k〉 〈k| (arbitrary basis) this results in
the quantum Fisher information (QFI) [49]

FQ[ρin, HIF] = 2 ∑
k,l

(pk − pl)
2

pk + pl
| 〈k|∆HIF |l〉 |2, (2.20)

which for pure states simplifies to FQ[|ψ〉in , HIF] = 4 (∆HIF)
2. Here,

HIF is a Hamiltonian describing the unitary evolution due to the inter-
ferometer, e. g. HIF = Jy in the case of the configuration of Figure 2.1,
and the variance ∆HIF is calculated with respect to the input state ρin.
The QFI does not depend on the phase or the observable anymore and
therefore serves to characterise the input state. A QFI that exceeds the
number of atoms FQ > N quantifies inter-particle entanglement that
is useful to enhance the phase estimation [18] and is a measure of
the entanglement-depth [52]. Roughly speaking, the larger the QFI,
the larger are the mutually entangled clusters of particles within the
ensemble and the larger is the potential of the state for enhanced phase
estimation. The ultimate potential for phase uncertainty is reached by
the genuine N-particle entangled NOON-state (|N, 0〉+ |0, N〉)/

√
2
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Figure 2.4: Entangled states on the many-body Bloch sphere visualised by
their Wigner distribution (red is positive and blue negative val-
ues). (a) A spin-squeezed state shows reduced fluctuations in one
direction and increased fluctuations in the orthogonal direction,
in accordance with the uncertainty relation in Equation 2.10. (b)
The twin-Fock state is depicted by a ring on the equator. From its
vanishing number difference ∆Jz = 0 follows a completely unde-
fined relative phase between the two modes. (c) The maximally
entangled NOON state with small structures varying in sign on
the equator that give rise to extreme sensitivity upon rotation
around Jz. Here N = 20.

with a QFI of FQ = N2 which leads to the ultimate Heisenberg limit in
phase uncertainty

∆θHL =
1√
νN

, (2.21)

which shows an improved scaling with the number of employed atoms
N compared to the number of trials ν.

To intuitively explain the performance of highly-entangled states
like the NOON-states, we employ quasi-probability distributions as a
general way to depict many-body states on the surface of the Bloch
sphere. One choice is the Wigner distribution W(ϕ, ϑ), which assigns
a value to each point on the sphere’s surface in a one-to-one corre-
spondence to the states density matrix [25] (for details see Section A.3).
The Wigner distribution can show negative values which are often
connected to non-classical features and can lead to an intuitive under-
standing of the phase sensitivity of highly-entangled states.

In Figure 2.4, a spin-squeezed state, a twin-Fock state and a NOON-
state are compared. A spin-squeezed state works exactly in the same
manner as a CSS and simply reduces the phase uncertainty by sub-
shot-noise fluctuations in the direction of the phase sensing. The use of
the Wigner distribution becomes especially apparent in the case of the
NOON-state. This state shows its extreme sensitivity not for a rotation
around an axis in the equatorial plane, as the maximally stretched
superposition of the states |N, 0〉 and |0, N〉 would suggest. The actual
sensitivity is reached for a rotation around the Jz axis, where the
states |N, 0〉 and |0, N〉 are unaffected but the small substructures on
the equator (alternating in sign) move. In a final measurement these
small structures manifest in an odd-even structure of the outcome
distribution, where, depending on a tiny phase difference, either only
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even or only odd number differences are measured. This performance
is therefore easily ruined by technical noise in the final detection.

The twin-Fock state |N/2, N/2〉 is a ring on the equator with ideally
vanishing fluctuations in the number difference ∆Jz = 0. Its Wigner
distribution shows substructures as well and also the distribution
of outcomes shows odd-even structures. However, in contrast to the
NOON state, the performance of twin-Fock states can also be em-
ployed by observing only global properties of the distribution. Using
the method of moments and the variance (∆Jz)2 instead of the mean
as a signal actually allows to saturate the Cramér-Rao bound given
by the QFI FQ[|N/2, N/2〉 , Jy] = N2/2 + N. Some characteristics of
twin-Fock states are presented in the following.

2.1.3 Number squeezing and useful entanglement

Twin-Fock states aligned on the equator of the Bloch-sphere ideally
show a vanishing variance in the number difference ∆N− = 0. In the
experiment of course some residual fluctuations are measured, mainly
depending on the level of the noise in the detection of atom numbers.
In our experiments, a reduction to less than 6 % of the usual shot-noise
fluctuations in an ensemble of 〈N〉 = 8000 has been recorded [53].
This reduction of the fluctuations is referred to as number squeezing.
However, the sole observation of number squeezing is only sufficient
to verify entanglement if the state is symmetric, i. e. all atoms are
indistinguishable, which is not guaranteed for in the experiments.
Furthermore, number squeezing would be observed independently of
the size of the twin-Fock states in the ensemble. It is only necessary
that all, or at least a major fraction of the atoms, populate some kind
of twin-Fock state. For example, if we somehow choose for pairwise
entanglement only, the ensemble could be described by a product
state of N/2 two-particle twin-Fock states ⊗N/2

i=1 |1, 1〉(i). The collective
measurement of the number difference in the ensemble is now iden-
tical to a (hypothetical) pairwise measurement of 〈1, 1| Jz |1, 1〉 = 0,
which still results in ideally vanishing fluctuations of the number
difference (see Figure 2.5, second row). Therefore, by the measurement
of number squeezing only, we cannot distinguish whether the atoms
are all entangled with each other (N-partite entanglement) or within
clusters of k or less atoms (k-partite entanglement). This entanglement
depth, however, determines the phase sensitivity of the state.

The actual entanglement depth of the twin-Fock state is reflected in
a measurement of an orthogonal component of the pseudo-spin. In the
Bloch sphere picture, this measurement constitutes a rotation of the
twin-Fock ring by π/2 such that it stands upright before the measure-
ment of the population imbalance. Projecting the ring onto the Jz axis
gives a typical wing distribution with an accumulation of outcomes
at the extreme points. Measuring the variance (∆J⊥)2 =

〈
J2
⊥
〉

of this
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Figure 2.5: Number squeezing and orthogonal spin length for different en-
tanglement structures. Each row shows a different entanglement
depth. The outcome distributions depict the expected outcomes
after a collective rotation by 0, π/(2N), π/2 around the Jy axis
respectively. The fully separable state (first row) shows a Gaus-
sian distribution with a width connected to shot-noise. Upon a
small rotation by π/(2N) the outcome distribution changes only
slightly. The rotation by π/2 turns the state onto the south pole.
Despite the singular outcome at this point, this is still a simple CSS.
The outcome distributions for the pairwise entangled twin-Fock
states (second row) shows the mean pseudospin length of zero
〈Jx〉 =

〈
Jy
〉
= 〈Jz〉 = 0, typical for twin-Fock states. However, the

extreme values of ±N/2 are not reached (here N = 40). If the en-
semble is split into two entanglement clusters of size N/2, these
extreme points are reached, but the outcomes do not accumulate
at the extreme points. The N-particle entangled ensemble shows
the typical wing distribution after a π/2 rotation. Also note that
for small phase shifts π/(2N) (third column) the distribution
changes most in the case of the state |N/2, N/2〉. According to
the FI and the Cramér-Rao bound, we expect the largest phase
sensitivity here.
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distribution characterises the pseudospin in the plane orthogonal to
the number squeezing. If the twin-Fock state consists of less atoms,
the ring has a smaller radius and the extreme points are less likely to
be measured. In general, the distribution of outcomes is given by the
convolution of the distributions of each sub-state. In the exemplary
case of N/2 two-particle twin-Fock states, the measurement of a single
pair of atoms gives ±1 as extreme points. Each two-particle twin-Fock
state shows an outcome independently of the other twin-Fock states
in the ensemble, which makes it very unlikely to collectively measure
the extreme values ±N/2 as shown in Figure 2.5 (second row). Also
in the case of an N/2-partite entangled ensemble, the typical wing
distribution is not established for a collective measurement. Therefore,
the entanglement depth has to be relatively close to the N-particle
entangled twin-Fock state for the typical wing distribution to emerge.

To characterise twin-Fock states in our experiment, we measure a
generalised squeezing parameter [54, 55]

ξ2 = (
〈

N̂
〉
− 1)

(∆Jz)2

2
〈

J2
⊥
〉
−
〈

N̂
〉

/2
, (2.22)

a quantity that for the above reasoning combines the measured number
squeezing (∆Jz)2 and the variance in the orthogonal plane

〈
J2
⊥
〉
. It is

formulated on the basis of uncertainty relations that predict ξ2 ≥ 1 for
separable states. Therefore, a measured squeezing parameter less than
one ξ2 < 1, verifies entanglement. Note that for ideal twin-Fock states
the generalised squeezing parameter vanishes.

The potential of pure twin-Fock states for phase estimation can be
fully utilised by recording the change of the variance

〈
J2
⊥
〉

with an
interferometric phase shift θ and applying the method of moments
(Equation 2.14) similarly to tracking the change of the mean in the
case of using a CSS. To see the transition from one observable to the
other being favourable, Figure 2.6 shows the metrological gain based
on the two-particle mixture

ρ2 = (1− p) |0, π/2, 2〉 〈0, π/2, 2|CSS + p |1, 1〉 〈1, 1|TF , (2.23)

of a CSS defined according to Equation 2.9 and a twin-Fock state. As in
the above example of an ensemble of N/2 entangled pairs, this state
is to be thought as describing the state of each pair in an ensemble
of N atoms. In the case of p = 0, the ensemble is purely in a state of
an N-particle CSS, whereas for p = 1 the ensemble is in the pure state
of N/2 pairwise entangled twin-Fock states. The metrological gain is
defined as the enhancement factor of the phase sensitivity compared
to the SQL in terms of variances

(∆θSQL)
2/(∆θ)2. (2.24)

For Figure 2.6, (∆θ)2 is computed by the method of moments with
respect to the mean (blue) and the variance (orange), or in terms of
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Figure 2.6: Metrological gain of an ensemble of N atoms in a mixed state of
a CSS and pairwise entangled twin-Fock state. The metrological
gain over the SQL (∆θSQL)

2 = (1/
√

N)2 is shown in terms of a
measurement of the mean 〈Jz〉 (blue), the variance

〈
J2
z
〉

(orange)
and the QFI FQ[ρ2, Jy] (grey line). The gradient in the colour rep-
resents the dependence of the respective gain on the absolute
phase shift from small (dark) to large (light). Here N = 100, i. e. a
product state of 50 two-particle states of Equation 2.23.

the QFI (grey line). Using the signal in the mean or the variance only
reaches the optimal metrological performance given by the QFI in the
case of a pure CSS or pure twin-Fock states, respectively. The potential
metrological performance of the mixture increases with the portion of
twin-Fock states, but is not captured by tracking the mean neither the
variance. Even if the ensemble shows only pairwise entanglement, the
ideal phase estimation is a factor of 2 beyond the SQL. In the case of
N = 100 particles shown here, the other two exemplary entanglement
structures of Figure 2.5 show a similar graph, but with reasonably
higher maximum metrological gains of 26 and 51 in the case of a
pure twin-Fock state. Here and in the following, the values for the
metrological gain are expressed as the linear enhancement of the
variances as given by Equation 2.24. The expression of squeezing
values follows the common choice of using decibel, i. e. 10 log10(ξ

2).

2.2 entanglement in cold atom experiments

2.2.1 Realisations in spin space

Entangled many-body states have been realised in various cold atom
experiments. In the vast majority of realisations, the entanglement was
established among different spin states of the atomic ensemble.

To introduce entanglement, some form of interaction has to be es-
tablished. Among the so far realised schemes to entangle spin states of
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cold atomic ensembles, the interaction is either based on inter-atomic
s-wave collisions in Bose-Einstein condensates or based on the atom-
light interaction inside of cavities. A conceptually different approach
are non-demolition measurements, where the state of the ensemble
is measured by a weak interaction, which creates a conditional spin-
squeezed states if the additional information of the non-demolition
measurement is used.

In two-component BECs, spin-preserving collisions between atoms of
the same spin state can be utilised for the generation of spin-squeezing.
The interaction is usually to small and has to be enhanced either
by tuning the difference of the scattering lengths using a Feshbach
resonance [23] or by tuning the spatial overlap of the two components
using state-dependent potentials [56]. Here, the BECs were captured in
a one dimensional lattice or in a magnetic trap on an atom chip and
reached −8.2 dB and −3.7 dB squeezing, respectively. Introducing an
additional coupling between the two components, the modified twist-
and-turn dynamics has been used to prepare −7.1 dB spin-squeezed
states [57]. On the atom chip, a scanning probe interferometer that
measured microwave magnetic fields with a metrological gain of 2.5
has been demonstrated [26]. A magnetometer beyond the SQL has
also been demonstrated in the experiment using an optical lattice [58],
and here also non-Gaussian over-squeezed states proved to achieve
sub-SQL performance [59].

Spin-changing collisions within Spin-1 BECs (three spin components),
hold in a optical dipole trap, have been used to generate either two-
mode spin-squeezed states [27, 60–62] with up to −8.3 dB squeezing or
highly-entangled twin-Fock states [63, 64]. Using this physical system,
a microwave atomic clock with a metrological gain of 1.6 has been
demonstrated in our group [27], as well as a metrological gain of
1.5 using twin-Fock states [63]. More recently, employing the similar
class of Spin-1 Dicke states, a metrological gain of 1.7 beyond the
three-mode SQL and a gain of 7 beyond the usual two-mode SQL has
been demonstrated [51].

The quantised atom-light interaction within cavities has been ap-
plied to generate spin-squeezed states and W states in gas cells [22, 65]
and in laser-cooled ensembles [66–70]. Also the atom-light interactions
in a cavity have been successfully used to generate spin-squeezing
in Ytterbium, a species offering an optical clock transition [71]. Re-
cently, along the same line of research, the first directly entanglement-
enhanced optical clock was realised and showed a metrological gain of
2.8 [28]. The current record on squeezing (−20.1 dB) has been obtained
by exploiting the information from a weak coupling between the light
field in a cavity and an atomic ensemble that is trapped inside the
cavity, demonstrating a directly observed metrological gain of more
than 70 [72]. Such cavity-based squeezing concepts have also been
applied to improve an atomic clock beyond the SQL [73].
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These results have all been attained in spin space. However, for the
application of entangled ensembles in inertially sensitive atom inter-
ferometry, entanglement in external (motional) degrees of freedom is
needed.

2.2.2 Entanglement in external degrees of freedom

The above-mentioned spin-preserving and spin-changing collisions
also proved to generate entanglement between spatial regions and
spatial modes of BECs [74–76]. Particle entanglement between two
spatial modes of a double well potential has been generated using
the repulsive interaction between two components of a BEC upon the
splitting process. By this technique, squeezing between the spatially
separated modes of an optical multi-well trap was created [21] and a
number squeezed input state for an interferometer within a double-
well potential on an atom chip was realised [77]. For the application in
inertially sensitive atom interferometry, however, the challenge would
be the individual addressing of these spatial modes to transfer them
into the momentum modes of an interferometer.

Entanglement has already been directly created in momentum space.
A one-dimensional degenerate Bose gas, prepared in an excited trap
mode by non-adiabatic movement of the magnetic trapping poten-
tial, has been shown to create entangled beams of twin-atoms upon
collisional de-excitation [41]. In another approach, two colliding BECs

are the source for scattered atoms with correlated momenta [42, 45].
Here, the BECs are accelerated by Bragg or Raman light-pulses and
upon the collision of the clouds, atoms are ejected in all spatial direc-
tions. Though entanglement witnessed by Bell correlations [45] and
the ability to measure magnetic fields [78] have been demonstrated,
the prepared momentum modes are not suitable for the integration in
an inertially sensitive atom interferometer.

2.2.3 First steps and proposed routes towards entanglement-enhanced iner-
tial sensing

The first experimental steps towards quantum-enhanced light-pulse
atom interferometry have recently been made. An ensemble of thermal
atoms, spin-squeezed by means of a cavity-based non-demolition mea-
surement, was released to free space. Entanglement was preserved for
free-fall times up to 8 ms and a microwave atomic clock sequence in
free-fall showed a metrological gain of 2.4 [79]. Very recently, in a sim-
ilar system, the first full light-pulse matter-wave interferometer using
up to −3.4 dB squeezed momentum modes has been realised. Here,
the squeezed momentum modes were generated by two cavity-based
methods, i. e. a non-demolition measurement and a spin-dependent
interaction with the cavity light. Subsequently to the entangling pro-
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cess, the thermal ensemble undergoes guided free fall and a sequence
of three Raman light pulses span a Mach-Zehnder like interferometer
in space-time. A metrological gain of 1.5 for N = 660 atoms was
measured regarding a variation of the phase of the closing light-pulse
of the interferometer [48]. Here, the number of atoms was limited due
to the need of velocity selection before the momentum transfer. In
principle, the demonstrated configuration can be employed for inertial
sensing. However, a sensitivity to, for example Earths acceleration, has
not been demonstrated.

The methods used in both experiments have so far only been demon-
strated with thermal atomic ensembles. Using BECs instead, would
make it less challenging to exploit large momentum transfer schemes
with long free fall times as well as to suppress spatial dephasing
during the interferometer. In the main work of this thesis, entangled
momentum modes featuring the mode quality of BECs have been pre-
pared [47]. This was achieved by creating twin-Fock states of about
104 atoms by spin-changing collisions and then coherently transfer
one of the twin modes to a well-separated momentum mode. To this
end, a stimulated Raman transition was used, which is an established
technique in the field of light-pulse atom interferometry. The entangle-
ment could be detected after 15 ms free-fall and persisted the transfer
to momentum space. An inertially sensitive interferometer could be
spanned by a sequence of Raman or Bragg pulses, subsequent to the
demonstrated preparation of the entangled source.

Besides these promising experimental achievements, alternative ap-
proaches working with well-suited momentum modes have so far
only been proposed theoretically. Some protocols aim for Raman- and
Bragg-pulse interferometry and use the atom-light interaction in opti-
cal cavities to directly entangle momentum modes [80–82]. A recent
proposal avoiding cavities suggested to use the interatomic collisional
interactions that are triggered upon separation by Raman light pulses
and the expansion of BECs to prepare squeezed momentum modes [83].
Interestingly, these interactions have been up to now usually regarded
as a source of dephasing which has to be prevented. Along the same
line of thought, further engineering of the interaction by an additional
collimation of the clouds has been proposed [84]. The analysis was
extended also to light-pulse atom interferometry using Bragg scatter-
ing and even added a non-linear readout to achieve detection-noise
robustness. Recently, a detailed review of the prospects and challenges
of implementing entanglement-enhanced inertial sensors with cold
atoms has been published [40], expressing the pursuit of employing
entanglement.





3
S P I N O R B O S E - E I N S T E I N C O N D E N S AT E

When a gas of bosonic atoms is cooled down close to absolute zero,
the atoms collectively populate the lowest possible quantum state and
form a state of matter called a Bose-Einstein condensate (BEC). Spinor
BECs additionally offer the possibility to manipulate their internal spin
degree of freedom, in our case by trapping a BEC independently of
its spin state in an optical dipole trap. Therefore, we are interested
in the distribution among the different spin states, the dynamics
that changes this distribution in time and the specific many-body
quantum states that emerge from this dynamics. To this end, we
usually simplify our system regarding the external degrees of freedom
by assuming complete condensation, i. e. no thermal background,
and identical spatial and motional modes for all atoms. The BEC can
in principle populate several excited modes of the trap, which has
been studied extensively in our group [74, 85]. In the course of this
thesis, it is sufficient to confine the description to the lowest trap
mode and treat the population of higher spatial modes simply as
a loss of atoms. Within this single-mode approximation (SMA), the
quantum dynamics of the spin states is described by a straightforward
Hamiltonian depending on one main experimental parameter only.
By properly tuning this parameter, various dynamics can be realised,
ranging from the original schemes to prepare spin-squeezed states
proposed in the early 90s [20, 61] to more recent protocols utilizing a
quasi-adiabatic change of this parameter to generate highly entangled
twin-Fock states [64, 86–88]. Spin dynamics is our tool to prepare
various entangled states in the lab, all interesting by themselves and
many of use to enhance the precision of interferometric measurements.

3.1 our apparatus in a nutshell

At first, the apparatus utilised to prepare and study 87Rb spinor BECs

will shortly be introduced. A detailed presentation can be found in
earlier theses [54, 89, 90]. The main techniques used at our experiment
are elucidated by chronologically following a typical experimental
sequence.

The vacuum system of the apparatus divides into two glass cham-
bers connected by a differential pumping stage. On one side, a 3D
magneto-optical trap (MOT) is loaded with atoms from the back-
ground gas by the aid of light-induced atom desorption [91]. The
MOT is loaded with around 109 atoms in 10 s. After cooling further
with an optical molasses for 5 ms, the atoms are pumped to the state

21
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|F = 2, mF = 2〉 by circularly polarised light to enable pure magnetic
trapping. The coils for this magnetic trap are mounted on a mechanical
sledge which allows to move the magnetic potential horizontally for
about 0.4 m. The atoms follow the potential through a small tube (dif-
ferential pumping stage) into the second glass cell, where the atoms
find ultra-high vacuum with a pressure in the range of 10−11 mbar. A
stationary magnetic trap takes over the trapping and the ensemble is
cooled further by radio-frequency assisted evaporative cooling [92].
Now, the remaining kinetic energy of the atoms is low enough to allow
for optical trapping. A red-detuned optical dipole trap formed by two
crossed laser beams with 1064 nm wavelength is switched on. Within
the dipole trap, the atoms are cooled below the critical temperature by
another evaporative cooling procedure, where the trapping potential
is gradually lowered to expel the hottest atoms from the ensemble [93].
Finally, at a certain trapping potential, a large fraction of the ensem-
ble undergoes the transition to a BEC. Reducing the potential further
expels the remaining thermal atoms, leaving a pure BEC with up to
1.5× 105 atoms. Usual ensemble sizes for our experiments range from
5× 103 to 8× 104 atoms which is chosen by setting the lowest trapping
potential.

To hold the atoms for the subsequent experiments, the optical trap-
ping potential is ramped up to a fixed value again which determines
the stiffness of the trap. Higher trapping frequencies as well as higher
atom numbers increase the density of the ensemble, thereby increasing
atomic interactions which in turn reduce the life time of the BEC. A
detailed discussion of the dipole trap can be found in [90]. Commonly,
we work at trap frequencies of 2π × (150− 250)Hz, reaching half-life
times for condensates with 104 atoms of about 5 s (caused mainly
by three-body losses) and reasonable interaction strength for spin-
changing collisions ranging from 2π × (5− 15)Hz. The interaction
strength can be adjusted by the total atom number and the stiffness
of the trap. The spin-changing collisions produce correlated pairs of
atomic spins and allow us to prepare various entangled many-body
states. Details of this spin dynamics are discussed in Section 3.3.

To lift the degeneracy within each hyperfine manifold, a homoge-
neous magnetic field is switched on. The field amplitude is set to
around 1 G (to be precise 0.73 G for the experiments presented later
on) and actively stabilised to fluctuations down to 40 µG (one standard
deviation, directly measured with the atoms). The active magnetic
field stabilisation has been thoroughly studied and details can be
found in Ref. [94]. For the experiments presented in this thesis, the
magnetic field needed to be aligned along the direction of the Raman
laser beams (direction of gravity and orthogonal to original setting) to
enable the interaction of σ± polarised Raman light with the free-falling
atoms. To this end, another pair of coils in Helmholtz configuration
has been installed on top and below the science glass chamber. Due
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Figure 3.1: Sketch of the key elements of the experimental setting. The BEC

is held in a red-detuned optical dipole trap within a static and
homogeneous magnetic field of around 1 G. To manipulate the hy-
perfine levels, microwave frequency (MW) and radio frequency (RF)
pulses are used to drive transitions and apply dressing fields.
When released from the optical trap, the free-falling ensemble
can take up momentum from stimulated Raman transitions and
finally be detected by absorption imaging. Momentum modes spa-
tially separate in vertical direction after sufficient time-of-flight,
whereas different spin components separate horizontally due to
an inhomogeneous magnetic field prior detection. Elements are
not to scale.

to unconventional size and distance of the coils, the stabilised field in
vertical direction fluctuates with 170 µG.

To prepare the atoms in a spin state at will, we need the ability to
coherently transfer the atoms from one spin state to the other. This
is done by irradiating the atoms with resonant microwave frequen-
cies MW (for transitions between the hyperfine manifolds) or radio
frequencies RF (within one hyperfine manifold) to initiate Rabi oscil-
lations between the addressed states. In addition, MWs are utilised
to non-resonantly couple two hyperfine levels and thereby shift their
potential energy in dependence on the detuning and the intensity of
the MW radiation. This technique is called microwave dressing and
can be understood in terms of the dressed state model [53, 95].

For typical experiments, the atomic ensemble is transferred from
the state |F = 2, mF = 2〉 to the state |F = 1, mF = 0〉 by three reso-
nant MW pulses. To ensure the sole population of this state, residual
atoms in the F = 2 manifold are removed from the ensemble by
light pulses resonant to F = 2 states only. Any remaining atoms in
the states |F = 1, mF = ±1〉 are removed by resonant MW π-pulses to
|F = 2, mF = ±2〉 prior to another cleaning light pulse. At this stage
of the state preparation, the ensemble represents a polarised CSS in
|F = 1, mF = 0〉 and can be applied as input state of an interferomet-
ric measurement limited by the SQL. A subsequent preparation of a
superposition of atoms in the two clock states |F = 1, mF = 0〉 and
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|F = 2, mF = 0〉, for example, opens an interferometer sensitive to the
detuning of the MW coupling pulse with respect to the clock transition.
After another coupling, the final population of the clock states encodes
the detuning and can serve as a frequency reference, realising an
atomic microwave clock.

Entanglement can be introduced by initiating spin-changing colli-
sions, which produce correlated pairs of atoms in the levels |1,±1〉. At
a magnetic field of about 1 G and in F = 1, the dynamics is supressed
since the energy of a pair of atoms in the levels |1,±1〉 is much higher
than the energy of a pair of atoms in |1, 0〉. In other words, the present
state of the ensemble represents the ground state of the system. To
initiate spin dynamics, the energy of the atoms in |1, 0〉 is raised by
the aforementioned MW dressing technique such that the population
of the levels |1,±1〉 is favoured. Already a mean transfer of less than
one atom to |1,±1〉 represents a two-mode squeezed vacuum state. At
our experiment, this squeezed state was used as second input state
to the abovementioned atomic microwave clock sequence to enable
a sensitivity beyond the SQL [27]. Details about the various ways to
prepare entangled states using spin dynamics in F = 1 are presented
in Section 3.3 and Section 4.3.

Subsequent to the in-trap operations, the BEC is released into free
space by switching off the optical trapping potential. The mean-field
energy of the ensemble (the atoms repel each other) drives an ac-
celerated expansion that turns into a ballistic expansion within a
millisecond of free fall. The rate of the ballistic expansion can be re-
duced in two ways. Either the trapping potential is slowly ramped
down to reduce the mean-field energy in the first place, or the atoms
are shortly exposed to a potential that converts the kinetic energy of
the expanding cloud to potential energy, which vanishes when the
potential is switched off quickly again. The first technique comes with
two problems. Long holding times are necessary to avoid excitations
to higher trap modes and along the way the varying trap leads to
varying spin-dynamics conditions that alters the many-body state in
a hardly controllable way. Both effects would especially deteriorate
the usefulness of entangled states. Therefore, we choose to reduce the
ensembles expansion rate by flashing on the optical trapping potential
after a short free fall time of 1 ms. This technique is called delta-kick
collimation and is discussed in detail in Section 5.2.

At the present geometry, the apparatus allows for about 20 ms col-
limated free fall before the clouds leave the region of the absorption
detection. Before taking images of the atomic cloud, the spin com-
ponents of the ensemble are spatially separated by a magnetic field
gradient (as the spins in the famous Stern-Gerlach experiment). The
orientation of the magnetic field gradient causes a horizontal sepa-
ration of the spin components, that is perpendicular to the direction
of the momentum transfer needed to implement a matter-wave in-
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terferometer sensitive to Earth’s gravity. An in-depth discussion of
the final absorption detection can be found in Ref. [54]. The detection
system allows to determine the atom number in each component of
the ensemble with an uncertainty of 15 atoms. The actual performance
depends on the final size of the atomic clouds, which in turn depends
on the number of atoms, expansion rate and free-fall time. To analyse
the ability to count atom numbers with sub-shot noise performance
after substantial free fall was central to the main results of this thesis
and is further discussed in Section 5.2.

The possible experiments are of course much broader than sketched
by this exemplary sequence. Various initial spin populations can be
realised, holding times in the dipole trap may range from less than a
millisecond to seconds and various combinations of coupling pulses
allow to implement a variety of measurement protocols.

3.2 manipulating hyperfine levels

Coherent transfers between the hyperfine levels can be driven by
irradiating the atomic ensemble with electromagnetic (EM) waves of
suitable frequency and polarisation. In the vicinity of a homogeneous
magnetic field in the range of a few Gauss, the employed frequencies
range from 500 MHz to 6.835 GHz equivalent with a wavelength of
more than half a meter down to about 40 cm. Since usual ensemble
sizes of several µm are much smaller, the EM field can be regarded
homogeneous over the extent of the ensemble, which is necessary to
preserve coherence between all atoms after the interaction.

Since the electronic ground state 52S1/2 has an orbital angular mo-
mentum of l = 0, the dipolar interaction with the electric field com-
ponent vanishes. Therefore the relevant interaction of the atoms with
the EM field is given by the coupling to the magnetic field component.
When formally describing the MW interaction, it is usually sufficient to
reduce the atomic system to those two levels which are resonantly cou-
pled. If the frequency selectivity is not adequate, the approximation
to two levels in principle can be met by confining the radiation to the
required polarisation only. In the case of mixed polarisations, the frac-
tion of the magnetic field which is σ± polarised drives transitions with
∆mF = ±1 and the π polarised fraction drives the ∆mF = 0 transitions,
since the combined angular momentum of atomic hyperfine level and
the photons of the EM field needs to be conserved. Thus, by aligning
the oscillating magnetic field with the static magnetic field properly,
this polarisation-dependent selectivity could be employed to address
a specific transition only, without relying on the mere selectivity by
the frequency. polarisation-selective MW transitions have been realised
by using antenna designs emitting mainly circular polarisation and ad-
ditional alignment of the static magnetic field [96]. Implementation of
this technique would be in particular useful to prevent cross-couplings
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Figure 3.2: Energy of hyperfine levels of the electronic ground state in 87Rb
at a few Gauss magnetic field. The small orange and red arrows
depict the linear (p) and quadratic (qB) portion of the Zeeman
shift. The energetic separation within a spin manifold is in the RF

range, whereas distance between F = 1 and F = 2 corresponds
to MW. The Raman light (orange arch) couples the two clock
states by a two-photon process via the higher electronic level,
enabling a coherent transfer of substantial photon momenta to the
atoms (details see Section 5.1). A blue detuned dressing MW (blue
wavy line) is used to shift the lower clock state by qMW , which
causes an effective shift of q = qB + qMW and is used to initiate
spin dynamics in F = 1. The spin-changing collisions of atoms
prepared in |F = 1, mF = 0〉 populate the levels |F = 1, mF = ±1〉
with correlated pairs of atoms (green arrows). Depending on the
fine-tuning of the dressing and the initial state, various entangled
many-body states can be prepared.

which occur for the transitions |1(2), 0〉 ↔ |2(1),±1〉, since here the
typical frequency width of the MW pulses is too broad to sufficiently
suppress the unwanted transition.

Reduced to two hyperfine levels a in F = 2 and b in F = 1 with
energy difference Ea − Eb = ω0, the Hamiltonian describing the evo-
lution of the atoms while radiated by a MW pulse with frequency ω

reads

HMW = −δa†a +
ΩMW

2

(
e−iφb†a + eiφa†b

)
(3.1)

where δ = ω − ω0 is the detuning, ΩMW the Rabi frequency and
φ the phase of the MW. Throughout this section we set h̄ = 1. The
hats commonly used to note operators are only used in cases where
operators could be confused with scalars, as for example in the case
of the number operator N̂ and the total atom number N. Transferring
the atoms back and forth between the two levels can also be used to
imprint an arbitrary relative phase. As suggested by the Hamiltonian
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in Equation 3.1, a relative phase can be imprinted either by changing
the phase of the MW field φ or by using non-resonant pulses.

The transition frequencies within one hyperfine manifold only differ
by the quadratic portion q of the Zeeman shift, which is much smaller
than typical frequency widths. Also the energy separations in both
hyperfine manifolds are very similar and only differ slightly due to
the value of the g-factors. Therefore, RF transitions are usually driven
in F = 1 and F = 2 simultaneously, if both manifolds are populated.
However, one can make use of the opposite sign of the g-factors
and restrict the coupling to one manifold by controlling the rotation
direction of the polarisation. This has already been achieved in a
similar system, using two orthogonal antennas emitting mainly linear
polarisation. Their radiation was matched in amplitude and combined
to circular polarisation [97]. Proper adjustment of the relative phase
between the linear constituents results either in σ+ or σ− polarisation
and allows to selectively drive transitions in F = 1 or F = 2 only.
Restricting the interaction to the F = 1 manifold, the RF coupling can
be described by

HRF =(q + δ)a†
1a1 + (q− δ)a†

−1a−1 (3.2)

+
ΩRF

2
√

2

(
eiφa†

0a1 + e−iφa†
0a−1 + e−iφa†

1a0 + e−iφa†
−1a0

)
where δ is again the detuning with respect to the linear Zeeman shift p,
ΩRF the Rabi frequency and φ the phase of the RF. The derivation of the
above Hamiltonians assumes the rotating-wave approximation (RWA)
and is thoroughly presented in [98].

The energy difference of two coupled hyperfine levels can be in-
creased or decreased by red- and blue-detuned coupling, respectively.
This MW dressing is used to counteract the asymmetry caused by the
quadratic Zeeman shift as depicted by the blue wavy line in Figure 3.2.
The shift in the energy is thoroughly explained in references [54, 99]
and given by the eigenstates of the coupled system (i. e. dressed states)
describing the interaction of a two-level atom and the photons. The
effective shift results from the combination of the shift due to the
static magnetic field and a shift due to the dressing q = qB + qMW
with qB = (gµBB)2/∆Eh f s [100] and qMW = Ω2

MW/(2π · 4δ) [95] for
dressing the clock states.

Unwanted population of spin levels can be removed by light pulses
resonant to the F = 2 manifold only. These pulses leave the atoms
in F = 1 untouched (as long as a relatively small fraction of atoms
is expelled from the ensemble) and are in particular necessary to
clean spin levels that should resemble the vacuum state prior to
spin dynamics. Also a two-photon light coupling can be employed
for a coherent transfer between distinct spin levels. These so-called
stimulated Raman processes do not just change the internal spin state
but also transfer the atoms to a distinct momentum mode if the laser
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beam geometry is chosen accordingly. The stimulated Raman transfers
are subject of Section 5.1.

3.3 spin dynamics

Though ultra-cold and barely moving, the extended wave-function of
the atoms in the BEC facilitates occasional collisions. The elastic colli-
sions can either contribute to an effective potential (collisional shift) or,
which is the interesting part, also change the spin state of the atoms.
Due to the low energy, only s-wave collisions are possible and the
orbital angular momentum of the atoms is untouched. Therefore, the
conservation of total angular momentum determines the conservation
of the spin projection ∑ min

F = ∑ mout
F . We focus the discussion of spin

dynamics to the F = 1 manifold. Analogue dynamics in F = 2 has
been employed in our group to study higher spatial trap modes [90]
and to prepare twin-Fock states [54], but will not be covered here.

Within the SMA, incorporating the potential energy due to a static
magnetic field, the Hamiltonian describing our BEC in the F = 1
manifold is given by [25, 100, 101]

HSD =− p
(

N̂1 − N̂−1
)

linear Zeeman shift

(3.3a)

+ q
(

N̂1 + N̂−1
)

quadratic Zeeman shift
(3.3b)

+ λ
(

N̂1 − N̂−1
)2 collisonal shift

(3.3c)

+ λ
(
2N̂0 − 1

) (
N̂1 + N̂−1

)
collisonal shift

(3.3d)

+ 2λ
(

a†
0a†

0a1a−1 + a†
1a†
−1a0a0

)
. spin-changing coll

(3.3e)

Here, p and q are the linear and the effective quadratic Zeeman shift
and λ is an interaction parameter that contains the scattering lengths
and the overlap integral of the spatial modes and has, in the case
of 87Rb, negative sign λ < 0 [102]. Its scaling with the total atom
number is given by λ ∝ N−3/5 assuming a 3D harmonic trap and the
approximate Thomas-Fermi density profile [103]. For completeness,
we indicate terms proportional to the so-called magnetisation N1 −
N−1 here. However, for most applications these terms vanish, as the
Hamiltonian conserves the magnetisation and the initial states are
usually prepared magnetisation-free.

Let us for example prepare a coherent state with all atoms in
|F = 1, mF = 0〉 and expose the ensemble to a typical magnetic field of
1 G. The spin-changing collisions will not occur without any additional
effort. To initiate the dynamics, the hyperfine levels have to be shifted
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by either reducing the magnetic field to less than 300 mG [61] or by
employing MW dressing [95]. Let the effective quadratic Zeeman shift
be tuned to q = −λ(2N − 1) by either of the methods. In this case,
all but the last term 3.3e of the above Hamiltonian vanish initially
and the spin dynamics starts off unhindered. This setpoint of q is
called the spin-dynamics resonance. If we restrict the dynamics to
large ensembles N � 1 and short evolution times, the macroscopic
population of the level |1, 0〉 is barely changed and we can approxi-
mate its population to be fixed such that N̂0 = a†

0a0 ≈ N. The residual
Hamiltonian is

HSD, resonant ≈ Ω
(

a1a−1 + a†
1a†
−1

)
(3.4)

with the spin-dynamics rate Ω = 2λN ∝ N2/5. Note that the resonant
value of q is −λ(2N− 1) ≈ −2λN = |Ω|. Dynamics under HSD, resonant

populates |1,±1〉 with correlated pairs of atoms and generates the
two-mode squeezed vacuum [99]

|ψ(t)〉 =
∞

∑
n=0

(− tanh Ωt)n

cosh Ωt
|n〉1 ⊗ |n〉−1 . (3.5)

The states |n, n〉 = |n〉1 ⊗ |n〉−1 represent Fock states in the modes
mF ± 1 respectively. Since the occupation number of both modes is
perfectly correlated, these states are called twin-Fock states. Within
the low-depletion limit, the mean population of the twin-Fock modes
grows exponentially, 〈N1 + N−1〉 = 2 sinh2(Ωt). Off-resonant spin
dynamics is slower and possible as long as the energy balance of the
spin-changing process is in the boundaries of ±|Ω|.

As typical for quantum dynamics, the spin-changing collisions occur
even if they do not seem to strictly obey the energy conservation. The
uncertainty in the time scale of the dynamics ∝ 1/|Ω| sets a limit to
the uncertainty of the energy conservation ∝ |Ω| and explains the
width of the resonance. In the middle of the resonance, the dynamics
starts fastest with an exponential growth of the population, whereas
on the edge of the resonance the damping of the spin dynamics
caused by the non-vanishing extra terms in the Hamiltonian becomes
apparent. In 87Rb BECs in our configuration, the spin-dynamics rate Ω
is usually in the range of 2π × 10 Hz, whereas at 1 G magnetic field,
the energy of a pair of atoms in the levels |1,±1〉 is 2π× 72 Hz higher
as if the pair sits in the level |1, 0〉, which is much more than |Ω|
away from the resonance at 2π × 10 Hz. Since relevant values of the
effective quadratic Zeeman shift are to be found at multiples of |Ω|
(see Figure 4.1), the value of q is usually given in units of |Ω|. How to
determine the spin-dynamics rate Ω from measurements and how to
calibrate the effective shift q in the lab is presented in Chapter 4.



30 spinor bose-einstein condensate

3.4 one hamiltonian, various types of entangled states

The main feature of spin-changing collisions is not that they coherently
transfer atoms from one spin state to the other, this can much faster be
done by MW and RF pulses, but that they introduce non-classical corre-
lations among the altered spins. The type of entangled state prepared
depends on the spin-dynamics time, the initial spin configuration, the
regime of the effective shift q and the chosen modes to look at.

3.4.1 Twin-Fock states

If an atom is created in |1,+1〉, another atom pops up in |1,−1〉 (both
coming from the infinite reservoir in mF = 0), that is dynamics pop-
ulates the levels |1,±1〉 with correlated pairs of atoms, as one can
directly see in Equation 3.4. As the atoms are indistinguishable, it is
impossible to predestine which of the atoms possesses which spin.
But what is for sure is that if we measure one atom with mF = +1,
there has to be another atoms with mF = −1 or vice versa. This twin-
Fock state of two atoms is a standard example of an entangled state
and resembles the photonic state that has been used in the famous
Hong–Ou–Mandel experiment. Depending on the spin-dynamics time,
superpositions of such twin-Fock states with different sizes are pre-
pared.

The population of the levels |1,±1〉, i. e. the fraction of atom pop-
ulating the twin-Fock state, due to evolution under the Hamiltonian
3.3 is shown in Figure 3.3. For the computation, the Schrödinger
equation is solved for the exact Hamiltonian matrix form (details see
Section A.3.2). As it is shown in Figure 3.3b, the parameter q affects the
maximal fraction of atoms possible to be transferred to the twin-Fock
state. The maximal mean transfer by a rapid quench of the value q
is reached close to the edge of the resonance at q/|Ω| & 0. However,
here the spin dynamics is relatively slow and the evolution time that
maximises the transfer is very sensitive on q (see Figure 3.3c). The
preparation of twin-Fock states close to q = 0 is experimentally not
feasible, since small fluctuations in the magnetic field or the total
atom number, and even the typical atom losses during the dynamics,
strongly influence the outcome. Working points in the vicinity of the
resonance q = 1 are less prone to experimental noise. But even here,
the transferred fraction to the twin-Fock modes typically fluctuates
uniformly within 0-80 % (see Figure 4.5 and Ref. [64]) and further
application would require heavy post-selection.

Regarding the application of the twin-Fock state in an interferometer,
a large total atom number is favourable to increase the sensitivity limit
given by quantum noise. The enhancement due to entanglement comes
on top. That is the size of the twin-Fock state for a given size of the
BEC should be as large as possible. The transferred fraction to the twin-
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(a) Transfer to the twin-Fock modes in time, initiated by a jump to different
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q = 1 (dashed line) and at q = 0 (dotted line) are highlighted.
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(c) The evolution time needed to achieve
the maximum transfer as a function
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Figure 3.3: Preparation of twin-Fock states by jumping with q into the vicinity
of the spin-dyamics resonance. Simulations executed with N =
104 atoms and Ω = 2π · 5.1 Hz, for details see Section A.3.2.
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Fock modes can be increased beyond what is shown in Figure 3.3b
by employing a quasi-adiabatic ramp of q [64]. This technique was
applied within the work of this thesis and is discussed in Section 4.3.

3.4.2 Spin-1 Dicke States

The spin-dynamics Hamiltonian can be reformulated with the focus
on the Spin-1 character of the system. To this end, the collective spin-1
operator L with components

Lx =
a†

0a1 + a†
0a−1 + a†

1a0 + a†
−1a0√

2
(3.6)

Ly =
a†

0a1 − a†
0a−1 − a†

1a0 + a†
−1a0

i
√

2
(3.7)

Lz = a†
−1a−1 − a†

1a1 (3.8)

is introduced. The components obey the defining commutation relation
for angular momentum operators [La, Lb] = iεabcLc. Using the spin-1
operator, the Hamiltonian 3.3 can be rephrased as [101]

H = −p(N1 − N−1) + q(N1 + N−1) + 2λL2 (3.9)

with the squared length of the Spin-1 vector L2 = L2
x + L2

y + L2
z .

For λ < 0 the ground state of the spinor BEC maximises the spin
length

√
L2, that is the single atomic spins tend to align, motivating

to call a 87Rb spinor BEC in F = 1 ferromagnetic. If prepared in
|F = 2, mF = 0〉 we have a spin-1 BEC as well (neglecting the mF = ±2
levels due to two orders of magnitude slower spin dynamics), only
is the interaction about seven times larger and has opposite sign
λ > 0 [54].

Spin-1 Dicke state have been realised experimentally by a quasi-
adiabatic ramp of q. Upon imprinting a phase shift by coupling the
three mF states with an RF-pulse, these states proved sensitivity beyond
the three-mode SQL [51].

3.4.3 Squeezed states

The state shown in Equation 3.5 consists of twin-Fock states, although
it is called two-mode squeezed vacuum. Where is the squeezing here?
Besides the number squeezing between the modes with mF = ±1,
there is also spin squeezing generated, which can be regarded as a
two-mode version of quadrature squeezing. The squeezing action can
be seen when changing the basis to symmetric and antisymmetric
combinations of the mF = ±1 levels:

as =
a+1 + a−1√

2
and aa =

a+1 − a−1√
2

. (3.10)
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In this basis, the Hamiltonian 3.4 becomes

HSD ≈ λN
[(

a†
s a†

s + asas

)
−
(

a†
a a†

a + aaaa

)]
, (3.11)

which represents a sum of two textbook squeezing operators. Here,
spin squeezing is generated in the symmetric and antisymmetric mode
respectively. Within the low-depletion limit, where the level |1, 0〉 is
not relevantly depopulated, both modes are squeezed independently
and with orthogonal squeezing angle. For relatively short evolution
times, the preferred view on the state is two-mode squeezed vacuum
in the basis |·〉s ⊗ |·〉a, whereas for longer evolution times, the sim-
ple squeezing regime is left and one might think of the state as a
superposition of twin-Fock states in the basis |·〉1 ⊗ |·〉−1.

In principle, squeezed states prepared in the symmetric mode can
be transferred to the level |1, 0〉 by using a RF π-pulse (which only
couples to the symmetric mode and therefore leaves the antisymmetric
state behind). Prior to this, the remaining atoms in the |1, 0〉 need to
be moved, for example to the state |F = 2, mF = 0〉.

A direct implementation of single-mode squeezing in the clock
state could be achieved by choosing the initial state |∼ N/2〉1⊗ |0〉0⊗
|∼ N/2〉−1, where the ensemble is coherently split up equally on the
levels |1,±1〉 by a RF pulse, leaving the vacuum in |1, 0〉. In contrast
to the dynamics starting with all atoms in |1, 0〉, here the resonance
is found at q/|Ω| = −1. For this initial state, the Hamiltonian within
the low-depletion limit reduces to a term ∝ a†

0a†
0 + a0a0 and directly

resembles the generator of single-mode squeezing.
Retaining the view of the symmetric and antisymmetric mode, we

can break up the physical spin-1 system and describe it approximately
as two collective pseudospin-1/2 systems. In this way, the squeezed
states generated by spin dynamics can be visualised on two gener-
alised Bloch spheres in the basis |·〉s ⊗ |·〉0 and |·〉a ⊗ |·〉0, respectively.
By using the pseudospin-1/2 operators

Sx =
a†

0as + a†
s a0

2
, Ax =

a†
0aa + a†

a a0

2
, (3.12)

Sy =
a†

0as − a†
s a0

2i
, Ay =

a†
0aa − a†

a a0

2i
,

Sz =
a†

0a0 − a†
s as

2
, Az =

a†
0a0 − a†

a aa

2
.

and omitting the terms proportional to the magnetisation N1 − N−1,
the Hamiltonian 3.3 rephrases to [25]

HSD =

(
4λS2

x −
2
3

qSz

)
+

(
4λA2

y −
2
3

qAz

)
. (3.13)

Here, the dynamics can be understood as an interplay of shearing
around the x (y) axis and a q-dependent rotation around the z axis
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on the symmetric (antisymmetric) Bloch sphere. Note that the sym-
metric and the antisymmetric subspaces are not independent, i. e. the
respective spin operators S and A do not commute with each other.
Furthermore, these two subspaces are the only that exhibit squeez-
ing [61, 98]. A similar Hamiltonian was realised in a two-component
BEC and named twist-and-turn squeezing. For q/|Ω| = 0, the rota-
tions around z vanish and only the nonlinear spin terms ∝ S2

x and
∝ A2

y remain. This resembles the one-axis twisting (OAT) Hamiltonian,
proposed in the early 90s as one of two Hamiltonians to generate spin
squeezing [20].

As we discussed in Section 3.3, the generation of entangled pairs of
atoms in |1,±1〉 starts fastest at q/|Ω| = 1. With q set to this resonance,
the Hamiltonian 3.3 rewrites as

HSD = 2λ
[
(S2

x − S2
y)− (A2

x − A2
y)
]

(3.14)

which resembles two-axis countertwisting (TACT), the second way
to prepare spin-squeezed states originally proposed. Similar to OAT,
the squeezing in the two subspaces is orthogonally aligned. TACT

is well known to establish substantial squeezing faster compared to
the OAT dynamics. The twist-and-turn dynamics can be understood
as the intermediate regime. Another characteristic of TACT is that
the direction of squeezing is stable during the dynamics, whereas
the squeezing ellipse rotates in the case of OAT and twist-and-turn
dynamics.

3.4.4 Further applications in state engineering

Spin dynamics can also be utilised to prepare states beyond the squeez-
ing regime and other than Dicke states.

The twist-and-turn dynamics has been employed to realise non-
gaussian states beyond the squeezing regime [59, 97]. If the regime
of Gaussian states is left, observing the mean population imbalance
at the output of an interferometer is not sufficient anymore to make
use of the full entanglement-enhanced sensitivity. In fact, highly over-
squeezed states eventually are less sensitive compared to CSS’ when
only incorporated in terms of the standard squeezing parameter. There-
fore, the direct application of non-Gaussian states in entanglement-
enhanced interferometry demands well-suited and experimentally
feasible observables, as it was found to be the variance for the twin-
Fock state [63].

So far, we examined cases where all atoms are initially prepared
in the level mF = 0 and the levels mF = ±1 are empty (vacuum) or
vice versa. A coherent transfer of a few atoms to |1,±1〉 before the
spin dynamics does alter the generated states. A few of such seed
atoms cause the states in the basis |·〉1 ⊗ |·〉−1 to deviate from clean
twin-Fock states, since the levels mF = ±1 are not solely populated by
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correlated pairs anymore. The prepared states can be regarded as in-
between a twin-Fock and a squeezed state. These intermediate states
are more robust regarding detection-noise than the twin-Fock state
and can show an improved metrological gain compared to squeezed
states [104].

Spin dynamics can also be used to implement protocols that employ
effectively reversed dynamics to increase the noise-robustness of an
entanglement-enhanced interferometer [105]. Here, spin dynamics is
not only used to prepare a squeezed input state, but also to unsqueeze
the state after the interferometric phase imprint while simultaneously
amplifying the phase signal. The ideal entanglement-enhanced sensi-
tivity is retained, because the signal-to-(quantum)noise ratio is kept
constant during the unsqueezing process. In the case of technical noise
in the detection, the sensitivity is improved since the final state resem-
bles a CSS or even an anti-squeezed state which provides outcome dis-
tributions much less prone to detection noise. An equivalent protocol
was proposed in the notion of so-called SU(1,1)-interferometers [106],
which extended an existing time-reversal protocol [107] to increase ab-
solute sensitivity and achieve detection-noise robustness. Furthermore,
protocols along this line of thought allow to harness the metrological
gain of non-Gaussian states [108] and have been realised without the
need to measure more complex observables than the mean population
and variances [109].

In relatively recent approaches, the parameter q is not rapidly
quenched to a fixed value but changed during spin dynamics. This
can either be done adiabatically [110] or, as mentioned above and
discussed in Chapter 4, quasi-adiabatically [47, 64, 111]. The latter
was implemented to prepare a major fraction of the ensemble in a
twin-Fock state. Depending on the final value of q, different ground
states of the system could be prepared, which include a superposition
of highly entangled NOON-states at q/|Ω| = 0 [88]. The value of q
can also be changed in a staircase-like manner to prepare squeezed
states that, for a specific value of q, represent the ground state of the
system and will therefore be stationary in time [112, 113].

It seems experimentally feasible that even more exotic and highly
entangled atomic states will be prepared within spin-1 BECs in the
near future. Their actual application to interferometry will demand
protocols that are robust to typical experimental noise and probably
will be optimised to the specific use case.





4
P R E C I S E C O N T R O L O F S P I N D Y N A M I C S F O R T H E
G E N E R AT I O N O F T W I N - F O C K S TAT E S

The Hamiltonian of our quantum system contains three parameters
which can all be adjusted in the lab, namely the total atom number
N, the effective quadratic Zeeman shift q, and the spin-dynamics rate
Ω. The total atom number is set by tuning the minimum potential of
the dipole trap during the evaporation as described in Section 3.1 and
typically shows relative fluctuations of 10 %. Within this chapter, the
experimental methods to precisely determine the effective quadratic
Zeeman shift q and the spin-dynamics rate Ω are presented. The
control off q is then applied to realise a quasi-adiabatic preparation of
twin-Fock states.

4.1 calibration of the effective quadratic zeeman shift

The effective quadratic Zeeeman shift q = qB + qMW is varied by
changing the power of the MW dressing field working at a fixed
magnetic field of 0.73 G. The power of the MW source is controlled
using a frequency mixer and feeding the second input with a variable
DC voltage (details about the MW source in Ref. [54]). This DC voltage
is the output signal of a proportional-integral (PI) controller that
realises a power stabilisation. The setpoint voltage of the PI controller
is adjusted by the experiment computer to allow for temporal control
of the MW power.

Compared to earlier work [64], the experimental method to calibrate
the parameter q/|Ω| is extended. We measure the voltage for the
five characteristic values q/|Ω| = {−2,−1, 0, 1, 2} and then fit the
resulting points to get q/|Ω| as a function of the voltage that sets the
MW power.

Figure 4.1 shows the single measurements from which the calibra-
tion is obtained. All measurements follow a similar scheme. An initial
spin configuration in F = 1 is prepared and then the MW dressing
field is switched on with a variable power for a fixed duration. During
this time, spin dynamics might be enabled to transfer atoms between
the levels |1, 0〉 and |1,±1〉. After the dynamics, the population of the
three spin levels is measured. For a determination of q/|Ω| = 2, the
BEC is prepared in the level |1, 0〉 and the MW dressing is applied for
90 ms. A certain set voltage marks the threshold where spin dynamics
starts, and corresponds to the QPT from the polar phase to the phase
of broken axisymmetry [87]. For the initial population in |1, 0〉, the
resonance q/|Ω| = 1 is marked by a maximal transfer to |1,±1〉, here
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Figure 4.1: Calibration of the effective quadratic Zeeman shift q. For the
calibration of q, five independent measurements determine the
position of characteristic q/|Ω| values (details see text). From
these, q/|Ω| as a function of the voltage which sets the dress-
ing MW power is obtained by a fit. The fit can also be used
to determine the value of the spin-dynamics rate, which gives
Ω = 2π × 5.6(2)Hz (blue solid line). If the value of |Ω| is for
example extracted from the q/|Ω| = 1 resonance scan, the cali-
bration changes slightly (black dashed line). For this calibration,
the data was post-selected to a mean atom number of 〈N〉 = 104.
Figure has been partially published in Ref. [47].

after a fixed duration of 110 ms. For this measurement to be partic-
ularly precise, an initial seed population should be avoided and the
mean transfer to |1,±1〉 should not exceed 10 % . To determine the
set voltage that corresponds to q/|Ω| = 0, the condensate is prepared
with 50% of the atoms in |1, 0〉 and 25% in each level |1,±1〉 via a
resonant RF coupling. For q/|Ω| & 0, the atoms tend to be predomi-
nantly transferred to |1,±1〉, whereas for q/|Ω| . 0 the population
evolves towards |1, 0〉. Directly at q/|Ω| = 0, the population remains
stationary. Here, the chosen evolution time is 60 ms. The signal for the
q = 0 measurement strongly depends on the chosen evolution time, as
here the spin dynamics causes relatively fast oscillations of the state
population. The negative values q/|Ω| = −2 and q/|Ω| = −1 are
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investigated equivalently to their positive counterparts, but with the
initial condensate prepared symmetrically in |1,±1〉 and an empty
level |1, 0〉.

The five measured points are then fitted with the expected functional
dependence on the set voltage (details see Section A.2). Here, Ω can be
a free parameter determined by the fit, which leads to the calibration
q/|Ω| = 6.8 − 23.5 · V2

set/[V2] with Ω = 5.6(2)Hz (blue solid line
in Figure 4.1). If Ω is determined independently, for example by
extracting it from the q/|Ω| = 1 resonance scan, the calibration results
into q/|Ω| = 7.5− 25.9 · V2

set/[V2] with Ω = 5.07(3)Hz. The given
errors are only statistical errors from the respective fit. As discussed
in the following section, alternative (and more convenient) methods
to determine the spin-dyamics rate Ω can be more precise but less
accurate, as they tend to slightly underestimate the absolute value.
Therefore, extracting the spin-dynamics rate from the fit that is used
to calibrate q (blue line in Figure 4.1) is the preferable method. If the
π-pulse time of the dressing MW field is precisely characterised, the
spin-dynamics rate is the only remaining fit parameter and thus a
useful by-product from the calibration of q.

4.2 determining the spin-dyamics rate

In Section 3.3, the spin-dynamics rate Ω was defined in the con-
text of the low-depletion approximation N̂0 ≈ N and for resonant
dynamics q/|Ω| = 1. In this setting, the spin-dynamics rate Ω deter-
mines the initial exponential growth of the population in |1,±1〉 as
〈N1 + N−1〉 = 2 sinh2(Ωt).

Figure 4.2a shows an exemplary measurement of the growing pop-
ulation in |1,±1〉. The spin-dynamics rate is extracted by a fit of the
mean transferred fraction which in this case for 〈N〉 = 9700 atoms
gives Ω = 2π × 4.09(2)Hz. To avoid an underestimation of the spin-
dynamics rate, the mean transfers used for the fit are cut at both ends.
A threshold set by the detection noise sets a lower limit. Also mean
relative transfers beyond ∼ 5 % are discarded, because at this point the
dynamics generally starts to leave the low-depletion approximation.

Still, this method tends to slightly underestimate the spin-dynamics
rate due to fluctuations in the total atom number and the magnetic
field. Fluctuations in the MW dressing power or frequency have a
similar effect as magnetic field fluctuations and are relatively small.
A fluctuating atom number directly causes fluctuations of Ω, which
are in first order symmetric. But also, the atom number affects the
collisional shift ∝ 2λN which has to be compensated for resonant
spin dynamics. Here, atom number fluctuations to either side cause a
deviation from the resonance and thereby a slower initial growth of
the population in |1,±1〉. Magnetic field fluctuations show the same
effect by directly varying the value of q.
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(a) Determining the spin-dynamics rate Ω from
a fit of the initial exponential growth of
the population in |1,±1〉. Here, Ω = 2π ·
4.09(2)Hz for a mean atom number of 〈N〉 =
9700 with 8 % relative fluctuations. Mean
transfers below a threshold set by the de-
tection noise (grey dashed line) and beyond
∼ 0.05 are discarded.
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(b) Spin-dyamics rate Ω as a func-
tion of the total atom num-
ber complies with the expected
scaling, here Ω(N)/(2π) =
0.1021 · N2/5.

Figure 4.2: Measurement of the spin-dynamics rate Ω and verification of Ω ∝
N2/5. On resonance, that is at q/|Ω| = 1, Ω can be determined
from fitting the initial exponential growth of the population of
the twin-Fock modes with f (Ω, t) = 2 sinh2(Ωt)/ 〈N〉. Repeating
this measurement for larger ensemble sizes shows the expected
scaling. Here, large total atom numbers must be corrected for a
nonlinearity in the detection, which otherwise causes a relevant
underestimation of the ensemble size for atom numbers exceeding
N ≈ 2 · 104.

The data in Figure 4.2b verifies the expected scaling of the spin-
dyamics rate with the total atom number. Here, the different mea-
surements have been recorded over several weeks, demonstrating a
reasonable stability of the interaction parameter λ (see Section 3.3) in
our experiment. This means the dipole trap is relatively stable and
does not cause major drifts of the spatial modes or trap frequencies.

Alternatively, the value of the spin-dynamics rate can already be
extracted from a resonance scan, which is a measurement that has to be
done previous to an experiment that involves spin dynamics anyway.
Here, the spin-dynamics rate can be calculated from the maximum
mean transfer to |1,±1〉, which is obtained by a Gaussian fit to the
measured data (dashed black line in Figure 4.3a). For relatively small
transfers, Ω can be simply calculated by the analytic formula

Ω = arcsinh
(√
〈N1 + N−1〉max /2

)
/tsd (4.1)

which gives Ω = 2π · 5.0(1)Hz. Here, the error is mainly due to error
propagation of the fluctuations of the total atom number.

Figure 4.3b depicts the initial exponential growth and the deviation
of the full quantum simulation (solid lines) from the analytical results
within the low-depletion limit. The inset shows the relative deviation
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(a) Resonance scan with tSD = 110 ms post-selected for a mean atom number of
〈N〉 = 104 with 10 % relative fluctuations. A parameter-free simulation (mean
and quantum fluctuations as solid blue line and grey area) predicts a slightly
narrower resonance. The deviation is explained by the fluctuations of the total
atom number. The maximum transfer obtained from a Gaussian fit (black
dashed line) can be used to estimate the spin-dynamics rate Ω.

(b) Exponential growth of the transferred
fraction for different Ω. The analytical
low-depletion limit (dashed lines) and
the full quantum simulation (solid lines)
is shown. The relative deviation between
both grows roughly linearly with the
transfer to |1,±1〉.

(c) Transfer at tSD = 110 ms as a func-
tion of Ω. The maximum transfer
obtained in (a) can be used to es-
timate Ω either by using the ana-
lytical formula (dashed blue line)
or by comparison with the simu-
lation (solid blue line). The inset
shows the deviation of both proce-
dures.

Figure 4.3: Extracting Ω from the mean maximum transfer of a resonance
scan. The data is fitted with a Gaussian to extract the maxi-
mum mean transfer which is used to estimate Ω. Using the
analytical formula, the extracted spin-dynamics rate is Ω =
2π × 5.00(3)Hz, whereas comparison with the simulation gives
Ω = 2π × 5.07(3)Hz (uncertainty given by error propagation
starting with the statistical error of the Gaussian fit).

between the analytic approximation and the simulation. The estima-
tion of Ω is visualised in Figure 4.3c. The maximum transfer obtained
from the Gaussian fit in Figure 4.3a is mapped onto a value for Ω (grey
dashed lines). The inset shows the relative deviation of the extracted
spin-dynamics rate if the analytic formula in Equation 4.1 is used
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compared to the full quantum simulation. For the data evaluated here,
the results differ by 1.5 %. For a deviation below 1 %, the maximum
relative transfer to |1,±1〉 must not exceed 0.04.

Both methods presented here to measure Ω tend to systematically
underestimate the spin-dynamics rate. Using the full q calibration in
Figure 4.1 to determine Ω is expected to achieve a better accuracy,
since the position of the characteristic q/|Ω| values is expected to
fluctuate symmetrically under fluctuations in the total atom number
or in the magnetic field. Therefore it seems reasonable, that the value
extracted from the full calibration of q/|Ω| is larger than the value
extracted from the resonance scan only (both use the same data set and
are directly comparable). Alternatively, the spin-dynamics rate has also
been extracted from a comparison of the measurement that determines
q/|Ω| = 2 (see Figure 4.1) with parameter-free simulations [110]. In
our case, this would involve a thorough characterisation of the MW

dressing. However, the achieved accuracy in determining q and Ω is
sufficient for the desired level of control over the system and allows to
adequately predict the outcome for evolution times up to seconds as
presented in the following section.

4.3 preparation of twin-fock states by a quasi-adiabatic

q-ramp

The experimental control over q is utilised to implement a quasi-
adiabatic preparation of twin-Fock states as proposed by Zhang and
Duan [86]. In contrast to initiating the spin dynamics by rapidly setting
a fixed q in the vicinity of the resonance, here, q is changed slowly, such
that the many-body state unexcitedly follows the ground state of the
system. From the system’s Hamiltonian in Equation 3.3, one can read
that q affects the energy of atoms in the levels |1,±1〉. At large positive
q, atoms that populate |1,±1〉 contribute to a higher energy, therefore
the initial preparation of all atoms in the level |1, 0〉 represents the
ground state. For large negative q, however, a population of the levels
|1,±1〉 decreases the energy and the ground state therefore completely
populates these. Since the interaction that transfers the atoms back
and forth is symmetric in mF = ±1, only a symmetric population of
the levels |1,±1〉 can be reached (assuming initial zero magnetisation).

Figure 4.4a visualises the system’s ground state as a function of
q/|Ω|. The colorscale represents the composition of the ground states
in terms of the basis states |k, N − 2k, k〉 = |k〉−1⊗ |N − 2k〉0⊗ |k〉1. For
q/|Ω| ≥ 2, the ground state mainly populates the level |1, 0〉, and the
energy thus becomes independent of the effective quadratic Zeeman
shift (see Figure 4.4b). In the range 2 ≥ q/|Ω| ≥ 2, the population of
levels |1,±1〉 increases linearly towards the state |N/2, 0, N/2〉.

The adiabatic theorem states that a quantum system will remain in
its many-body ground state upon a very slow change of an external



4.3 preparation of twin-fock states by a quasi-adiabatic q-ramp 43

(a) Population of the twin-Fock modes for the many-body ground state at differ-
ent values of q. If the state |0, N, 0〉 is prepared at a large positive q, the state
|N/2, 0, N/2〉 can be reached by adiabatically ramping q towards negative
values.
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(b) The energy per atom in the many-
body ground state. For large positive
q, the ground-state energy becomes
stationary.
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(c) The energy gap between the ground
state and the first excited state closes
around q = ±2, which mark the
ground-state QPTs of the system.

Figure 4.4: Characteristic of the system’s many-body ground state as a func-
tion of q/|Ω|. Here N = 100. The energy gaps decrease with the
total number of atoms as ∆E ∝ N−1/3 [86].

parameter like q [114]. Therefore, if the BEC is prepared in |0, N, 0〉 and
q is adiabatically changed from positive to negative values, all atoms
could be prepared in a twin-Fock state. As a measure of adiabaticity,
one can use the probability to find the final state still in the ground
state of the system |

〈
ψground|ψfinal

〉
|2. The smaller this quantity, the

less adiabatic was the procedure. Figure 4.4c shows why adiabaticity
is hard to fulfil on the way from positive to negative q/|Ω|. The energy
gap between the ground state and the first excited state ∆E becomes
small at q/|Ω| = ±2, and therefore the time interval of a change in q
must be large if adiabaticity should hold. In other words, the rate of
change of q must be particularly small around the closing energy gaps.
These two characteristic points are recognised as ground-state QPTs of
the system, which come along with a high density of states, i. e. the
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energy gaps to higher excited state become small as well. Thus, rapidly
crossing a QPT typically causes a population of a large spectrum of
excited states. For an adiabatic procedure, no excited states should
be populated at the end of the ramp. To meet this condition with an
ensemble of N = 104 atoms, a ramp over the range 2 & q/|Ω| & −2
must at least be 20 s long. This exceeds the measured lifetime of our
BEC ,τ = 6.3 s, by a factor of more than three and would cause the
N = 104 atoms to be reduced to only 4× 103 at the end of the proce-
dure. Even though an adiabatic crossing that exceeds the ensemble’s
lifetime by a factor of two has been successfully demonstrated [110],
the loss of such a large fraction of atoms strongly reduces the entan-
glement, and should be avoided regarding an application of the state
for entanglement-enhanced interferometry.

Therefore, a quasi-adiabatic parameter ramp was implemented,
where only about the lowest 20 % of excited states are populated (com-
pare [64]). Figure 4.5 (a) shows the employed combination of four
linear ramps in q/|Ω| to allow for a particularly slow rate of change
in the vicinity of the QPTs. Within 120 ms, q is ramped quickly to
q/|Ω| = 2.2 and then the QPT at q/|Ω| = 2 is passed slowly within
350 ms. In between the two phase transitions, the ramp speed is
slightly increased again. A simulation using the experimental parame-
ters shows that during the quasi-adiabatic ramp, the state of the system
oscillates around the ground state (compare Figure 4.4 (a) and Fig-
ure 4.5 (b)). This causes an oscillation of the mean transferred fraction
which reaches values close to its maximum already before crossing
the second QPT at about q/|Ω| = −1.8. The amplitude and period
of the oscillation can be regarded as a measure of how adiabatic the
first QPT was crossed. The slower the rate of change of q, the smaller
becomes the amplitude and the oscillation period, until the system
directly follows the ground state at perfect adiabatic conditions.

The distribution of the final fraction of atoms transferred into the
twin-Fock state is shown in Figure 4.5 and yields a transfer of 93(5)%
(blue histogram in (c)). The mean and the fluctuations of the transfer
are adequately predicted by solving the full quantum evolution using
experimentally determined parameters only (details see Section A.3.2).
However, the predicted distribution (cyan curve in Figure 4.5 (c))
shows a sharp peak at a fraction of about 0.85, which is much less dis-
tinct in the measured data. This could be explained by the fluctuating
total atom number, which is not incorporated into the simulation, but
causes the distinct peak to move and thereby to smear out.

With longer ramping durations, even higher transfer efficiencies can
be achieved. However, in this case also the final number of atoms is
further reduced by the typical atom loss. Additionally, we observe
decoherence of the prepared twin-Fock states after extended hold-
ing times, resulting in weaker entanglement detection. The overall
preparation yields a total of 〈N〉 = 9300 atoms with only 10 % relative
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Figure 4.5: Results of the implemented quasi-adiabatic q ramp. The quasi-
adiabatic parameter ramp (see (a), blue line) was experimentally
optimised to achieve a stable population of the twin-Fock modes
well above 70 %. In (b) the QPTs are marked by the white dashed
lines. Stopping just before the second QPT at q ≈ −1.7 (grey
dashed line) reduces the total ramp time without significantly de-
creasing the transfer efficiency. The simulation based on the actual
experimental parameters shows which basis states |k, N − 2k, k〉
comprise the many-body state during the evolution. The mean
population of the twin-Fock modes (white solid line) oscillates
towards a maximum of 94(5)%. For the end of the implemented
ramp, the simulation predicts a transfer of 92(6)%. In (c), the
measured population of the twin-Fock modes (blue histogram)
reaches 93(5)%, which agrees fairly well with the prediction
(cyan curve) regarding the mean and the fluctuations. The details
of the outcome distributions, however, deviate. For comparison,
the measured population of the twin-Fock modes after a quench
to q/|Ω| ≈ 1 is shown (grey histogram).
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fluctuations, which are predetermined by the typical fluctuations of
the initial size of the BEC in our apparatus. For comparison, a typical
measurement outcome after a rapid quench into the vicinity of the
resonance q/|Ω| ≈ 1 is shown. The quasi-adiabatic procedure clearly
overcomes the limited transfer to the twin-Fock modes by the usual
rapid quench. For the successive application of momentum kicks by
stimulated Raman transitions, the remaining atoms in |F = 1, mF = 0〉
can be transferred to |F = 2, mF = 0〉 and be removed by resonant
light. After this cleaning procedure, we observe no major degradation
of the remaining twin-Fock states if less than 30 % of the atoms are
expelled. This requirement is fulfilled by the quasi-adiabatic state
preparation without the need of post-selection. Hence, this method
provides a clean twin-Fock state in two spin levels, well-suited for the
subsequent transfer to momentum space.



5
T R A N S F E R T O D I S T I N C T M O M E N T U M M O D E S

The application of entangled states in inertially sensitive light-pulse
atom interferometers demands entanglement between two distinct mo-
mentum modes. To employ the twin-Fock states |N/2〉+1 ⊗ |N/2〉−1
as presented in Section 4.3, a transfer of the entanglement from the
internal spin degree of freedom to the external motional degree of
freedom has to be realised. To this end, highly effective stimulated Ra-
man transitions have been implemented to achieve a spin-dependent
momentum transfer to the free-falling BEC. The reduction of the ensem-
ble’s free expansion ensures a stable momentum transfer and enables a
final detection beyond the atomic shot-noise. Finally, the measurement
of a generalised squeezing parameter verifies entanglement between
the atoms in the distinct momentum modes. As atom loss is decre-
mental for entangled states and technical noise easily dominates the
sub-shot-noise fluctuations, the protocol demands a low-noise Raman
transition with near 100 % transfer efficiency. The main results pre-
sented in Section 5.2 and Section 5.3 have been published in Ref. [47].

5.1 raman transfer

In Rubidium, one-photon transitions between stable states that do
not spontaneously decay are only available in the MW regime. As the
photon momentum transferred by a MW transition is three orders of
magnitude smaller than the typical velocity distributions of the freely
expanding BECs, and thus negligible, an optical transition has to be
used to transfer substantial momentum.

The population of short-lived states can be avoided by employing
a two-photon light coupling of two hyperfine levels in the electronic
ground state 52S1/2 via a detuned intermediate level of the excited
electronic state 52P3/2. For this process, the atoms interact with the
light from two lasers with different but phase-locked frequencies.
Assuming a transfer of the atom from one hyperfine level |g〉 to
another hyperfine level |e〉, a photon with frequency ω1 is absorbed,
followed by stimulated emission of a photon with frequency ω2. Due
to a large detuning ∆ to the hyperfine levels in 52P3/2, no intermediate
state is populated and the transfer does not suffer from spontaneous
decay 1. Such a stimulated Raman transition is schematically depicted
in Figure 5.1.

1 With ensembles of N = 104 atoms and laser parameters as used for the experiments
presented here, we estimate about 10 photons to be spontaneously emitted during a
Raman π-pulse.

47
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Figure 5.1: Sketch of the Raman coupling scheme. Two phase-locked laser
frequencies ω1 and ω2 drive a stimulated two-photon transi-
tion between two hyperfine levels. A large detuning ∆ supresses
a population of the intermediate level. The difference of both
laser frequencies ω1 − ω2 might be detuned by δ12 with re-
spect to the hyperfine transition ωhf. The AC-stark effect shifts
both levels and causes additional detunings δAC

g and δAC
e . In

our specific realisation in 87Rb, |g〉 =
∣∣52S1/2; F = 1, mF = 0

〉
,

|e〉 =
∣∣52S1/2; F = 2, mF = 0

〉
, and the intermediate level is∣∣52P3/2; F′ = 1

〉
.

The Raman transfer is implemented on the clock states of 87Rb, i. e.
|g〉 = |F = 1, mF = 0〉 and |e〉 = |F = 2, mF = 0〉. In addition to the
desired detuning ∆ ≈ 1 GHz to the intermediate level, the transfer is
affected by a common detuning of the laser frequencies δ12 and the AC-
Stark shifts of the states δAC

g and δAC
e respectively. Neglecting a change

of the momentum state for now, the detuning δ12 = (ω1 −ω2)−ωhf
is the combined detuning of the laser frequencies from the hyperfine
splitting ωhf ≈ 2π · 6.834 GHz. The AC-Stark shift is caused by the
red-detuned one-photon coupling of the intermediate state with the
states |g〉 and |e〉 with the frequencies ω1 and ω2 respectively. The
compensation of the relative AC-Stark shift ∆AC = δAC

e − δAC
g is crucial

for a robust Raman transfer and discussed in Section 5.1.2.
The two-photon coupling results in a coherent oscillation of the

population of the two states |e〉 and |g〉, similar to the one-photon
coupling of a two-level system. The population of the state |e〉 is given
by

Pe =
Ω2

0

Ω2
eff

sin2
(

τΩeff

2

)
(5.1)

where τ is the Raman pulse duration and

Ωeff =
√

Ω2
0 + (δ12 − ∆AC)

2 (5.2)

an effective Rabi frequency that determines the period and the am-
plitude of the oscillation. In the resonant case, the Rabi frequency
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Figure 5.2: Counter- and co-propagating Raman transfers. The transferred
momentum depends on the geometry of the Raman lasers beams.
The typical momentum transfer of ±2h̄k is only achieved for
counter-propagating Raman lasers and the direction of the mo-
mentum is determined by the initial spin state. Here, accel-
erated clouds are depicted violet, whereas clouds at rest (in
the free-falling frame) are blue. In the co-propagating case, the
momentum-state of the atoms remain unchanged. In both cases,
the combined momentum of the atom and the photons is con-
served before and after the transfer.

reduces to a simple combination of the single Rabi frequencies Ω0 =

(Ω1Ω∗2)/(2∆) [115, 116], which are proportional to the respective laser
intensities Ω1/2 ∝

√
I1/2.

In contrast to MW photons, the light coupling can also transfer sub-
stantial photon momenta to the atoms. The amount of momentum
depends on the geometry of the laser beams and is largest for counter-
propagating beams and vanishes for co-propagating beams. These two
cases are visualised in Figure 5.2. As the process of absorption and
emission is stimulated by the lasers, the momentum transferred as
a result of absorption is parallel to the beam direction whereas the
momentum kick due to emission is antiparallel to the respective beam.
Also, the combined momentum of the atom and the photons has to
be conserved. Therefore, the counter-propagating geometry transfers
both photon momenta into the same direction. In our case of vertical
alignment, this causes an upwards or downwards acceleration depend-
ing on the initial spin state of the atoms. The attained momentum
is ±h̄(k1 − k2) ≈ ±2h̄k where the approximation k1 ≈ −k2 holds as
the lasers’ frequency difference is much smaller than their absolute
frequency, νhf = ωhf/(2π) � 384 THz. In the co-propagating case,
the two photon momenta are transferred with opposite direction and
cancel each other, i. e. the co-propagating Raman transfer only changes
the internal state.
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If the atoms undergo a momentum kick, the attained movement
causes an additional detuning due to the Doppler effect and the
photon recoil. Both effects add to the detuning of the Raman transition
such that in general

δ12 = (ω1 −ω2)−ωhf −
~p0~keff

m
− h̄|~keff|2

2m
(5.3)

with~keff the transferred momentum (keff ≈ 2k for counter-propagating
geometry) and m the mass of the atom. As the Raman light interacts
with free-falling and freely expanding ensembles, the momentum of
an atom in the lab frame is

~p0 =
m
2
~gt2

tof + m~vexp, (5.4)

i. e. a function of the time of flight ttof and some velocity ~vexp due
to the expansion of the ensemble. The acceleration by gravity g is
global whereas the velocity ~vexp differs for each atom in the ensemble
and points in all spatial directions. It is characterised by a velocity
distribution that has to be narrow compared to the frequency width
of the Raman light pulse to achieve a high overall transfer efficiency
(details in Section 5.2). Similarly, also the spatial extent of the ensemble
has to be much smaller than the waist of the beams to ensure equal
light intensities for all atoms. This is on one hand achieved by proper
adjustment of the laser path and the choice of the beam width, and on
the other hand by reducing the spatial extent of the atomic clouds.

To approach a 100 % transfer, the overall detuning δ12 − ∆AC must
be sufficiently small (see Equation 5.2). The single AC-Stark shifts
cannot be avoided, but the relative AC-Stark shift ∆AC can vanish,
which reduces the influence of common intensity noise compared to
simple counteracting with the detuning δ12. In general, technical noise
in the laser intensities or geometry should be avoided as much as
possible by the design of the optical system.

5.1.1 Optical setup

The optical setup consists of a Raman laser system that provides the
two phase-locked frequencies, some optics and RF supplies that allow
to shape light pulses and a small optical setup around the experiment
chamber to illuminate the free-falling BEC. The overall setup is chosen
to ensure high relative phase stability of both laser beams and to allow
for future measurements of gravity by alignment with the gravitational
acceleration g.

The Raman laser system including the phase-lock electronics was
provided by the group of Ernst Rasel and jointly installed at our
experiment. A detailed presentation of this system can be found in
Ref. [117]. The electronics of the phase lock including future modifica-
tions are also presented in Ref. [118]. The Raman laser system consists
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of two diode lasers which are each amplified by a tapered amplifier
and then superposed on a fast photodiode. The beat signal, ideally
at the frequency of the hyperfine splitting νhf = 6.834 GHz, is mixed
with 7 GHz to obtain a difference frequency of 166 MHz. This signal
is then compared to a source with variable frequency ∼ 166 MHz by
an electronic phase detector. The output voltage of the phase detector
is used to control the laser frequency via two paths. The voltage from
the phase detector serves as error signal for a proportional-integral-
differential (PID) controller that drives a piezo actuator to regulate
the cavity length of laser 1. Additionally, the signal from the phase
detector is filtered and amplitude matched and then used to directly
modulate the laser diode current of laser 1, thereby realising the phase
lock onto the laser 2. All frequency sources (including the MW and
RF systems) are referenced to a common source of 100 MHz to ensure
a stable phase relation between all pulses used in an experimental
sequence. The frequency difference between both Raman lasers can
be adjusted by changing the frequency the beat signal is compared to
within the phase detector.

The superposed, orthogonally-polarised and phase-locked lasers
then pass through a small setup to gain the ability of forming light
pulses by using an AOM. This setup uses a minimum number of com-
ponents to reduce the optical path for a relatively high stability of
the final fibre coupling. The beam from the Raman laser system is
mode cleaned by a short optical fibre and then passes the AOM which
is fed by a RF that is sourced from a versatile frequency generator
(VFG-150). This allows to temporally change the amplitude of the RF

that drives the AOM and thereby enables us to shape the light pulses
as shown in Section 5.1.3. The intensity of both lasers is monitored by
detecting the small amount of transmitted light behind two mirrors.
The transmission shows a slight dependence on the polarisation of
the light. This allows to measure predominantly laser 1 behind the
first mirror, and, by rotating the polarisation with a λ/2 plate, pre-
dominantly laser 2 behind the second mirror. From both signals, the
individual intensity drifts are recorded and also have been used to
implement a slow intensity stabilisation via the current of the tapered
amplifiers. However, drifts in intensity and polarisation due to the
final fibre towards the experimental chamber cannot be stabilised in
this way. To reduce these drifts, the final fibre coupling is frequently
adjusted and carefully optimised to hit the polarisation-conserving
axes of the optical fibre.

With this setup, the polarisation of the beams cannot be changed,
such that the geometry (laser 1 and 2 from above, only laser 2 from
below) is fixed. Therefore, the direction of the momentum kick can
dynamically be reversed by changing the internal state before the
Raman coupling. Besides the reduction of the optical setup, another
reason to change the internal state rather the polarisation is the AC-
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Figure 5.3: Optics and geometry of the Raman laser setup. The Raman laser
system generates two phase-locked laser frequencies that are su-
perposed in one beam with crossed linear polarisation, which
passes an acousto-optic modulator (AOM) fed by a RF with variable
amplitude to form light pulses. The Raman light is directed to the
experiment by an optical fibre, the light is turned to oppositely
circular-polarised components and then passes the free falling
atomic ensemble from above. Due to selection by a polarizing
beam splitter (PBS), only laser 2 is retro-reflected. Thereby pro-
cesses other than the counter- and co-propagating light coupling
as shown in Figure 5.2 are suppressed. The laser beams are
aligned into the direction of earths gravitational acceleration g
to allow to span an interferometer that is maximally sensitive.
Figure has been partially published in Ref. [47].

Stark shift. As changing to opposite polarisations leads to swapped
lasers in the asymmetric geometry, the AC-Stark shift compensation
points would differ.

Finally, the Raman light is directed to the experiment by an optical fi-
bre. The outcoupled, collimated laser beam has a 1/e2 width of 1.5 mm
and typically less than 1 mW power. The frequency components attain
opposite circular polarisation by a λ/4 plate and pass the free falling
ensemble from above. After re-establishing the orthogonal linear po-
larisation below the ensemble, the component of laser 1 is selected
by a PBS and leaves the system. The light of Raman laser 2 is retro-
reflected and also illuminates the ensemble from below. Using this
laser geometry suppresses unwanted light couplings and reduces the
major processes to the counter- and co-propagating Raman transfers
as depicted in Figure 5.2.
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5.1.2 Differential AC-Stark shift

A one-photon coupling of two states generally causes an energetic shift
of the states which depends on the detuning and the Rabi frequency,
i. e. the intensity. The coupled energy levels approach each other
when coupled by a blue-detuned frequency and separate for a red-
detuned coupling. The latter is the case for the Raman light, thus the
states |e〉 and |g〉 are lowered in energy. This so-called AC-Stark effect
(also Autler-Townes effect) is exactly what causes the shift of the MW

dressing employed to initiate spin dynamics. Only that in the case
of the Raman light, the coupling to several states in 52P3/2 has to be
considered to properly predict the shift.

The single AC-stark shifts δAC
g and δAC

e cannot be avoided. But, as
can be seen from Equation 5.2, only the differential shift ∆AC has a
direct influence on the transition probability. To simply compensate
∆AC by the detuning δ12 is not optimal in the presence of noise in
the intensities of the Raman lasers. To achieve optimal robustness, a
working point where the differential AC-Stark shift vanishes is chosen
by adjusting the intensity ratio I2/I1 of both Raman lasers.

In the lab, this working point is determined by observing the relative
shift of the clock states with a MW coupling. To this end, the resonance
frequency and π-pulse time of the clock transition is measured as it
is. The ensemble then undergoes the same MW transition while being
illuminated by the Raman light. If the intensity ratio is not at the value
of a vanishing differential shift, the MW transfer will be reduced. Now,
the intensity ratio of the Raman lasers is changed such that the MW

transfer is at its maximum, i. e. resonant again. For this calibration, the
Raman light is reduced in intensity to decrease the absolute shift to
several kHz and also slightly detuned to avoid actual Raman transfer
during this measurement. By this method, the intensity ratio that leads
to a vanishing differential shift was measured to be I2/I1 = 0.93.

The calibration agrees with the theoretical prediction as shown in
Figure 5.4. Often the beam geometry is chosen to be symmetric, that
is either both Raman light fields illuminate the ensemble from the top
and from below or only laser 1 comes from above and only laser 2

from below. This scenario is shown by the dashed lines. For this work,
the light of frequency ω1 leaves via the PBS as depicted in Figure 5.3,
such that the ensemble is only illuminated by laser 2 from below.
Thereby, the effective intensity of laser 1 is halved, which in turn also
halves the intensity ratio needed to compensate the differential light
shift (because of the Clebsch-Gordan coefficients being symmetric
for opposite circular polarisation of the light). The calculation shown
by the solid lines in Figure 5.4 predicts the desired intensity ratio to
be I2/I1 = 0.86 at a detuning of ∆ = −1.1 GHz + ∆F′=3 + νAOM =

−0.756 GHz with respect to the transition
∣∣52S1/2; F = 2, mF = 2

〉
↔∣∣52P3/2; F′ = 1

〉
. This corresponds to a detuning of ∆ = −1.1 GHz



54 transfer to distinct momentum modes

Figure 5.4: The differential AC-Stark shift for the symmetric configuration
(dashed line), i. e. both lasers illuminate the ensemble from top
and below, and the asymmetric configuration (solid line), as
shown in Figure 5.3 and used for the experiments in this work. At
a detuning of ∆ = −0.756 GHz the differential shift ∆AC vanishes
at I2/I1 = 0.86 in the asymmetric and at I2/I1 = 1.72 in the
symmetric case. The intensity ratio that compensates ∆AC grows
for a larger or smaller detuning ∆. The grey line in (b) marks the
working point ∆ = −0.756 GHz for the experiments in this work,
which is chosen to be in the range where the ideal intensity ratio
is the least affected by the detuning.

with respect to the transition
∣∣52S1/2; F = 2

〉
↔
∣∣52P3/2; F′ = 3

〉
, i. e.

the frequency of the MOT cooling laser that serves as absolute reference
for the Raman laser system. Also the common frequency shift of the
Raman light by the switching AOM of νAOM = −80 MHz has to be
taken into account here. Details on the calculation of the light shift are
shown in Section A.3.3.

It is reasonable that the measured value is slightly higher than
the prediction, as the computation does not account for reflections
on the surfaces of the glass chamber. The intensity of laser 2 was
measured below the glass chamber to be reduced to 84 % of the
intensity above the chamber, which could be explained by a loss of 4 %
at each air-to-glass or glass-to-air transition. From this assumption,
the actual intensities that illuminate the atoms originate from the
beam intensities I2 = I0(0.93 · 0.962 + 0.93 · 0.966)/2 and I1 = I0 · 0.962,
which leads exactly to the predicted ratio of I2/I1 = 0.86.

As the optimal intensity ratio to minimise the differential AC-Stark
shift is achieved, the next step is to implement temporal control of the
common intensity of the Raman light.

5.1.3 Shaped pulses

The intensity of the Raman light pulses is temporally shaped to de-
crease frequency components with large offset from the carrier fre-
quency. The ideal frequency distribution of a pulse is generally given
by the Fourier transform from the time to the frequency domain.
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Figure 5.5: Comparison of a box pulse (orange) and a sin2 pulse (blue) of
equal area. Here the total pulse durations are 15 µs and 30 µs
respectively. The temporal shape (a) of the coupling pulses de-
termines their distribution in frequency space. In the predicted
signal of a pulse spectroscopy measurement (b-c), the side peaks
at larger offset from the carrier frequency are strongly suppressed
for the sin2 pulse.

Therefore, the longer a pulse is in the time domain, the narrower it
becomes in the frequency domain.

For a box pulse, i. e. simply switching the Raman light on and off
instantaneously, the frequency distribution is a sinc2 function, which
shows characteristic side peaks at larger frequency offsets from the
carrier. In the experiment, pulses with sin2 slopes are employed as
these feature a suppression of the side peaks. Figure 5.5 compares a
box pulse and a sin2 pulse of equal area, i. e. equal ability to drive
a transfer. The box pulse shows frequency components with about
1 % relative amplitude at more than 200 kHz distance from the carrier,
even though the width of the carrier is only about 100 kHz. In the case
of the sin2 pulse, the relevant frequency components are within the
centre peak around the carrier frequency, which allows for a better
separation of the desired counter-propagating Raman transfer to other
possible couplings, e. g. to the co-propagating transfer as depicted in
Figure 5.6.

A typical spectroscopy of the Raman transfer after 8 ms free fall time
is depicted in Figure 5.6. The major peak shows the transferred fraction
of atoms that gained 2h̄k momentum and changed the internal spin
state, i. e. the result of the desired counter-propagating transfer. The
resonance frequency of this transfer is shifted from the actual hyperfine
splitting νhf = 6834.682 MHz by the Doppler shift, as described in
Equation 5.3. To be precise, the shift is two times the Doppler shift
with respect to each involved Raman laser. The atoms fall towards
laser 1 and move away from laser 2, that is the overall detuning
becomes δ12 ∝ (ω1−ωD)− (ω2−ωD) = (ω1−ω2)− 2ωD. In the case
of the transfer driven by co-propagating light fields, no relative shift is
caused, and the resonance frequency is independent of the ensembles
centre-of-mass velocity, i. e. the free-fall time, in this case. However,
here the detuning ∆ to the intermediate level is shifted by the Doppler
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Figure 5.6: Determining the resonance frequency and the Rabi frequency of
the Raman pulse. (a) Spectroscopy of the counter-propagating
transfer subsequent to 8 ms free-fall. The peak transfer is shifted
by νDoppler = −201 kHz from co-propagating resonance, which is
close to the frequency of the hyperfine splitting (grey dashed line).
(b) Rabi oscillation of the counter-propagating Raman transfer.
The oscillation is fitted with a damped sin function (grey dashed
line) and a damped oscillation modified by the velocity selectivity
(blue line), which becomes relevant for the larger pulse durations.

effect which according to Equation 5.2 alters the Rabi frequency and
thereby causes a reduced transferred fraction.

A Rabi oscillation for the counter-propagating transfer shows a
damping that follows the fit function

P(τ) ≈ 1
2
(

Pmax(τ, σv) + cos(τΩeff)e−γτ
)

(5.5)

where the ideal result of Equation 5.1 is extended by a general damp-
ing term e−γτ and the maximum transfer probability Pmax(τ, σv) for
a pulse of time τ and a given velocity width σv of the ensemble.
The additional term Pmax(τ, σv) is motivated by a formula stated in
Ref. [119], and here represents the slightly decreasing fraction of atoms
participating in the Raman processes due to the increasing velocity
selectivity of the pulse. Details on the computation of Pmax are shown
in Section A.3.4. This extra term is needed to describe the slight asym-
metric damping observed in the data, which is not captured by a
fit with only a general damping as depicted in Figure 5.6. Here, the
damping is only phenomenologically described by the factor γ, but
is likely to be caused by a combination of spontaneous decay and
Doppler shift. Both effects increase with the pulse duration and could
be mitigated by implementing a larger detuning ∆ and a frequency
chirp. However, the fist maximum of the transfer, i. e. the π-pulse, is
only slightly affected by the damping, especially if pulse durations
are further decreased. Also the velocity selectivity should not affect
the transfer efficiency at this point as it is shown below in Figure 5.10.

Generally, the optimisation of the Raman transfer involves a trade-
off between several effects. The effect of the mentioned damping and
the velocity selectivity can be reduced by increasing the laser power
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and thereby decreasing the required pulse time. As a side effect, the
short pulses become broad in frequency, which could cause near-
resonance to undesired transfers as the co-propagating transfer. Also
it becomes more likely to drive transitions that are suppressed by the
geometry or polarisation, or by light from unwanted reflections on
the glass cell. At least the co-propagating transfer can be avoided by
extending the free-fall time before the Raman coupling. For shaped
pulses of about 15 µs, the resonances are sufficiently separated after
about 5 ms. The necessary free-fall time could be reduced by the use
of shorter pulses. For π-pulse times less than 10 µs, however, slight
transfer to momentum modes without a change in spin state have
been observed in our system, which we assign to Bragg transfers on
standing light waves as these where driven by only a single Raman
frequency from one direction. For Bragg transfers on standing waves,
the atoms have to move with a non-vanishing angle towards the
light-wave, which is the reason we assign unwanted reflections to be
involved here. A concise overview of the different types of momentum
transfers available by atom-light interaction can be found in Ref. [120].
On the other hand, working with much less power where π-pulse
times become long, the pulses are narrow in frequency and become
velocity selective regarding the residual expansion of the ensemble.
Here we observed that spatial patterns occur, such that for example
only the centre part of the cloud is effectively transferred by the
velocity-selective Raman pulse. Therefore, finding an optimal working
point for the Raman transfer also involves to modify the expansion of
the ensemble.

5.2 collimation of atomic clouds , transfer efficiency

and detection noise

After releasing the BEC from the dipole trap, the mean field energy
drives an accelerated expansion that turns into a constant expansion
within ∼ 1 ms, which ist characterised by the growing width of the
atomic cloud. One way to reduce the expansion is to slowly ramp
down the dipole trap, such that the trap is less confining when being
switched off. A disadvantage of this procedure is an extended holding
time, which can harm the previously entangled states by decoherence,
losses and heating or by uncontrolled spin dynamics, as the ramp also
causes a variation of the spin dynamic resonance condition. Therefore,
in this work, a pulsed potential is applied after 1 ms free fall to reduce
the momentum distribution of the cloud [121], a technique also called
delta-kick collimation.

The collimation pulse is implemented using the optical dipole trap.
During the initial free fall of 1 ms the atomic cloud moves by less
than 5 µm and therefore is still sufficiently well within the focus of the
original dipole trap. The collimation procedure affects the centre-of-



58 transfer to distinct momentum modes

Figure 5.7: Expansion rates and trajectories of free-falling ensembles. The
un-collimated case (black data points, dashed lines) is compared
to the collimated ensemble (blue data points, solid lines) which
experienced a collimation pulse of 350 µs length. The expansion
of the atomic cloud in (a) is measured by fitting a Gaussian to
the density distribution of the atomic cloud after various free-fall
times and calculating the rate of change of the standard deviation.
Here, the expansion is reduced by 78 % from 1.86(8)µm/ms to
0.41(3)µm/ms. The trajectories in (b) show that the clouds clearly
follow the respective free-fall trajectory with g = 9.81 m/s2. To fit
the collimated data well, the effect of the collimation pulse on the
centre-of-mass movement is modelled by an upwards acceleration
of 2.5g during the time of the collimation pulse. For comparison,
the case of a resting cloud during the collimation is also shown
(blue dashed line).

mass trajectory of the atomic ensemble (small upwards acceleration)
and reduces the radial expansion. The cloud remains in a round shape
after extended time of flight, from which we conclude a sufficiently
homogeneous collimation. The size of the clouds at the point of the
detection affects the precision in counting the atom numbers, as a
larger area on the absorption images has to be evaluated for larger
clouds. As the characterisation and application of highly entangled
states is usually limited by detection noise [63, 64], the effect of a
reduced final extent of the atomic clouds is the major benefit from the
collimation.

The reduction of the constant expansion is shown in Figure 5.7,
where the width of a Gaussian fit to the density profile of the freely
falling and expanding clouds is recorded. The slope of this signal
gives the constant expansion rate. Here, the initial expansion of σv =

1.86(8)µm/ms is reduced to 0.41(3)µm/ms by flashing the optical
dipole trap with its original laser powers for 350 µs. The residual
expansion corresponds to an effective temperature of 1.7(3) nK.

The position of the centre of mass of the clouds is also extracted
from the absorption images and clearly follows the free-fall trajectory
s(t) = −gt2/2 if no collimation is applied. With collimation, the clouds
are still in free fall when being detected, but are slightly retarded. The
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trajectory of the collimated ensemble is well described by modelling
the effect of the collimation pulse on the centre of mass motion by an
upwards acceleration of 2.5g during the time of the pulse.

The residual expansion rate depends on the length of the collimation
pulse. To determine a good working point, the size of the atomic
cloud is measured at a fixed free-fall time for a varying collimation-
pulse length. Figure 5.8 shows that the cloud size is reduced up to
about 400 µs collimation time and then increases again to even larger
extent as without collimation. At this point, the atoms are actually
accelerated such that the clouds inflect, similar to a focussed laser
beam that diverges behind its focus. Each measured mean cloud size
corresponds to a minimal number of relevant pixels on the absorption
images. As each additional pixel adds noise to the detected number of
atoms in the cloud, a minimal cloud size here also corresponds to a
minimal final detection noise2. For details on the mapping from the
measured cloud size to the inferred detection noise see Section A.2.2.

Based on the expansion rates shown in Figure 5.7, the size of the
clouds and the respective minimal detection noise is extrapolated to
longer free-fall times. For the working point chosen in the following,
i. e. ensembles of N ≈ 104 atoms and a free-fall time of 15 ms, the
collimation reduces the detection noise from 1 dB to −13.4 dB with re-
spect to the ensemble’s shot noise. As the verification of entanglement
usually demands a detection of atom numbers below shot noise, the
collimation here actually enables the detection of entangled ensembles
after extended free fall. The residual expansion limits the ability of
sub-shot-noise detection of our ensembles to 50 ms. The practical limit
for now, however, is at ∼ 20 ms as in our apparatus the atoms then
leave the range of the detection optics. Prior to this work, the detection
of entanglement after substantial free fall has been reported once for
squeezed thermal ensembles after a maximal free-fall time of 8 ms [79].

In Figure 5.9 the frequency width of the counter-propagating Raman
transfer is compared to the spread of Doppler shifts caused by the
velocity width of the ensemble. The Doppler spread of the collimated
cloud has a width of only σD = kσv/(2π) = 0.52(5) kHz which is less
than 1 % of the Fourier width of the Raman pulse. Within this setting,
highly efficient counter-propagating Raman transfers are achieved,
as shown by the transferred fraction for two consecutive Raman π-
pulses. The first Raman pulse transfers 97.2(6)% of the atoms in
the ensemble from |0h̄k; 2, 0〉 to |2h̄k; 1, 0〉. The attained momentum
points upwards. After a minimal waiting time of 40 µs to remove the
remaining atoms in |2, 0〉, a second Raman pulse with equal frequency
and time decelerates the atoms back to |0h̄k; 2, 0〉. The second transfer
yields an even higher efficiency of 98.5(6)%. Calculations based on

2 Minimal clouds sizes are optimal as long as the cloud is relatively dilute. If the
ensemble is larger or the extent of the cloud even smaller, e. g. when detecting directly
after releasing from the dipole trap, the detection becomes less accurate.
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(a) Effect of the collimation pulse length
on cloud size and detection noise.
The size of the atomic cloud is mea-
sured at a fixed free-fall time of 13 ms
after the collimation for a varying
collimation-pulse duration. The cloud
size determines the minimal number
of relevant pixels on the CCD camera
which in turn corresponds to a mini-
mal detection noise. The resulting de-
tection noise is compared to the shot-
noise (grey area) of an ensemble of
N = 9300 atoms (which corresponds
to the ensemble size prepared for the
main measurement in Figure 5.14).

(b) Extrapolation to longer free-fall times
based on expansion rates measured
for the collimated (solid lines) and
the un-collimated (dashed lines) case.
The corresponding collimation-pulse
durations are marked by vertical lines
in (a). The shaded areas represent the
uncertainty of the extrapolation. The
maximal free-fall time that technically
allows for sub-shot-noise detection of
the entangled ensemble presented in
this section is increased by a factor of
3.7 to about 50 ms.

Figure 5.8: The cloud size (orange data, left scales) and the resulting detection
noise (blue data, right scales) for free-falling ensembles. The
detection noise shown here refers to the detection of two atomic
clouds with the respective size each, as usually the atom numbers
of two modes have to be measured.

the measured residual expansion rate suggest, that this discrepancy
cannot be explained by the velocity selection (see Figure 5.10). Also
the Doppler shift due to the small extra free-fall time is too small to
explain the difference. Therefore, we attribute the reduced efficiency
of the first transfer to a small fraction of atoms with larger velocities,
which are not captured by the analysis of the mere expansion rate.
These atoms could stem from a small thermal fraction within the
initial BEC or from the collimation procedure. In this sense, the first
Raman pulse would indeed be velocity selective, and leave a cleaner
ensemble for the successive transfer. Therefore, all successive Raman
couplings are assumed to show equal transfer efficiency to the second
π-pulse. The fluctuations are equal for both transfer pulses, which
supports the assumption, that there is a small fraction of atoms in the
initial ensemble that simply does not interact with the Raman light.

The expected velocity selectivity can be calculated from the Raman
spectroscopy signal and the residual Doppler spread of the ensemble
as depicted in Figure 5.9. The predicted decrease of the Doppler
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Figure 5.9: Setting and results of the implemented counter-propagating Ra-
man transfer. (a) The Raman spectroscopy for the implemented
pulse time of ∼ 15 µs (orange data points and fit) is compared to
the distributions of Doppler shifts due to the velocity spread with-
out collimation (dashed blue line) and with a collimation pulse
of 350 µs (solid blue line). The collimation reduces the Doppler
spread by 77 % to 0.52(5) kHz. This is less than 1 % of the band-
width of the Raman pulse. In (b), the transfer efficiencies for two
consecutive Raman pulses are shown. The second Raman transfer
yields a mean efficiency of 98.5(6)%, slightly higher than the first
transfer with 97.2(6)%. The fluctuations remain similar.

spread and the potentially increased efficiency of the second transfer
are shown in Figure 5.10. The improved transfer efficiency of the
second Raman pulse cannot be explained by the residual Doppler
spread as for the collimated ensemble no reduction of the spread is
predicted. Even for the uncollimated ensemble, the reduction of the
initial Doppler spread is small and could not explain the observed
difference of 1.3 % in the transfer efficiency.

The nevertheless observed selection by the first Raman pulse can
always be regarded as a mere reduction of the ensemble size if an
ensemble of uncorrelated atoms is transferred. In the case of entan-
gled states, however, a loss of a small fraction of atoms can partially
destroy the entanglement. The actual contribution of the non-selected
fraction of atoms to an entangled state remains unclear. If these atoms
stem from a thermal background they do not participate in the entan-
gled state from the beginning, and the selection by the first Raman
transfer does not harm the entanglement. However, the remaining
imperfections as inherent to the second Raman transfer, do have a
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Figure 5.10: Predicted selectivity of the Raman transfer based on the mea-
sured expansion rate. In (a) the Doppler spread before and after
the Raman transfer are compared. A large initial Doppler spread
is reduced by the selectivity of the Raman transfer. The grey
dashed line corresponds to a unchanged spread. In (b) the effect
of the selectivity on the expected Raman transfer efficiency is
shown. For the collimated ensemble, neither the Doppler spread
nor the transfer efficiency change for successive application of
Raman pulses. Even without collimation, the velocity-selection
by the Raman pulse is predicted to be small.

strong influence on the entangled state, as here entangled atoms are
definitely lost and the fluctuations of the transfer deteriorates a poten-
tial sub-shot-noise signal. Anyhow, the realised momentum transfer
belongs to the best reported Raman transfers regarding efficiency
and fluctuations [122–124]. The numbers have to be compared to the
second Raman transfer, as usually the ensembles are velocity-selected
before evaluating the transfer efficiency and are usually given in terms
of efficiency per h̄k, which in our case is 99.3(3)%.

5.3 preparing entangled momentum modes

The techniques to prepare a large fraction of the ensemble in a twin-
Fock state and the realised highly efficient Raman transfer are com-
bined to prepare entangled momentum modes. The main idea of the
protocol is visualised in Figure 5.11. The BEC is held in the dipole
trap and undergoes a quasi-adiabatic passage through a quantum-
phase transition as discussed in Section 4.3 to prepare a twin-Fock
state in spin space. The ensemble is then released to free fall and a
spin-dependent momentum transfer prepares one of the twin modes
in a distinct momentum mode. To this end, the ensemble’s free expan-
sion is reduced and the relatively small fraction of atoms that do not
populate the twin-Fock state are removed prior to the transfer. The
final detection of the clouds by absorption imaging allows to count
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Figure 5.11: Summarising sketch of the main idea. Entanglement is created
between spin states of a BEC by spin-changing collisions in an
optical dipole trap. Subsequently, the trap is switched off and
the entangled ensemble undergoes a spin-dependent, coher-
ent momentum transfer during free fall. Spin- and momentum-
state-selective detection allows to verify particle entanglement
between the distinct momentum modes.

the population of the different spin and momentum states and the
characterisation of the remaining particle entanglement between the
prepared momentum modes.

The detailed experimental protocol is depicted in Figure 5.12. Dur-
ing about 1 s holding time in the optical dipole trap, the twin-Fock
state is prepared in the spin modes |1,±1〉. The trap is switched off
instantaneously to release the ensemble to free space where mean
field energy is converted into a constant width in momentum space.
After 1 ms of free fall, the trap is flashed on again for 350 µs to realise
a reduction of the width in momentum space as explained above. The
remaining atoms in |1, 0〉 can be expelled from the relatively dilute
ensemble by a MW transfer to |2, 0〉 and a subsequent illumination
with light resonant only to the F = 2 manifold. This cleaning process
is actually enabled by the initial quasi-adiabatic preparation of the
twin-Fock state, since removing more than ∼ 30 % of the ensemble by
this technique has been shown to reduce the number squeezing. For
the usual preparation by a rapid quench, a strong post selection would
be required, as here rarely more than 70 % of the atoms populate the
twin-Fock state.

Another resonant MW pulse transfers one of the twin modes from
|1,−1〉 to |2, 0〉, where, after a total free-fall time of 7.7 ms, the atoms
finally undergo a counter-propagating Raman transfer to |1, 0; 2h̄k〉.
The amount of transferred momentum is a factor of 29(3) larger than
the residual width in momentum space and therefore constitutes a
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Figure 5.12: Visualisation of the experimental sequence implemented to trans-
fer twin-Fock states from the spin degree of freedom to momen-
tum space. The transfers and couplings between the various
involved spin states are depicted on the top. The type of cou-
pling is indicated by different arrows (see legend) and involves
resonant MW pulses, cleaning light pulses and two-photon stim-
ulated Raman transitions. To characterise the entanglement of
the two momentum modes, two conjugate observables Jz and J⊥
are measured in two alternating experimental cycles. Operations
enclosed by the dashed rectangle only take place in the second
cycle to measure J⊥. The time-momentum diagram at the bottom
depicts the effect on the momentum mode of the atomic cloud
in the free-falling reference frame (axes not to scale).

clear separation into distinct momentum modes. In the first experimen-
tal cycle, the atoms then fall freely for another 7.76 ms such that the
separation in momentum space also manifests in a spatial separation
of the two twin-Fock modes. The trajectories and the spatial separa-
tion of the two clouds are depicted in Figure 5.13. Within the first
experimental cycle, the centre of mass of both atomic clouds separate
by 80(1)µm which constitutes a full spatial separation of the modes.
A magnetic field gradient prior to the final detection also separates
the different spin states spatially on the final absorption images. In
this way, the small fraction of atoms that remains in |2, 0〉 after the
first Raman transfer can also be detected and used for the analysis of
the entangled state.

From the resulting mode population after this first experimental
cycle, the number squeezing given by the reduced fluctuations of
〈Jz〉 can be extracted. As a reference, a similar protocol without any
Raman transfer has been conducted, which yields the result of an
equally prepared twin-Fock state in free fall. Thereby, three scenarios
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Figure 5.13: The two twin-Fock modes freely fall for about 1.2 mm as de-
picted by the trajectories in (a). At the end of the 1st experimental
cycle, the two twin modes are completely separated by 80(1)µm
(center of mass) as visualised by the same trajectories in the
free free-falling frame (b) and on the final absorption images (c).
On the absorption images, different momentum modes separate
vertically and different spin components horizontally. The white
circles around the atomic clouds depict the detection masks,
within which the images are evaluated. The density distribution
in (a) and (b) is modelled as an expanding Gaussian and the
shaded areas correspond to a 3σ width. Note that the clouds
on the absorption images seem to be less separated (vertical
direction) due to the logarithmic depiction of the density.

can be directly compared: (i) The twin-Fock state in spin space after
free-fall only, (ii) the twin-Fock state in momentum space directly
measured and (iii) the conditional result in momentum space by using
the additional information of the atoms not transferred by the first
Raman pulse. The measured number squeezing for each scenario is
shown with respect to shot noise of the ensemble’s mean total atom
number 〈N〉 = 9300 in Figure 5.14 and amounts to (i) −5.4(6)dB, (ii)
−3.9(6)dB and (iii) −5.2(7)dB. The number squeezing after free fall
(i) differs only by ∼ 0.5 dB compared to similarly produced twin-Fock
states measured directly after release from the dipole trap, which can
be explain by the small change in the detection noise. The classical
bound at 0 dB was verified by measuring the shot-noise fluctuations
of a coherent spin state prepared by a RF pulse (instead of using
spin dynamics) and otherwise undergoing the same sequence as the
twin-Fock state.

As discussed in Section 2.1.3, the detection of number squeezing
is not sufficient to verify entanglement. To actually prove that the
two momentum modes are entangled, an orthogonal pseudo-spin
direction has to be measured. Therefore, in the second experimental
cycle, an additional π/2-coupling between the modes is realised. This
coupling rotates the twin-Fock state on the Bloch sphere such that
the ring stands upright and goes through the poles instead of being
situated on the equator. After the coupling, the measured fluctuations
are large and the outcome distribution shows the characteristic cu-
mulation at extreme values. The evaluation of the variance of this
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Figure 5.14: Realisation of entangled momentum modes suitable for light-
pulse atom interferometry. (a) The measured number squeezing
4(∆Jz)2/N (blue squares) and squeezing parameter ξ2 (green
dots) measured after free fall and in momentum space with and
without taking into account the small fraction of non-accelerated
atoms. All values are well below the classical limit of 0 dB (light
grey area). This bound is experimentally verified by the measure-
ment of a coherent spin state (grey dashed line, uncertainty as
dark grey area) after equal free-fall time. (b) The measured atom
number difference after the 1st experimental cycle represents the
number squeezing (blue data points and histogram). At the end
of the 2nd experimental cycle, the orthogonal spin projection is
measured (orange data points and histogram). Each set of data
points in (a) is derived from such a series of measurements. (c)
The two measured observables are the width and the diameter
of the ring representing the twin-Fock state on the Bloch-sphere.

distribution leads to a spin length of
〈

J2
⊥
〉
= 0.63(5)× N/2(N/2− 1)

and combines with the number squeezing to a generalised squeezing
parameter (Equation 2.22) of (ii) −1.9(7)dB directly measured and
(iii) −3.1(8)dB conditional on the left-over atoms. After free fall only
(i), the measured spin length is slightly larger (69 % of the ideal value)
which causes a better squeezing value of −3.9(7)dB. Thus, the reduc-
tion of the spin length cannot be explained by the additional noise
of the Raman transfer. A plausible explanation, however, is the small
displacement of the two atomic clouds upon the minimal waiting
time of 40 µs in between the two Raman pulses. During this time, the
accelerated cloud moves by 0.5 µm, which can explain the observed
reduction in spin length by about 9 % (for details see Figure 6.1).
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If the independently characterised detection noise is subtracted from
the respective results, we achieve (ii) −4.4(7)dB number squeezing
and a generalised squeezing parameter of −2.4(8)dB. In the con-
ditional case (iii), where the non-transferred atoms are taken into
account, the measurement yields −5.9(9)dB and −3.8(9)dB respec-
tively.





6
D I S C U S S I O N A N D O U T L O O K

Entangled atomic ensembles in the spin degree of freedom are cur-
rently prepared in many experiments and proved to be useful in a
variety of interferometric measurements [25]. However, momentum-
entangled ensembles, as required for inertially sensitive atom interfer-
ometers beyond the SQL, present a long-standing challenge [40]. In this
work, entanglement was generated in the spin degree of freedom of a
BEC and successfully transferred to distinct momentum modes by a
stimulated Raman transition. The expansion rate of the free-falling en-
semble was reduced, enabling a detection noise below the atomic shot
noise even after substantial free-fall times. The entangled momentum
modes presented in this work constitute a successful proof of principle
of transferring entanglement from spin space, where its generation
is well-established, to momentum space. As the main technological
ingredients of the realised protocol are established tools in the field
of atom interferometry, the prepared momentum modes present a
viable entangled source to be integrated in existing light-pulse atom
interferometers. Upon a few technical improvements and a refining of
the source, a full atom interferometer to measure Earth’s acceleration
g with sub-SQL sensitivity can be implemented in our apparatus. Fur-
thermore, the presented entangled momentum modes can serve as the
basis of other interferometric measurements as for example a Bell test.

In the following, limiting noise sources and possible improvements
of the presented entangled source are discussed. Thereon an extension
of the realised protocol to an entanglement-enhanced gravimeter is
presented. Finally, based on the techniques utilised in this work, a
scalable atomic Bell test is sketched.

6.1 refining the entangled source

There is much potential to realise more squeezing in the momentum
modes. Compared to previous results achieved in our group [53], the
detected number squeezing of the twin-Fock states in this work is
reduced. Reaching a comparably low detection noise after extended
free-fall with respect to the earlier experiments, which detected the
ensembles directly after the release from the dipole trap, is one of the
main achievements of this work. The minimal detection noise was
reduced from σN− ∼ 108 atoms to σN− ∼ 22 atoms by collimating
the ensemble and should in principle allow to detect number squeez-
ing of up to −13 dB with respect to an ensemble size of N = 104

after a free fall of 15 ms. Similarly prepared twin-Fock states directly
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measured after the release from the dipole trap, as well as twin-Fock
states prepared by the usual rapid quench, showed equally reduced
number squeezing during the time the experiments in momentum
space were conducted. We attribute the reduction in number squeez-
ing to a technical issue before the detection. Probably, the ensemble
has not been properly illuminated with light that optically pumps
all spin states to F = 2 before the detection. If the ensemble is not
completely pumped, atoms would more likely stay in |F = 1, mF = 1〉
than |F = 1, mF = −1〉, causing more fluctuations in the number differ-
ence. In principle, the number squeezing is not expected to deteriorate
much during the free fall, and typically observed reductions of about
∼ 0.5 dB are well explained by a small change of the detection noise.

The presented quasi-adiabatically prepared twin-Fock states exhibit
a reduced spin length of

〈
J2
⊥
〉
= 0.69(5)× N/2(N/2− 1), which is

attributed to the extended holding times in the optical dipole trap,
required to realise the state preparation. This effect was observed
previously in our experiment [53] and has actually been reduced.
The remaining decrease of the spin length could be explained by a
heating process that excites atoms to higher trap modes. Thereby, a
fraction of the atoms would become distinguishable from the rest of
the ensemble in the ground state. As the many-body state is then
not fully symmetrised anymore, the maximal spin length would be
reduced [54]. However, long holding times without a major reduction
in spin length have been demonstrated in a similar system [64], and
thus the issue must be of a technical rather than a fundamental origin.
A technical approach to solve this problem is to further improve
the stability of the optical dipole trap. This can be accomplished
by exchanging critical opto-mechanical components to specifically
temperature stable devices and by implementing a two-level intensity
stabilisation, to enable a specific optimisation to the power range used
when holding the atoms. In conclusion, the twin-Fock state before the
transfer to momentum space can in principle offer higher generalised
squeezing of at least −10 dB and thereby enable a metrological gain
of about 4 (6 dB) [53, 64].

The increased number fluctuations recorded in momentum space are
explained by the residual noise in the Raman transfer, as the number
squeezing conditional on the non-transferred atoms is similar to the
result after free-fall only, just slightly increased due to the additional
detection noise from the third detection mask. Assuming the number
squeezing would only be limited by the realised detection noise, the
fluctuations of 0.6 % in the Raman transfer efficiency cause the ideal
number squeezing to be reduced from −13 dB to −9 dB below shot-
noise. This would still be a competitive value and illustrates the quality
of the implemented Raman transfer. However, the transfer efficiency
usually deteriorated within hours, which we assign to absolute and
relative drifts in the intensity of the Raman light. As the intensity
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Figure 6.1: Spin length as a measure of the spatial overlap of matter waves.
Upon displacement of the two twin modes, the experimentally
measured spin length (blue data points) decreases quickly. The
result is compared to a prediction which assumes the measured
expansion rate (solid line), twice the measured value (dashed line)
and the measured expansion without collimation (dotted line). To
improve comparability, the spin length is rescaled such that the
measured value after 40 µs is at 91 % of the ideal value (details
see text). The frequency of the second Raman pulse was fixed
here for simplicity, and thus the Doppler shift due to the slightly
extended free fall decreases the transfer efficiency. However, the
effect is too small to affect the spin length measurement. The
theoretical analysis uses a one-dimensional analytic description
of the expanding spatial mode based on the initial extent of
the cloud and the residual expansion rate. Theory was kindly
provided by Polina Feldmann and is based on Ref. [125].

after the final optical fibre is not stabilised (see Figure 5.3), a drift of
the fibre coupling directly causes a common intensity drift. Also the
polarisation could have drifted away from the maintaining axes of the
optical fibres, which can cause relative intensity fluctuations via the
PBS and in turn an imperfect compensation of the relative AC-Stark
effect. The limited long-term stability of the existing Raman system
also sets a practical limitation on the calibration (AC-Stark shift com-
pensation, determining optimal frequency and pulse length), required
to achieve highest transfer efficiencies. Therefore, a major technical
improvement to our apparatus will be a new Raman system includ-
ing a proper intensity stabilisation. The new Raman system has been
thoroughly re-designed to meet the requirements of our experiment
and showed promising performance in stand-alone characterisation
measurements [118].

A proof of entanglement between modes that were completely
separated for the measurement of both conjugate observables could
be regarded as the next step towards an entanglement-enhanced atom
interferometer. As a first measurement into this direction, the spin
length

〈
J2
⊥
〉

/(N/2(N/2 − 1)) was recorded for extended waiting
times between both Raman pulses, to allow the twin modes to move
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apart. The detected spin length is expected to decline with growing
separation, as the overlap of the spatial modes reduces and thus
the fraction of atoms that are effectively coupled by the π/2-pulse
decreases. Without any overlap, the π/2-pulse cannot couple the twin
modes anymore and simply transfers half of each into the opposite
spin state. Thus, speaking in the Bloch sphere picture, instead of
rotating the twin-Fock ring upright, two single Fock states |N/2〉A and
|N/2〉B are rotated independently from the poles of a half-sized Bloch
sphere, towards the equator. The final outcome is similar to a CSS and
shows a residual spin length (N/4)/(N/2(N/2− 1)) ∝ 1/N if the
same measurement as for the twin-Fock state is performed. Figure 6.1
shows the decrease of the measured spin length when extending
the time between both Raman pulses, i. e. extending the separation
of the twin modes. Here, the measured spin length was rescaled
as if the initial value for vanishing separation would be ideal to
improve comparability with the theoretical analysis. The measurement
agrees qualitatively with a prediction based on a one-dimensional
analytic description of the expanding spatial mode, depending on
the initial extent of the cloud and the residual expansion rate [125].
The relative displacement of the twin modes causes a fast decline
of the spin length which already vanishes at about 3 µm centre-of-
mass separation. Therefore, also the observed reduction of the spin
length by 9 % in momentum space compared to the result after free
fall only, could be explained by the slight displacement of 0.5 µm.
Regarding the application in atom interferometry, an accurate spatial
overlap during the final coupling pulse is crucial, not just to obtain
a maximum contrast but also to detect with entanglement-enhanced
performance.

From another perspective, the relatively high sensitivity of the spin
length on the spatial mode overlap can be seen as a tool to precisely
measure the fidelity of the spatial modes. Furthermore, in a scenario
where interference with atoms in a specific spin state upon a MW or RF

coupling should be avoided, but simply moving within the eight spin
levels of 87Rb is not sufficient, the atoms could be slightly displaced by
two successive Raman transfers to suppress the coupling to the rest of
the ensemble. A MW or RF pulse would still manipulate the displaced
atoms, but interference with the rest of the ensemble is switched off.
Upon re-establishing the overlap of the modes, the coupling pulses
cause interference again.

6.2 towards entanglement-enhanced gravimetry

Based on the protocol presented in Figure 5.12, a full light-pulse
atom interferometer to measure Earth’s gravitational acceleration with
entanglement-enhanced sensitivity can be realised. The enhancement
by entanglement could balance the smaller ensemble size when using
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BECs compared to thermal ensembles while at the same time allow
to benefit from the excellent mode quality of a BEC. Employing BECs

for gravimetry leads to a more precise control of the initial position
and momentum of the atomic cloud, which reduces the uncertainty
by gravity gradients and the Coriolis force. Furthermore, the Doppler
spread and the sensing of phase and intensity gradients of the light
fields is reduced.

First, both twin-Fock modes should predominantly populate the
clock states during the gravimeter sequence, as otherwise the relative
phase due to the gravitational acceleration is easily dominated by a
(noisy) phase shift due to magnetic fields. In the realised protocol,
one of the twin modes already populates the clock state |2, 0〉. For
usual magnetic field strengths and MW pulse lengths, a simple MW

transfer of the other twin mode in |1, 1〉 via |2, 1〉 to the clock state
|1, 0〉 is not possible without driving a relevant transfer on the near-
resonant "cross" transition |2, 0〉 ↔ |1, 1〉. An elegant way to avoid
the unwanted transition would be the implementation of MW pulses
with clean circular polarisation into our apparatus, as it already has
been demonstrated with adequate efficiency and suppression of the
unwanted transfer in a similar system [126]. The implementation of the
required antenna would be in line with an upgrade of the MW source
to a new system which has been recently developed in our group [127].
As an alternative, the magnetic field and the MW pulse length could be
matched to the given shares of polarisations such that a π-pulse on the
desired transfer |2, 1〉 ↔ |1, 0〉 exactly corresponds to a non-resonant
pulse that drives a full oscillation on the cross transition. Also larger
temporal changes of the magnetic field should not harm the entangled
state after it has been released to free space. In the following, we call
either way to suppress the effect of the "cross" transfer a selective MW

pulse and assume this technique to perform on a similar noise level
as the usual MW transfers, such that multiple pulses can be utilised
without causing a major degradation of the entangled state.

The extension of the implemented protocol from Figure 5.12 to a
potential entanglement-enhanced gravimeter is depicted in Figure 6.2.
In principle, the first two counter-propagating Raman π-pulses have
been implemented. Here, the twin modes are initially prepared in the
clock states by one of the abovementioned techniques and undergo the
required free fall of ∼ 5 ms to separate co- and counter-propagating
transfer by the Doppler shift. Before the first counter-propagating
pulse, a co-propagating π/2-pulse rotates the twin-Fock state upright
such that it becomes phase sensitive.

For a direct extension of the scheme, all counter-propagating Raman
pulses should only couple to the purple twin mode (depicted by
the orange dots in Figure 6.2). To this end, relatively long and thus
frequency selective Raman pulse that resolve the Doppler shift between
the momentum transfers in opposite direction ±2h̄k of 2× 15 kHz
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Figure 6.2: The envisaged entanglement-enhanced gravimeter is depicted in
(a). Similar to the protocol realised in this work, one of the twin-
modes is accelerated (purple trajectory) by counter-propagating
Raman transfers to span an area in space-time with respect to
the free fall trajectory of the other twin mode (dark blue). Both
twin modes populate the clock states and a Raman pulse that
resolves the Doppler-shift between opposite momentum transfers
accelerates one of the modes. To invert the momentum kick, the
internal spin states are commonly changed by co-propagating
Raman transfers. The transfer function of this interferometer (b)
is similar to a common Mach-Zehnder topology (see text) and the
weighted phase noise (c) of the new Raman system integrates to
5 mrad. For comparison, the weighted phase noise for the Raman
system employed until now is depicted as well. Here, assumed
parameters are τπ = 90 µs, T′ = 1 ms and T = 0 ms. Figures (b)
and (c) are kindly provided by Christophe Cassens [118].

could be employed. The length of efficient pulses is restricted by the
velocity distribution of the atoms to around 3 times the pulse duration
that has been implemented. Assuming further reduction of the residual
expansion by a factor of 1/2 would allow for pulse durations of about
6 · 15 µs = 90 µs without additional losses due to velocity selection.
Such pulses resolve 1/90 µs ≈ 11 kHz and thus should allow to drive
the momentum transfer for only one mode though both clock states
are populated. The first counter-propagating Raman pulse accelerates
the atoms in |2, 0〉 upwards. For the successive Raman transfers the
selection of the mode by the Doppler shift is always possible, as
both modes will either be in a different clock state or in a different
momentum state.

After the second momentum transfer, which stops the relative mo-
tion of the clouds, both twin-modes would travel for a variable time T
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on different trajectories. At this point a co-propagating Raman pulse,
which is not selective as no Doppler shift separates both possible
transfers, interchanges the spin state, such that the following mo-
mentum transfer accelerates the purple mode back towards the blue
mode. Interference of the modes does not happen here, as they do
not spatially overlap yet. A fourth Raman pulse stops the relative
motion of the modes at the point of maximal spatial overlap. A final
co-propagating π/2-pulse closes the interferometer and maps the rel-
ative phase information onto the population imbalance of the clock
states.

For completeness, a few possible modifications of the presented
scheme should be mentioned. In the case that MW pulses are preferred,
the co-propagating Raman pulses could in principle be replaced by a
MW coupling of the clock states. Also could a combination of three MW

pulses prior to each momentum transfer be employed to temporarily
move the blue mode to a spin state which is not coupled to the Raman
light (details in Section A.1.1), which provides an alternative way to
achieve momentum transfer to one mode only. Alternatively, both
modes could be accelerated symmetrically into opposite directions
by a simultaneous resonant coupling of the clock states. In this case,
rather short pulses, broad in frequency, have to be used to allow for
a resonant driving of both transfers. A relatively broad resonance
can also be achieved, if the frequency difference of the Raman lasers
is swept to realise an adiabatic passage. This technique has been
demonstrated with promising fluctuations of the transfer efficiency of
∼1 % [124].

The relative phase imprinted on the twin-Fock modes by the gravime-
ter sequence depicted in Figure 6.2 is given by [118]

θ = −4h̄k
m

T′ − 2kgT′(T′ + T) + φ1 − φ2 − φ3 + φ4 (6.1)

where T and T′ are the free evolution time and the time between the
pairs of counter-propagating Raman beams (Figure 6.2). The term
depending on Earth’s gravitational acceleration g is proportional to
the area the two modes span in space-time. The phases φ1,2,3,4 are
the phases of the respective Raman laser pulses and k corresponds
to the transferred photon momentum, which is ±2h̄k for the counter-
propagating Raman pulses. To estimate the limit on the phase sensitiv-
ity based on the performance of the new Raman system, the transfer
function is computed and weighted with the measured phase noise
between the two Raman lasers. Figure 6.2 shows that the transfer
function of the twin-Fock gravimeter is quite similar to the transfer
function of a usual Mach-Zehnder like scheme (with similar timings
and pulse lengths assumed). The gravimeter is sensitive to noise fre-
quencies in a range determined by time T′ between the Raman pulses
and the pulse duration τ, i. e. in the range from 1/T′ = 103Hz and
1/τ ≈ 104Hz. Smaller noise frequencies cause changes which are
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too slow for the interferometer to be affected. Noise with higher fre-
quencies is time-averaged within the duration of the measurement.
Weighting the phase noise of the new Raman system with this transfer
function predicts an integrated phase noise of σPN = 5 mrad for this
specific implementation. By comparing to the SQL (∆θSQL)

2/(σPN)
2

of 104 atoms we estimate to resolve a gain of 6 dB, thus the weighted
phase noise might still set a considerable limit to the observable
squeezing at the interferometers output. Also the phase noise caused
by vibrations of the retro-reflective mirror is expected to set a bound
at a comparable level.

Regarding a measurement only limited by the detection noise and
the present Raman transfer efficiency and fluctuations, we expect
that 93(2)% of the accelerated atoms reach the output state of the
gravimeter and exhibit, together with the atoms at rest (in free-falling
frame), a residual number squeezing of −7 dB. If the fluctuations of
each Raman transfer can be reduced by a conservative factor of 1/2 (to
0.3 %), the remaining number squeezing would already exceed −10 dB.
The spin length measurement is insensitive to fluctuations on this level
and is mainly limited by the final spatial overlap. Summing up, by
implementing the presented atom interferometer, a measurement of
Earth’s gravitational acceleration g with a sensitivity beyond the SQL

is in reach.
The presented protocol is not limited to twin-Fock states but can in

principle use all entangled states that can be prepared in the two clock
states. For example, a spin-squeezed state could be utilised as input
to the above gravimeter as follows. Starting with the initial ensemble
coherently split onto the levels |1,±1〉 and vacuum in |1, 0〉, spin
dynamics at q/|Ω| = −1 generates the one-mode squeezed vacuum
in |1, 0〉 as described in Section 3.4.3. The populations in |1,±1〉 are
then transferred to |2,±1〉 and combined in |2, 0〉 by an F-selective RF

pulse to realise the squeezed vacuum in the upper clock state. Such
selective RF pulses that only couple to a desired spin-F manifold have
already been demonstrated [97]. By another MW π/2-pulse on the
clock transition with adequate phase, a phase sensitive spin-squeezed
state can be prepared and used as entangled input state to the outlined
gravimeter.

The absolute sensitivity of inertially sensitive atom interferometers
will most likely benefit from entangled sources, if relative measure-
ments are conducted with two or more atom interferometers at the
same time. In those protocols, predominant noise sources, such as
vibrations of retro-reflective optics, are suppressed by common-noise
rejection and thus the sensitivity limit set by the SQL becomes relevant.
Exemplary applications are gravity gradiometers [38] or future atomic
gravitational wave detectors [128, 129].
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6.3 sketch of a scalable atomic bell test

The ability to coherently separate highly entangled ensembles in space
is also interesting for applications beyond entanglement-enhanced
metrology. For example, atom interferometers employing squeezed
BECs and spatial separation on the µm scale have been proposed to
probe and potentially rule out collapse models, extensions of quantum
mechanics that try to shed some light on the quantum-to-classical
transition [130].

Another compelling question is, whether the intriguing features
of quantum mechanics are just based on ignorance, i. e. could be
avoided by using a classical theory with local hidden variables, or the
quantum description is actually necessary. In 1964, John Stewart Bell
proposed a setup where the outcome predicted by quantum mechanics
is inconsistent with the prediction of any classical local theory, thereby
enabling to answer the question by conducting so-called Bell test
experiments [3]. Even though the assumption of locality (no interaction
faster than light) and realism (the ability to assume properties of a
system to exist previous to a measurement) should intuitively hold,
many impressive Bell tests showed clear agreement with the quantum
description, ruling out local realism to be fundamentally valid. A few
years ago, the first Bell tests closing all three major loopholes were
reported [4–6]. As most Bell tests so far, these used photonic systems.
The realised atomic Bell tests, as sophisticated as they are, only used
small systems such as a few ions [131] or single neutral atoms [132].
Larger rather macroscopic atomic systems such as a thermal cloud of
atoms or a BEC have been shown to exhibit Bell correlations [133, 134],
i. e. the strongest type of entanglement required to conduct a Bell test.
However, as typical to these systems, only collective measurements
could be performed and no spatial separation of subsystems was
realised. Yet, both is required for an actual Bell test.

The techniques presented in this thesis can be used to implement
a Bell test with a free-falling BEC of thousands of atoms. In principle,
each of the two modes of a twin-Fock state is split and spatially
separated. The split portions then meet with their counterpart and
undergo a local MW coupling before being measured. The basic idea
of such a Bell test using Fock states was formulated by Yurke and
Stoler [135] and later extended to independent many particle Fock
sates by Laloë and Mullin [136]. A possible implementation in our
system by using the implemented Raman transfers will be briefly
sketched in the following. The envisioned scheme breaks down into
five steps:

1. Preparation of a twin-Fock state in the levels |1,±1〉.

2. Successive momentum transfer of 50 % of each twin mode.
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3. A variable waiting time defines the spatial separation of the
accelerated twin-mode portions and the portions at rest (free-
falling frame).

4. Inverse momentum transfer to the firstly accelerated mode to
achieve spatial overlap of both accelerated portions.

5. Local readout by MW coupling between the portions in (A) and
(B) respectively.

The scheme is sketched in Figure 6.3. A twin-Fock state is prepared
by the quasi-adiabatic procedure in the states |1,±1〉 and released
to free fall, representing the source S. Then, a combination of a MW

π/2-pulse and a Raman π-pulse transfers 2h̄k momentum to half of
the twin mode in |1,−1〉. Prior to the next Raman pulse, a sequence of
MW pulses is employed to move 50 % of the other twin mode to |2, 0〉.
As the coupling between displaced modes is switched off (Figure 6.1),
the spin state of two modes can be exchanged with a MW π-pulse
without causing interference. The full scheme is rather technical and
discussed in detail in Section A.1.2. Another Raman pulse transfers
momentum to a half portion of the second twin mode, such that now
two portions are at rest (blue) and the other two portions separate
with 2h̄k/m (purple). The following MW pulse sequences are used

Figure 6.3: Sketch of a scalable atomic Bell test based on the demonstrated
techniques. The source S is a clean twin-Fock state in spin space.
One half of each twin mode is spatially separated from the other
half by a counter-propagating Raman pulse. To this end, the
spin states have to be modified by several MW pulses (here only
indicated, for details see Section A.1.2). The final states in site
A and site B are separated by a scalable distance and allow
for independent local readout as they couple to different MW

frequencies.
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to bring the firstly accelerated atoms to the level |1, 0〉, such that the
momentum transfer can be reversed and spatial overlap of both purple
portions can re-establish. Also the different modes are transferred by
the MW pulses to their final spin configuration. The time when the
last Raman pulse is applied determines the final separation between
the purple modes in site A and the blue modes in site B. Finally, two
independent MW couplings can be applied with individual phases φA
and φB.

In total, the scheme requires three counter-propagating Raman π-
pulses and 15 MW pulses. The number of MW pulses seems ambitious.
However, most of the couplings are simple π-pulses which could
only add noise via fluctuations in the transfer efficiency, which is
typically very low. As an alternative, the protocol can be further
reduced in complexity by employing the abovementioned techniques
of polarisation-selective MW or F-selective RF transfers.

Magnetic field noise should not be detrimental to the scheme as the
twin-Fock state on the equator is inherently phase insensitive. In doubt
about the influence of magnetic field noise, the whole scheme takes
less than 1 ms, which is still short enough to be relatively robust to
magnetic field noise. In our experiment, the signal of an interferometer
between magnetic field sensitive states was observed to retain for at
least 2 ms evolution time. However, a thorough noise analysis and
based on this, an optimal choice of local operations, observables,
the actual inequality to violate and the ability to close loopholes
using this scheme should be done, but is beyond the scope of this
thesis. Also, the possibility of relaxing the prerequisite for single atom
detection (as Alice’ and Bob’s twin-Fock states are not independent
here) remain open questions. Concerning the matter of detection,
a two-mode squeezed state [62] might be employed instead of a
twin-Fock state to realise a Bell test based on homodyne detection of
continuous variables [137–139].

If a Bell test along the line of the presented protocol is implemented
in our apparatus, the separation of sites A and B could be scaled up to
hundreds of µm. In the 10 m atomic fountain experiment in Stanford,
the coherent separation of two modes of a BEC by more than half a
meter and a successive recombination has been demonstrated [140].
Therefore, the spatial separation of the entangled BEC-modes is in
principle scalable up to the m scale. Experiments which can bring
the non-classical features of many-body entangled quantum states
to the macroscopic world are in reach, as the combination of entan-
gled ultra-cold sources and the ability of macroscopic separation is
actively pursued at facilities such as the Very Large Baseline Atom
Interferometer (VLBAI) in Hannover.





A
A P P E N D I X

a.1 details on envisioned protocols

a.1.1 Alternative implementation of the gravimeter

To directly extend the realised protocol to a gravimeter where the
atoms predominantly populate the clock states, the momentum trans-
fer needs to be restricted to one of the twin modes only. Alternatively
to use Raman pulses that resolve the Doppler shift between momen-
tum transfers in opposite directions, one of the two modes could be
moved to a spin state that does not couple to the Raman light.

To this end, three MW pulses can be utilised around each momentum
transfer as follows. The blue mode has to temporarily leave the clock
state by a selective MW transfer from |1, 0〉 to |2, 1〉. After the counter-
propagating π-pulse transferred the purple mode from |0h̄k; 2, 0〉 to
|2h̄k; 1, 0〉, a simple MW transfer on the clock transition reverts the spin
change and gives way to the blue mode to be transferred back to its
initial clock state |1, 0〉 by another selective MW coupling. To transfer
momentum into the opposite direction, the MW transfer on the clock
transition is implemented before the Raman transfer. Assuming the
typical short pulse times here, the blue mode stays about 50 µs in
a magnetically sensitive state for each procedure. As there are four
momentum transfers involved in the scheme, the time in magnetically
sensitive states sums up to about 200 µs, which is 10 % of the minimal
envisaged interferometer time and thus should have a relatively small
effect on the measured phase.

a.1.2 Detailed protocol of the sketched Bell test

The detailed scheme of the envisioned Bell test is visualised in Fig-
ure A.1. A twin-Fock state is prepared by the quasi-adiabatic procedure
in the states |1,±1〉 and released to free fall. Then, a combination of
a MW π/2-pulse and a Raman π-pulse transfers 2h̄k momentum to
half of the twin mode in |1,−1〉. As now all desired atoms are in
F = 1, the left-over atoms from the Raman transfer can be removed
from the ensemble by a cleaning light-pulse. Then, the accelerated
atoms in |1, 0〉 are transferred back to |2, 0〉. The accelerated mode
(purple) is displaced from the modes at rest (blue) and a MW π-pulse
simply interchanges their spin state such that the untouched twin
mode populates |2, 0〉. One half of this twin mode is then accelerated
and moved back to |2, 0〉 similar as for the other twin mode before.

81
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Here, cleaning the potential left-overs from the Raman transfer is not
possible by the usual light pulses anymore, as four modes cannot
populate the three available levels of F = 1. However, the left-over
atoms will finally end up in otherwise unpopulated spin states or at a
different position, such that they do not cause any problem but give
extra information about the Raman transfer.

The remaining MW pulses are employed to enable a deceleration
of the firstly accelerated twin portion and to move the four modes
to spin states that allow for local operations in sites A and B before
the final detection. After waiting again for sufficient displacement,
the spin state of the just accelerated mode is interchanged with its
resting counterpart. Then, two more simple MW π-pulses move the
blue modes to their final spin configuration. As the two purple modes
are also sufficiently displaced from each other at this point, another
spin-state interchanging pulse can be employed here. Another three
usual MW π-pulses transfer the firstly accelerated mode to |1, 0〉 and
the other purple mode to its final spin state |1, 1〉. A final Raman pulse
decelerates the atoms in |1, 0〉 to allow to establish spatial overlap
of the purple modes again. The time when the last Raman pulse is
applied determines the final separation of the purple modes in site A
and the blue modes in site B. Finally, two independent MW couplings
can be applied with individual phases φA and φB.

a.2 auxillary measurements

a.2.1 Effective quadratic Zeeman shift vs. set voltage

For a proper fit in Figure 4.1, the effective quadratic Zeeman shift
upon MW dressing on the transition |1, 0〉 ↔ |2, 0〉 has to be expressed
as a function of the voltage which sets the power of the dressing MW.
To this end, the dependence of the dressing MW power on the setpoint
voltage of the PI is measured and fitted.

In general, the Rabi frequency is proportional to the power of the
MW, ΩMW ∝

√
PMW. Here, the above fit function is used to define the

Rabi frequency as a function of Vset and a π-pulse time tπ as

ΩMW (Vset, tπ) =
π

tπ

√
PMW(Vset)

P0
(A.1)

with P0 = PMW(0.6). The time tπ could in principle be determined
experimentally but is left as a fit parameter. Finally, the effective
quadratic Zeeman shift writes as

q(Vset, tπ) = qB− qMW(Vset, tπ) =
(gµBB)2

∆νhf
− Ω2

MW(Vset, tπ)

2π4δ
[Hz],

(A.2)
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Figure A.1: Detailed sketch of a scalable atomic Bell test based on the demon-
strated techniques. The source S is a clean twin-Fock state in spin
space. One half of each twin mode is spatially separated from
the other half. Here, a key feature is the switched off coupling
between displaced modes, which allows to exchange the spin
state of two modes with a MW π-pulse without causing interfer-
ence (the specific transfers are marked with grey dots). The final
states in site A and site B are separated by a scalable distance and
allow for independent local readout as they couple to different
MW frequencies.
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Figure A.2: The power of the dressing MW is measured directly before the
antenna as a function of the voltage Vset that constitutes the actual
value of the PI controller. The solid line represents a quadratic fit
which gives PMW(Vset) = 7105.54 ·V2

set.

where

g = −1/2 approximate Landé g-factor

µB = 1.399 624 604× 106 Hz/G Bohr Magneton

B = 0.73 G absolute magnetic field

∆νhf = 6.834× 109 Hz frequency of the hyperfine splitting

δ = 400× 103 Hz detuning w.r.t. clock transition
To calibrate q/|Ω| in Figure 4.1 we use the fit function

f (Vset, tπ, Ω) =
q(Vset, tπ)

Ω
,
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where tπ and Ω are fit parameters. Varying Ω results in a different
slope of the function, whereas varying tπ shifts the function up and
down. Therefore both variables can be independently determined by
the fit. The fit of Figure 4.1 gives Ω = 5.6(2)Hz and tπ = 143.4(6)ms.

a.2.2 Detection noise vs. measured cloud size
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Figure A.3: The dependence of the detection noise per mask as function of the
mask diameter is characterised by evaluating empty absorption
images. The solid line represents a quadratic fit.

The detection noise per mask is determined by evaluating empty
absorption images with detection masks of different size. The data
points are fitted with the expected quadratic relation to achieve a
contineous mapping from the extrapolated cloud size to the respective
detection noise in Figure 5.8b. The fit function in Figure A.3 is given
by

σdetection = 0.066(2) [
atoms
µm2 ] d2

mask. (A.3)

In the experiment, we determine the size of the atomic cloud by fitting
a Gaussian to the measured 2D-density and computing its standard
deviation σcloud. To map this cloud size onto a realistic size of the
detection mask dmask in pixel, we experimentally optimise the mask
size for each collimation-pulse duration in Figure 5.8a. The mean
translation factor is calculated as

fcloud to mask size =

(
n

∑
i=1

d(i)mask

σ
(i)
cloud

)
/n = 1.092(6)

pixel
µm

. (A.4)

In this way, we average over artefacts of the mode preparation that
result in slight deformations of the clouds and thus the need for
slightly larger detection masks is some cases.
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a.3 details on simulations and calculations

a.3.1 Definition of the Wigner function on the Bloch sphere

The Wigner function shown on the Bloch spheres in Section 2.1.2 are
computed using the formula [25]

W(ϕ, ϑ) =

√
N + 1

4π ∑
k,q

Tr
(

ρT†
kq

)
Ykq(ϑ, ϕ) (A.5)

where Ykq(ϑ, ϕ) are spherical harmonic functions and T†
kq are spherical

tensor operators. The tensor operators are given by Clebsch-Gordan
coefficients and Dicke states [25]

T(J)
kq =

J

∑
m,m′=−J

(−1)J−m′ 〈J, m; J,−m′|k, q
〉
|J, m〉

〈
J, m′

∣∣ (A.6)

where with J = N/2 we identify |J, m〉 = |N/2 + m, N/2−m〉. Since
the density operator can be decomposed in the basis of spherical tensor
operators ρ = ∑k,q

〈
T†

kq

〉
Tkq, the Wigner distribution can be regarded

as a one-to-one representation of the state ρ. The distribution sums
up to one

∫
dϕ
∫

dϑW(ϕ, ϑ) = 1 but in contrast to a real probability
distribution it can show negative values. These negative values are
often connected to non-classical features and can lead to an intuitive
understanding of the phase sensitivity of highly-entangled states.

a.3.2 Numerical simulation of spin dynamics

To numerically solve the time evolution with the Hamiltonian 3.3
the states and the Hamiltonian are represented in the reduced ba-
sis |k, N − 2k, k〉 = |k〉−1 ⊗ |N − 2k〉0 ⊗ |k〉1 which has the dimension
N/2 + 1 instead of (N+3−1

3−1 ) ∝ N2/2 for a full three-mode description
(similar as in Ref. [101]). By calculating

a0a0a†
+1a†
−1 |k, N − 2k, k〉

=
√

N − 2k
√

N − 2k− 1(k + 1) |k + 1, N − 2k− 2, k + 1〉 (A.7)

a†
0a†

0a+1a−1 |k, N − 2k, k〉
=
√

N − 2k + 1
√

N − 2k + 2k |k− 1, N − 2k + 2, k− 1〉 (A.8)

N̂0 |k, N − 2k, k〉 = (N − 2k) |k, N − 2k, k〉 (A.9)

N̂+1/−1 |k, N − 2k, k〉 = k |k, N − 2k, k〉 (A.10)
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and neglecting terms proportional to N̂+1− N̂−1, that is restricting the
analysis to states with vanishing magnetisation, the Hamiltonian 3.3 is
expressed as a (N/2 + 1)× (N/2 + 1) dimensional tridiagonal matrix

Hik = δik (λ(2(N − 2k)− 1) + q) 2k

+ δi,k+1
√

N − 2k
√

N − 2k− 1 (k + 1)

+ δi,k−1
√

N − 2k + 1
√

N − 2k + 2 k. (A.11)

For implementation, sparse matrices of the Phyton SciPy library are
utilised, as this allows to convert the self defined states and operators
into QuTip objects and to use the QuTip time evolution solver [141].

Atom loss is modelled by introducing a time-dependence for the
spin-dynamics rate Ω or the interaction parameter λ respectively via
the decreasing total atom number. In our system, the initial decrease
in the atom number is mainly caused by three-body losses and experi-
mentally determined to be described by

N(t) = 0.62N0e−t/τ + 0.38N0 (A.12)

with a life time of τ = 6.3 s. The time-dependence of Ω and λ are
given by their scaling with the total atom number, i. e.

Ω(t) = Ω0 · (N(t)/N0)
2/5 (A.13)

and

λ(t) = λ0 · (N(t)/N0)
−3/5 (A.14)

respectively.

a.3.3 Calculating the AC-Stark shift

The atom-light interaction in a three level system is thoroughly pre-
sented in [115]. Here, the resulting formulae for the AC-Stark shift
shall be explicitly expressed with the different polarisation compo-
nents to properly describe the asymmetric laser geometry used in this
work.

The differential AC-Stark shift is defined as ∆AC = δAC
e − δAC

g . The
individual shifts of the state |g〉 and |e〉 can be written as

δAC
g = |Ω1|2

4 ∑σ1 ∑3
F′=0

∑F′
m′F=−F′ |〈F′,m′F |F=1,mF=0;1,σ〉SFF′ |2

∆−∆F′
(A.15)

+ |Ω2|2
4 ∑σ2 ∑3

F′=0

∑F′
m′F=−F′ |〈F′,m′F |F=1,mF=0;1,σ〉SFF′ |2

∆−∆F′−νhf
(A.16)

δAC
e = |Ω1|2

4 ∑σ1 ∑3
F′=0

∑F′
m′F=−F′ |〈F′,m′F |F=2,mF=0;1,σ〉SFF′ |2

∆−∆F′+νhf
(A.17)

+ |Ω2|2
4 ∑σ2 ∑3

F′=0

∑F′
m′F=−F′ |〈F′,m′F |F=2,mF=0;1,σ〉SFF′ |2

∆−∆F′
(A.18)
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where the Clebsch-Gordan coefficients are defined as explicitly stated
in [142] 1. The range of the sum over the polarisations is σ1 = {1} and
σ2 = {−1, 1} for the asymmetric laser configuration and σ1 = σ2 =

{−1, 1} for the symmetric setting. The relative hyperfine transition
strength factors SFF′ are given by

F′ = 0 F′ = 1 F′ = 2 F′ = 3

F = 1
√

1/6
√

5/12
√

5/12 0

F = 2 0
√

1/20
√

1/4
√

7/10

. (A.19)

The ∆F′ are defined to be the detuning from the F′ = 1 level, that
is ∆F′=0 = −72.218 MHz, ∆F′=1 = 0 MHz, ∆F′=2 = 156.947 MHz and
∆F′=3 = 156.947 + 266.65MHz. For the calculation of the differential
shift, the Rabi frequencies are estimated to be Ω1 ≈ Ω2 ≈ 4.5× 107 Hz,
which via

Ω0 =
Ω1Ω2

2

(
1

24∆
+

1
8(∆− ∆2)

)
(A.20)

gives π-pulse times of about 15 µs.
The differential shift for the asymmetric laser geometry evaluates to

∆AC = 1
960

(
2
(

25
−∆+νhf

+ 1
∆ + 15

∆−∆2
+ 15
−∆+∆2+νhf

+ 24
∆−∆3

)
|Ω2|2(A.21)

+
(
− 25

∆ + 1
∆+νhf

+ 15
∆−∆2+νhf

+ 15
−∆+∆2

+ 24
∆−∆3+νhf

)
|Ω1|2

)
(A.22)

where the result for the symmetric configuration is attained by simply
dropping the single factor 2 and exchanging the pre-factor 1/960 by
1/480.

The differential shift vanishes if the individual shifts are equal. From
δAC

g = δAC
e the desired intensity ratio for the asymmetric geometry

explicitly writes as

I2

I1
=

1
4

(
1

240(∆+νhf)
+ 1

16(∆−∆2+νhf)
+ 1

10(∆−∆3+νhf)

)
−
(

5
48∆ + 1

16(∆−∆2)

)
(

5
24(∆−νhf)

+ 1
8(∆−∆2−νhf)

)
−
(

1
120∆ + 1

8(∆−∆2)
+ 1

5(∆−∆3)

)
(A.23)

where the solution for the symmetric geometry only differs by a factor
1/2 in the numerator. ∆AC and I2

I1
are shown in Figure 5.4 in the main

text.
The frequencies of the Raman lasers with respect to the absorption

spectrum of Rubidium is shown in Figure A.4.

1 The Clebsch-Gordan coefficients explicitly shown in the Appendix of reference [115]
are a factor 2 larger. If these are used, the above equations must be multiplied by a
global factor of 1/2. When calculating the differential shift or intensity ratios, this
factor cancels anyway.
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Figure A.4: Absolute position of the Raman laser frequencies within the
spectrum of Rubidium. The cooling laser is locked onto the 87Rb
cross-over transition

∣∣52S1/2; F = 2
〉
↔
∣∣52P3/2; F′ = c.o.1− 3

〉
and due to proper frequency shift by two AOMs runs at the
frequency of the transition

∣∣52S1/2; F = 2
〉
↔
∣∣52P3/2; F′ = 3

〉
.

This laser serves as absolute frequency reference for the Raman
system. Raman laser 1 is locked onto the cooling laser with a red
detuning of about 1.1 GHz. The phase lock stabilises Raman laser
2 about 6.834 GHz blue detuned with respect to Raman laser 1.

a.3.4 Velocity selection of Raman transfers

The frequency distribution of the applied sin2 pulses can with good
agreement be described by

S(ν, τ) = P0e
− ν2

2(0.6/τ)2 (A.24)

where τ is the pulse time and P0 the transfer probability for a ne-
glectable velocity width, i. e. for a short pulse time. Alternatively, a
fit to an actually measured spectroscopy is used when available. The
velocity distribution of the ensemble is describe by a Gaussian function

V(v, σv) =
1√

2πσ2
v

e
− v2

2σ2
v (A.25)

where σv is the measured velocity width, i. e. the rate of change of
the width of a Gaussian fit onto the density profile of the free falling
ensemble. The velocity width directly translates into a corresponding
frequency width D(ν, σν) due to the Doppler effect by using σν =

−σv/λ, where λ = 780.24 nm is the wavelength of the Raman lasers.
The distribution of Doppler shifts after a (potentially velocity selec-

tive) Raman transfer is given by

σselected
ν =

∫
ν2S(ν, τ)D(ν, σν)dν (A.26)
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and the maximum expected transfer probability is

Pmax(σν) =
∫

S(ν, τ)V(ν, σν)dν. (A.27)
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and A. G. Truscott. “Bell correlations between spatially sepa-
rated pairs of atoms.” In: Nature Communications 10.1 (2019),
p. 4447. issn: 2041-1723. doi: 10.1038/s41467-019-12192-8.
url: https://doi.org/10.1038/s41467-019-12192-8.

[46] R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G.
Dall, K. G. H. Baldwin, and A. G. Truscott. “Ghost imaging
with atoms.” In: Nature 540.7631 (2016), pp. 100–103. issn: 1476-
4687. doi: 10.1038/nature20154. url: https://doi.org/10.
1038/nature20154.

https://doi.org/10.1038/nature13433
http://www.nature.com/nature/journal/v510/n7506/abs/nature13433.html
http://www.nature.com/nature/journal/v510/n7506/abs/nature13433.html
https://doi.org/10.1063/5.0050235
https://doi.org/10.1063/5.0050235
https://doi.org/10.1063/5.0050235
https://doi.org/10.1063/5.0050235
https://doi.org/10.1038/nphys1992
https://doi.org/10.1103/PhysRevLett.108.260401
http://link.aps.org/doi/10.1103/PhysRevLett.108.260401
http://link.aps.org/doi/10.1103/PhysRevLett.108.260401
https://doi.org/10.1103/PhysRevLett.105.190402
http://link.aps.org/doi/10.1103/PhysRevLett.105.190402
http://link.aps.org/doi/10.1103/PhysRevLett.105.190402
https://doi.org/10.1103/PhysRevLett.99.150405
https://doi.org/10.1038/s41467-019-12192-8
https://doi.org/10.1038/s41467-019-12192-8
https://doi.org/10.1038/nature20154
https://doi.org/10.1038/nature20154
https://doi.org/10.1038/nature20154


96 bibliography

[47] F. Anders et al. “Momentum Entanglement for Atom Inter-
ferometry.” In: Phys. Rev. Lett. 127 (14 2021), p. 140402. doi:
10.1103/PhysRevLett.127.140402. url: https://link.aps.
org/doi/10.1103/PhysRevLett.127.140402.

[48] Graham P. Greve, Chengyi Luo, Baochen Wu, and James K.
Thompson. Entanglement-Enhanced Matter-Wave Interferometry in
a High-Finesse Cavity. 2021. doi: 10.48550/ARXIV.2110.14027.
url: https://arxiv.org/abs/2110.14027.

[49] Luca Pezzè and Augusto Smerzi. “Quantum theory of phase
estimation.” In: arXiv:1411.5164v1 (2014).

[50] Luca Pezzè, Philipp Hyllus, and Augusto Smerzi. “Phase-
sensitivity bounds for two-mode interferometers.” In: Phys. Rev.
A 91 (3 2015), p. 032103. doi: 10.1103/PhysRevA.91.032103.
url: http : / / link . aps . org / doi / 10 . 1103 / PhysRevA . 91 .

032103.

[51] Yi-Quan Zou, Ling-Na Wu, Qi Liu, Xin-Yu Luo, Shuai-Feng
Guo, Jia-Hao Cao, Meng Khoon Tey, and Li You. “Beating
the Classical Precision Limit with Spin-1 Dicke States of More
than 10,000 Atoms.” In: Proc. Natl. Acad. Sci. U.S.A. 115.25

(June 2018), pp. 6381–6385. issn: 0027-8424, 1091-6490. doi:
10.1073/pnas.1715105115.

[52] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wiec-
zorek, H. Weinfurter, L. Pezzé, and A. Smerzi. “Fisher infor-
mation and multiparticle entanglement.” In: Phys. Rev. A 85

(2 2012), p. 022321. doi: 10.1103/PhysRevA.85.022321. url:
http://link.aps.org/doi/10.1103/PhysRevA.85.022321.

[53] Bernd Lücke, Jan Peise, Giuseppe Vitagliano, Jan Arlt, Luis San-
tos, Géza Tóth, and Carsten Klempt. “Detecting multiparticle
entanglement of Dicke States.” In: Phys. Rev. Lett. 112 (15 2014),
p. 155304. doi: 10.1103/PhysRevLett.112.155304. url: http:
//link.aps.org/doi/10.1103/PhysRevLett.112.155304.

[54] Bernd Lücke. “Multi-particle entanglement in a spinor Bose-
Einstein condensate for quantum-enhanced interferometry.”
PhD thesis. Technische Informationsbibliothek und Univer-
sitätsbibliothek Hannover, 2014.

[55] Giuseppe Vitagliano, Iagoba Apellaniz, Iñigo L. Egusquiza,
and Géza Tóth. “Spin squeezing and entanglement for an
arbitrary spin.” In: Phys. Rev. A 89 (3 2014), p. 032307. doi:
10.1103/PhysRevA.89.032307. url: http://link.aps.org/
doi/10.1103/PhysRevA.89.032307.

[56] M. Riedel, P. Böhi, Y. Li, T. Hänsch, A. Sinatra, and P. Treutlein.
“Atom-chip-based generation of entanglement for quantum
metrology.” In: Nature 464.7292 (Apr. 2010), p. 1170. issn: 0028-
0836. doi: 10.1038/nature08988.

https://doi.org/10.1103/PhysRevLett.127.140402
https://link.aps.org/doi/10.1103/PhysRevLett.127.140402
https://link.aps.org/doi/10.1103/PhysRevLett.127.140402
https://doi.org/10.48550/ARXIV.2110.14027
https://arxiv.org/abs/2110.14027
https://doi.org/10.1103/PhysRevA.91.032103
http://link.aps.org/doi/10.1103/PhysRevA.91.032103
http://link.aps.org/doi/10.1103/PhysRevA.91.032103
https://doi.org/10.1073/pnas.1715105115
https://doi.org/10.1103/PhysRevA.85.022321
http://link.aps.org/doi/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevLett.112.155304
http://link.aps.org/doi/10.1103/PhysRevLett.112.155304
http://link.aps.org/doi/10.1103/PhysRevLett.112.155304
https://doi.org/10.1103/PhysRevA.89.032307
http://link.aps.org/doi/10.1103/PhysRevA.89.032307
http://link.aps.org/doi/10.1103/PhysRevA.89.032307
https://doi.org/10.1038/nature08988


bibliography 97

[57] W. Muessel, H. Strobel, D. Linnemann, T. Zibold, B. Juliá-Díaz,
and M. K. Oberthaler. “Twist-and-turn spin squeezing in Bose-
Einstein condensates.” In: Phys. Rev. A 92 (2 2015), p. 023603.
doi: 10.1103/PhysRevA.92.023603.

[58] W. Muessel, H. Strobel, D. Linnemann, D. B. Hume, and M. K.
Oberthaler. “Scalable Spin Squeezing for Quantum-Enhanced
Magnetometry with Bose-Einstein Condensates.” In: Phys. Rev.
Lett. 113 (10 2014), p. 103004. doi: 10 . 1103 / PhysRevLett .

113 . 103004. url: http : / / link . aps . org / doi / 10 . 1103 /

PhysRevLett.113.103004.

[59] Helmut Strobel, Wolfgang Muessel, Daniel Linnemann, Tilman
Zibold, David B. Hume, Luca Pezzè, Augusto Smerzi, and
Markus K. Oberthaler. “Fisher information and entanglement
of non-Gaussian spin states.” In: Science 345.6195 (2014), pp. 424–
427. issn: 0036-8075. doi: 10.1126 /science.1250147. url:
https://science.sciencemag.org/content/345/6195/424.

[60] C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kur-
izki, and M. K. Oberthaler. “Atomic homodyne detection of
continuous-variable entangled twin-atom states.” In: Nature 480

(Nov. 2011), p. 219. issn: 1476-4687. doi: 10.1038/nature10654.

[61] C. D. Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans, and
M. S. Chapman. “Spin-nematic squeezed vacuum in a quantum
gas.” In: Nature Phys. 8 (Feb. 2012), p. 305. issn: 1745-2481. doi:
10.1038/nphys2245.

[62] J. Peise et al. “Satisfying the Einstein-Podolsky-Rosen criterion
with massive particles.” In: Nat. Commun. 6 (2015), p. 8984. doi:
10.1038/ncomms9984.

[63] B. Lücke et al. “Twin matter waves for interferometry beyond
the classical limit.” In: Science 334.6057 (Nov. 2011), pp. 773–776.
issn: 0036-8075, 1095-9203. doi: 10.1126/science.1208798.
url: http://www.sciencemag.org/content/334/6057/773
(visited on 03/06/2013).

[64] Xin-Yu Luo, Yi-Quan Zou, Ling-Na Wu, Qi Liu, Ming-Fei Han,
Meng Khoon Tey, and Li You. “Deterministic entanglement
generation from driving through quantum phase transitions.”
In: Science 355.6325 (2017), pp. 620–623. issn: 0036-8075. doi:
10.1126/science.aag1106.

[65] J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik. “Spin
squeezed atoms: A macroscopic entangled ensemble created
by light.” In: Phys. Rev. Lett. 83.7 (1999), p. 1319. doi: 10.1103/
PhysRevLett.83.1319.

https://doi.org/10.1103/PhysRevA.92.023603
https://doi.org/10.1103/PhysRevLett.113.103004
https://doi.org/10.1103/PhysRevLett.113.103004
http://link.aps.org/doi/10.1103/PhysRevLett.113.103004
http://link.aps.org/doi/10.1103/PhysRevLett.113.103004
https://doi.org/10.1126/science.1250147
https://science.sciencemag.org/content/345/6195/424
https://doi.org/10.1038/nature10654
https://doi.org/10.1038/nphys2245
https://doi.org/10.1038/ncomms9984
https://doi.org/10.1126/science.1208798
http://www.sciencemag.org/content/334/6057/773
https://doi.org/10.1126/science.aag1106
https://doi.org/10.1103/PhysRevLett.83.1319
https://doi.org/10.1103/PhysRevLett.83.1319


98 bibliography

[66] Ian D. Leroux, Monika H. Schleier-Smith, and Vladan Vuletic.
“Implementation of cavity squeezing of a collective atomic
spin.” In: Phys. Rev. Lett. 104.7 (2010), p. 073602. doi: 10.1103/
PhysRevLett.104.073602.

[67] M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić. “States
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