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Abstract: The biocatalytic system comprised of RizA and acetate kinase (AckA) combines the specific
synthesis of bioactive arginyl dipeptides with efficient ATP regeneration. Immobilization of this cou-
pled enzyme system was performed and characterized in terms of activity, specificity and reusability
of the immobilisates. Co-immobilization of RizA and AckA into a single immobilisate conferred no
disadvantage in comparison to immobilization of only RizA, and a small addition of AckA (20:1) was
sufficient for ATP regeneration. New variants of RizA were constructed by combining mutations
to yield variants with increased biocatalytic activity and specificity. A selection of RizA variants
were co-immobilized with AckA and used for the production of the salt-taste enhancers Arg-Ser and
Arg-Ala and the antihypertensive Arg-Phe. The best variants yielded final dipeptide concentrations
of 11.3 mM Arg-Ser (T81F_A158S) and 11.8 mM Arg-Phe (K83F_S156A), the latter of which represents
a five-fold increase in comparison to the wild-type enzyme. T81F_A158S retained more than 50%
activity for over 96 h and K83F_S156A for over 72 h. This study provides the first example of the
successful co-immobilization of an L-amino acid ligase with an ATP-regenerating enzyme and paves
the way towards a bioprocess for the production of bioactive dipeptides.

Keywords: covalent immobilization; co-immobilization; biocatalysis; L-amino acid ligase; acetate
kinase; ATP regeneration; arginyl dipeptides; salt-taste enhancer; protein engineering;
antihypertensive dipeptide

1. Introduction

L-amino acid ligases (LALs; EC 6.3.2.28) are a relatively novel enzyme class that
synthesizes dipeptides from their respective amino acids. They belong to the ATP-grasp
superfamily and hydrolyze ATP to ADP and Pi to catalyze the amide bond formation
through an acyl phosphate intermediate [1]. The first LAL ywfE (also called BacD) was
discovered in B. subtilis in 2005 [2]. Since then, LALs with different specificities have been
identified [3–5]. The LAL RizA from B. subtilis NBRC3134 has a very high specificity for
the synthesis of dipeptides containing an N-terminal arginine (Arg-X), many of which
(e.g., Arg-Ser, Arg-Ala, Arg-Gly) have been found to have salt-taste enhancing effects [6–9].
Additionally, Arg-Phe is a potential antihypertensive [5,10]. Due to the very high cost
of the cofactor ATP, we previously worked on employing acetate kinase (AckA) from
E. coli to regenerate ATP from acetyl phosphate (AcP), which is cheaply accessible through
acetylation of phosphoric acid by acetic anhydride [11,12]. The optimized enzyme system
produced up to 23 mM Arg-Ser (46% yield) while only necessitating 0.5 mM ATP [13].

Immobilization can significantly improve the economic viability of a bioprocess by
increasing stability, enabling reusability and thus decreasing production costs [14]. Ad-
ditionally, it can also improve downstream processing through easier enzyme removal
and improve enzyme properties like activity or specificity. Immobilization techniques are
usually classified by the method through which a carrier is bound [14–18]. The strongest
interaction is achieved through covalent immobilization. The induced rigidity can lead to
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high increases in stability [19,20], but also decreases in activity, as enzymatic mobility might
be restricted or residues of the active site blocked [17]. Additionally, covalent methods often
employ harsh reagents or reaction conditions that can potentially denature the protein [21].
One particularly mild covalent coupling method is the usage of carriers activated with
esters of N-hydroxysuccinimide (NHS-esters). Both N-terminal amino groups and lysine
residues form strong amide bonds after immobilization for one hour at near physiological
pH [22,23]. Recently, NHS-activated agarose was used for food-grade immobilization of as-
paraginase for the removal of acrylamide [24]. Agarose beads have remarkable mechanical,
chemical and biological stability, which can be further improved by cross-linking [25,26].

The co-immobilization of multiple enzymes is reminiscent of the organization of
enzymes into enzyme complexes in living cells with short diffusion distances between en-
zymes in a reaction sequence [25,27]. It is also helpful if intermediate products are unstable
or inhibitory and accumulation is not wanted [25]. Apart from enzyme cascades, cofactor
regeneration is one of the most prominent applications. Regeneration of the electron donor
NAD(P)H is a challenge for the application of many oxidoreductases. Examples include
ketoreductases or xylose dehydrogenase, which were co-immobilized with glucose or
alcohol dehydrogenase, respectively [28–31]. Regeneration of ATP has been described in
the co-immobilization of glutathione synthetase with a polyphosphate kinase [32]. Perhaps
the most impressive example is the co-immobilization of a thermostable acetate kinase with
a pantothenate kinase in the multi-enzymatic cascade for the production of the potential
antiviral islatravir [33]. This work also sets a good example of the possibilities of integrat-
ing immobilization and protein engineering: five of the nine enzymes were engineered,
and three were (co-)immobilized. Protein engineering can act as the means to prepare an
enzyme for successful immobilization (e.g., by improving its stability or introducing sites
for immobilization like affinity tags) [28,34].

In a previous study, variants of RizA with improved activity and specificity for the
production of several dipeptides were created [35]. After improving the applicability
of RizA for a future industrial process both by establishing ATP regeneration [13] and
protein engineering, co-immobilization was the next step towards this goal. Covalent
immobilization using NHS-agarose was performed on both the unmodified enzymes and a
selection of RizA variants generated through a combination of mutations from the previous
study to examine how these mutations would affect immobilization. Lastly, the best
variants for the production of the salt-taste enhancer Arg-Ser and the antihypertensive
Arg-Phe were recycled for multiple reaction cycles to investigate the reusability of the
immobilisates.

2. Results and Discussion
2.1. (Co-)Immobilization Conditions

To examine whether co-immobilizing both RizA and AckA into a single immobilisate
was viable, immobilizations were set up with different amounts of RizA ranging from
0.2 to 0.8 mg and 20 mg NHS-agarose. AckA was added in a mass ratio of 5:1 (RizA:AckA).
For comparison, immobilisates containing only RizA were produced analogously. Protein
concentrations before and after immobilization were measured, and the difference was
used to calculate the coupling efficiency and determine the apparent amount of RizA
immobilized on the agarose support (Figure 1a).
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product formation in 500 µL reaction volume with 30 mM Arg and Ser after 20 h at 25 °C. Reactions 

were performed in duplicates, with error bars representing the upper and lower value. 
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for coupling to the support, although both the lower basicity and steric hindrance of the 

amino nitrogen in tricine should generally limit this potential competition [37]. Lastly, 

there is competition between the desired aminolysis of the NHS-ester by the protein 

amino groups and hydrolysis by water, which can also reduce the coupling efficiency [38]. 

The immobilisates were used in a batch setup in reaction tubes for the biocatalytic 
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Figure 1. Immobilization of RizA in comparison to co-immobilization of RizA and AckA. (a) Coupling
efficiencies and calculated amount of RizA bound to the agarose support. (b) Product and side product
formation in 500 µL reaction volume with 30 mM Arg and Ser after 20 h at 25 ◦C. Reactions were
performed in duplicates, with error bars representing the upper and lower value.

Coupling efficiencies were similar regardless of the applied amount of protein and
ranged from 56 to 66%. Thus, the amount of RizA bound to the support increased approxi-
mately linearly with the applied amount. Overall, the coupling efficiencies were lower than
anticipated as the manufacturer states that they are “typically greater than 80%, regardless
of the ligand’s molecular weight or pI” [22]. However, the isoelectric point (pI) of RizA
was calculated to be 5.9, and acidic pIs up to 5.9 were previously identified to inhibit
coupling to agarose supports using NHS-esters [36]. Another possibility is that tricine,
a secondary amine, in the purification/coupling buffer competed with the enzymes for
coupling to the support, although both the lower basicity and steric hindrance of the amino
nitrogen in tricine should generally limit this potential competition [37]. Lastly, there is
competition between the desired aminolysis of the NHS-ester by the protein amino groups
and hydrolysis by water, which can also reduce the coupling efficiency [38].

The immobilisates were used in a batch setup in reaction tubes for the biocatalytic
production of Arg-Ser. The reactions with only immobilized RizA contained 0.05 mg
soluble AckA. Control reactions with 0.2 and 0.4 mg soluble RizA and 0.05 mg AckA were
included. After 20 h, concentrations of the product Arg-Ser and side product Arg-Arg
were determined by RP-HPLC (Figure 1b). While the reactions with the lowest amount of
RizA led to a decreased product concentration, all other immobilisates produced similar
product concentrations of around 9 mM Arg-Ser. The reaction with 0.8 mg co-immobilized
RizA produced 11 mM, but with a larger error bar. No substantial differences were found
between immobilization of only RizA and the co-immobilization of both RizA and AckA. In
comparison with the reactions with soluble RizA, the immobilisates showed a significantly
lower activity since 0.2 mg (co-)immobilized RizA produced approximately 5 mM and
0.2 mg soluble RizA 14 mM Arg-Ser. Due to the incomplete coupling, part of the lower
activity can be attributed to the lower actual amount of enzyme present in the reactions.
However, higher enzyme amounts during the immobilization did not increase the product
concentration. Decreases in activity are a known drawback of covalent immobilization
techniques [14,15]. Apart from denaturing during the immobilization procedure, the rigid
covalent attachment can distort the enzyme structure or bind it in such an orientation
that the transfer of substrates and products to and from the enzyme is limited [17]. Side
product formation was similar in all reactions with specificity ratios (Arg-Ser/Arg-Arg) of
approximately 6.

Next, the ratio between both enzymes was optimized. Former experiments with
free RizA and AckA showed that supplying AckA in a ratio of 4 to 1 was sufficient to
supply ATP for the reaction [13]. To examine this factor for the co-immobilized enzyme
system, reactions were set up with a constant amount of 0.4 mg RizA and different mass
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ratios of AckA ranging from 1:1 to 20:1 (RizA:AckA). During the first two hours, samples
were taken each half-hour to determine the initial activities (Figure 2a). The final product
concentrations were measured after 20 h (Figure 2b).
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Figure 2. Effect of different ratios of RizA and AckA during co-immobilization. 0.4 mg of RizA were
used, as well as a corresponding amount of AckA. Reaction conditions were identical to Figure 1.
(a) Initial activities were determined in the first two hours of reaction time with linear regression. All
R2 were above 0.96. (b) Final product and side product concentrations were determined after 20 h.
Reactions were performed in duplicates with error bars representing the upper and lower value.

The two highest additions of AckA decreased the initial activities of the immobilisates
slightly, possibly indicating a negative effect of the bound AckA on RizA. Overall, no large
differences in product or side product formation were determined, and even the smallest
addition of AckA was sufficient to drive ATP regeneration at a low ATP concentration of
0.5 mM. For all following experiments, AckA was added in a ratio of 1 to 10. While the
lowest addition of 1 to 20 would be the most efficient, a higher addition was chosen to not
risk limiting the cofactor supply, since the demand for ATP regeneration is dependent on
the reaction conditions.

2.2. Co-Immobilization of RizA Variants
2.2.1. Combination of Mutations to Yield Improved Variants

In a previous study, a total of 21 variants of RizA were created and characterized [35].
Arg-Ser formation was increased up to 41% in T81F, while K83F/R, S84F and A158S also
substantially increased it. Arg-Ala formation was increased by T81F, K83F and A158S, and
also by S156A/F and D376E. The largest increase was found for S156A, which increased Arg-
Phe formation by 270% in comparison to the wild type. Additionally, Arg-Phe formation
was also increased by S156F and D376E.

Here, these 8 best mutations from the previous study were combined to generate
14 new variants. For Arg-Ser, most combinations had no beneficial effect and showed lower
product concentrations than the wild type (Figure 3a). Only T81F_K83R and T81F_A158S
yielded higher Arg-Ser concentrations, with the last showing the highest with 12 mM.
Variants also increased specificity up to a ratio of 13 for T81F_K83F. The highest specificity
(15) was detected for T81F_S156F, but with a slightly reduced product formation.

For Arg-Ala, T81F_S156F also displayed the highest specificity ratio, in this case,
25, along with the highest product formation of 9 mM, which was more than a two-fold
increase in comparison to the wild-type enzyme (Figure 3b). T81F_K83R, T81F_A158S
and K83F_S156A also increased product formation, but to a lesser degree. Combinations
with D376E showed no increase in comparison to the wild type. Similar to the other
two products, T81F_S156F led to a large increase in specificity to 39 for the production
of Arg-Phe, while also significantly increasing product formation to 10 mM (Figure 3c).
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Only K83F_S156A generated more product (14 mM). K83F_S156F, S156A_D376E and
S156F_D376E also increased product formation and specificity.
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Figure 3. Production of Arg-X dipeptides by soluble variants containing two mutations. Reactions
were set up in triplicates and contained 30 mM each Arg and (a) Ser, (b) Ala or (c) Phe. A total of
0.2 mg/mL RizA variant and 0.1 mg/mL AckA were used.

Overall, most combinations of mutations had no additive effect, which is a known
phenomenon and challenge in protein engineering [39]. The two significant exceptions
were T81F_S156F, which increased the Arg-Ala concentration to 8.8 mM (best single variant
D376E: 5.6 mM) and K83F_S156A, which increased Arg-Phe concentration to 13.8 mM (best
single variant S156A: 12.1 mM). While T81F_A158S did not increase Arg-Ser formation
over T81F, it raised the specificity ratio to 12 in comparison to 9. With the exception
of D376E, all of the examined mutations were located in the binding pocket for the C-
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terminal substrate [35]. Interestingly, in most cases where combinations of mutations had a
beneficial effect, the two residues were located on different loops (e.g., T81F and A158S).
Since increasing the number of mutations can destabilize an enzyme [40], not accumulating
too many changes in one part of the protein is likely a sound strategy. In contrast, mutation
of both neighboring residues K83 and S84 to the large phenylalanine was the only example
where activity was completely destroyed. While the combination of mutations did not lead
to considerable increases in activity in most cases, it produced multiple variants with the
highest specificities to date. While the highest specificity for a single variant was 12 (S84F
for Arg-Ser), T81F_S156F displayed specificities of up to 39 for Arg-Phe production. It
was the variant with the lowest side product formation and showed the highest specificity
ratios for Arg-Ser and Arg-Ala production as well.

2.2.2. Immobilization of RizA Variants

A selection of nine RizA variants from both this and the previous study were chosen
based on activities and specificities. They were co-immobilized analogously to the wild-
type enzyme with AckA and characterized. Most variants were immobilized with similar
efficiency to the wild type, corresponding to 0.27 to 0.33 mg RizA bound to the support
from an application of 0.4 mg (Figure 4a). S84F could only be immobilized to a reduced
degree (0.22 mg). Both the initial activities (Figure 4a) and the final product concentrations
after 20 h (Figure 4b) were determined.
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Figure 4. Co-immobilization of RizA variants. A total of 0.4 mg of RizA variant and 0.04 mg AckA
were used. Reaction conditions were identical to Figure 1. (a) Initial activities were determined in
the first two hours of reaction time with linear regression. All R2 were above 0.95. (b) Final product
and side product concentrations were determined after 20 h. Reactions were performed in duplicates
with error bars representing the upper and lower value.
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For Arg-Ser, both T81F and T81F_A158S showed the highest final product concen-
tration, but T81F_A158S had higher initial activity and the highest specificity ratio of
9 compared to 8 for T81F and 7 for the wild type. S84F and T81F_S156F showed the lowest
Arg-Ser formation. S84F was the variant with the second-highest product formation of
Arg-Ser [35], but lost the majority of its activity due to immobilization. The unusually low
binding to the support also contributed to the decrease in activity. For Arg-Ala, T81F_S156F
had a similar increase in activity compared to the immobilized wild type and reached a
slightly improved final product concentration of 3 mM, although with very high specificity
as no Arg-Arg could be detected. Of the three dipeptides, the variants generated the
strongest improvements for the production of Arg-Phe. In comparison to the wild type, the
product concentration of 9 mM generated by K83F_S156A represents a nine-fold increase
with a substantial increase in specificity from 1 to 11. The highest overall specificity of 33
was also generated for Arg-Phe by T81F_S156F and went along with an increased product
concentration of 4 mM.

2.3. Characterization of the Immobilisates

In a first step, reactions were performed with wild-type immobilisate at different
reaction temperatures and pH and characterized in terms of initial (Figure 5a) and final
Arg-Ser product concentration (Figure 5b). All reaction conditions led to similar initial
Arg-Ser concentrations between 1.5 and 2.3 mM after 2 h, with the reaction at 30 ◦C and pH
8.5 producing the highest concentration. However, after 20 h, all reactions at 25 and 30 ◦C
yielded similar product concentrations between 6 and 7 mM, while reactions at 35 ◦C
only contained approximately 4 mM. This was in line with the results for free RizA and
AckA where 25 and 30 ◦C produced similar results, and 37 ◦C led to significantly lower
product concentrations. Since 37 ◦C has been determined as the temperature optimum of
free RizA [6], this disparity was likely related to the cofactor regeneration. Since the initial
product formation at 35 ◦C was similar, the limitation manifested at longer reaction times.
AckA was determined to be stable up to 40 ◦C [41]. Hydrolysis of both ATP and AcP is
known to accelerate at higher temperatures [42]. While approximately 20% of the latter is
hydrolyzed after 5 h at 20 ◦C, it is hydrolyzed completely in 3 to 5 h at 60 ◦C [43].
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Figure 5. Effect of reaction temperature and pH. A total of 0.4 mg of RizA and 0.04 mg AckA were
used for immobilization. Additionally, 50 mM each Arg and Ser were used. Product concentrations
were measured (a) after 2 and (b) after 20 h reaction time.

For the free enzymes, increasing the amino acid concentrations substantially improved
product formation [13]. Here, the increase in the substrate to 50 mM while maintaining
the applied amount of RizA at 0.4 mg did not increase product formation in the 25 ◦C and
pH 8.5 reaction compared to the previous reactions at 30 mM under comparable reaction
conditions (Figure 2b). In an attempt to increase the product concentration, the applied
amount of RizA was increased to 0.8 mg for all following experiments.
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The best variants for Arg-Ser (T81F_A158S) and Arg-Phe production (K83F_S156A) were
selected for further characterization of the activity and reusability. Since 25 and 30 ◦C at
pH 8.5 led to the highest product concentrations with the wild-type enzyme (Figure 5b),
both were tested. Time courses for product formation were determined (Figure 6a), and the
reusability of the immobilisates was examined by recycling them after 24 h reaction time
over a total of seven cycles (Figure 6b).

With the increase in both substrate concentration and enzyme amount, product con-
centrations of up to 11.2 mM Arg-Ser were reached by T81F_A158S at 25 ◦C, while the
wild-type enzyme produced 10.3 mM under the same conditions (Figure 6a, left panel).
Similar to the previous results (Figure 4a), T81F_A158S displayed a substantially higher
initial activity, producing 6.5 mM Arg-Ser during the first four hours, while the wild type
only reached 3.9 mM. After that, the differences decreased, and similar product concen-
trations were reached after 24 h. At 30 ◦C, final product concentrations after 24 h were
lower, with the wild type producing 7.1 mM and T81F_A158S producing 7.7 mM Arg-
Ser. At this temperature, no differences were visible in the time course of the product
formation (Figure 6a, right panel). As expected from the previous experiments (Figure 4b),
K83F_S156A generated a significantly higher Arg-Phe concentration of 11.8 mM compared
to the wild type with 2.3 mM. Similar to the Arg-Ser reaction, product concentrations were
decreased at 30 ◦C.

Both immobilisates for Arg-Ser production retained more than 50% activity at both
temperatures for at least 96 h of accumulated reaction time, corresponding to four reaction
cycles. At 25 ◦C, T81F_A158S displayed a slightly higher retention of 76% activity at
96 h compared to the 61% of the wild type. While overall product concentrations were
lower at 30 ◦C, both immobilisates retained a higher percentage of their activity at this
temperature, with 88% and 83% for wild type and variant remaining after 96 h, respectively.
In contrast, K83F_S156A displayed a very sharp decline in activity at 30 ◦C, with only 26%
remaining after 96 h. At 25 ◦C, it showed a similar decrease to the Arg-Ser reactions during
the first 72 h, but then sharply dropped to 39% at 96 h. At the end of the seven cycles,
all Arg-Ser immobilisates had similar remaining activities ranging from 32 to 37%, while
K83F_S156A displayed no significant remaining activity. Apart from enzyme inactivation,
there was a noticeable loss of immobilisate from cycle to cycle during washing, as evidenced
by immobilisate sedimenting in the used wash buffer. The discarded immobilisate was
collected, and at the end of the seven cycles, approximately half of the immobilisate was
lost from the reactions as judged by comparison of the discarded with the remaining
immobilisate. For future applications, a different separation technique such as the use of
small chromatography columns is thus advised. The choice of the washing buffer also had
a large effect on the remaining activity as washing the immobilisates with the phosphate
coupling buffer reduced activities to less than 30% in the third cycle regardless of pH or
temperature (Figure S1). All major results were summarized in Table 1.

Reactions at 25 ◦C led to higher final product concentrations, while 30 ◦C generally led
to higher specificities. Both immobilisates of RizA variants showed improved performances
in comparison to the wild type. In the case of Arg-Ser, this mainly constituted an increase in
the initial activity (Figures 4a and 6a), higher specificity and a slightly increased reusability
and final product concentration at 25 ◦C (Table 1). For Arg-Phe, K83F_S156A dramatically
increased the product concentration five-fold and specificity almost ten-fold (Table 1). No
time course was determined for Arg-Phe production of the wild type due to very low
concentrations during the early reaction time. The calculation of the remaining activity also
fluctuated highly and could not be interpreted. In comparison to K83F_S156A with the Arg-
Ser reactions, the reusability was significantly lower. This could be due to phenylalanine as
a substrate or a decreased stability of the variant.
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Figure 6. Effect of reaction temperature on (a) the time course of dipeptide formation and
(b) reusability of the immobilisates of RizA wild type and variants. The remaining activity was
calculated as the product concentration reached after an additional cycle of 24 h in comparison to that
after the first cycle. A total of 0.8 mg RizA and 0.08 mg AckA were used for immobilization. Addi-
tionally, 50 mM Arg and Ser were used. No time course and remaining activity could be determined
for the WT producing Arg-Phe due to the low product concentrations.

Table 1. Comparison of the biocatalytic performances of the RizA immobilisates.

Dipeptide Variant Temperature
(◦C)

c(Arg-X)24 h
(mM)

c(Arg-Arg)24 h
(mM)

Arg-X/
Arg-Arg

Yield
(Arg-X)24 h

(%)

>50%
Activity *

Arg-Ser Wild type 25 10.3 ± 0.8 1.9 ± 0.3 5.4 ± 1.1 21 >96 h
30 7.1 ± 0.2 1.1 ± 0.0 6.7 ± 0.3 14 >120 h

T81F_A158S 25 11.2 ± 0.0 1.6 ± 0.1 7.2 ± 0.6 22 >120 h
30 7.7 ± 1.9 1.0 ± 0.0 8.1 ± 0.4 15 >96 h

Arg-Phe Wild type 25 2.3 ± 0.2 1.5 ± 0.3 1.5 ± 0.2 5 n.d.†

30 1.2 ± 0.3 1.1 ± 0.0 1.1 ± 0.3 2 n.d.†

K83F_S156A 25 11.8 ± 0.4 0.7 ± 0.0 16 ± 0.2 24 >72 h
30 9.3 ± 0.9 0.4 ± 0.2 24 ± 15 19 >48 h

* Time that the immobilisates displayed more than 50% remaining activity, † Could not be accurately determined
due to overall low activity.

In comparison to the free enzymes, activities and yields of the immobilisates were
reduced. For Arg-Ser, yields of up to 33% were achieved with the wild-type enzyme and
up to 47% with T81F with 30 mM substrate [35]. With 50 mM substrate, up to 23 mM
Arg-Ser, corresponding to a yield of 46%, were produced [13]. The disadvantage of lower
activities was partially offset by the ability to easily separate the immobilized enzymes
from the reaction and reuse them. Thus, the cumulative product formation of the reusable
immobilisates was already higher than for the free enzymes, which can only be used
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once. In order to improve this further, the apparent loss of activity could be addressed
by exploring other immobilization supports or coupling techniques. Since both RizA
and AckA were produced with a his-tag for affinity purification, the analogous affinity
immobilization would be a plausible next step [25].

Apart from the reduced activity, a decline in product formation after the first eight
hours of reaction time limited the yield and was a phenomenon witnessed both for the free
and immobilized RizA and AckA systems [13]. While a decrease in enzyme activity by
enzyme denaturing was plausible for the free enzymes, the reusability of the immobilisates
showed that this could not be the sole factor. The possible degradation of the cofactors has
already been discussed above in this section. Another likely factor is accumulation and
inhibition by side products of the reaction, most notably phosphate. Phosphate is produced
during the reaction both through the desired hydrolysis of ATP to ADP catalyzed by the
L-amino acid ligase [6], but also over time by the inevitable hydrolysis of ATP and AcP by
water [42,43], thus leading to the accumulation of inorganic phosphate. Apart from direct
product inhibition by phosphate [44,45], its accumulation can lead to the precipitation
of magnesium phosphate [46]. Since both RizA and AckA require Mg2+ as a cofactor,
this could be an additional factor limiting the yield. In the sophisticated design of the
biocatalytic cascade for the synthesis of islatravir, the addition of sucrose and a sucrose
phosphorylase provided the depletion of phosphate [33,47].

Since regeneration of the expensive ATP is an absolute necessity for industrial applica-
tion of the whole class of L-amino acid ligases, establishing an efficient ATP regeneration
was an important step [13]. In order to further limit the cost of enzymes and improve down-
stream processing, immobilization of RizA was the next step. The presented work is, to our
knowledge, the first published example of an L-amino acid ligase co-immobilized with an
ATP-regenerating enzyme. While the developed immobilisates are not yet fit for practical
applications due to their insufficient activities and yields, the results showed that both RizA
and AckA can successfully be covalently immobilized and reused for several cycles. It is
likely that both activity and stability can be improved upon in future work with different
immobilization techniques. Another promising option would be to adapt the created immo-
bilisates to a continuous flow setup, in which the reagents flow through the immobilisate
producing a steady flow of products [48]. While flow chemistry is an established field [49],
flow biocatalysis has only begun to expand significantly in recent years [50]. Advantages
include less downtime of the reactor for cleaning/refilling between batches, improved
mass transfer of substrates towards the immobilisate, simplified downstream processing
and reduced product inhibition through continuous removal of products [48,51]. Apart
from preventing the accumulation of phosphate, a continuous setup could also provide
a steady stream of cofactors circumventing their discussed stability issues. Continuous
systems present a challenge for cofactor regeneration as they are mono-directional and
diffusion of the cofactor to and from the regenerating enzyme is severely limited [50].
Co-immobilization of the regenerating enzyme addresses this issue and is likely a necessity
for employing L-amino acid ligases in such a system. The employed agarose support is also
well suited for flow applications [22,26]. We hope that this study lays the foundation for
further work in this direction and the application of both this interesting enzyme class and
its equally interesting products.

3. Materials and Methods
3.1. Chemicals, Reagents and Strains

Chemicals were purchased from Carl Roth (Karlsruhe, Germany) or Sigma Aldrich
(Taufkirchen, Germany) if not otherwise indicated. Enzymes for molecular biology were
purchased from Thermo Fisher Scientific (St. Leon-Roth, Germany). The pET28a vector
was purchased from Merck KGaA (Darmstadt, Germany). The E. coli strains BL21 (DE3)
and TOP10 were maintained in our laboratory. Oligonucleotides were synthesized by
Microsynth Seqlab GmbH (Goettingen, Germany).
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3.2. Mutagenesis

Mutagenesis was performed as previously described [35]. In short, site-specific muta-
tions were inserted by whole-plasmid PCR with two overlapping mutagenic primers on a
construct already containing the other mutation. In the cases where neighboring codons
were mutated, new primers combining both mutations (Table S1) were designed with the
software SnapGene version 5.1.7 (2020) from GSL Biotech, LLC (Chicago, IL, USA). The
three-step protocol started with a denaturing step at 98 ◦C for 30 s and was then followed
by 20 cycles of 98 ◦C for 10 s, the annealing temperature (Table S1) for 30 s, and 72 ◦C for
130 s. Lastly, a final extension was performed at 72 ◦C for 10 min, and PCR products were
stored at 8 ◦C. In the two-step protocol (Table S1), the elongation step at the annealing
temperature was omitted.

3.3. Production of Soluble Enzymes

RizA, its variants and AckA were recombinantly produced in E. coli BL21 (DE3)
and purified by affinity chromatography followed by desalting through gel filtration as
previously described [13,35].

3.4. Immobilization

Immobilization was performed using Pierce NHS-Activated Agarose from Thermo
Fisher Scientific (St. Leon-Roth, Germany). Here, 20 mg NHS-agarose was used for the
experiments in Section 2.1, while 33 mg NHS-agarose was used for all other experiments.
The respective amount of enzyme solution in coupling buffer (50 mM phosphate, 150 mM
NaCl, pH 7.2) was added to the NHS-agarose in 2 mL reaction tubes and incubated
with end-over-end mixing for 1 h at room temperature. Afterwards, the immobilisates
were subjected to centrifugation at 1.0× g for 1 min, and the supernatant was removed,
which was followed by two washing steps (with intermittent centrifugation) with 800 µL
desalting buffer (50 mM tricine, 100 mM NaCl, pH 8.0). Subsequently, 800 µL quenching
buffer (1 M TRIS-HCl, pH 7.4) was added, followed by end-over-end mixing for 30 min.
After centrifugation, the supernatant was removed, and the immobilisates were washed
three times (with intermittent centrifugation) with 800 µL desalting buffer. Finally, the
immobilisates were stored at 4 ◦C until usage. Samples of the enzyme solution added to
the NHS-agarose and samples of the supernatant after the first incubation were collected
to determine of the coupling efficiency. Protein concentrations were determined with
Bradford solution from Sigma-Aldrich (Taufkirchen, Germany).

3.5. Biocatalysis

Biocatalytic reactions with the free variants were performed as previously for compa-
rability reasons [35]. Reactions using immobilisate were performed in a reaction volume
of 500 µL with the designated amino acid concentrations, equimolar amounts of acetyl
phosphate, and 7.5 mM each MgSO4 and ATP. In the cases where RizA or AckA were
not (co-)immobilized, the designated amounts of soluble enzyme were added. Reactions
were performed on a Thermomixer comfort from Eppendorf SE (Hamburg, Germany) and
incubated at the designated reaction temperature and 1200 rpm. Samples were taken at
the designated times and inactivated for 5 min at 70 ◦C in a Biometra thermal cycler from
Analytik Jena (Jena, Germany) and stored at −20 ◦C until analysis. The immobilisates
were recycled by removing the old reaction solution after centrifugation, followed by two
washing steps with 800 µL desalting buffer. After removing the last washing solution, the
immobilisate was used again.

3.6. Analysis

Product and side product analysis was performed as previously described by RP-
HPLC with pre-column derivatisation using o-phthalaldehyde and fluorescence detection
of the dipeptide derivates [13,35,52]. Data were visualized with SigmaPlot 14.5 (2020) from
Systat Software GmbH (Erkrath, Germany).
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4. Conclusions

New variants of RizA were created through the combination of the best single muta-
tions from a former study to improve the enzyme’s activity and specificity. Both the RizA
wild-type enzyme and a selection of seven variants were successfully co-immobilized with
AckA for ATP regeneration. Immobilisates of the two variants with the highest activities
for the production of Arg-Ser (T81F_A158S) and Arg-Phe (K83F_S156A) retained more than
50% activity for at least 96 and 72 h, respectively. The variant for Arg-Phe also significantly
increased product concentration and specificity by factors of 5 and nearly 10, respectively,
in comparison to the wild-type enzyme.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27144352/s1, Figure S1: Reusability of the immo-
bilisates when using coupling buffer for washing; Table S1: Primer pairs for mutagenesis.
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