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Abstract. The development within the offshore wind sector towards more powerful turbines 

combined with increasing water depth for new wind parks is challenging both the designer as 

well as the manufacturer of bottom fixed support structures. Besides XL-monopiles, the market 

developed an innovative and economic jacket support structure which is based on automatically 

manufactured tubular joints combined with standardized pipes. Besides the improvements for a 

serial manufacturing process the automatically welded tubular joints show a great potential in 

terms of fatigue resistance e.g. due to a smooth weld geometry without sharp notches. However, 

these benefits are not considered yet within the fatigue design process of automatically 

manufactured jacket substructures according to current standards due to the lack of suitable S-N 

curves. Therefore, 32 axial fatigue tests on single and double-sided automatically welded tubular 

X-joints have been performed to determine a new hot spot stress related S-N curve. Based on 

these constant amplitude fatigue tests a new S-N curve equal to a FAT 126 curve was computed 

which implicitly includes the benefits of the automatically welding procedure. 

1.  Introduction 

Based on the German strategy of planning offshore wind farms as far away from the coastline as 

possible, most of the wind farms in Germany's Exclusive Economic Zone have water depths of around 

35 m and more. In addition to (XL-) monopiles, lattice support structures such as jackets can be 

considered as foundation structure for these water depths, see Figure 1. For example, in the Baltic Sea 

41 jackets with water depths greater than 35 m were installed in the wind farm Baltic II. Furthermore, 

70 wind turbines of the 5 MW class were installed on jackets at a water depth of 37 - 43 m in the Viking 

wind farm located in the Baltic Sea as well.  

Jacket foundation structures are designed as spatial tubular hollow section steel structures based on 

the construction of oil and gas platforms and are characterized by high rigidity with low material 

consumption [1]. The spatial structure of the jacket is created with the typical tubular connection variants 

double-K-, X- and double-Y-joints.  
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Figure 1. Offshore wind energy turbine with jacket 

support structure from the offshore wind farm alpha 

ventus 

 

Especially for jackets, the optimization potential for production and design is almost unused. An 

essential component of this optimization is the individual production of the tubular joints combined with 

the use of standardized pipes. This modular principle enables an automatic production of the tubular 

joints, which increases the competitiveness of the jackets especially against the background of the large 

quantities required for offshore wind farms [2]. 

Besides the improvements for a serial manufacturing process, the automatically welded tubular joints 

show a great potential in terms of fatigue resistance e.g. due to a smooth weld geometry without sharp 

notches. However, these benefits are not considered yet within the fatigue design process of 

automatically manufactured jacket substructures according to standards and guidelines due to the lack 

of suitable S-N curves. 

Therefore, this contribution presents new S-N curves for automatically welded tubular X-joints 

which were determined within the joint FOSTA research project (AiF) "FATInWeld" of the Institute for 

Steel Construction at Leibniz University Hannover and the Federal Institute for Materials Research and 

Testing (BAM). 

2.  Automated gas metal arc welding procedure for tubular joints 

The automated manufacturing of tubular joints for offshore jacket substructures not only reduces 

production costs but also enables a transition from a point-to-point production to a manufacturing 

segmentation, based on automatically manufactured tubular joints combined with standardized pipes. 

The automatically welding procedure of tubular joints was therefore applied on scaled tubular X-joints 

which had a scaling of 1 : 3.3 compared to real dimensioned tubular joints of offshore jacket 

substructures. The considered X-joint was designed for test purposes and meets the dimensionless 

parameter according to Figure 2 considering a diameter of the chord of D = 368.0 mm and a chord-brace 

angle Θ = 60°.  

The design of the HV seam preparation along the three-dimensional intersection geometry of the X-

joint was CAD-supported. Care was taken to ensure that the cross-sectional areas in the range 45°-315° 

in direction of rotation (Figure 3) were constant with a seam opening angle of 45°. In the 315°-45° range, 

the seam opening angle was continuously reduced to a minimum of 30° (position 0°). 

Since deviations in diameter and wall thickness from the nominal values of the standard tubes lead 

to significant local deviations in the weld preparation, the geometric tolerances of the chord and brace 

tubes are of high relevance. In order to minimize the deviations within the weld preparation, the 

tolerances of the tubes were recorded and individual CAD data was used for the manufacturing of the 

weld preparation. The seam preparation of the brace stub was then manufactured by milling. 
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Figure 2. Geometry definition of tubular X-joint according to [3] 

 

 

Figure 3. Weld seam preparation for the automated welding of the 

tubular X-joints according to [4] 

 

The welding process was designed on the basis of the seam preparation defined in Figure 3. With 

regard to the material specifications the brace stubs were made of S355J2H according to EN 10210-1 

[5]. The chord tubes were made of S355J2H with the additional quality Z35. A solid wire with a diameter 

of 1.2 mm of quality G 46 6 M21 3Ni1 according to EN ISO 14341 [6] was used as filler material. As 

shown in Figure 4, left, the welding process started at -45° (or 315°) with a linearly increased wire feed 

rate from 7.5 m/min to 11.5 m/min. The process parameters remained constant in the 45°-315° range. 

From the 315° position, the wire feed rate was reduced linearly to 8.5 m/min at 45° (or 405°). During 

the welding process each X-joint got its own work piece identification number (WiD) to enable a full 

traceability of the recorded data sets. Related to the welded tubular X-joint, the 0° position corresponds 

to the crown heel, the 90° position belongs to the saddle and the 180° position corresponds to the crown 

toe.  

More detailed information about the welding procedure as well as the performed data acquisition and 

storage along the welding process chain including laser scanning of the weld seam geometry are given 

in [4] and [7].  
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Figure 4. Left: Setup of the gas metal arc welding process along the weld trajectory according to 

[4]; Right: Automated gas metal arc welding procedure of a tubular X-joint 

3.  Axial fatigue tests on automatically welded tubular X-joints 

3.1.  Failure criterion 

For fatigue tests of tubular joints the through thickness crack is a well-established failure criterion due 

to its objective detection opportunity by observing a loss of over or under pressure within the pipes of 

the failed tubular joint [8], [9]. Additionally, this failure mode is predicted by the structural stress 

approach, which is the state of the art for the fatigue design of tubular joints [3]. Therefore, the through 

thickness crack was decisive for the performed fatigue tests of the automatically welded tubular X-

joints. Referring to [8], the corresponding number of load cycles N for through thickness cracking is 

called N3 in this contribution.  

During the fatigue tests the through thickness crack has been observed by detecting a change of inner 

pressure within the three pipes. Therefore, an over pressure (1 bar) has been applied within the two 

braces as well as a negative pressure (-0.5 bar) within the chord. During the occurrence of the through 

thickness crack the inner pressure will equalize with the ambient pressure which is then detected by 

three absolute pressure transducers. Due to the negative pressure within the chord an inner through 

thickness crack between brace and chord can be detected as well. 

3.2.  Test program 

The test program to determine a new S-N curve for automatically welded tubular X-joints comprised a 

total of 32 axial constant amplitude fatigue tests divided into two test series. Both test series (16 tests 

per series) were identical except of an additional inner root layer within the X-joints for the second series 

to quantify the effects of this additional inner welding on the fatigue resistant of the tubular joints. 

3.3.   Test setup and specimen preparation 

The fatigue tests have been performed considering a bottom to top load ratio of R = 0.1 and a testing 

frequency of 5 Hz applying constant amplitude values within a force controlled 1 MN (dynamic) servo 
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hydraulic testing device. The adaptation of the X-joint to the testing device was realized by a bolted ring 

flange connection between the X-joint and two adapter plates as shown in Figure 5. Therefore, the 

automatically welded X-joints were prepared by adding ring flanges on top of the braces followed by 

planar parallel milling of the ring flange surfaces to guarantee an axial installation within the testing 

device. Additionally, to ensure identical testing conditions during all fatigue tests, the adapter plates 

previously installed in the testing device were not removed during the test series.  

 

 

Figure 5. Test setup of the axial fatigue tests  

 

The sealing of the bracings for the detection of the through thickness crack was ensured by an O-ring 

which was clamped within the ring flange connection. The chord was sealed by two sealing plates 

including grooves for the chord of the X-joints. The sealing between the sealing plate and the chord was 

realized by a silicone seal which was previously inserted into the groove. The contact pressure required 

for the sealing of the chord was ensured by the slightly applied evacuation.  

Besides the observation of the inner pressure to detect the through thickness crack, the digital image 

correlation (DIC) method was applied during 13 fatigue tests per series to digitize the fatigue damage 

development within the hot spots of the automatically welded tubular X-joints. Therefore, two ARAMIS 

3D 12M DIC systems have been utilized. Periodically, at the maximum load a picture of the prepared 

hot spot was simultaneously taken by both ARAMIS systems. Therefore, the first system (the master 

system) was triggered directly by the load signal of the testing device. The second ARAMIS system (the 

slave system) was controlled by the master system by sending a trigger signal at each time a picture was 

taken. To reduce the required storage space and hence to enlarge the monitorable number of cycles N 

not every pair of pictures was stored depending on the expected number of cycles. 

To ensure a high quality digital image correlation measurement using the ARAMIS systems a high-

contrast surface with a unique grey value distribution is essential. Therefore, a stochastic black-white 

speckle pattern was applied at the upper two hot spot regions of the X-joints indicated by the red box in 

Figure 5. At a first step the specimen was coated with white powder utilizing the developer known from 
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the dye penetrant inspection. After drying, black liquid graphite was sprayed on the white surface until 

a uniform back-white distribution was given. These coating substances were applied instead of 

corresponding lacquers to allow crack opening of the coating after crack initiation within the specimen. 

The tubular X-joints to be tested are double symmetrical test specimens with a total of four possible 

fatigue critical hot spots. Since only the two hot spots of the upper brace could be monitored with the 

ARAMIS systems, the fatigue resistance of the two lower hot spots was improved by using the 

pneumatic impact treatment (PIT) needle peening method. By doing so, the fatigue decisive notch was 

ensured to be within the monitored hot spots of the upper brace.  

4.  Fatigue test results  

4.1.  Fatigue damage behaviour of the automatically welded tubular X-joints  

For the presented investigations on the fatigue behaviour of automatically manufactured tubular X-

joints, the distribution and propagation of the fatigue induced damage is of great importance, e.g. to 

improve the welding process with regard to a more fatigue-proof weld geometry or to validate numerical 

models. To localize these damage hot spots, the local strain distribution εx perpendicular to the crack 

path was computed and visualized by the ARAMIS 2017 software.  

Figure 6 exemplarily shows the development of the fatigue induced damage within the considered 

hot spots located at the saddle position (see Figure 6, a)) for a certain single-sided automatically welded 

X-joint (WiD 231), which was loaded with a nominal stress range of ΔσN = 41.3 N/mm². Equivalent 

results were obtained for the double-sided automatically welded tubular X-joints as well. 

 

 

Figure 6. Exemplary fatigue damage behavior within the hot spot of a tubular X-joint 
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Within Figure 6, b) several damage induced strain hot spots can be seen within the cord-sided notch 

close to the saddle position. These relatively widely distributed hot spots increased and merged during 

the ongoing fatigue test so that an increased damaged area was observed within the chord-sided notch 

after approx. 1.0∙106 load cycles as shown in Figure 6, c). Additionally, Figure 6, c) shows that the 

fatigue induced strain εx and hence the corresponding damage within the merged hot spot is uniformly 

distributed without any extreme values. This is due to the typical uniform and smooth weld geometry of 

the automatically welded tubular X-joints which do not have any locally occurring sharp notches. 

Finally, a first crack was visually detected in the ARAMIS images (Figure 6, d)) after 1.17∙106 load 

cycles, which had a crack length of approximately 30 mm. Comparable crack lengths of the first visually 

in the ARAMIS images detectable cracks could be confirmed for other tested X-joints independently of 

the applied load and test series. Attention must be drawn in Figure 6 b)-d) to the fact that no damage 

was detected within the brace-sided notch.  

Figure 7 presents a typical crack path along the chord-sided notch (marked with a white marking 

pen) after through thickness cracking which is valid for both single and double-sided automatically 

welded X-joints.  

 

 

Figure 7. Exemplary crack path after through thickness cracking  

 

Besides the crack propagation along the surface, also the crack path though the chord was similar 

between both X-joint variants and independent on the considered hot spot position (90° or 270°), see 

Figure 8. For the tested automatically welded X-joints combined with the applied axial loading the weld 

root was not fatigue critical and all 32 tested X-joints failed from the outside with crack initiation in the 

chord-sided notch.  

Comparable to the well-known positive effect of the needle peening method on the fatigue resistance 

of manually welded tubular joints, the outcomes of the performed fatigue tests indicate without 

quantification that the fatigue resistance of the automatically welded tubular joints can also be improved 

by applying the needle peening method. None of the tested automatically welded tubular X-joints failed 

within the lower fatigue improved hot spots.    

4.2.  S-N curves for automatically welded tubular X-joints 

Since the structural stress approach is the state of the art for the fatigue design of tubular joints for jacket 

support structures, the decisive hot spot stress σHS and hence the corresponding stress concentration 

factor (SCF) with SCF = σHS/σN has to be determined to compute the hot spot stress based S-N curve for 

the automatically welded tubular X-joints.   

4.2.1.  Numerical determination of decisive SCFs  

For the numerical computation of the decisive SCFs a numerical model of both X-joint variants – single 

and double-sided automatically welded – was generated by using the finite element software ANSYS 

17.2. The X-Joints were modelled according to the requirements of the DNVGL-RP-C203 

recommendation [3] including the weld geometries, which were based on the profiles obtained from the 
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Figure 8. Comparison of crack paths through the cord for both X-joint variants 

and hot spot positions 

 

laser scanning data. For both numerical models 20-node solid elements (Solid 186) with quadratic shape 

functions were utilized considering linear elastic material behaviour with a measured Young's modulus 

of ECh = 205,667 N/mm² for the chord and EBr = 208,167 N/mm² for the brace. The Poisson's ratio was 

set to ν = 0.3. Within a sensitivity study the density of the mesh was optimized such that the values of 

the SCFs were not affected by the mesh. The axial unit load F was applied on top of the upper brace 

whereas the lower brace was fixed. 

The linear extrapolation of σHS by using the reference points according to DNVGL-RP-C203 [3] was 

performed on behalf of nine extrapolation paths for the chord and the brace around one half of the chord 

to brace intersection. Since all performed fatigue tests failed within the chord-sided notch close to the 

saddle position, the maximum SCF values for the chord were taken for the computation of the S-N 

curves, see equations (1) and (2).  

 
Ch,singleSCF = 4.36  (1) 

 Ch,doubleSCF = 4.41  (2) 
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Further detailed information about the numerical modelling of the X-joints and the distribution of 

the resulting SCF values are given in [10], [4] and [7]. 

4.2.2.  S-N curves for the automatically welded tubular X-joints  

The corresponding hot spot stress based S-N curves were determined by further processing the obtained 

number of load cycles N3 for through thickness cracking combined with the applied hot spot stress range 

ΔσHS. The statistical evaluation of the S-N curves were therefore based on the background 

documentation of the Eurocode 3 [11] fatigue design rules [12]. Figure 9 presents the S-N curves for 

both the single and double-sided automatically welded X-joints. For the computation of the respective 

hot spot stress ranges ΔσHS of both X-joint variants the corresponding SCF values according to equations 

(1) and (2) were used to include the effect of the inner welding on the applied loading.  

 

Figure 9. S-N curves for the single and double-sided automatically welded 

tubular X-joints 

 

For the 32 tested automatically welded tubular X-joints a FAT 126 curve with a fixed slope of m = 3 

respectively a FAT 153 curve with a variable slope of m = 4.27 was determined. The current design  

S-N curve FAT 114 (m = 3) according to DNVGL-RP-C203 is shown in Figure 9 as well. The standard 

deviation sN is equal to sN = 0.147 for the FAT 126 curve with m = 3 and sN = 0.109 for the FAT 153 

curve with m = 4.27.   

5.  Discussion of the obtained results 

For the performed fatigue tests on the single and double-sided automatically welded tubular X-joints no 

significant difference between both test series could be determined. Neither the locations of crack 

initiation nor the resulting crack paths showed any significant differences between the two test series. 

The obtained scatter bands within the S-N chart are similar for both test series as well. Hence no 

significant effect of the internal welding on the fatigue resistance and behaviour of the automatically 

welded tubular X-joints was determined.  

For the used test setup with an X-shaped tubular joint combined with an applied axial loading only the 

outside notches experience tensional stress. The inside notch at the weld root experiences only 

compressive stresses which causes a stop of crack propagation starting at the weld root. Therefore, the 

inner root layer does not have a significant effect on the fatigue resistance of the tubular X-joints. 
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However, the application of an inner root layer improves the safety during automated welding by 

compensating tolerances of the groove geometry.  

6.  Summary and outlook  

A total of 32 fatigue tests on single and double-sided automatically welded tubular X-joints have been 

performed. During the fatigue tests two ARAMIS digital image correlation systems were applied to 

monitor the fatigue damage process within the hot spot of the tubular joints. The outcomes of these 

optical measurement systems showed a uniformly distributed damage process within the hot spots due 

to the smooth and uniform shape of the weld geometry without sharp notches. Finally, for the 

automatically welded tubular X-joints an increased S-N curve equal to a FAT 126 curve with a fixed 

slope of m = 3 was determined. Considering the variable slope of the test series m = 4.27 an improved 

S-N curve of FAT 153 was obtained.  

The investigated tubular X-joints were medium scaled including a single layer weld compared to 

realistic offshore jacket tubular joints. Therefore, the fatigue resistance of various shaped and realistic 

dimensioned automatically welded tubular joints should investigated within future projects.  
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