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Abstract

The next generation of gravitational-wave detectors (GWD), formed by the Einstein
Telescope (ET) and Cosmic Explorer (CE), aims for improving the currently achieved
sensitivities by one order of magnitude which requires significant progress in the
overall noise reduction. In this regard, one discussed option for a thermal noise
mitigation beyond the current ET and CE baselines is the replacement of the funda-
mental Gaussian TEM0,0 laser mode by a higher-order spatial mode. To justify this
approach it is crucial to investigate whether these modes comply with the targets for
all other noise sources. In this thesis, this question is investigated with respect to the
quantum noise and its reduction via squeezed states of light.

Cavity-enhanced second harmonic generation (SHG) is the first nonlinear pro-
cess in every GWD squeezed light source. Based on the initial ET design study,
the performance of the Laguerre-Gaussian LG3,3 mode in this process was analysed
first. A numerical model for the LG3,3 SHG was developed and showed a good
agreement with a corresponding experiment where a conversion efficiency of 45 %
could be achieved. However, astigmatism strongly limited the conversion efficiency
as well as the output mode purity and the focus then switched to Hermite-Gaussian
(HG) modes which are less sensitive in this respect.

The theory on the generation of squeezed states in a type-I optical paramet-
ric amplifier was applied to higher-order HG modes, yielding that a TEM0,0 SHG
in combination with a subsequent spatial light modulator can generate an efficient
pump field in a single higher-order mode. Based on these findings, bright squeezed
states at a wavelength of 1064 nm in the TEM0,0, HG1,1, HG2,2 and HG3,3 mode were
generated and characterised via a balanced homodyne detector in the measurement
frequency range of 1 MHz to 20 MHz. The achieved benchmark of a quantum noise
reduction of 10 dB in the HG1,1 mode is a substantial improvement compared to
previously published results. 7.5 dB and 4.5 dB in the HG2,2 and HG3,3 mode, re-
spectively, were primarily limited by the available pump power.

Finally, the shot-noise limited sensitivity of a tabletop Michelson interferometer
with balanced homodyne detection, which is the planned readout-scheme topol-
ogy for future GW detectors, was improved via the generated squeezed states in
the frequency range of 1 MHz to 20 MHz. In this thesis, the first successful 10 dB
quantum noise reduction in a Michelson interferometer could be demonstrated with
the TEM0,0 mode at 5 MHz. Moreover, comparable levels of quantum noise reduc-
tion, unprecedented for any measurement application, could be achieved for the
HG1,1 and HG2,2 operation at 4 MHz: 8.8 dB and 7.5 dB, respectively. These results
were mainly limited by optical loss in the squeezed light injection stage including a
Faraday rotator whose aperture caused additional clipping loss for the higher-order
modes. At frequencies below 4 MHz, technical laser noise was the main limitation.

These findings are a highly promising step in the feasibility demonstration for an
improved thermal noise reduction in gravitational-wave detectors via higher-order
spatial modes.
Keywords: higher-order spatial laser modes, squeezed states of light, Michelson
interferometer, gravitational-wave detector, mirror thermal noise.
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Kurzfassung

Die nächste Generation der Gravitationswellen-Detektoren (GWD), bestehend aus
dem Einstein Telescope (ET) und Cosmic Explorer, verfolgt das Ziel, die aktuell
erreichten Sensitivitäten um eine Größenordnung zu verbessern. Für die Verringe-
rung des thermischen Spiegelrauschens besteht dabei die Möglichkeit, die aktuell
benutzte fundamentale Gauß’sche Lasermode TEM0,0 durch höhere räumliche
Moden zu ersetzen. Um diesen Vorschlag zu rechtfertigen, muss untersucht wer-
den, ob diese Moden mit den Zielen für alle anderen Rauschquellen vereinbar sind.
Die vorliegende Arbeit untersucht diese Frage bezüglich des Quantenrauschens und
dessen Reduzierung durch gequetschte Lichtzustände.

Die in einem Resonator verstärkte Frequenzverdopplung (SHG) ist der erste nicht-
lineare Prozess, der in jeder GWD Quetschlichtquelle zum Einsatz kommt. Basierend
auf der ursprünglichen ET Designstudie wurde die Performance der Laguerre-Gauß
LG3,3 Mode in diesem Prozess untersucht. Ein numerisches Modell der LG3,3 SHG
wurde entwickelt und zeigte eine hohe Übereinstimmung mit einem entsprechen-
den Experiment, bei dem eine Konversionseffizienz von 45 % erreicht wurde. Dabei
limitierte Astigmatismus sowohl die Effizienz als auch die Ausgangs-Modenreinheit
und der Fokus wechselte zu Hermite-Gauß (HG) Moden, die in dieser Hinsicht un-
empfindlicher sind.

Die Theorie zur Erzeugung von Quetschlicht in einem Typ-I optisch-parame-
trischen Verstärker wurde auf höhere HG Moden übertragen. Es stellte sich her-
aus, dass eine TEM0,0 SHG kombiniert mit einem räumlichen Lichtmodulator ein
effizientes Ein-Moden-Pumpfeld in einer höheren räumlichen Mode erzeugen kann.
Mithilfe dieser Erkenntnisse wurden helle Quetschlicht-Zustände bei einer Wellen-
länge von 1064 nm in den Moden TEM0,0, HG1,1, HG2,2 und HG3,3 erzeugt und in
einem Frequenzbereich von 1 MHz bis 20 MHz charakterisiert. Die dabei erreichte
Reduzierung des Quantenrauschens um 10 dB in der HG1,1 Mode ist eine erhebliche
Verbesserung gegenüber zuvor veröffentlichten Ergebnissen. 7.5 dB in der HG2,2
und 4.5 dB in der HG3,3 Mode waren hauptsächlich durch die verfügbare Pumpleis-
tung begrenzt.

Zuletzt wurde die schrotrausch-limitierte Sensitivität eines Michelson-Interfero-
meters, welches mit der für die künftigen GW-Detektoren geplanten symmetrischen
homodynen Detektion betrieben wurde, mithilfe der erzeugten Quetschlicht-
Zustände verbessert. In der vorliegenden Arbeit konnte die erste Quantenrausch-
Reduktion um 10 dB in einem solchen Interferometer in der TEM0,0 Mode bei einer
Frequenz von 5 MHz demonstriert werden. Darüber hinaus konnten ähnlich hohe
Reduktionslevel von 8.8 dB und 7.5 dB in der HG1,1 und HG2,2 Mode bei 4 MHz er-
reicht werden. Diese Ergebnisse waren hauptsächlich durch optische Verluste in
dem Faraday-Rotator limitiert, über den die gequetschten Zustände in das Interfer-
ometer gekoppelt wurden und der bei den höheren Moden zusätzlich zu Verlusten
aufgrund seiner begrenzten Aperturgröße führte. Unterhalb von 4 MHz stellte tech-
nisches Laserrauschen die primäre Limitierung dar.
Stichwörter: höhere räumliche Lasermoden, gequetschtes Licht, Michelson-Interfe-
rometer, Gravitationswellen-Detektoren, thermisches Spiegelrauschen.
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Chapter 1

Introduction

1.1 The history of gravitational waves in brief

Starting around 1915, Einstein’s General Theory of Relativity (GTR) has brought a
fundamentally new concept of gravity into prominence [Ein14]. After having been
treated as a force for centuries, gravity was now interpreted as a geometrical pertur-
bation of otherwise flat spacetime. Objects should not fall down and planets should
not orbit stars due to an attractive gravitational pull, but because they freely move
along geodesics through a curved spacetime [MTW73]. GTR was able to explain the
deflection of light by the Sun and the perihelion precession of Mercury, which were
not fully understood in Newtonian Gravity [Wil14]. Today, it is, however, even more
astonishing that Einstein predicted a new phenomenon which took us no less than
one hundred years to observe directly: gravitational waves (GW) [Ein18].

Amongst others, massive objects which perform a spherically asymmetric mo-
tion emit gravitational waves as ripples in spacetime that propagate at the speed of
light [Sat13]. Such objects may be coalescing compact binaries or asymmetric ro-
tating neutron stars. When these ripples eventually pass the Earth, they cause tiny
periodic length changes which were first claimed to be detected by Joseph Weber in
1969 [Web69]. Weber had built two resonant bar detectors, solid bodies whose elastic
resonances should be excited by a gravitational wave, and thought to have seen cor-
related signals between them. However, after several other resonant bar detectors
failed to reproduce these observations, Weber’s results were reanalysed and rejected.

In 1981, Weisberg and Taylor were the first to indirectly validate the existence of
gravitational waves through experimental data [WT81]. Analysing the binary Pulsar
1913+16, which had been discovered by Hulse and Taylor six years prior [HT75],
showed that its change in orbital period agreed well with what GTR predicted due
to gravitational radiation. Their findings were confirmed in 2016, after thirty-five
years of observation, with a high degree of confidence [WH16].

Laser interferometers had also been proposed for the direct GW detection in 1963
[GP63]. Compared to resonant bar detectors, interferometers benefit from a broad-
band sensitivity ranging from a few Hertz to several kilohertz. The TAMA300 detec-
tor in Japan started searching for gravitational waves in September 1999, followed
by the GEO600 detector in Germany as well as by the first kilometre-scale Laser In-
terferometer Gravitational-Wave Observatory (LIGO) in the United States in 2002
and by the Virgo detector in Italy in 2007. It then took another nine years of work
until, finally, the LIGO and Virgo Collaborations reported that the two LIGO detec-
tors directly observed a gravitational wave for the very first time in September 2015
[Abb+16]. The signal, which swept through the frequencies from 35 Hz to 250 Hz,
was produced by the inspiral, merger and ring-down of two black holes at a lumi-
nosity distance of 410+160

−180 Mpc. This observation was awarded with the Nobel prize
in 2017 [The17].
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This major success enabled a completely new channel to study the Universe.
Since then, gravitational-wave detectors (GWD) have further been upgraded and
the latest GW catalog lists 94 events from three observation runs [Nit+21]. Bet-
ter and new methods for reducing the numerous noise sources are continuously
investigated—and the next generation of ground-based GWDs as well as the space-
based Laser Interferometer Space Antenna (LISA) are already on their way, poten-
tially observing things we do not even expect.

1.2 Gravitational waves and how to detect them

1.2.1 A perturbation of space-time

Gravitational waves can be associated with a small perturbation hµν of the flat Min-
kowski metric ηµν within the weak-field approximation [MTW73; Adh14]

gµν ≃ ηµν + hµν . (1.1)

This perturbation can be written in the transverse-traceless gauge as

hµν(z, t) =


0 0 0 0
0 −h+(z, t) h×(z, t) 0
0 h×(z, t) h+(z, t) 0
0 0 0 0

 , (1.2)

where h+ and h× are two independent polarisations with a 45◦ angle inbetween.
This strain acts transverse to the wave’s propagation direction and can be visualised
by assuming that we measure the distance between two free test masses which are
located along the x axis at x1 = 0 and x2 = L0. Such a measurement may employ a
laser beam that is sent from one test mass to the other and reflected back such that
the phase of the returning beam can be compared to the source. Assuming that the x
axis is aligned with the h+ polarsation and that the period of the gravitational wave
is much longer than the light travel time, the accumulated roundtrip phase reads

φrt =
4π

λ
L0 (1 − h+/2) =

4π

λ
L′ . (1.3)

Hence, the effect of a gravitational wave can be interpreted as a change in the effec-
tive length L0 → L′. If the same measurement is taken along the y axis, the roundtrip
phase would scale with +h+/2; a gravitational wave is quadrupolar in nature and
influences perpendicular axes in an anti-correlated manner. This is illustrated in the
top row of Figure 1.1 with a ring of test masses that is periodically deformed into an
ellipse as a gravitational wave stretches and compresses its dimensions on the x and
y axis.

A variety of measurement devices is theoretically capable of detecting gravita-
tional waves. Tracking the periods of radio pulsars via pulsar timing arrays en-
ables the measurement of signals in the frequency range from micro- to nanohertz
[Bai+21]. Such a pulsar can be precisely modelled after a thorough study and gravi-
tational-wave signals then appear as certain deviations of the pulse arrival times
from this model due to perturbations of the space-time between the source and
Earth. Another example is the resonant bar detector. After Weber’s rejected claim of
having measured a gravitational wave in 1969, a network of this kind of antenna has
been developed which today not only aims to measure gravitational waves but also
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Figure 1.1: The effect of a passing gravitational wave in the h+ polarisation on a
ring of test masses (top), a properly oriented Michelson interferometer (middle)
and its output power (bottom). Here, a nominal output power of zero and a ∆L of
1/8th of the light’s wavelength are assumed. This ∆L is unrealistically large but
allows to display the full-range interferometer response (0 ≤ Pout ≤ Pin = 1) for

demonstration purposes. T is the wave’s period.

the non-commulative structure of space [SG16]. Finally, primordial gravitational
waves may be measured as specific signatures in the polarisation of the cosmic mi-
crowave background which statistically cover the whole frequency band down to
10−18 Hz. Neither of these strategies has yet been successful in detecting a gravita-
tional wave.

This thesis will solely focus on the probably most prominent and, at the present
day, only successful GW detection method which directly uses the quadrupolar
nature of a gravitational wave: Michelson interferometers, covering the frequency
band from 10−4 Hz to 10−1 Hz (future space-based) and from 1 Hz to 104 Hz (ground-
based).

1.2.2 Michelson Interferometers for gravitational-wave detection

Fundamental design and principle

The, so far, only successful gravitational-wave detectors are highly sophisticated
Michelson interferometers. In this kind of interferometer as shown in Figure 1.1,
an incoming laser beam is split up by a 50:50 beamsplitter into a “north” and “east”
arm where the two beams are each reflected back by a highly-reflective end mirror.
When the two beams recombine at the beamsplitter, their relative phase determines
how they interfere in the input and output port and, thus, how much optical power
reaches the photodetector in the output.

The simplest model assumes this experimental design and plane waves. In the
symmetric beamsplitter convention, the fields which recombine at the beamsplitter
read

aN = ρaineiφN and aE = iτaineiφE , (1.4)
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where ain is the input field, ρ and τ are the amplitude reflection and transmission
coefficients of the beamsplitter, respectively, and φN/E are the phases accumulated
in the north and east arm, respectively. The light field in the output then reads

aout = iτaN + ρaE

= iρτaineiφc
(

ei∆φ + e−i∆φ
)

= iaineiφc cos ∆φ ,

(1.5)

using ρ = τ = 1/
√

2 and cos x = 1/2
(
eix + e−ix). Here, φc = 1/2 (φN + φE) and

∆φ = 1/2 (φN − φE) are defined as the common and differential phase, respectively.
Hence, the detected output power is given by

Pout = |aout|2 = Pin cos2 ∆φ (1.6)

which can be rewritten in terms of the optical arm path lengths LN and LE to

Pout(∆L) = Pin cos2 (2∆Lk) with ∆L :=
LN − LE

2
, (1.7)

where k = 2πn/λ is the wavenumber with the refractive index n and the wave-
length λ. In such an interferometer, the strain of the gravitational wave translates to
h = 2∆L/L0 (recall Eq. 1.3) where L0 is the unperturbed north and east arm length.

If the Michelson interferometer is properly aligned to a passing gravitational
wave, the wave’s quadrupolar nature will cause anti-correlated changes in LN and
LE and, thus, changes in ∆L. The corresponding gravitational-wave signal then ap-
pears in the evolution of Pout where further processing and a matching procedure to
simulated signals is used for an evaluation and source parameter estimation [CM22].

The operating principle of a Michelson interferometer is optimally sensitive to
the gravitational-wave effect. Nevertheless, a detector which only follows this sim-
ple design would by far not be sensitive enough for a successful detection. While a
complete description of an advanced GW detector is beyond the scope of this thesis,
a selection of the advanced techniques which set the overall optical scheme apart
from the one in Figure 1.1 are introduced in the following. This shall provide an
insight into the complexity of these detectors.

An advanced 2nd generation gravitational-wave detector

The design sensitivities of gravitational-wave detectors require a high laser input
power (e.g. 70 W [Bui+20]) to reduce noise in the higher-frequency regime (further
explained in Chapter 3). In addition, the high-power input beam is stabilised with
respect to intensity, frequency as well as beam jitter and needs to exhibit a high
mode purity. This is achieved via a sophisticated pre-stabilised laser system (PSL)
[Bod+20] in combination with an input mode cleaner cavity (IMC) (see Fig. 1.2).

As gravitational-wave detectors are sensitive to ∆L = hL0, large arm lengths L0
are desired. Practical constraints like construction costs and available land, how-
ever, limited the arm lengths of the second-generation gravitational-wave detectors
to a few kilometres (LIGO: 4 km, Virgo and KAGRA: 3 km). To increase the arm
length artificially, a partially transmissive input test mass (ITM) is added in each in-
terferometer arm to the end test mass (ETM). Together, they form a high-finesse arm
cavity which results in a longer interaction time between the gravitational wave and
the light while the latter bounces back and forth between these two mirrors. In this
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Figure 1.2: Simplified schematic of a gravitational-wave detector with a selection
of advanced techniques compared to a basic Michelson interferometer.

process, the circulating optical power reaches the order of 105 W. The effective light
travel time should, however, also remain small compared to the gravitational-wave
period. Otherwise, the accumulated phase shift may decrease again.

During the third joint observation run O3 in 2019 and 2020, the detectors Ad-
vanced LIGO, Advanced Virgo, KAGRA and GEO600 [KAG22] employed the direct
readout scheme where the interference of the beams which return from the arms is
stabilised close to the point of zero output power (small offset from the dark fringe).
The static output field serves as a local oscillator which beats with the signal field
for amplification. If only a small fraction of the input laser power leaks through at
the output, the major fraction is effectively reflected back towards the laser source.
Placing a partially transmissive power recycling mirror (PRM) in the input can then
form a cavity with the mostly reflecting interferometer, increase the input power
that impinges on the beamsplitter and optimise the impedance matching of the in-
put laser to the interferometer by adjusting the power recycling transmissivity to the
interferometer losses [Adh14].

A similar method is employed in the output. Here, a partially transmissive mir-
ror (SRM) forms a signal recycling or extraction cavity with the interferometer. With
this cavity, the peak sensitivity of the detector can either be increased by resonantly
enhancing the signal sidebands at the cost of a narrower bandwidth, or the opposite
effect can be obtained by extracting the signal sidebands, thereby virtually increas-
ing the linewidth of the high-finesse arm cavities [Miz+93; Gra+98]. The detectors
can switch between these two cases via the tuning of the SRM. With the PRM and
the SRM, the Michelson interferometer is referred to as “dual-recycled” [Mal06].

An essential technique that aims at the reduction of quantum noise as discussed
in Chapter 3 is the injection of squeezed vacuum states into the interferometer out-
put port. These states are provided by a squeezed light source (SLS) and injected via
the combination of a polarising beamsplitter (PBS) and Faraday rotator (FR). Due to
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the symmetry of the interferometer, the squeezed field is effectively reflected by the
interferometer at the dark fringe and the polarisation rotation from the FR allows
the PBS to then transmit the squeezed field together with the signal field towards
the output photodetector (PD).

To protect this PD from excess power and reduce the shot noise contribution
from radio-frequency control sidebands and unwanted higher-order laser modes,
the detector output field is mode-filtered by an output mode cleaner cavity (OMC).

The vacuum system reduces the noise contributions from light that is scattered
off gas molecules, from fluctuations in the refractive index due to a fluctuating num-
ber of gas molecules in the beams, from the damping of the mirrors by the surround-
ing residual gas and from acoustic noise.

There are many additional techniques which are not shown or mentioned here
like seismic isolation platforms, multiple-stage mirror suspensions as well as a vast
number of sensors and electronic feedback control loops. They are implemented to
keep the interferometer and cavities at the desired operation points and to tackle the
various noise sources which are, for instance, analysed regarding the latest improve-
ments in [Bui+20; Ber+21]: quantum, thermal, seismic, Newtonian gravity gradient,
length and alignment control, laser intensity, frequency and beam jitter, scattered
light, residual gas and photodetector dark noise. The procedure to get such an ad-
vanced detector into operational mode needs up to half an hour in the case of the
Advanced LIGO detectors, and the Advanced LIGO and Virgo detectors remained
in operational mode for about 75 % of the time during the third joint observation run
O3 (for Virgo, this at least holds for the second part O3b) [Bui+20; Ber+21].

While the success of these detectors is already astonishing, there is also always
the need—and wish—for further improvements.

1.3 Motivation and goal

The current ground-based gravitational-wave detectors, especially Advanced LIGO
and Advanced Virgo, already reach impressive sensitivities that enabled the detec-
tion of a total of 94 merger events in three observation runs between 2015 and 2020,
including 90 binary black holes, 2 neutron star-black hole systems and 2 binary neu-
tron stars [Nit+21]. This constitutes a huge success in high-precision metrology,
leading to new insights into astrophysical processes and fundamental physics by
allowing to study the dynamics of massive objects via a completely new messenger
channel [Bai+21]. These insights and discoveries include, for instance, the origin
of at least some gamma ray bursts, one formation site of the heaviest elements in
the Universe, a previously unknown population of heavier stellar-mass black holes
and the confirmation of the quasi-normal modes of the final black hole predicted
by General Relativity [ET 20]. Nevertheless, these second-generation detectors do
not enable the full potential of gravitational-wave astronomy and have, so far, only
detected signals from a rather limited subset of possible sources.

While the second generation of gravitational-wave detectors had the goal to sim-
ply detect, the third generation aims to observe astrophysical processes and to sig-
nificantly extend both the range of source types and the reach into the cosmos,
which also corresponds to an increased reach into the past of our Universe. This
will be made possible via an order of magnitude better sensitivity that also covers a
wider range of frequencies as shown in Figure 1.3. With the resulting detection rate
combined with high signal-to-noise ratios, revolutions in astrophysics, fundamental
physics and cosmology may very well be ahead of us. The detection of mergers with
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Figure 1.3: Calculated total noise budgets of the current Advanced LIGO detector
and the future third-generation detectors Einstein Telescope and Cosmic Explorer
which target an increase in the sensitivity of one order of magnitude [Hal; Eur].

a redshift in the order of 10 will allow to analyse how the black hole and neutron
star populations evolved over the history of the Universe starting at an age of less
than 500 million years [Eva+21]. Improved source localisation for multi-messenger
astronomy will reveal how matter behaves under the most extreme conditions in-
cluding the internal structure and equation of state of neutron stars, heavy element
nucleosynthesis and highly relativistic jets. Furthermore, the third detector genera-
tion will enable us to study the nature of the strongest gravity with unprecedented
fidelity and to test our theories on dark matter and dark energy. Finally, there is
also always the possibility of discovering exotic and novel compact objects which
are completely unexpected.

Reaching the targeted sensitivities is not a trivial task and requires significant
advances in the mitigation of all noise sources, pushing to the limit of what is tech-
nically possible. For instance, part of the third-generation designs is an increase in
the interferometer arm length to 10 km for the Einstein Telescope and 10 km to 40 km
for Cosmic Explorer, the usage of megawatts of optical power for improvements
in the high frequency regime and larger and heavier mirrors as well as cryogenic
operation for the lower frequency regime [ET 20; Eva+21]. One of the currently
dominant noise sources, that limits the second-generation detectors in the frequency
range around 100 Hz, is coating Brownian thermal noise originating from the Brow-
nian motion inside the mirror coatings and potentially masking a gravitational wave
[Bui+20; Ber+21]. The mitigation of this noise source via improved and new tech-
niques is hence of special relevance. Two examples are the cryogenic operation and
the development of coatings with significantly lower mechanical loss. One addi-
tional option, that was proposed in the early 2000s, is replacing the currently used
fundamental Gaussian laser mode by a higher-order spatial mode to better average
over the thermally induced mirror fluctuations [MTV06; Vin10]. This proposal was
part of the initial design study of the Einstein Telescope which included the 9th or-
der Laguerre-Gaussian LG3,3 mode for the high-frequency interferometer. Due to
issues regarding astigmatism, the LG3,3 mode was removed from this design study;



8 Chapter 1. Introduction

nevertheless, higher-order modes are a reasonable and promising candidate for the
thermal noise reduction, currently investigated with respect to the much more ro-
bust Hermite-Gaussian modes.

In order to justify a design change to higher-order Hermite-Gaussian modes, it
has to be thoroughly demonstrated that a gravitational-wave detector can be oper-
ated in a higher-order Hermite-Gaussian mode without any significant performance
issues, i.e. that these modes are not only beneficial for the coating Brownian thermal
noise but effectively for the total noise budget. One crucial aspect in this regard is
the quantum noise reduction. The current detectors successfully reduced quantum
shot noise by about 3 dB by injecting squeezed vacuum states into the interferome-
ter output port and an effective reduction of quantum shot and radiation pressure
noise by 10 dB is targeted for the future detectors. If squeezed states in higher-order
spatial modes cannot be generated and applied at this level, which will already be
challenging for the fundamental Gaussian mode, the deterioration in the quantum
noise reduction could very likely annihilate the thermal noise benefit.

In this thesis, I investigate how squeezed states can be efficiently generated in
a selection of higher-order Hermite-Gaussian modes. I furthermore demonstrate
that comparable levels of quantum noise reduction as in the fundamental Gaussian
mode are feasible in a tabletop Michelson interferometer. This is an essential step in
making the case for a thermal noise reduction beyond the current third-generation
detector designs via higher-order spatial laser modes.

Furthermore, research into nonclassical states in higher-order spatial modes is
relevant for various other optical disciplines. Owing to their different amplitude dis-
tributions, these modes e.g. offer an enhancement in the resolution of imaging tech-
niques [UP+13], enable multi-channel quantum communication and sensing
[Las+07] and can improve robustness against spatial mismatches [RGR21; Ste+18].
When being limited by quantum noise, these applications naturally benefit from
squeezed states. However, the generation of squeezed states in higher-order modes
significantly lags behind the fundamental Gaussian mode in terms of the achieved
quantum noise reduction. Moreover, to my knowledge, there is no report where
squeezed states in higher-order modes were not only generated but also used in an
actual measurement application. With this thesis, I also aim to make a contribution
to this widely applicable research field.

1.4 Structure of this thesis

The theoretical framework for this thesis is split up into the Chapters 2 and 3.
Chapter 2 addresses thermal noise in gravitational-wave detectors. The origin

is explained as well as how the different thermal noise contributions influence the
current detector sensitivities. This will justify the different approaches to mitigate
thermal noise for the third detector generation which are summarised afterwards.
Since the core motivation for this thesis is the thermal noise mitigation via higher-
order spatial modes, the idea behind this proposal is described in more detail and
higher-order modes are introduced together with the associated challenges and the
current resarch status regarding their usage in gravitational-wave detectors.

Quantum noise, as the other main driver for this thesis, is discussed in Chap-
ter 3. How quantum noise influences the sensitivities of gravitational-wave detec-
tors is explained and squeezed states of light are introduced as the most prominent
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quantum noise reduction technique. How these states are defined, generated, char-
acterised and applied in the detectors is summarised to provide a background for
the subsequent experimental chapters.

The experimental part of this thesis consists of the Chapters 4, 5 and 6.
Chapter 4 combines a detailed numerical analysis of the second harmonic gen-

eration of the Laguerre-Gaussian LG3,3 mode with a corresponding measurement.
This experiment was conducted in light of the former design study of the Einstein
Telescope, where the implementation of the LG3,3 mode had been part of the high-
frequency interferometer. Here, the LG3,3 performance in the first nonlinear process
employed in every detector’s squeezed light source is investigated regarding its con-
version efficiency, harmonic output field and sensitivity to astigmatism.

The Chapters 5 and 6 then turn to higher-order Hermite-Gaussian modes which
are currently in the focus for the thermal noise mitigation method based on spatial
modes. In Chapter 5, the theory on how to efficiently pump a direct higher-order
mode squeezing process is introduced. Afterwards, bright squeezed states in the
modes HG1,1, HG2,2 and HG3,3 are generated in a type-I optical parametric amplifier
and characterised with a balanced homodyne detector. Subsequently, in Chapter 6,
these states are applied in a tabletop Michelson interferometer with balanced homo-
dyne readout, which is based on the planned topology for the future gravitational-
wave detectors.

Chapter 7 finally provides an overall summary, conclusion and outlook.
The appendix includes Matlab scripts which were used in this thesis.
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Chapter 2

Thermal Noise and Higher-Order
Spatial Modes

After Chapter 1 reasoned the relevance of future gravitational-wave detectors and
their enhanced sensitivities, this chapter will closely discuss one of the limiting noise
sources: mirror thermal noise. First, this topic is introduced and the coupling mecha-
nisms are presented. Then, proposed mitigation techniques are outlined with a focus
on using higher-order spatial laser modes. This chapter also provides an overview
of the current research status on higher-order modes with respect to gravitational-
wave detectors.

2.1 Thermal noise in gravitational-wave detectors

There are two main contributions to the overall thermal noise in gravitational-wave
detectors: thermal noise related to the test mass substrate and coating (test mass ther-
mal noise) and related to the test mass suspension (suspension thermal noise). Both con-
tributions affect the effective position of the reflecting mirror surfaces. Hence, they
cause fluctuations in the phase of the reflected light and couple to the gravitational-
wave readout as noise. Common to both thermal noise sources is also that their
origin is associated with channels of energy dissipation according to the fluctuation-
dissipation theorem [CW51; Sau90]. A good introduction to thermal noise in gravita-
tional-wave detectors can be found in [Sau94].

Test mass thermal noise causes variations in the effective position of the reflect-
ing mirror surface relative to its centre of mass and can be computed as an incoherent
sum of thermo-optic [Eva+08] and Brownian noise [Hon+13]. Thermo-optic noise re-
sults from temperature fluctuations in the mirror material (coating and/or substrate)
leading to thermal expansion and contraction (thermo-elastic noise [LT00; BV03])
and from thermally induced changes in the refractive index (thermo-refractive noise
[BGV00]). These two contributions, thermo-elastic and thermo-refractive noise, do
not necessarily have to be incoherent. Brownian noise refers to the Brownian mo-
tion of the constituent atoms of the mirror material at a given temperature which
excite the mirror’s elastic modes. Both, thermo-optic and Brownian noise, have to
be studied separately for the mirror substrates and coatings. Still, these noises can
as well arise due to fluctuations at the interface between the substrate and coating.
Suspension thermal noise relates to thermally induced fluctuations in the position of
the centre of mass of the mirrors. They are especially caused by the fibres of the final
mirror suspension stage [Gon00].

As an example, Figure 2.1 shows these different thermal noise contributions in
the calculated noise budget of the Advanced LIGO detector. While their specifics
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Figure 2.1: Calculated contributions to the thermal noise budget of Advanced
LIGO in relation to the total noise budget [Hal].

of course vary among the different gravitational-wave detectors, the following rela-
tions apply in general: suspension thermal noise (STN) and test mass thermal noise
are relevant below a few tens of Hertz and around 100 Hz, respectively. In the lat-
ter case around 100 Hz, the coating Brownian thermal noise (CBTN) has the largest
contribution to the test mass thermal noise.

During the third joint observation run, STN was lower than e.g. the alignment
and auxiliary length control noise in the Advanced LIGO detectors [Bui+20] and
KAGRA [KAG22]. However, STN dominated the noise budget of the Virgo detec-
tor below signal frequencies of 30 Hz [Ber+21] and will also have significant con-
tributions in the noise budget of the Einstein Telescope [ET 20]. CBTN dominated
the noise budgets of the Advanced LIGO detector in Livingston between 40 Hz to
100 Hz [Bui+20] and of the Virgo detector between 30 Hz to 300 Hz [Ber+21]. The
same holds for the design sensitivities of KAGRA [Aku+20] and the Einstein Tele-
scope [ET 20]. For the high power silicon Cosmic Explorer, thermal noise is not
expected to be a primarily limiting factor [Eva+21].

General dependences of thermal noise

Before discussing the different approaches to mitigate thermal noise, this paragraph
shall briefly introduce how thermal noise can generally be computed based on the
fluctuation-dissipation theorem. This theorem relates the near-equilibrium thermal
noise power spectral density Sx of a given coordinate x to the rate of dissipation in
the system when a generalised force acts directly on x [Hon+13; Gon00; Vin10]

Sx( f ) =
kBT
π2 f 2 Re [Z( f )] , (2.1)

where kB is the Boltzmann constant, T is the temperature, f is the frequency and
Re [Z( f )] is the real part of the mechanical impedance Z. In the context of a GW
detector, the coordinate x is the position of the reflecting test mass face along the
beam propagation axis. Dependent on the different thermal noise contributions,
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Re [Z( f )] takes on different forms. For instance, Equation 2.1 transforms into [Vin10]

Sx( f ) =
4kBT
π f

ϕU with Re [Z( f )] = 4π f ϕU (2.2)

for Brownian noise, where ϕ is the mechanical loss angle, which characterises the
internal dissipation in the material, and U is the elastic energy stored in the mirror by
a static pressure distribution which matches the intensity distribution of the incident
readout beam, normalised to a force of 1 N.

Mitigation techniques can then be inferred from the parameters which contribute
to Sx for the different thermal noise sources. As a general aspect, which will also be
relevant in the following overview, Equations 2.1 and 2.2 reveal that the temperature
as well as the mechanical properties of the used coating, substrate and suspension
materials have to be taken into account.

2.2 Overview of mitigation techniques for thermal noise

Cryogenic temperatures

Most intuitively and also confirmed by Equation 2.1, thermal noise can be reduced
by cooling the optics and suspension to cryogenic temperatures. However, this state-
ment does not hold under all circumstances due to the temperature-dependent ma-
terial properties of the mirrors, i.e. their mechanical impedance and loss angle. The
mirror substrates of all current room-temperature detectors are made of fused silica
not only for its outstanding optical properties but also for its very low Brownian
noise at room temperature [ET 20]. In addition, fused silica allows to design quasi-
monolithic suspension fibres based on pulled fused silica for low suspension thermal
noise [Pli+98; M. 10]. However, the loss angle of fused silica shows a broad peak be-
low room temperature such that it is not suitable for cryogenic cooling [Adh+20]. In
contrast, sapphire and silicon are free of such cryogenic loss peaks and have a higher
thermal conductivity at low temperature. For LIGO Voyager and Cosmic Explorer,
silicon is planned for a temperature of 123 K, where this material shows a vanishing
thermal expansion coefficient and, thus, no thermo-elastic noise [McG+78]. For the
Einstein Telescope’s low-frequency interferometer, silicon is planned for a temper-
ature of 10 K to 20 K. KAGRA already uses sapphire mirrors [KAG22] and finally
plans for an operating temperature of 20 K. The same material considerations apply
to the suspension fibres.

The change to silicon, in turn, requires to operate at another wavelength because
silicon is opaque at 1064 nm. While LIGO Voyager and Cosmic Explorer aim for
2 µm, the Einstein Telescope plans for 1550 nm. Hence, the corresponding laser de-
velopment has to advance (see e.g. [MW22]). Other challenges of cryogenic opera-
tion are to simultaneously ensure the mechanical isolation of and an efficient ther-
mal cooling link for the test mass, to decouple the payload from the vibrations of the
refrigeration, and to perform maintenance without accessing the cryostat [ET 20].

Despite these challenges, KAGRA is the first kilometre-scale detector to succes-
fully operate at cryogenic temperatures [Aku+19]. In 2018, one sapphire mirror was
cooled down to 20 K within 35 days and remained at this level for 10 days. Still,
KAGRA operated at room temperature during the third observation run because
the thermal noise does not yet limit its sensitivity [KAG22] and KAGRA also ex-
perienced issues with ice layers on the mirror surfaces in 2019 [Aku+21]. Hence,
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an actual reduction of a kilometre-scale GW detector’s noise budget via cryogenic
cooling has yet to be demonstrated (compare, however, with [Uch+12]).

Coating materials

[Ste18] provides an overview of different approaches for coating improvements. In
this article, Equation 2.1 takes the form

Sx( f ) =
2kBT

π2 f Ysub

δc

w2

(
Ycoat

Ysub
ϕ∥ +

Ysub

Ycoat
ϕ⊥

)
(2.3)

for coating Brownian thermal noise, where Ysub/coat is Young’s modulus of the sub-
strate and coating materials, δc is the coating thickness, w is the radius of the inci-
dent laser beam, assumed in the fundamental Gaussian laser mode, and ϕ∥ and ϕ⊥
are the mechanical loss angles of the coating parallel and perpendicular to the coat-
ing layers, respectively. This model can further be decomposed into the shear and
bulk motion of the coating material which, however, only results in small correction
factors [Abe+18].

Highly reflective coatings as currently used in gravitational-wave detectors con-
sist of alternating layers of two materials with different refractive indices and the
coating thickness depends on both the required reflectivity and the refractive indices
of the used materials. The feasible variations in the thickness δc have a relatively
small effect on the thermal noise compared to the mechanical loss angles [Ste18].

A significant research focus is on understanding how the atomic-scale mecha-
nisms of a material, e.g. the medium-range atomic ordering, relate to its mechanical
loss [Har+16] and computational models have started to agree well with experimen-
tal data [Tri+16]. Developing coatings with sufficiently low mechanical loss is crucial
to reach the design sensitivities of the future detectors and the operating tempera-
ture has to be taken account in the same manner as for the mirror substrate material.
Furthermore, matching the coating’s to the substrate’s Young’s moduli generally re-
sults in the lowest coating thermal noise [RM16].

Another important aspect is the optical absorption of the highly-reflective coat-
ing (and substrate) which has to satisfy stringent requirements in the order of ppm
[ET 20]. Optical absorption has to be minimised to keep the test masses at low tem-
perature for cryogenic operation and to avoid thermal-lensing induced beam distor-
tions.

The current detectors run with coating layers made of fused silica (Si:O2) and
tantalum pentoxide doped with titanium dioxide (Ti:Ta2O5). They are produced
via ion beam sputtering. An overview of the alternatives amorphous silicon, sili-
con nitride, silica-doped hafnia, alumina, multi-material, nano-layer and crystalline
coatings as well as of the ongoing research on their properties in relation to the pro-
duction method can be found e.g. in [Ste18; ET 20].

Khalili cavities or etalons

The proposal to use Khalili cavities or etalons is based on the dependence of the coat-
ing thermal noise on the coating thickness and thus the number of coating layers due
to the requirement of high reflectivity. In gravitational-wave detectors, the end test
masses show the highest number of coating layers. Hence, replacing them by an
anti-resonant linear cavity, such that most of the light only senses the first cavity
mirror, could reduce the thermal noise because this first mirror can have a signifi-
cantly smaller number of coating layers [Kha05]. An alternative which requires less
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hardware are Khalili etalons [Gur+11]. The Hannover 10 m prototype plans to test
Khalili cavities and to stabilise them to the anti-resonance condition via the injection
of an offset phase-locked sub-carrier beam from the rear side [Goß+10]. However,
this technique is not mentioned in [ET 20; Eva+21; Adh+20].

All-reflective interferometers

Issues related to combining high laser power with transmissive optics like the input
test masses (see Fig. 1.2) are the optical absorption and, thus, thermal lensing due
to thermo-elastic and thermo-refractive effects. In addition, the realisation of a cryo-
genic operation becomes more difficult with increasing absorption as well. One way
to avoid these challenges is to replace transmissive cavities by diffractive grating
cavities and to design an all-reflective interferometer [Dre96]. In 2000, a zero-area
polarisation Sagnac interferometer which used a diffractive grating as a polarisation
beam splitter was demonstrated [Tra+00]. However, additional phase noise from
lateral grating displacements was encountered for this approach in [Hal+09]. Nei-
ther of the third-generation detectors currently aims to implement an all-reflective
topology.

Larger beam radius and higher-order spatial modes

The power spectral density of the coating thermal noise in Equation 2.3 scales in-
versely with the square of the beam radius because a more uniform intensity distri-
bution of the incident beam can better average over the thermal noise fluctuations.
As an example, the Einstein Telescope aims for beam radii of 9 cm and 12 cm on
the end mirrors of the low- and high-frequency interferometers, respectively. To re-
duce clipping losses to a negligible level, the mirror substrates then need to have a
diameter of 45 cm and 62 cm, respectively.

Above, the laser beam which propgates through the interferometer was only con-
sidered to be in the fundamental Gaussian laser mode TEM0,0. However, based on
Levin’s analysis of the internal thermal noise in [Lev98], Vinet studied the impact of
using arbitrary higher-order Hermite-Gaussian (HG) and Laguerre-Gaussian (LG)
modes instead of the TEM0,0 mode [Vin10]. These modes show a more uniform in-
tensity distribution than the fundamental mode and, thus, promise to average even
better over the thermal noise fluctuations. This option, as the core motivation for
this thesis, is outlined in more detail in the next section. Furthermore, higher-order
modes lead to a more uniform optical absorption in the mirrors which is beneficial
with respect to thermal lensing and thermal distortion [Vin09].

Before analysing LG and HG modes, it is worth mentioning that flat-top or mesa
beams were first proposed for the thermal noise reduction in gravitational-wave de-
tectors. They would, however, require non-spherical mirrors instead of the spherical
ones which are used in the current detectors, planned for the third generation and
compatible with LG and HG modes. Even though there has been research on these
beams, e.g. [D’A03; Tar+07; Vin09], implementing flat-top beams into existing or fu-
ture detectors thus implies significantly more effort compared to higher-order LG or
HG modes and this thesis will not further consider flat-top beams.
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2.3 Higher-order spatial laser modes

2.3.1 The Laguerre-Gaussian and Hermite-Gaussian mode basis

The wave-like nature of laser beams can be described by the differential parax-
ial Helmholtz equation (PHE) which allows to derive exact solutions in the form
of complete, orthonormal sets of transverse spatial modes. In practice, most laser
beams justify a description via the paraxial approximation [Sie86] and any such free-
space beam can then be decomposed in the basis of any of these orthonormal sets.
The two relevant bases for this thesis are the helical Laguerre-Gaussian (LG) and
Hermite-Gaussian (HG), which are characterised by a cylindrical and rectangular
symmetry, respectively.

The complete, normalised amplitude distribution of the helical LG modes in
cylindrical coordinates (r = (r, φ, z), z defines the propagation axis) reads [Sie86;
Ful+10]

LGp,l(r, t) = Ap,l(r)× ei(kz−ωt+β)

=
1

w(z)

√
2p!

π(p + |l|)!

( √
2r

w(z)

)|l|

L|l|
p

(
2r2

w2(z)

)
exp

(
−ik

r2

2q(z)
+ ilφ

)
× exp [i(2p + |l|+ 1)Ψ(z)] exp [i(kz − ωt + β)]

with
∫ ∣∣LGp,l(r, t)

∣∣2 dA = 1 ,

(2.4)

where the last line is an integral over the transverse plane and defines “normalised”.
Ap,l is the complex transverse amplitude distribution and actual solution to the
PHE, and ei(kz−ωt+β) is a global phase term which is separated from Ap,l before
the PHE is solved. Further, w(z) is the beam radius, 0 ≤ p ∈ N is the radial
and l ∈ Z is the azimuthal mode index, L|l|

p is the generalised Laguerre polyno-
mial, Ψ(z) = atan(z/zR) multiplied with 2p + |l| + 1 is the Gouy phase with the
Rayleigh range zR = nπw2

0/λ (n: refractive index, w0: waist size, λ: wavelength),
q(z) = z + izR is the complex beam parameter, k = 2πn/λ is the wavenumber, ω is
the angular optical frequency and β is a constant phase term. The mode order of an
LG mode is gp,l = 2p + |l| and the waist position is at z = 0.

The complete, normalised amplitude distribution of the HG modes in Cartesian
coordinates (r = (x, y, z), z again defines the propagation axis) reads [Sie86]

HGm,n(r, t) = Am,n(r)× ei(kz−ωt+β)

=
1

w(z)
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2

2m+nπm!n!
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w(z)

)
Hn
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2y

w(z)

)
exp

(
−r2

w2(z)

)
× exp

(
−i

kr2

2R(z)

)
exp [i(m + n + 1)Ψ(z)] exp [i(kz − ωt + β)]

(2.5)

where r =
√

x2 + y2, Hm and Hn are the Hermite polynomials and
R(z) = z[1 + (zR/z)2] is the radius of curvature of the wave fronts at plane z. The
other quantities as well as the normalisation are defined as for the LG mode and the
mode order of an HG mode is gm,n = m + n with the mode indices 0 ≤ m, n ∈ N.
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Figure 2.2: Selection of low-order cylindrically symmetric helical LG modes (left)
and rectangularly symmetric HG modes (right). Shown are the intensity distri-
butions over the transverse plane. The displayed mode orders are not identical
because gp,l ̸= gm,n for p = m and l = n. A laser beam can fully be described as a
superposition of these modes, respectively, if all of the infinitely many LG or HG

modes are included.

The intensity distributions (absolute value squared of the amplitude distribu-
tions) of some low-order LG and HG modes over the transverse plane are shown in
Figure 2.2 for comparison. Furthermore, LG0,0 = HG0,0 = TEM0,0.

2.3.2 Higher-order modes for thermal noise mitigation

Higher-order LG modes were proposed for the thermal noise mitigation in gravi-
tational-wave detectors as an alternative to flat-top beams for their compatibility
with the existing spherical mirror geometry [MTV06]. Vinet then analysed the effect
of arbitrary LG and HG modes on the thermal noise separately for substrate Brow-
nian, substrate thermo-elastic, coating Brownian and coating thermo-elastic noise.
Here, I will only outline Vinet’s analysis for the coating Brownian noise as it most
likely will constitute the largest contribution to the total test mass thermal noise in
the frequency range where the test mass thermal noise significantly limits the de-
tector sensitivities. Please note that Vinet only considered infinite mirror sizes in
[Vin10] which is, however, sufficient for the basic idea. Further readings for finite
mirrors or even arbitrarily shaped mirrors under symmetrical and non-symmetrical
illumination are e.g. [BHV98; Dic21]. Furthermore, the considered frequency range
is assumed to be sufficiently far from mechanical resonances.

Vinet uses Equation 2.2 in the form

Sx( f ) =
4kBT
π f

Ucϕc (2.6)

for the coating Brownian thermal noise where the subscript c now indicates that
these are the coating parameters. The same equation also holds for the substrate
Brownian thermal noise with the respective parameters. The dependence of the
coating Brownian thermal noise on the intensity distribution of the incident beam
is included in Uc.



18 Chapter 2. Thermal Noise and Higher-Order Spatial Modes

Hermite-Gaussian modes

For Hermite-Gaussian modes, it is [Vin10]

Uc(m, n) = δc
(1 + σ)(1 − 2σ)

Ycoat
Ω1ω̄1(m, n) (2.7)

where m, n are the mode indices, δc is again the coating thickness, σ is the Poisson
ratio, Ycoat is the coating’s Young’s modulus, Ω1 depends on the elastic constants of
the material, which is, for instance, 1 if the coating’s and substrate’s constants are
identical, and

ω̄1(m, n) =
∫

R2
dpdqĨ 2

m,n(p, q) =
π

w2 ḡm,n . (2.8)

Here, p and q are the coordinates for the Fourier transform of the intensity distribu-
tion Ĩm,n of the HGm,n mode. The right-hand side shows the same dependence on
1/w2 as in Equation 2.3 and ḡm,n is a relative factor which is 1 for the TEM0,0 mode
and < 1 for the higher-order HG modes.

Laguerre-Gaussian modes

For Laguerre-Gaussian modes, the equation is more difficult, especially because
Vinet does not only consider helical LG modes such that the intensity distribution
does depend on φ in contrast to Figure 2.2. While the intensity distribution of the
HG modes is given by the product of the x and y terms, the one for the general LG
modes is given by the sum of an axially symmetric term and one with an angular
parity of cos 2nφ. This leads to a costlier calculation; however, finally, the result is
similar to the HG case: it scales with 1/w2 and includes a relative factor ḡp,l which
is 1 for the TEM0,0 and < 1 for the higher-order LG modes.

Comparison of Hermite-Gaussian and Laguerre-Gaussian modes

For a fair comparison of higher-order modes to the TEM0,0 mode, the respective
beam sizes on a mirror have to be adjusted such that they yield the same clipping
loss. A typically assumed value for the clipping loss is 1 ppm. Under this assupm-
tion, Figure 2.3 examplifies that the intensities of the LG3,3 and HG4,4 mode are more
uniformly distributed over a circular mirror than the intensity of the TEM0,0 mode.
The ratios of the beam sizes are roughly w3,3/w0,0 ≈ w4,4/w0,0 ≈ 0.6. The example
also shows that the intensity of an LG mode is, in general, more homogenously dis-
tributed over the circular mirror surface than the intensity of a HG mode. Hence, the
thermal noise mitigation factors are better for LG modes at comparable mode order.
The opposite would apply for rectangular mirrors [Ful12].

The improvement factors for the power spectral density Sx of the coating Brow-
nian thermal noise of higher-order LG and HG modes, assuming the same clipping
loss, are given in Table 2.1. They confirm that LG modes are more effective for a
given mode order; the LG3,3 and HG4,4 mode e.g. have factors of 2.65 and 1.47,
respectively. The scaling factors for the other thermal noise contributions can be
looked up in [Ful12].
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Figure 2.3: The TEM0,0 (left), HG4,4 (middle) and helical LG3,3 (right) mode on a
circular mirror (brighter background) for the same clipping loss of 1 ppm.

l 0 1 2 3 4
p

0 1.00 1.40 1.61 1.69 1.78
1 1.66 1.99 2.17 2.22 2.30
2 1.90 2.23 2.42 2.47 2.47
3 2.09 2.44 2.52 2.65 2.74
4 2.18 2.50 2.68 2.70 2.84

m 0 1 2 3 4
n

0 1.00 1.10 1.11 1.08 1.05
1 1.10 1.29 1.33 1.40 1.30
2 1.10 1.33 1.40 1.41 1.41
3 1.08 1.32 1.41 1.44 1.45
4 1.05 1.30 1.41 1.45 1.47

Table 2.1: Improvement factors for the power spectral density Sx of coating Brow-
nian thermal noise of higher-order LG (left) and HG (right) modes, assuming iden-

tical clipping losses on a circular mirror [Ful12].

2.3.3 Current research status on higher-order spatial modes

Higher-order mode generation with a phase plate

In the research for gravitational-wave detectors, higher-order modes are usually
generated by shining the TEM0,0 mode onto a phase plate. A phase plate is a grid
of finitely sized pixels each of which has an individual optical path length. This can
either be a transmissive or reflective optic. Both types have in common that they
modulate the transverse phase distribution of the incoming beam while, in general,
leaving the intensity distribution unaffected. If the incoming beam is in the TEM0,0
mode with a waist of win and a higher-order mode with a waist of wout shall be gener-
ated, the phase plate can be used to transform the TEM0,0 mode’s phase distribution
Θ0,0 into the one of the intended mode Θm,n. The phase plate is usually placed at the
waist position of the incoming beam because Θ0,0(x, y, z = 0, win) = const. In this
case, the optical path length distribution of the phase plate can simply be set equal
to Θm,n. The resulting field Ares directly after the phase plate is then given by

Ares(x, y, 0, win, wout) ∝ I0,0(x, y, 0, win)Θm,n(x, y, 0, wout)

with
∫

I0,0(x, y, z, win) dxdy = 1 ,
(2.9)

where I0,0 is the normalised intensity distribution of the TEM0,0 mode. Neglecting
absorption losses or technical imperfections, the conversion efficiency can be derived
as the spatial overlap of Ares to the intended mode Am,n, that is, as the mode purity
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Figure 2.4: Calculated conversion efficiency of a phase plate from the TEM0,0 mode
into two LG and two HG modes of comparable mode order, respectively, depen-
dent on the waist size ratio of the incoming and outgoing beams. The phase plate

is assumed to be at the waist position (z = 0).

of Ares with respect to Am,n:

ηconv(win, wout) =

∣∣∣∣∫ A∗
m,n(x, y, 0, wout)Ares(x, y, 0, win, wout) dxdy

∣∣∣∣2 , (2.10)

assuming the fields are normalised. In this equation, both fields have the same phase
distribution and the conversion efficiency only depends on the overlap of the inten-
sity distributions which, in turn, depends on the ratio of the waist sizes of the in-
coming and outgoing beam, win/wout, as shown in Figure 2.4. Let us assume that
the TEM0,0 shall be converted into the LG3,3 mode. If the waist of the incoming
beam is too small compared to the waist which the phase plate is set to generate, not
enough of the TEM0,0 power gets into the outer LG3,3 ring (compare with Fig. 2.3).
On the other hand, if the incoming waist is too large compared to the generated
waist, not enough power remains in the centre for the most intense inner ring and,
in an extreme case, too much power is lost in the region outside the outer ring. The
same consideration applies to HG modes which have the additional disadvantage
that their rectangular intensity shape matches the round shape of the TEM0,0 mode
fundamentally less. Furthermore, the maximally achievable conversion efficiency
decreases with the mode order because the intensity distributions of higher-order
modes differ evermore from the TEM0,0 distribution.

In addition, a contoured blazed grating can be added to the phase distribution
that the phase plate generates to spatially separate the modulated from the unmod-
ulated light and, at the same time, achieve some amplitude modulation, as well
[Ful12]. Theoretically, conversion efficiencies of up to 100 % are possible with this
method; however, this is unlikely to be achieved in reality due to technical limita-
tions. The conversion efficiency can also be increased up to almost 100 % by using
two subsequent phase plates [Jes+08]. To my knowledge, the highest conversion
efficiencies were achieved with two phase plates and amounted to 61 % to 75 % for
the HG1−5,0 and LG3,3 mode [Ma+20]. Absorption and an imperfect diffraction ef-
ficiency mainly limited these results. In this thesis, one computer-controlled spatial
light modulator (SLM), type LCOS-Hamamatsu, without a blazed grating generates
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Figure 2.5: Top: typical geometries of optical cavities: linear (left), triangular (mid-
dle) and bow-tie (right). A piezo-electric transducer is attached to one mirror per
cavity to control the cavity length. Bottom: an impure beam is injected into a lin-
ear cavity consisting of 85 % TEM0,0, 10 % HG0,2 and 5 % HG4,0 with respect to the
cavity eigenbasis. This mode composition can be analysed by scanning the cav-
ity length and measuring the transmitted power where each injected mode relates
to an individual peak of corresponding height, if the mode resonances are non-
degenerate. If the cavity length is stabilised to one of the resonance conditions, the
transmitted field only consists of the corresponding mode to a typically very good

approximation. FSR: free spectral range (here, = wavelength).

the higher-order HG modes (see also Appendix A.2) and a diffractive optical ele-
ment from Jenoptik with a blazed grating generates the LG3,3 mode.

Mode cleaning, mode purity and mode conversion efficiency

Even for a mode conversion efficiency of 75 % of a phase plate, 25 % of the outgoing
laser beam are in unwanted modes. To filter them out, an optical cavity can be
used. Typically, such a cavity is arranged with two (linear), three (triangular) or four
(bow-tie) mirrors (see Fig. 2.5). For mode cleaning, the laser beam is coupled into
the cavity via an incoupling mirror, which shows a corresponding transmissivity,
and gets reflected back and forth by the cavity mirrors. The radii of curvature of the
mirrors and their distances define a waist position and size such that the modes of a
basis with these waist parameters will repeat their shape after each roundtrip. These
are the eigenmodes of the cavity; for instance, the LG and HG modes. The incoupled
laser beam can then be decomposed into these eigenmodes.

If a piezo-electric transducer is attached to one of the cavity mirrors, the cavity
roundtrip length can be adjusted with high precision, i.e. with a resolution signif-
icantly below the laser’s wavelength. If an eigenmode accumulates a phase of an
integer multiple of 2π during one roundtrip for a given cavity length, it will in-
terfere constructively with light that is injected into the cavity and coupled to the
same eigenmode. This mode will, thus, be resonantly enhanced and have a maxi-
mum in the transmitted power at this cavity length. Especially since the Gouy phase
depends on the mode, different eigenmodes experience this resonance condition at



22 Chapter 2. Thermal Noise and Higher-Order Spatial Modes

different cavity lengths, that is, they are non-degenerate. If an eigenmode is not res-
onantly enhanced, its transmitted power is typically negligible. Hence, a cavity can
be used to analyse the mode content of a laser beam: if the cavity length is scanned,
the peaks in the transmitted power correspond to the mode decomposition of the
injected laser beam in the cavity eigenbasis [KW08] (see Fig. 2.5). Furthermore, if
the cavity length is stabilised to the resonance condition of an intended mode, other
modes will have a negligible contribution in the transmitted field, assuming they
are non-degenerate with the intended mode, such that the mode purity of the laser
beam can be significantly increased in transmission of a cavity. For this reason, such
a cavity is also referred to as mode cleaner.

The input mode cleaners of gravitational-wave detectors have the triangular ge-
ometry, while the output mode cleaners have the bow-tie one. Unfortunately, helical
LG modes are not compatible with either design. A cavity with an odd number of
mirrors requires a symmetry around the vertical axis which the phase distributions
of helical LG modes generally do not exhibit, and the bow-tie cavity causes prob-
lems due to an inherent astigmatism (discussed below). Alternatives are linear and
non-planar four-mirror cavites. With the linear design, a mode purity for the LG3,3
mode of up to 99 % was reported in [Ful+10] and up to 97 % in [Car+13]. In the latter
article, a conversion efficiency of 59 % from a TEM0,0 into a 83 W LG3,3 mode was
demonstrated with a transmissive diffractive optical element. In [NBW17], a four-
mirror cavity avoided the bow-tie astigmatism by going out of the plane with one of
the mirrors. LG3,3 mode purites of 98 % to 94 % were achieved for 10 W to 80 W of
optical power being injected into this cavity.

In contrast to LG modes, HG modes can resonate in triangular and bow-tie cav-
ities. In [Ast+21], higher-order HG modes up to a mode order of 30 were generated
with a reflective spatial light modulator and an input power of up to 1 W, cleaned
with a linear cavity and analysed with a triangular one. While the achieved mode
purity for the HG5,5 reached 96 %, the conversion efficiency was relatively low with
only 6.6 %. These values decreased for the HG15,15 mode down to a purity of 78 %
and an efficiency of 1.7 %. This article also presents a method to genereate LG modes
from HG modes via non-tilted cylindrical lenses.

In this thesis, a linear cavity (see Fig. 2.7) was chosen as a mode cleaner for the
LG3,3 experiments since it is easier to implement than a non-planar four-mirror cav-
ity. For the HG experiments, a triangular cavity was finally chosen (see also end
of next section). The power-wise conversion efficiencies (ratio of optical power up-
stream the phase plate and downstream the mode cleaner) were measured to be
about 45 % (LG3,3) and 29 % (HG4,4, exemplary).

Astigmatism and mode-degeneracy

Non-cylindrically symmetric optics or optical systems as described below are called
astigmatic. An optical cavity, for instance, with such a geometry favours the HG
over the LG modes because the former are symmetric with respect to the vertical
axis while the latter are not. The basic mechanism is as follows: since the LG and
HG mode bases are both complete, any LG mode can be decomposed into the HG
modes of identical mode order. A symbolic example is [HVW20a]

LG3,3 =
9

∑
k=0

ck,9−kHGk,9−k with
9

∑
k=0

|ck,9−k|2 = 1 , (2.11)
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Figure 2.6: Power Ptrans transmitted through a cavity, if an LG3,3 mode is injected,
dependent on the cavity length for the astigmatic and non-astigmatic case (based
on [HVW20a]). The curves are normalised to the non-astigmatic case. FSR: free-

spectral range.

where ck,9−k are complex coefficients. Let us assume that the LG3,3 mode is injected
into a linear cavity with one plane mirror (radius of curvature Rc1 = ∞) and one
mirror with different radii of curvature along the x and y axis, Rc2,x and Rc2,y such
that the cylindrically symmetry is broken. Each of these HG modes can now be
assumed to experience an individual effective radius of curvature

Rc2(m, n) =
mRc2,x + nRc2,y

gm,n
(2.12)

because the mode indices indicate how the intensity of the HGm,n mode is dis-
tributed between the x and y axis. The roundtrip Gouy phase ξrt

m,n is then [Ara13]

ξrt
m,n = 2 arccos

[
sign(g1)×

√
g1g2(m, n)

]
(2.13)

where g1 = 1 − L/Rc1 and g2(m, n) = 1 − L/Rc2(m, n) with the cavity length L.
Hence, the HG modes of the same mode order experience different roundtrip Gouy
phases and will, thus, satisfy the resonance condition at slightly different cavity
lengths. The normalised transmitted power of this cavity reads [Kwe+07]

Ptrans(L) =
9

∑
k=0

Pk,9−k

1 +
( 2F

π

)2
sin2

(
−πL

λ + 5 ξrt
k,9−k

) , (2.14)

assuming that the injected HG modes are perfectly matched to their respective cavity
eigenmodes. Pk,9−k = |ck,9−k|2, F is the cavity finesse and λ is the wavelength.

The consequence of this kind of astigmatism is illustrated in Figure 2.6. The nor-
malised yellow dashed line represents the case of no astigmatism with
Rc2,x = Rc2,y = 50 cm, L = 20 cm and F = 200 where the 9th order HG modes
are perfectly degenerate and maximally add up. In the astigmatic example with
Rc2,y = 50.15 cm, these HG modes shown in blue have drifted so much apart that
they only add up to a maximum transmitted power of about 0.77. This can be in-
terpreted as a reduction in the effective mode-matching of the LG3,3 to the cavity by
about 23 % caused by a distortion of the LG cavity eigenmodes. Hence, if the cavity
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Figure 2.7: Left: linear cavity, which is formed by an aluminium spacer, for the
LG3,3 mode cleaning in this thesis. The visible mirror mount allows to bend the
mirror around one axis via two of the four fine-adjustment screws which reach
out towards the reader. The other two fasten the mirror on two pins pointed at by
the arrows on the top right. These two aligned pins define the bending axis. Bot-
tom right: transmitted power of this cavity for an injected LG3,3 mode where the
cavity length is scanned around the corresponding resonance condition. The CCD
(charged coupled device) picture shows the intensity distribution of the transmit-

ted field when the cavity is stabilised to the resonance condition.

is stabilised to the maximum of the transmitted power, 23 % of the injected power
will minimally be reflected by the cavity and are unusable for downstream appli-
cations. A similar consideration applies to cavity-enhanced nonlinear processes for
which the circulating intra-cavity power is relevant. Since this power is proportional
to the transmitted power,1 the maximum circulating power is also reduced by 23 %
and less power is available for the nonlinear process. In addition, the cavity res-
onance length, which corresponds to the maximum of the transmitted/circulating
power, does not coincide with the resonance lengths of the individual HG modes.
Hence, the HG mode composition at the total maximum differs from the one of the
LG3,3 mode in the non-astigmatic case such that the mode purity of the circulating
and transmitted field with respect to an ideal theoretical LG3,3 mode is deteriorated.

In reality, unwanted mirror deformations are much more complex and showed
to significantly deteriorate the performance of the LG3,3 mode in optical cavities and
interferometers [Bon+11; Sor+13; Hon+11; HL18]. For this reason, the LG3,3 mode
was cancelled from the design study of the Einstein Telescope where it had been
planned to be used for the high-frequency interferometer. Also for the LG3,3 exper-
iment in Chapter 4, the astigmatism of the linear mode-cleaning cavity had to be
reduced. In the end, this worked best with a special mount for one of the two mir-
rors where two pins define an axis around which the mirror can be bent by applying
pressure via two fine-adjustment screws (see Fig. 2.7). Reducing the radius of cur-
vature of the mirror on the proper axes had a significantly beneficial effect on the
mode purity of the transmitted beam.

1The proportionality factor is the power transmissivity coefficient of the outcoupling mirror.
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Figure 2.8: Spatial overlap of a probe and reference (ref) beam which are, in gen-
eral, in the same pure mode indicated in the legend, dependent on a mismatch
in the waist sizes. Higher-order modes are increasingly more sensitive to spatial

mismatches.

Higher-order HG modes are less sensitive to astigmatism but share the disadvan-
tage with LG modes that modes with equal mode order are degenerate in an (ideal)
linear cavity such as the interferometer arm cavities of the gravitational-wave detec-
tors. This simplifies the coupling from the intended higher-order mode into other
modes of the same order via mirror imperfections and scattering. This effect can
constitute a primary loss source [TGF20]. For higher-order HG modes, astigmatism
can then even be beneficial and increase the robustness of the used mode in terms of
power loss, mode purity and contrast defects [TGF20].

For the HG experiments in this thesis, it was first planned to employ the linear
cavity from Figure 2.7. However, the degeneracy of modes of equal mode order
appeared to be an issue for the HG1,1 operation. Since no blazed grating was used
for the spatial light modulator which generated the HG modes, the generated field
co-propagated with the remaining part of the original TEM0,0 field. Due to the dis-
crepancy of the incoming TEM0,0 and outgoing modulated waist sizes, the mode
matching of this TEM0,0 field to the linear mode cleaner was relatively low as the
mode matching was optimised with respect to the generated HG field. Waist size
and position mismatches of the TEM0,0 mode, however, couple to the LG1,0 mode
which is degenerate with the HG1,1 mode due to the equal mode order. This effect
significantly deteriorated the HG1,1 mode purity in transmission of the mode cleaner
and the linear cavity was replaced by a triangular mode cleaner which breaks this
degeneracy.

Sensitivity to spatial mismatches

Higher-order modes are more sensitive to spatial mismatches (see Fig. 2.8). Let us
assume that we have a pure reference mode which can e.g. be the eigenmode of
a cavity or the local oscillator field at the output of a gravitational-wave detector.
Then, we have a probe laser beam which is, in principle, in the same pure mode.
This can e.g. be the beam we want to inject into the cavity or the signal field of the
detector. Now, we want to spatially match this probe beam to the reference. Theo-
retically, a spatial overlap of 100 % can be achieved for any spatial mode. However,
there will always be slight deviations in the beam parameters or in the alignment.
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Figure 2.9: Left: unfiltered HG3,3 field generated by a spatial light modulator for a
rotation angle of 0◦ and 10◦ (top, bottom). Both fields are injected into a triangular
cavity (middle). Right: transmitted power for both fields while the cavity length is
scanned, normalised to the 0◦ HG3,3 resonance peak. The coupling of the injected
field to the cavity’s HG3,3 eigenmode decreases by about 55 % due to the rotation
angle and, especially, one double-peak is additionally excited. The mode pictures
were taken with a CCD camera. The rotation mismatch primarily corresponds to

a mixture of HG and sinusoidal LG modes of the injected mode order, here 6.

For instance, the waist size of the probe beam might differ by a few percent from the
reference waist size. For a fixed mismatch in the waist parameters, the alignment or
arbitrary combinations of the above, the spatial overlap decreases more with higher
mode order. Consequently, less power of the probe beam is coupled to the intended
eigenmode of the cavity or a smaller fraction of the signal field is effectively detected
with increasing mode order. This is analysed in more detail in [JF20; Tao+21b]. Con-
sequences of these effects are also mentioned below under “control schemes” or in
the chapters on the experimental work for this thesis.

For Hermite-Gaussian modes, there is an additional degree of freedom for mis-
matches which helical Laguerre-Gaussian modes as well as the TEM0,0 mode are not
affected by. The intensity distribution of a higher-order HG mode is not symmetric
under arbitrary rotations around the propagation axis. In a defined eigenbasis, a ro-
tated higher-order HG mode thus partially couples to one or more additional modes.
Such a fixed eigenbasis can again be defined by e.g. a cylindrically asymmetric cav-
ity, like a triangular or bow-tie cavity, or a reference beam, like a local oscillator field.
An experimental example is shown in Figure 2.9 where a spatial light modulator was
used to generate the HG3,3 mode without and with a large rotation angle around the
propagation axis (0◦ and 10◦). The angle significantly reduces the coupling of the
injected field to the cavity’s HG3,3 eigenmode and the figure also shows CCD cam-
era pictures of the modes which primarily correspond to this mismatch: a mixture
of HG and sinusoidal LG modes [Ful+10] of mode order 6. To my knowledge, a the-
oretical analysis of this rotational mismatch has not been published. A similar kind
of mismatch arises for any mode for the case of linear polarisation.

Control schemes

The optimum performance of the gravitational-wave detectors relies on the quality
of several different control schemes. For, instance, cavity lengths need to be sta-
bilised to the resonance condition of the spatial mode of operation via the Pound-
Drever-Hall (PDH) [Bla01] or dither-lock scheme, and the interferometer has to be
stabilised to its operating point. Furthermore, automated alignment control schemes
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are implemented. In all cited articles on the higher-order mode purities, cavity
lengths were stabilised and the results showed that the PDH error signal for higher-
order modes is equal to the one of the TEM0,0 mode. In [Gat+14], a tabletop Michel-
son interferometer with arm cavities operated in the LG3,3 mode was succesfully and
robustly stabilised to the dark fringe. Hence, the performance of control schemes
does, in general, not deteriorate with increasing mode order which agrees with my
own experience.

This statement does, however, not strictly hold anymore if the increased sensi-
tivity of higher-order modes to spatial mismatches is taken into account. The PDH
error signals are only equal to the signal of the TEM0,0 if the same amount of power
is coupled into the respective cavity eigenmode. For the same injected power and
a worse mode matching, the PDH signal is smaller and noise from the unmatched
fraction becomes larger. The dark fringe of a Michelson interferometer can only be
achieved as precisely in higher-order modes as in the TEM0,0 mode for an identical
interferometer contrast, that is, if the two returning beams from the interferometer
arms have the same spatial overlap in the output. This is, however, harder to achieve
with higher-order modes (compare with [Gat+14] and Chapter 6).

Cavity mode matchings, interferometer contrasts or other kinds of spatial beam
overlaps can be improved and kept stable via feedback control schemes. Such a
scheme may still lead to larger mismatches with increasing mode order due to the
reduced mismatch tolerance of higher-order modes. If the scheme is gain limited,
alternative mode matching sensing schemes, where the sensing gain increases in
accordence with the increasing mismatch sensitivity of higher-order modes, are a
possible solution [Tao+21a; Ful+17].

2.4 Summary

Mirror thermal noise can be a major limiting noise source for the future generation
of gravitational-wave detectors and there are different approaches to reduce the dif-
ferent thermal noise contribution like an operation at cryogenic temperatures and
the usage of materials for the mirror substrates and coatings with lower mechanical
loss and lower optical absorption. One additional option is replacing the fundamen-
tal TEM0,0 mode with a higher-order Laguerre-Gaussian (LG) or Hermite-Gaussian
(HG) mode to mitigate test mass thermal noise. The benefit from higher-order modes
can be intuitively understood by the fact that their intensity is more homogenously
distributed on the mirror surfaces. Hence, these modes can better average over the
thermal noise fluctuations which, for instance, arise from the Brownian motion of
the constituent atoms of the mirror coating.

Flat-top beams were first proposed but require non-spherical mirrors. LG modes,
especially the LG3,3 mode, were the next candidates for their compatibility with
the spherical mirrors of the gravitational-wave detectors. These modes, however,
showed to be highly sensitive to astigmatism and are no longer carried forward in
the design of the future GW detectors.

HG modes are also compatible with spherical mirrors. On the one hand, they are
less efficient than LG modes in reducing thermal noise for a given mode order be-
cause their rectangular intensity distributions fit less well to the circular mirrors. On
the other hand, they can benefit from a deliberate vertical astigmatism and perform
almost as well as the TEM0,0 mode with respect to power loss in the interferometer
arms, mode purity and contrast defects.
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Even though higher-order modes are currently not planned for future detctors,
they are still a viable method for the thermal noise reduction. Previous reports, e.g.
on the achievable mode purity and improved alignment control schemes, motivate
further research on optimising the adaptation of the different interferometer tech-
niques to these modes. One crucial example for these techniques, which the remain-
der of this thesis focuses on, is the application of squeezed states to reduce quantum
noise.

In the next chapter, quantum noise in gravitational-wave detectors as well as
squeezed states are introduced.
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Chapter 3

Quantum Noise and Squeezed
States of Light

Chapter 2 motivated the investigation of squeezed states of light in higher-order
spatial modes regarding their usage in gravitational-wave detectors. This chapter
aims to introduce the effects of quantum noise in these detectors as well as the cor-
responding definition, generation and application of squeezed states.

3.1 Quantum noise in gravitational-wave detectors

Quantum noise in gravitational-wave detectors was first analysed, especially re-
garding its possible reduction via squeezed light, by Caves in 1981 [Cav81]. A good
introduction to this topic can also be found in [Heu18].

The quantum nature of light couples to the gravitational-wave readout in the
form of noise via two mechanisms which can both be understood in the photon
picture of light. In a laser beam, the photons are not evenly distributed. Instead,
their arrival time at a given point in space follows the Poisson statistic [Fox06]

P(n) =
n̄n

n!
e−n̄ , (3.1)

where P(n) is the probability of detecting n photons in a given time interval with a
mean photon number of n̄. The resulting varying photon number per measurement
time interval becomes relevant at the detector readout because it implies random
modulations in the measured optical power of the local oscillator field. Hence, these
fundamental, quantum mechanical fluctuations in the photon number translate into
fluctuations in the gravitational-wave readout (see Fig. 3.1). These fluctuations nor-
malised to the mean photon number are called (relative quantum) shot noise.

In the interferometer arms, the same photon number fluctuations cause fluctu-
ations in the radiation pressure which is exerted on the suspended input and end
test masses by the incident laser beam (see also Fig. 3.1). As a consequence, the test
masses are pushed out of their equilibrium position and, in combination with the
restoring force (gravity), they act back on the reflected light field (back-action noise)
modulating its phase. As a gravitational-wave also modulates the phase of the light
fields in the interferometer arms, this effect competes with a gravitational-wave sig-
nal. It is referred to as (quantum) radiation pressure noise.

The amplitude spectral density associated with the effective gravitational-wave
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laser
photo

detector laser
suspended
test mass

Figure 3.1: Photon picture of the quantum noise mechanisms in a gravitational-
wave detector (based on [Heu18]). The photon distribution in a coherent laser
beam follows a Poisson statistic. Left: this leads to fluctuations in the detected out-
put power (shot noise). Right: the suspended test masses experience fluctuations
in radiation pressure and transform them into phase fluctuations of the reflected

light (radiation pressure noise).

strain of relative shot noise hrel SN, radiation pressure noise hRPN and the total quan-
tum noise hQN, computed as their incoherent sum, yields [Heu18]

hrel SN =
1
L0

√
h̄cλ

2πP

hRPN =
1

m f 2L0

√
h̄P

2π3cλ

hQN =
√

h2
rel SN + h2

RPN ,

(3.2)

where L0 is the mean interferometer arm length, h̄ is the reduced Planck constant, c
is the speed of light, λ is the wavelength, P is the mean optical power, m is the mass
of the test mass and f is the measurement/signal frequency (see Fig. 3.2). While
shot noise is frequency-independent, radiation pressure noise falls off with 1/ f 2.
Hence, the total quantum noise is dominated by the latter at low frequencies and
by the former at high frequencies. Furthermore, relative shot noise scales inversely
with the square root of the optical power while radiation pressure noise scales with
the square root of the power. From this relation, the standard quantum limit (SQL)
[Vah08],

hSQL =

√
h̄

mπ2 f 2L2
0

, (3.3)
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Figure 3.2: Left: The effective strain of quantum noise as an incoherent sum of
relative shot noise and radiation pressure noise (see Eq. 3.2 with L0 = 4 km, λ =
1064 nm, P = 105 W and m = 40 kg). Right: the standard quantum limit as the
minimum quantum-noise limited strain per frequency and respective optimised

optical power P.
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Figure 3.3: Calculated total and quantum noise budget of Advanced LIGO and
Cosmic Explorer [Hal].

arises which is the minimum quantum-noise limited strain at a given signal fre-
quency if the optical power is optimised (see also Fig. 3.2). Without advanced tech-
niques, the sensitivity of a Michelson interferometer cannot reach below the SQL
even if the other noise sources are sufficiently low.

Figure 3.3 shows the calculated total noise strain of the Advanced LIGO and
Cosmic Explorer detectors as well as the respective quantum noise contributions.1

The noise budgets are dominated by quantum noise over a broad frequency range.
The same holds for the measured noise budgets in Advanced LIGO [Bui+20], Ad-
vanced Virgo [Ber+21] and KAGRA [KAG22] and for the calculated noise budget of
the Einstein Telescope [ET 20] which renders the quantum noise reduction highly im-
portant. During the third joint observation run O3, the shot noise contribution was
reduced via a maximum feasible optical power—and the application of squeezed
(vacuum) states of light. This technique, which can also allow to surpass the stan-
dard quantum limit, will be explained in the following.

3.2 Squeezed states of light

This section provides the relevant background on squeezed states of light for this
thesis. First, their definition is provided and the generation for gravitational-wave
detectors is explained. It will be assumed that the reader is familiar with the basics
and notation of quantum optics. More thorough introductions into the quantum-
mechanical description of (squeezed) light can be found e.g. in [GK05; Fox06; Che07;
Vah08]. Finally, the characterisation of squeezed states with a balanced homodyne
detector as well as limitations and their application in a GW detector are discussed.

1In the detectors, the relative shot noise contribution increases with increasing signal frequency
because the power buildup of the GW signal sidebands in the interferometer cavities decreases in
agreement with the cavity linewidths. Hence, P is frequency-dependent.
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Figure 3.4: Left: electric field vector in the complex plane. Right: electric field
phasor in the quadrature phase space with a “noise ball” that follows a Gaussian
distribution with variance 1 and represents the quantum noise in the form of the
quadrature’s standard deviations ∆X̂1 and ∆X̂2. As the transparent phasors indi-

cate, these uncertainties translate into amplitude and phase noise.

3.2.1 Definition

A coherent field in quantum optics

If an electric field E(t) is described in the complex plane (here, at position z = 0 for
simplicity), it can be decomposed into the real and imaginary part which oscillate
90◦ out of phase using Euler’s formula:2

E(t) = E0eiωt = E0 [1 cos (ωt) + i sin (ωt)] , (3.4)

where E0 is the coherent amplitude at the angular optical frequency ω. In quantum
optics, the electric field operator Ê(t) can be written in a formally identical way
[GK05]:

Ê(t) = E0
[
X̂1 cos (ωt) + X̂2 sin (ωt)

]
. (3.5)

Here, the real part, the imaginary part and the complex plane are replaced by the
two quadrature operators X̂1 and X̂2 which span the quadrature phase space. These
quadratures are also often referred to as the amplitude and phase quadrature, respec-
tively. This quantisation now allows to derive quantum fluctuations of the electric
field via the commutator and uncertainty relation which have to be fulfilled by the
two orthogonal quadratures [Che07]:[

X̂1, X̂2
]
= 2i ⇒ ∆2X̂1∆2X̂2 ≥ 1 , (3.6)

where ∆2 denotes the variance of a respective time series. These uncertainties trans-
late into “noise” in the quadratures X̂1 and X̂2 which is illustrated in Figure 3.4. In
this figure, it is also shown that an arbitrary reference frame can be defined with

X̂1,θ = X̂1 cos θ + X̂2 sin θ

X̂2,θ = −X̂1 sin θ + X̂2 cos θ ,
(3.7)

which is co-aligned and co-rotating for θ = ωt. In the co-aligned frame, noise in
X̂1,ωt and X̂2,ωt can directly be associated with amplitude and phase noise, respec-
tively.

2Similar considerations apply to the magnetic part of an electro-magnetic field.



3.2. Squeezed states of light 33

In quantum optics, a classical laser beam is described by a coherent state [GK05]

|α⟩ = exp
(
− |α|2 /2

) ∞

∑
n=0

αn
√

n!
|n⟩ , (3.8)

which is a sum over the Fock states |n⟩ weighted with respect to the mean photon
number

n̄ = ⟨α| n̂ |α⟩ = |α|2 , (3.9)

where n̂ is the number operator. Equation 3.8 can be interpreted as allocating a prob-
ability to the detection of n photons in a given measurement time interval dependent
on the mean value n̄, which results in the Poisson statistic from Equation 3.1.

Next, the variances of X̂1 and X̂2 can be calculated for a coherent state yielding
[Che07]

⟨∆X̂1,2⟩
2
α = ⟨α|∆2X̂1,2 |α⟩ = 1 , (3.10)

such that a coherent state is a minimum uncertainty state with

⟨∆2X̂1⟩α ⟨∆2X̂2⟩α = 1 , ⟨∆2X̂1⟩α = 1 , ⟨∆2X̂2⟩α = 1 , (3.11)

independent of the value of |α|2. Another (or special) example for a minimum un-
certainty state is the vacuum state |0⟩. A vacuum state can be transformed into a
coherent state via the displacement operator D̂(α) [GK05]

|α⟩ = D̂(α) |0⟩ with D̂(α) := exp
(

αâ† − α∗ â
)

, (3.12)

where â† and â are the creation and annihilation operators.

Quadrature squeezed states

Quantum mechanics does not allow a violation of the uncertainty relation but a re-
distribution of the uncertainties. While still a minimum uncertainty state, squeezed
states are thus defined by exhibiting a noise variance below that of a vacuum state
in an arbitrary quadrature (recall Eq. 3.7) which is said to be “squeezed”. At the
same time, this requires the noise variance in the orthogonal quadrature to be larger
than that of a vacuum state, “anti-squeezed”. Since this definition is based on the
quadrature phase space, these states are also referred to as quadrature squeezed states
defined by [Vah08]:

∆2X̂1,θ < 1 or ∆2X̂2,θ < 1 . (3.13)

A vacuum state |0⟩ or a coherent state |α⟩ = D̂(α) |0⟩ can be transformed into
a squeezed vacuum state or bright squeezed state, respectively, via the squeezing
operator [GK05]

Ŝ(ξ) := exp
[

1
2

(
ξ∗ â2 − ξ â†2

)]
with ξ = reiΘ , (3.14)

where r ≥ 0 is the squeezing parameter and 0 ≤ Θ ≤ 2π is the squeezing angle. The
squeezed states are written as

|0, ξ⟩ = Ŝ(ξ) |0⟩ and |α, ξ⟩ = Ŝ(ξ) |α⟩ = Ŝ(ξ)D̂(α) |0⟩ . (3.15)
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Figure 3.5: A bright squeezed state with reduced noise in the amplitude as seen
from a co-aligned reference frame with ∆X̂min,max and from the reference frame
X̂1,2. The grey dashed circle indicates the classical uncertainty of a coherent state.

For this bright squeezed and squeezed vacuum state, the minimum and maximum
noise variances, ∆2X̂min and ∆2X̂max, are equal and read [Vah08]

∆2X̂min = e−2r ≤ 1 and ∆2X̂max = e2r ≥ 1 . (3.16)

A reference frame with an arbitrary angle to the squeezing angle experiences the
general noise variances [Vah08]

∆2X̂1,θ(r, Θ) = cosh2 r + sinh2 r − 2 sinh r cosh r cos (θ − Θ)

∆2X̂2,θ(r, Θ) = cosh2 r + sinh2 r + 2 sinh r cosh r cos (θ − Θ) .
(3.17)

Figure 3.5 presents an example for a bright amplitude-squeezed state as seen from
the reference frame with θ = Θ, which senses the minimum and maximum variances
∆X̂min,max, and as seen from the reference frame with θ = 0, which effectively senses
less squeezing and anti-squeezing because 1 > ∆2X̂1 > ∆2X̂min and 1 < ∆2X̂2 <
∆2X̂max.

Squeezing and anti-squeezing level

If ∆2X̂− < 1 and ∆2X̂+ > 1 generally denote squeezed and anti-squeezed variances,
the quantum noise reduction, or squeezing level, V− and the anti-squeezing level V+ are
typically indicated in units of decibel:

V− [dB] = −10 log10 ∆2X̂−

V+ [dB] = 10 log10 ∆2X̂+ .
(3.18)

3.2.2 Generation of squeezed states

Degenerate parametric down-conversion

Squeezed light sources for gravitational-wave detectors employ the second-order
nonlinear process of degenerate parametric down-conversion. In this process, a
nonlinear medium enables an interaction between a harmonic pump field at opti-
cal angular frequency ω2 and a fundamental field at frequency ω1 = ω2/2, the latter
of which shall be squeezed. If the nonlinear medium is pumped by a coherent har-
monic field, harmonic photons will be converted into pairs of fundamental photons.
These two photons are associated with a “signal” and an “idler” field which are
degenerate in optical frequency, polarisation (“type-I” condition) and spatial mode.
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Figure 3.6: Degenerate parametric down-conversion: a harmonic pump field at
optical angular frequency ω2 is converted down into a signal and idler field which
are degenerate in frequency ω1 = ω2/2, polarisation and spatial mode. Option-
ally, a seed field can be injected at the fundamental frequency. The residual har-

monic field is omitted on the right side of the nonlinear medium.

This is visualised in Figure 3.6. Whether the fundamental field exhibits a coherent
amplitude, as well, determines whether squeezed vacuum states or bright squeezed
states are generated.

The Hamiltonian for this process reads [GK05]

Ĥ = h̄ω1 â† â + h̄ω2b̂†b̂ + ih̄χ(2)
(

â2b̂† − â†2b̂
)

, (3.19)

where b̂ is the harmonic pump field, â is the fundamental signal/idler field and χ(2)

is the second-order optical susceptibility of the nonlinear medium. Here, the two
terms in the brackets can be interpreted as the annihilation of one pump photon
in order to create two fundamental photons and vice versa. If the pump field is
assumed to be a strong coherent field which is approximately undepleted during
the process, b̂ and b̂† can be rewritten as β exp(−iω2t) and β∗ exp(iω2t), respectively.
The Hamiltonian in the interaction picture then reads

Ĥ = ih̄χ(2)
[

β∗ â2ei(ω2−2ω1)t − βâ†2e−i(ω2−2ω1)t
]

. (3.20)

This equation can further be simplified by inserting ω2 = 2ω1 and transformed into
the evolution operator

Û = exp
(
− i

h̄
Ĥt
)
= exp

(
β∗ â2 − βâ†2

)
, (3.21)

which is now equal to the squeezing operator in Equation 3.15.

The second-order nonlinear optical susceptibility and related processes

The optical response of a medium to an applied field E(t) can be expressed in terms
of the medium’s polarisation P(t), that is, its dipole moment per unit volume [Boy03],

P(t) = ϵ0

[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·

]
, (3.22)
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where χ(1,2,3) are the linear, second-order and third-order nonlinear optical suscep-
tibilities and ϵ0 is the permittivity of free space.3 While the first-order term is, for
instance, related to the medium’s refractive index n =

√
1 + χ(1), the second-order

term is relevant for the generation of squeezed light for gravitational-wave detec-
tors. Assuming an optical field with E(t) = E0 cos(ω1t) yields

P(2) = ϵ0χ(2)E2
0 cos2 (ω1t) = ϵ0

χ(2)E2
0

2

1 + cos

2ω1︸︷︷︸
=ω2

t

 , (3.23)

such that the second-order polarisation connects fields which oscillate at the funda-
mental and harmonic frequency. Hence, the second-order term enables the degener-
ate parametric down-conversion as well as the reversed process: second harmonic
generation. In the latter, a fundamental pump field at ω1 is up-converted to the
harmonic frequency ω2. This process is used in GWD squeezed light sources to
generate the pump field for the parametric down-conversion. More generally, the
second-order polarisation allows for sum- and difference-frequency generation if no
degeneracy in the involved frequencies is assumed. However, only the special de-
generate cases are relevant for this thesis.

For a typical material, χ(1) is in the order of unity whereas χ(2) ≃ 10−12 m V−1

[Boy03]. To achieve high efficiencies in the parametric down-conversion and sec-
ond harmonic generation, sufficiently strong pump fields and materials with a rel-
atively large χ(2) should be used. In this thesis, these are two different nonlinear
crystals. One is made of 7 % magnesium-doped lithium niobate (MgO:LiNbO3)
for the LG3,3 experiment in Chapter 4 and the other is periodically poled potas-
sium titanyl phosphate (PPKTP) for the experiments with Hermite-Gaussian modes
in the Chapters 5 and 6. These materials have nominal effective nonlinearities of
deff = χ(2)/2 ≃ 3 pm V−1 and 9 pm V−1, respectively. Apparently, PPKTP exhibits
a stronger nonlinearity which would theoretically imply higher efficiencies. Never-
theless, it was not used for the LG3,3 experiment because two tested PPKTP crystals
both highly distorted the injected LG3,3 mode such that no proper second harmonic
generation was feasible. The reason for this strong distortion was not further inves-
tigated and this extreme effect did not appear in the used MgO:LiNbO3 crystal.

Phase matching

A second requirement for a high efficiency in parametric down-conversion and sec-
ond harmonic generation is the conservation of momentum through the nonlinear
medium which is referred to as phase matching. In the plane-wave approximation,
the phase matching condition can be expressed via the wavenumbers k1 and k2 of
the fundamental and harmonic field, respectively, and reads [Boy03]

k2 =
n2ω2

c
=

n22ω1

c
!
=

2n1ω1

c
= 2k1 ⇒ n1 = n2 , (3.24)

where n1,2 = n(ω1,2) are the refractive indices at the fundamental and harmonic
frequency. Since the refractive index in most dielectric nonlinear media does not
satisfy the condition n1 = n2 but increases monotonically with ω, the phase match-
ing condition is not automatically achieved. In this regard, it can be used that a

3In a more thorough description, the polarisation and optical field are treated as vectors and the
susceptibilities become tensors of corresponding rank.
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birefringent crystal typically has three optical axes where one of them, called “extra-
ordinary”, exhibits a lower refractive index ne than the other “ordinary” two, no. In
addition, these refractive indices are temperature-dependent. Examples for this are
dno/dT ≈ 3 × 10−6 K−1 and dne/dT ≈ 37 × 10−6 K−1 [Vah08]. As a consequence,
there are three approaches to still achieve phase matching [Boy03]:

1. Type-I phase matching
“Type-I” again refers to the case where the signal and idler field at the fun-
damental frequency are degenerate in polarisation. For type-I phase match-
ing, the harmonic field is orthogonally polarised. If the harmonic field expe-
riences the lower of the two refractive indices ne while the fundamental field
experiences the higher index no, the phase matching condition is within the
range accessible via temperature tuning. This type of phase matching is used
in MgO:LiNbO3.

2. Type-II phase matching
Here, the signal and idler field are non-degenerate in polarisation. Phase match-
ing can again be achieved via temperature tuning; however, this type of pro-
cess is not suited for the generation of quadrature squeezing.

3. Quasi phase matching
Type-I or type-II phase matching can be unfeasible for a couple of reasons. For
example, a material may possess insufficient birefringence to compensate for
the frequency dependence of the refractive index. Another example is KTP
where accessing the desired effective nonlinearity requires the fundamental
and harmonic field to be in the same polarisation. In this case, the crystal is
divided into segments along which the phase matching condition is approxi-
mately satisfied. Then, one of the crystalline axes is inverted in adjacent seg-
ments such that the sign of the effective nonlinearity deff alternates and com-
pensates for a mismatch ∆n = n1 − n2. In this case, KTP becomes periodi-
cally poled KTP, short PPKTP. The advantage of quasi phase matching is that
materials such as KTP with significantly larger effective nonlinearities can be
employed.

A typical squeezed light source for gravitational-wave detectors

As derived above, degenerate parametric down-conversion (DPDC) can generate
quadrature squeezed states of light at the fundamental optical frequency via the
second-order nonlinear optical susceptibility of a material such as PPKTP or
MgO:LiNbO3. DPDC is driven by a pump field at the harmonic frequency which
can be generated via the reversed process, second harmonic generation (SHG). In
turn, SHG is pumped by a field at the fundamental frequency. This fundamental
frequency is equal to the frequency at which the gravitational-wave detector is op-
erated. Using SHG instead of an extra laser to provide the harmonic field has the
advantage to ensure that the harmonic field is at exactly twice the GWD’s operating
frequency such that squeezed states are generated at exactly the operating frequency.

To increase the efficiency of both processes, they are conducted in an optical cav-
ity to resonantly enhance at least one of the involved fields. In the LIGO and Virgo
detectors, only the fundamental field resonates in the SHG cavity while the DPDC
cavity allows a dual-resonance of both the fundamental and harmonic field [MV20;
Tse+19]. The DPDC cavity is also referred to as optical parametric amplifier (OPA)
or OPA cavity in this thesis. With this in mind, Figure 3.7 presents the simplified
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Figure 3.7: Simplified schematic of a tyical squeezed light source for a
gravitational-wave (GW) detector. The laser emits light at the operating frequency
of the detector. The harmonic field is generated in the SHG cavity and separated
from the injected fundamental pump field by a dichroic beamsplitter (DBS). The
harmonic field is guided to the OPA cavity where the squeezed field (dashed line)
is generated. The squeezed field can either be guided to the GW detector, or to a
balanced homodyne detector where its superposition with a local oscillator field

is measured for characterisation.

schematic of a GWD squeezed light source. More detailed schematics can be found
in the subsequent chapters. The cavities do not necessarily have to follow the linear
design but can as well show the bow-tie geometry [Tse+19]. Furthermore, the crystal
temperatures are stabilised to the optimum phase matching via a feedback control
scheme using Peltier elements as actuators (not shown in the schematic).

Figure 3.7 already introduces a prominent experimental method to characterise
squeezed states: a balanced homodyne detector, which will be discussed in the next
section.

3.2.3 Characterisation with a balanced homodyne detector

In this thesis, the generated squeezed states are characterised by a balanced homo-
dyne detector. This approach is used for both the direct detection of squeezing in
the Hermite-Gaussian modes in Chapter 5 and the balanced homodyne detection
scheme used for the Michelson interferometer in Chapter 6.

In general, a balanced homodyne detector measures the superposition of two
incoming light fields at the two output ports of a 50:50 beamsplitter via photode-
tectors whose photocurrents are subtracted. Finally, a spectrum analyser calculates
the noise power spectrum4 of the resulting signal. This is shown in Figure 3.8. The
following analysis is based on [Ste+15].

In the beamsplitter convention where one of the reflected fields experiences a
phase shift of 180◦, the output fields ĉ and d̂ can be written in terms of the input
fields â (local oscillator field) and b̂ (signal field) as follows:

ĉ =
1√
2

(
âeiθ + b̂

)
and d̂ =

1√
2

(
−âeiθ + b̂

)
, (3.25)

4While the presented calculations commonly use the variance, a spectrum analyser typically dis-
plays a power spectrum (or power spectral density). Even though these quantities are not identical,
they can be handled similarly with respect to the squeezing and anti-squeezing level. This especially
holds if a frequency-dependent variance is obtained by applying a scanned bandpass filter to a time
series.
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Figure 3.8: Schematic of a balanced homodyne detector where a local oscillator
field â is superimposed with a signal field b̂ on a 50:50 beamsplitter. The resulting
fields ĉ and d̂ at the beamsplitter output ports are measured by photodetectors
whose subtracted photocurrents are analysed by a spectrum analyser. A phase

shifter can control the relative phase between the two input fields.

where the relative phase θ between the two fields can be controlled by a phase shifter
in one of the input beam paths. The input fields can be linearised into the forms

â = α + δâ and b̂ = β + δb̂ (3.26)

where α and β are the field’s real-valued classical coherent amplitudes and δâ and
δb̂ are the respective fluctuations. Furthermore, it is

X̂a
1 =

â + â†

2
X̂a

2 = −i
â − â†

2
(3.27)

X̂b
1 =

b̂ + b̂†

2
X̂b

2 = −i
b̂ − b̂†

2
, (3.28)

which defines the amplitude and phase quadratures X̂1 and X̂2 of the two input
fields in terms of their respective annihilations and creation operators. The quadra-
ture operators can be linearised in accordance with Equation 3.26, as well. The in-
tensities of the output fields then read [Ste+15]

ĉ† ĉ =
1
2

(
α2 + β2 + 2αβ cos θ + 2αδX̂a

1 + 2βδX̂b
1 + 2αδX̂b

−θ + 2βδX̂a
θ

)
d̂†d̂ =

1
2

(
α2 + β2 − 2αβ cos θ + 2αδX̂a

1 + 2βδX̂b
1 − 2αδX̂b

−θ − 2βδX̂a
θ

)
,

(3.29)

where terms which are quadratic in the fluctuations are neglected and
X̂θ = X̂1 cos θ + X̂2 sin θ similar to Equation 3.7. If these intensities are detected
by the two photodetectors, their subtracted photocurrents yield

î− ∝ ĉ† ĉ − d̂†d̂ = 2αβ cos θ + 2αδX̂b
−θ + 2βδX̂a

θ (3.30)

which finally leads to a measured noise variance of

∆2 î− ∝ PLO ∆2X̂sig
−θ + Psig ∆2X̂LO

θ , (3.31)

where PLO = α2 and Psig = β2 are the optical power in the local oscillator and sig-
nal field, respectively, and the superscripts of the quadrature variances are changed
according to a → “LO” and b → “sig”.
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Measuring the squeezing and anti-squeezing level

Let us first assume that the balanced homodyne detector shall characterise squeezed
vacuum states as these states are employed in gravitational-wave detectors. In this
case, Psig = 0 such that the variance of the subtracted photocurrents is directly pro-
portional to the variance of the signal field in a quadrature X̂sig

θ which can be freely
controlled via θ and, thus, via the phase shifter in the path of the local oscillator
field. Now, the path of the squeezed field can first be blocked such that the signal
field merely consists of the vacuum state with variance ∆2X̂vac independent of the
relative phase θ. The corresponding measured variance is

∆2 î vac
− ∝ PLO∆2X̂vac . (3.32)

If the squeezed field (“sqz”) is then injected into the balanced homodyne detector,
the relative phase θ can be set to measure the noise variances in the two quadra-
tures which exhibit the maximally squeezed and anti-squeezed variances ∆2X̂sqz

min
and ∆2X̂sqz

max yielding

∆2 î sqz
−,min ∝ PLO∆2X̂sqz

min

∆2 î sqz
−,max ∝ PLO∆2X̂sqz

max .
(3.33)

The corresponding maximum squeezing and anti-squeezing levels Vmin and Vmax
can then be computed in relation to the vacuum state and indicated in units of deci-
bel:5

Vmin [dB] = −10 log10

(
∆2 î sqz

−,min

∆2 î vac
−

)
= −10 log10

(
∆2X̂sqz

min

∆2X̂vac

)

Vmax [dB] = 10 log10

(
∆2 î sqz

−,max

∆2 î vac
−

)
= 10 log10

(
∆2X̂sqz

max

∆2X̂vac

)
,

(3.34)

which becomes Equation 3.18 for ∆2X̂vac = 1.
A variety of factors in the experimental setup can limit the measured squeezing

and anti-squeezing levels. In general, these factors can be divided into two cate-
gories: a reduction in the detection efficiency, which can effectively be associated
with optical loss, and an increase in phase noise. In the following, these factors are
explained in more detail.

Reduction in the detection efficiency (optical loss)

Anything in the experimental setup which effectively causes optical loss in the
squeezed field can be interpreted as a beamsplitter process. This beamsplitter re-
flects a fraction ρ of the squeezed field into an unused beam path while interfering
the remaining transmitted squeezed field with a fraction ρ of the vacuum field that
couples in through the open beamsplitter input port. Figure 3.9 illustrates that the
interference of the squeezed and anti-squeezed noise with the vacuum noise reduces
both the squeezing and anti-squeezing level. A squeezing or anti-squeezing level of
V∓ then becomes [Meh12]

V∓(ηdet) = ∓10 log10

[
ηdet10V∓/10 + (1 − ηdet)

]
, (3.35)

5Similar equations apply to the noise power spectrum at a given measurement frequency.



3.2. Squeezed states of light 41

vacuum field

squeezed field

"lost"

 +   ρ             = τ

less squeezed field

Figure 3.9: Optical loss can be interpreted as a beamsplitter process where a frac-
tion ρ of the original field is lost and replaced by a corresponding fraction of the
vacuum field which couples in through the open beamsplitter input port. The re-

sulting superposition exhibits reduced squeezing and anti-squeezing values.

where ηdet = 1− L is the detection efficiency for the squeezed field and L = ρ2 is the
effective optical loss.

There are numerous sources for optical loss like imperfect high-reflectivity coat-
ings where the transmitted fraction is lost, anti-reflective coatings where the resid-
ually reflected fraction is lost, clipping loss etc. In the following, three loss sources
which are specifically important for a squeezed light setup and balanced homodyne
detector are discussed.

1. OPA escape efficiency
The escape efficiency indicates the fraction of the squeezed field that can “es-
cape” the OPA cavity. It is given by [Vah08]

ηesc =
T

T + Lcav

Lcav
T ≪1
≈ 1 − Lcav

T
, (3.36)

where T is the power transmission coefficient of the OPA output coupler and
Lcav is the OPA cavity roundtrip loss excluding the transmission through the
output coupler. The escape efficiency can be increased via lower internal OPA
losses which are determined by the properties and absorption of the crystal
material, the residual transmission losses through the non-output coupler OPA
mirrors and intra-cavity scattering. Furthermore, increasing T leads to a higher
escape efficiency but also reduces the OPA cavity finesse and power buildup
factor such that a more intense pump field is required. The finesse also af-
fects the bandwidth of the OPA cavity (half-width at half maximum) which
quantifies the measurement frequency range in which significant squeezing is
generated. In this thesis, the OPA escape efficiency is 99.0(5)% with an OPA
bandwidth of about 25 MHz.

2. Photodiode’s quantum efficiency
The quantum efficiency of the two homodyne detector photodiodes indicates
their efficiency in generating a photocurrent from the incident light field, that
is, how many electrons contribute to the photocurrent output per incident pho-
ton. At a wavelength of 1064 nm, quantum efficiencies of up to 99.5 % can be
reached [Vah+16]. This result was achieved with additional high-reflectivity
“retro-reflectors”. These mirrors can recycle the light that is reflected and not
measured by the anti-reflective coated photodiodes. For this purpose, retro-
reflectors are used in Chapter 6 for the Michelson interferometer experiment.
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3. The homodyne contrast
For this effective loss source, the local oscillator and signal field have to be
analysed in terms of their spatial mode content. In general, a normalised local
oscillator field ALO can be in an arbitrary superposition of spatial modes Ai:

ALO = ∑
i

ai Ai with ∑
i
|ai|2 = 1 . (3.37)

The quantum fluctuations δX̂vac
i in these modes Ai, which enter the balanced

homodyne detector through the signal port, will then contribute to the mea-
sured noise variance dependent on ai according to (adapted from [Zha+17])

∆2 î vac
− ∝ PLO ∑

i
|ai|2 ∆2X̂vac

i . (3.38)

The squeezed field can only properly reduce the noise contribution from the
spatial mode Ai if a corresponding fraction |ai|2 of the squeezed field is in the
mode Ai. That is, the total fraction of the squeezed field which is not mode-
matched to the local oscillator field only reduces noise in spatial modes which
do not contribute to ∆2 î vac

− . Effectively, this fraction can be interpreted as part
of the total optical loss.

If the squeezed field is written as

Asqz =
√

µALO +
√

1 − µAmis, (3.39)

where µ indicates the mode matching between the local oscillator and squeezed
field and Amis is a normalised field associated with the mismatch, the effective
optical loss from the imperfect mode matching is equal to µ. Usually, this loss
source is, however, not indicated as µ but in terms of the homodyne contrast C
as this quantity can be measured directly.

To measure the homodyne contrast, the squeezed field is replaced by a co-
herent field which is ideally set to have the same (here unit) optical power as
the local oscillator field. These two fields are then superimposed on the 50:50
beamsplitter of the homodyne detector yielding the following output field in
one of the beamsplitter output ports

Aout =
i√
2

ALO eiθ +
1√
2

Asqz

=
1√
2

(
ieiθ +

√
µ
)

ALO +

√
1 − µ

2
Amis .

(3.40)

If θ is varied via the phase shifter in the local oscillator beam path, this results
in the following maximum and minimum power

Pmax =

∣∣∣∣Aout

(
θ = −1

2

)∣∣∣∣2 =
1
2

[
(1 +

√
µ)2 + 1 − µ

]
= 1 +

√
µ

Pmin =

∣∣∣∣Aout

(
θ = +

1
2

)∣∣∣∣2 =
1
2

[
(
√

µ − 1)2 + 1 − µ
]
= 1 −√

µ ,

(3.41)
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and, finally, in the homodyne contrast

C :=
Pmax − Pmin

Pmax + Pmin
=

√
µ . (3.42)

Hence, the associated effective optical loss, or reduction in the detection effi-
ciency, is equal to the square of the measured and often indicated homodyne
contrast.

Phase noise

The effect of phase noise can be understood via Figure 3.5 and Equation 3.17. Let us
assume that we want to measure the quadrature with the minimum noise variance at
θmin = Θ. If θ cannot be perfectly stabilised to Θ, e.g. due to residual high-frequency
phase modulations or vibrations of reflective surfaces, a fraction of the maximum
noise variance couples into the measurement. If the period of these phase jitters
is shorter than the spectrum analyser’s measurement time for one data point, the
analyser will measure the noise variances over a certain span θmin − δθ to θmin + δθ,
resulting in a reduction of the effectively measured squeezing level. A similar con-
sideration applies to the measurement of the anti-squeezing level and a correspond-
ing simulation is shown below.

Theoretical model for the squeezing and anti-squeezing level

The squeezing process in an OPA cavity can be divided into the regimes below and
above the threshold power [BK68; Las10]. Below this threshold, the cavity roundtrip
losses are larger than the power gain in the fundamental field. Squeezed light sources
for gravitational-wave detectors are operated in this regime as it allows for the gen-
eration of squeezed vacuum states and also for higher squeezing levels. Above
threshold, the roundtrip power gain exceeds the losses and the OPA cavity generates
a coherent amplitude at the fundamental frequency. This regime is not relevant for
this thesis.

Below threshold and without phase noise, the detected squeezing (−) and anti-
squeezing (+) level of the OPA output field can be computed as [Vah+16; PCK92]

∆2X̂+,− = 1 ± ηdet
4
√

P/Pthr(
1 ∓

√
P/Pthr

)2
+ 4

(
2π f

γ

)2 , (3.43)

where ηdet is the detection efficiency including the total effective optical loss, P is the
harmonic pump power, Pthr is the threshold power, f is the measurement frequency
and γ = c (T + Lcav) /lrt is the cavity decay rate with the speed of light c, the incou-
pling mirror’s power transmissivity T of the OPA cavity, the round-trip loss Lcav and
the round-trip optical path length lrt. The effect of phase noise between the local os-
cillator field and the squeezed field can be included by assuming that the homodyne
detector measures at a phase offset δθ:

V∓ [dB] = ∓10 log10

(
∆2X̂∓ cos2 δθ + ∆2X̂± sin2 δθ

)
. (3.44)

Figure 3.10 illustrate the influences of the pump power P, the total optical loss Ltot =
1− ηdet and the phase noise δθ on the squeezing and anti-squeezing level for the OPA
cavity used in this thesis. For this cavity, the following parameters are assumed:
T = 8 %, Lcav = 0.12 %, lrt = 72 mm. In the relevant ranges for this thesis (compare
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Figure 3.10: The three primary dependencies of the measured squeezing (< 0 dB)
and anti-squeezing (> 0 dB) level according to the model from Eqs. 3.43 and
3.44. P: harmonic pump power, Pthr: threshold power, ηdet: detection efficiency,

δθ: phase noise. The curves are normalised to the vacuum noise level at 0 dB.
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Figure 3.11: Laser power noise spectrum measured with a single photodetector
at a dc photocurrent level of about 3.5 mA. The noise spectrum is normalised to
the quantum noise at about 6 MHz to 10 MHz. The electronic dark noise is not

subtracted from the data.

with Chapters 5 and 6), optical loss as well as phase noise leave the anti-squeezing
approximately unaffected. A given amount of optical loss reduces the squeezing
level more for a higher initial squeezing level. The same holds for the phase noise
which additionally has a larger impact if a given squeezing level coincides with a
larger anti-squeezing level, i.e. in combination with optical loss.

3.2.4 Bright squeezed states and technical laser noise

As explained in Section 5.1, the squeezed light source in this thesis generates bright
squeezed states instead of squeezed vacuum states. As a consequence, technical
laser (power) noise influences the balanced homodyne detection. Figure 3.11 shows
the power noise spectrum of the laser beam in transmission of the (input) mode
cleaner in Figures 5.4 and 6.4 measured with a single photodetector at a dc pho-
tocurrent level of about 3.5 mA.6 The spectrum is dominated by quantum (shot)
noise above a measurement frequency of about 5.5 MHz and by technical laser noise
below that.

Even though the local oscillator field always exhibits this power noise, it cancels
out for the measurement of squeezed or classical vacuum states if the homodyne de-
tector is sufficiently balanced. If the signal field, however, has a coherent amplitude
and, thus, also exhibits technical laser power noise, this technical noise appears in
the amplitude quadrature (θ = 0) and dominates the corresponding noise variance
∆2X̂sig

0 in the first term of Equation 3.31 at lower frequencies. Vice versa, the coher-
ent amplitude in the signal field now also amplifies the technical laser noise in the
local oscillator’s amplitude quadrature ∆2X̂LO

0 via the second term of Equation 3.31.
If bright squeezed states are generated, the amplitude quadrature is typically

also the squeezed quadrature because the parametric process in the OPA cavity then
not only reduces the quantum noise in this quadrature but also the coherent ampli-
tude via parametric deamplification [Che07; Ebe13]. Hence, the measured squeez-
ing level can be largely reduced at lower frequencies due to technical laser noise
(see Fig. 5.7 or 6.9). The exact reduction in the squeezing level depends on the opti-
cal power in the signal field for a given power in the local oscillator field. Assuming

6The typical relaxation peak is not visible because of an active noise eater which was used for all
presented measurements.



46 Chapter 3. Quantum Noise and Squeezed States of Light

that the local oscillator and signal field roughly have the same relative intensity noise
RIN, Equation 3.31 becomes

∆2 î−(θ = 0) ∝ PLOPsigRIN2 with RIN :=

√
PLO,sig∆2X̂LO,sig

0

PLO,sig
([Ste+15]) ,

(3.45)
such that doubling the power in the signal field increases the measured variance of
the technical laser noise by 3 dB. Furthermore, a comparison between Figure 3.11
and 3.10 shows that the effect of phase noise is qualitatively similar to the shape
of the power noise spectrum. Thus, the effect of phase noise can be masked by
sufficiently large technical laser noise.

Finally, a coherent amplitude in the signal field also has an effect at frequencies
where ∆2 î− is dominated by quantum noise. This is again due to the non-zero second
term in Equation 3.31 (Psig ∆2X̂LO

θ ) where the coherent amplitude in the signal field
beats with the quantum noise in the local oscillator field. ∆2X̂LO

θ does not reduce
with squeezing in the signal field. Even though PLO ≫ Psig should always hold,
the contribution from the LO’s quantum noise can reduce the effectively measured
squeezing level.

3.2.5 Application of squeezed states

Conceptually, a simple Michelson interferometer with balanced homodyne detec-
tion does not differ from a mere balanced homodyne detector setup. If the Michel-
son interferometer is operated at the dark fringe, it effectively reflects any injected
(squeezed) field and can thus simply be interpreted as a complex mirror in the sig-
nal beam path which potentially causes large optical losses as well as an increase
in the phase noise (e.g. about 25 % and 15 mrad in Advanced LIGO [Tse+19], 21 %
and 17 mrad in GEO600 [Lou+21], respectively). If a squeezed field is injected into
the interferometer output, it replaces the otherwise entering vacuum field and re-
duces the measured quantum noise variance in the readout, when stabilised to the
correct phase. To avoid that the interferometer output signal field now propagates
to the squeezed light source, a Faraday rotator is employed as shown in Figure 3.12
(see also Chapter 6 for more details). The same principle applies to an advanced
gravitational-wave detector; however, the effects of the recycling, arm and filter
cavities have to be taken into account, as well, because optical cavities can further
degrade squeezed states via additional optical losses and decoherence/dephasing
[Kwe+14].

As a gravitational wave modulates the phase of the interferometer arm fields, the
corresponding GW signal appears in the phase quadrature. For an efficient quantum
shot noise reduction, the squeezed quadrature thus has to be stably aligned with the
phase quadrature of the interferometer output field via a coherent control scheme
[Vah+06; Che+07]. The second-generation gravitational-wave detectors have fol-
lowed this approach resulting in effective quantum shot noise reduction levels of
about 3 dB in Advanced LIGO and Advanced Virgo [Bui+20; Ber+21] as well as 6 dB
in GEO600 [Lou+21].

Let us assume that quadrature X̂2 of the injected squeezed field is aligned with
the signal (phase) quadrature of the interferometer arm field. Intuitively, reduced
quantum noise in the X̂2 quadrature will then be beneficial. At the same time, noise
in the X̂1 quadrature of the injected squeezed field will be aligned with the ampli-
tude quadrature of the interferometer arm field, thereby causing amplitude noise.
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Figure 3.12: Left: frequency-independent squeezed states are provided by the
squeezed light source (SLS). A Faraday rotator (FR) first reflects the squeezed
states towards the filter cavity and then transmits the frequency-dependent
squeezed states towards the interferometer. Here, a second FR first injects the
squeeezd states into the detector and then transmits them together with the signal
field to the readout. Right: frequency-independent squeezing has the same effect
as an increase in the optical laser power, reducing shot noise but increasing radia-
tion pressure noise (based on [Bas14]). If the squeezing ellipse was rotated by 90◦,
radiation pressure noise would be reduced at the cost of an increased shot noise.
With frequency-dependent squeezing, i.e. a frequency-dependent squeezing an-
gle, both radiation pressure and shot noise can be mitigated at the same time in
the respective frequency ranges. This theoretically allows to surpass the standard

quantum limit.

This amplitude noise can be associated with the fluctuations in the photon num-
ber from Section 3.1 and is, thus, transformed into phase noise by the suspended
mirrors’ back action. Hence, noise in the squeezed field’s X̂1 quadrature also ulti-
mately appears in the signal quadrature as quantum radiation pressure noise which
could first be directly measured by the Advanced Virgo detector [Ace+20]. Fu-
ture gravitational-wave detectors therefore aim to implement frequency-dependent
squeezing where the noise in the X̂1 quadrature is reduced at low frequencies, where
radiation pressure noise dominates, and noise in the X̂2 quadrature is reduced at
high frequencies, where shot noise dominates (see also Fig. 3.12). This is achieved
via a filter cavity and using the fact that the phase of the reflected field depends
on the relation between the cavity’s resonance frequency and the frequency of the
reflected field [Zha+20; Pol21; ET 20; Eva+21].

3.3 Summary

A coherent laser beam exhibits fundamental quantum-mechanical noise in ampli-
tude and phase. The quantum amplitude noise couples into the readout of a gravita-
tional-wave detector via two mechanisms: first, the suspended test masses in the
interferometer arms experience a fluctuating radiation pressure which pushes them
out of their position of equilibrium; second, amplitude noise in the detected out-
put field directly couples into the readout as shot noise. With these two mecha-
nisms combined, quantum noise has dominated the noise budgets of the second-
generation gravitational-wave detectors over a broad frequency range and is ex-
pected to remain a main limitation for the third generation. Hence, a lot of research
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focuses on the proposed mitigation methods like speedmeters, variational readout
and white-light-cavity schemes, which are at different stages of development. They
are summarised and reviewed e.g. in [DKM19; CM04].

The most prominent quantum noise reduction is the injection of squeezed states
of light into the detectors’ output ports. Radiation pressure and shot noise can be
related to two orthogonal quadratures of the vacuum state which normally enters a
Michelson interferomter through the output port and beats with the coherent field
that is injected through the input port. Squeezed vacuum states redistribute the
quantum noise in these quadratures such that either radiation pressure or shot noise
is reduced at the cost of increasing the other. So far, gravitational-wave detectors
only reduced the shot noise contribution via squeezed light with only a small ef-
fect of the anti-squeezing on the radiation pressure noise. However, they currently
work on the implementation of frequency-dependent squeezing which will reduce
both of the two quantum noise contributions in the frequency range where they are
dominant, respectively.

A typical squeezed light source for a gravitational-wave detector employs sec-
ond harmonic generation and subsequent degenerate parametric down-conversion.
These are nonlinear optical processes which use the second-order susceptibility of a
crystalline medium and are enhanced via optical cavities. The generated squeezed
states can then be characterised via a balanced homodyne detector where they are
superimposed with a strong coherent local oscillator field on a 50:50 beamsplitter. If
the power in the two beamsplitter outputs is detected and subtracted, the variance,
or noise power spectrum, of this signal directly corresponds to the variance, or noise
power spectrum, of the sensed quadrature (to a good approximation).

In this thesis, the typical approach to generate squeezed states shall be adapted to
higher-order modes. The next chapter will start with this endeavour by investigation
the second harmonic generation of the Laguerre-Gaussian LG3,3 mode.
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Chapter 4

Second Harmonic Generation of
the LG3,3 mode

Chapter 3 explained the role of second harmonic generation (SHG) in the typical
squeezed light source for gravitational-wave detectors. To examine the differences
in this process between the fundamental and higher-order laser modes, this chapter
first analyses the SHG theoretically for an arbitrary Laguerre-Gaussian mode, in-
cluding a numerical simulation of the TEM0,0 and LG3,3 SHG. The simulation results
are then compared to an experimental investigation of the TEM0,0 and LG3,3 SHG
with a special focus on the conversion efficiencies and harmonic output fields.

This chapter is based on the publications [HVW20a] and [HVW20b].

4.1 Theory and numerical simulation

The theory behind second-order nonlinear processes like second harmonic genera-
tion (SHG) is, in general, well known and understood. Boyd’s book on nonlinear
optics is a good introduction [Boy03], and in [BK68] the influence of the focusing
parameter as well as of double-refraction on both the second harmonic generation
and parametric down-conversion were already thoroughly discussed for the TEM0,0
mode. Nevertheless, the research on nonlinear processes for the TEM0,0 mode is still
ongoing (e.g. on more efficient phase matchings [LS07]) and is also progressing for
higher-order modes [Dho+96; Cou+97; Del+07; BTL08; Zho+14].

Based on this literature, the theoretical investigation in this section aims to an-
swer additional questions about second harmonic generation with a focus on the
comparison between the TEM0,0 and LG3,3 mode. Using a novel description that
tracks the phases in the harmonic field in relation to the excited crystal polarisation
will allow to give an in-depth analysis on how the Gouy phase affects the phase
matching and the harmonic output field. Moreover, it will provide the first detailed
explanation for the influence of the pump intensity distribution on the conversion ef-
ficiency. Both of these aspects will be investigated in relation to the focusing param-
eter. Without loss of generality, the Laguerre-Gaussian mode basis will be assumed
while differences to the Hermite-Gaussian basis will be indicated.

4.1.1 Mathematical description for Laguerre-Gaussian modes

The first goal of this section is to get an intuitive understanding of how the fun-
damental pump field is converted into the (second) harmonic field by a nonlin-
ear medium, and of why most higher-order modes excite more than one harmonic
mode. For this purpose, the differential equation for the harmonic field will be dis-
cretised into an iterative equation which describes the conversion process within
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a finitely small segment of the nonlinear medium in which the influence of phase
matching is negligible. For simplicity, the fundamental field is assumed undepleted
through the whole nonlinear medium, the polarisation direction is omitted and walk-
off effects as well as absorption are neglected. The assumed phase matching is type-I
as employed in gravitational-wave detectors. Type-II phase matching would require
two orthogonally polarised pump fields.

The second goal is to use this iterative equation to understand how different pa-
rameters influence the conversion efficiency and to numerically simulate the TEM0,0
and LG3,3 SHG. This simulation will not only show how the power in the excited
harmonic modes evolves through the nonlinear medium but will also illustrate how
the Gouy phase affects the conversion into the different excited harmonic modes.

Helical Laguerre-Gaussian modes (rewritten)

In this section, the general expression of a Laguerre-Gaussian (LG) mode in cylin-
drical coordinates (r = (r, φ, z)) from Equation 2.4 will be rewritten as follows:

LGp,l(r, t) = Ap,l(r)× ei(kz−ωt+β)

= Tp,l(r)× Φp,l(z)× ei(kz−ωt+β)
(4.1)

with

Tp,l(r) :=
1

w(z)

√
2p!

π(p + |l|)!

( √
2r

w(z)

)|l|

L|l|
p

(
2r2

w2(z)

)
× e−ik r2

2q(z)+ilφ

Φp,l(z) := eiγp,lΨ(z) .

(4.2)

Here, the normalised amplitude distribution Ap,l is separated into the normalised
transverse amplitude distribution Tp,l(r), which defines the mode and includes nor-
malisation factors, and into the Gouy phase term Φp,l(z) with the Gouy phase factor
γp,l := 2p + |l|+ 1. The separation into Tp,l and Φp,l will help to understand how
the fundamental and harmonic field interact in the nonlinear medium. Without loss
of generality, β will be set to zero.

Differential equation of the harmonic field and its discretisation

The homogeneous paraxial Helmholtz equation (PHE) describes an electric field and
its propagation in an undisturbed environment without any sources or sinks. In a
nonlinear medium, there is, however, a source1 when the dielectric crystal polar-
isation is excited by the fundamental pump field and emits light at the harmonic
frequency. This effect can be included in the PHE by adding a corresponding source
term S(r) on the right-hand side [Boy03; Del+07]:[

∇2
T − 2ik2∂z

]
A2(r) = −2

ω2
2

c2 deffA2
1(r)e

i∆kz︸ ︷︷ ︸
=: S(r)

, (4.3)

where the indices 1 and 2 denote the total fundamental pump field and total har-
monic field including their optical power, respectively, c is the speed of light in vac-
uum, deff is the effective nonlinearity of the nonlinear crystal medium and

1There is a potential sink, as well, if the harmonic field is reconverted into the fundamental field.
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∆k = 2k1 − k2 is the wavevector mismatch which corresponds to a difference in the
refractive indices according to ∆k = 4π∆n/λ1 (for SHG) with ∆n = n1 − n2. Since
the SHG process is considered to be time-invariant, the term exp (−iωt) is omitted.

The derivative ∂z can be discretised as

∂z A2(r, φ, z) =
A2(r, φ, z + ∆z)− A2(r, φ, z)

∆z
(4.4)

and be applied to the homogeneous PHE that describes the mere propagation of the
field A2 without any source term:

A2(r, φ, z + ∆z) = A2(r, φ, z)− k′∆z · ∇2
T A2(r, φ, z) , (4.5)

where k′ := i/ (2k2). Thus, only the transverse derivative ∇2
T determines how any

electric field locally changes phase and shape during propagation. Applying Equa-
tion 4.4 and 4.5 to Equation 4.3 yields

A2(r, φ, z + ∆z) = A2(r, φ, z)− k′∆z∇2
T · A2(r, φ, z)︸ ︷︷ ︸

=A′
2(r,φ,z+∆z)

+ k′∆z · S(r, φ, z + ∆z)︸ ︷︷ ︸
=:Ch(r,φ,z+∆z)

= A′
2(r, φ, z + ∆z) + Ch(r, φ, z + ∆z) .

(4.6)

Here, ∆z has to be added in the arguments of S and Ch to ensure that they are eval-
uated at the same z position as A′

2. This addition becomes negligible for ∆z → dz.
Using Equation 4.6, the evolution of the harmonic field along the nonlinear

medium can be described as follows: the initial harmonic field A2 is present at the
position z and propagates up to z + ∆z according to Equation 4.5 as if there was
no source term. At the position z + ∆z, A2 is renamed into A′

2 and interferes with
Ch which describes the harmonic field that is emitted from the excited crystal po-
larisation. The resulting field becomes the new initial field A2 for the next iteration
step. Based on this mechanism, the numerical simulation in Section 4.1.2 and 4.1.3
will compute how the harmonic field iteratively progresses through the nonlinear
medium. The resolution parameter ∆z was reduced until the solution converged. In
the following, Ch will be referred to as excited harmonic field and the superscript h
indicates the harmonic frequency.

Excited harmonic modes

To understand why most higher-order modes excite more than one harmonic mode,
A′

2 = 0 can be set in Equation 4.6. In this way, there is no initial harmonic field and
no interference or phase relation between A′

2 and Ch has to be taken into account.
The equation reduces to

A2(r, φ, z + ∆z) = Ch(r, φ, z + ∆z) ∝ A2
1(r, φ, z + ∆z) (4.7)

where the mode composition of the excited harmonic field Ch, which is proportional
to the square of the pump field A2

1, determines the harmonic field A2. Figure 4.1
illustrates the meaning and consequence of the dependence of A2 on the square of
the pump field: the conversion efficiency is not constant across the transverse plane
but larger where the pump intensity is higher. Hence, the intensity profiles of the ex-
cited harmonic fields show narrower peaks than the TEM0,0 and LG3,3 pump modes,
and the peak height relations are altered in the latter case, as well. The harmonic
field excited by the TEM0,0 mode can still be represented as one single mode which
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Figure 4.1: Intensity distributions of the fundamental pump field and excited har-
monic field, normalised to their respective peak value, at the waist position (z = 0)
in case of the TEM0,0 (left) and LG3,3 (right) mode. The x axis refers to an arbitrary
coordinate axis across the transverse plane where w0 is the waist size of the fun-

damental field in both cases.

is the harmonic TEM0,0 mode in a basis where the waist size is reduced by a factor of√
2. However, this is generally not possible in the case of a higher-order pump mode

because there is no mode parameter which changes the peak height relations or the
ring widths while keeping their separation constant. In this case, the harmonic field
needs to be represented as a superposition of several modes, where the basis with a
waist reduction factor of

√
2 is again the most reasonable choice. In this basis, the

LG3,3 mode excites the harmonic modes LG0,6, LG2,6, LG4,6 and LG6,6 (derived from
LG2

3,3).
The next section will show that the initial harmonic field A′

2 as well as the excited
harmonic field Ch can be decomposed into the same modes at each z position in
the nonlinear medium, where each mode experiences an interference between both
fields independent of the other modes.

Mode composition of the excited harmonic field Ch

Let us start by writing the mode composition of the harmonic field which is excited
at z + ∆z as a function of the pump field A1. Assuming that the SHG is pumped by
an LGp,l mode, the excited harmonic field Ch ∝ A2

1 ∝ A2
p,l can be written as (refer to

[Cou+97] for the relation in the third line)

Ch(r, φ, z + ∆z) ∝ A2
p,l(r, φ, z + ∆z) = T2

p,l(r, φ, z + ∆z)Φ2
p,l(z + ∆z)

∝ T2
p,l(r, φ, z + ∆z)ΦS(z + ∆z)

T2
p,l(r, φ, z + ∆z) =

p

∑
m=0

t2m,2l(z + ∆z)Th
2m,2l(r, φ, z + ∆z)

ΦS(z + ∆z) = Φ2
p,l(z + ∆z) = ei2(2p+|l|+1)Ψ(z+∆z) .

(4.8)

where the squared T2
p,l(r, φ, z + ∆z) is not normalised and t2m,2l(z + ∆z) are real-

valued coefficients. The Th
2m,2l describe the normalised transverse amplitude distri-

butions (nTADs) which correspond to the harmonic modes with twice the frequency



4.1. Theory and numerical simulation 53

of the fundamental field and a reduced waist size according to wh
0 = w0/

√
2. The

third line implies that the excited harmonic field can be decomposed into the har-
monic LG modes with l′ = 2l and p′ = 0, 2, . . . , 2p and, thus, consists of more than
one mode if p > 0. Hence, the LG3,3 mode with p = 3 and l = 3 excites the harmonic
modes with p′ = 0, 2, 4, 6 and l′ = 6. The fourth line implies that the modes in the
excited harmonic field all have the same Gouy phase ΦS which only depends on the
mode order of the pump field.

Equation 4.8 shows that the excited harmonic field Ch consists of the same modes
Th

2m2l independent of the z position which are solely determined by the pump mode.
Furthermore, the mode composition of the harmonic field A2 does not change upon
the propagation from z to z+∆z as each mode can propagate independently. Hence,
if the modes in the harmonic field A2 and excited harmonic field Ch match at one z
position, they will also match at every subsequent z position.2 With this in mind,
Equation 4.8 can be inserted into Equation 4.6, resulting in a mode-resolved version:

A2(r, φ, z + ∆z) = A′
2(r, φ, z + ∆z) + Ch(r, φ, z + ∆z)

=
p

∑
m=0

[
a2m,l′(z)Ah

2m,l′(r, φ, z + ∆z)+

c̄2m,l′(z + ∆z)Th
2m,l′(r, φ, z + ∆z)ΦS(z + ∆z)

]
=

p

∑
m=0

[
a2m,l′(z)Ah

2m,l′(r, φ, z + ∆z)+

c2m,l′(z + ∆z) Th
2m,l′(r, φ, z + ∆z)Φ2m,l′(z + ∆z)︸ ︷︷ ︸

=Ah
2m,l′ (r,φ,z+∆z)

]

=
p

∑
m=0

[
a2m,l′(z) + c2m,l′(z + ∆z)

]
︸ ︷︷ ︸

= a2m,l′ (z+∆z)

Ah
2m,l′(r, φ, z + ∆z)

(4.9)

with
c2m,l′(z + ∆z) := c̄2m,l′(z + ∆z)ΦS(z + ∆z)/Φ2m,l′(z + ∆z) , (4.10)

where a2m,l′(z) are the complex coefficients for the harmonic field which has been
generated in the previous iteration steps up to z. They do not change with the mere
propagation between z and z + ∆z, which is completely described by Ah

2m,l′ . The
complex c2m,l′(z + ∆z) and c̄2m,l′(z + ∆z) coefficients correspond to the excited har-
monic field at z + ∆z. c̄2m,l′ is converted into c2m,l′ such that Ah

2m,l′ can be extracted
from both terms.

Equations 4.8 and 4.9 can be adapted to the HG basis by using the corresponding
expressions for T2

m,n and ΦS.

Phase matching

Let us now analyse the phase matching between the inital harmonic field A′
2 and

excited harmonic field Ch. If ∆α2m,l′(z + ∆z) ∈ (−π, π] denotes the phase difference
between a2m,l′(z) and c2m,l′(z + ∆z) in Equation 4.9, ∆α2m,l′ ≈ 0 will result in con-
structive interference and a maximum power increase in the harmonic mode LG2m,l′ .
In contrast, |∆α2m,l′ | ≈ π will result in destructive interference and a maximum
power reduction. The phase matching of each harmonic mode thus corresponds to

2Strictly, this only holds for ∆n = 0, but suffices as an approximation for a reasonable small ∆n.
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the evolution of ∆α2m,l′ through the nonlinear medium which is determined by the
evolution of the phases in A′

2 and Ch.
The harmonic field is given by

A2(r) =
p

∑
m=0

a2m,l′(z)Th
2m,l′(r)Φ2m,l′(z) . (4.11)

Since the excited harmonic field consists of the same harmonic modes, it includes
the same nTADs Th

2m,l′ . However, in contrast to A2, each of these nTADs is weighted
by the same Gouy phase and wavevector mismatch:

Ch(r) = iCp,l(z)

[
p

∑
m=0

c′2m,l′T
h
2m,l′(r)

]
ΦS(z)ei∆kz ,

p

∑
m=0

∣∣c′2m,l′
∣∣2 = 1 .

(4.12)

where the real-valued c′2m,l′ coefficients quantify the fractional contributions of the
harmonic modes to the excited harmonic field and Cp,l(z) is the dimensionless real-
valued amplitude. See Equation 4.13 for the relation between c2m,l′ and c′2m,l′ .

The difference in the Gouy phases Φ2m,l′ in A2 and ΦS in Ch causes the phases of
the coeffcients a2m,l′(z) and c2m,l′(z + ∆z) in Equation 4.9 to evolve differently for the
following reason. a2m,l′ , especially its phase, remains constant between z and z + ∆z
because Ah

2m,l′ completely describes this propagation in the harmonic field. This
is not true for c2m,l′ because the Gouy phase of the excited harmonic field evolves
faster than Ah

2m,l′ accounts for. This results in a phase change of c2m,l′ between z and
z + ∆z via Equation 4.10 such that any constructive interference in Equation 4.9 de-
cays. This decay depends on the difference in the Gouy phase factors of each mode
∆γp,l,p′,l′ := γS − γp′,l′ = 2γp,l − γp′,l′ , where γS =: 2γp,l is the Gouy phase factor
of the excited harmonic field, γp′,l′ is the Gouy phase factor of the corresponding
harmonic mode and ∆γp,l,p′,l′ > 0, always. The decay also depends on the Rayleigh
range, or the focusing parameter, as it is another factor in the Gouy phase term (see
Eq. 2.4) and, for instance, does not occur in the limit of plane waves. Futhermore, a
wavevector mismatch can slow down or speed up the decay and be used to (partly)
restore a good phase matching for at least one of the excited harmonic modes.

The same applies to the HG basis with ∆γm,n,m′,n′ = 2γm,n − γm′,n′ .

Change in harmonic power and the phase difference ∆α

A comparison between Equations 4.9 and 4.12 yields

c2m,l′(z) = cp′,l′(z) = iCp,l(z)c′p′,l′e
i∆γp,l,p′ ,l′Ψ(z)ei∆kz (4.13)

such that the optical power of each mode in the harmonic field changes between
z − ∆z and z as follows

∆Ph
p′,l′(z) ∝

∣∣ap′,l′(z)
∣∣2 − ∣∣ap′,l′(z − ∆z)

∣∣2
∝
∣∣∣Cp,l(z)c′p′,l′

∣∣∣2 + 2
∣∣∣ap′,l′(z − ∆z)Cp,l(z)c′p′,l′

∣∣∣ cos
(
∆αp′,l′(z)

) (4.14)
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with the phase difference

∆αp′,l′(z) = αa,p′,l′(z − ∆z)− π

2
− ∆γp,l,p′,l′Ψ(z)− ∆kz (4.15)

where αa,p′,l′ is the phase of ap′,l′ and π/2 corresponds to the factor i.
According to the second line of Equation 4.14, the change in power is given by

two terms. The first is only relevant if there is no inital harmonic field A2 yet. It
quickly becomes negligible with a present harmonic field. Then, the second term
determines the change in power with four individual influences:

1. |ap′,l′(z − ∆z)|: the initial power present in the respective mode. Hence, the
power change scales proportionally with the initial power in the harmonic
power.

2. Cp,l(z): the amplitude of the excited harmonic field which includes the pump
intensity. The pump intensity increases with a decreasing pump beam ra-
dius and is largest at the waist position. It is also larger if the power of the
pump mode is confined to a smaller transverse area which, in general, implies
a smaller mode order. These two effects are shown in Figure 4.2 for the pump
modes TEM0,0 and LG3,3 depending on the focusing parameter ξ = L/(2zR),
where L is the geometrical length of the crystal. A larger focusing parame-
ter implies a smaller waist size and, thus, a higher maximum intensity at the
waist position but also a stronger beam divergence. Hence, Cp,l(z) or |Cp,l(z)|2
changes more extremely for larger focusing parameters.

With a comparison between Equations 4.3 and 4.12, a (pump) mode-dependent
effective nonlinearity can be defined as

dp,l(z) := deffCp,l(z). (4.16)

The ratio dp1,l1/dp2,l2 for two different pump modes, e.g. d0,0/d3,3 = 2.64, is
z-, ξ- (assuming equal values for both modes) and medium-independent (deff
cancels out) and directly quantifies the difference of the two pump modes in
their intensity distributions as well as in their interaction with the nonlinear
medium.

0 0.2 0.4 0.6 0.8 1

10-2

10-1

100

Figure 4.2: Evolution of the power contained in the excited harmonic field in terms
of |Cp,l(z)|2 for different focusing parameters ξ along the crystal on a logarithmic
scale, normalised to the maximum of TEM0,0, ξ = 10 [HVW20b]. The waist of the
pump field is located at the centre of the crystal. The curves evolve in accordance

with the pump intensities.
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3. c′p′,l′ : the fractional contribution of the respective mode in the excited harmonic
field. This parameter is constant through the crystal.

4. ∆αp′,l′(z): the phase difference between ap′,l′(z − ∆z) and cp′,l′(z) which de-
pends on the difference in the Gouy phase factors ∆γp,l,p′,l′ and on the wavevec-
tor mismatch ∆k as expected. With no initial harmonic field, the phase term
π/2 is imprinted on the phase of ap′,l′ in the first iteration step and is irrel-
evant for the phase matching. Furthermore, the phase αa,p′,l′ of ap′,l′ adjusts
to the phase of cp′,l′ in each iteration step via the interference; however, it
will lag behind if the phase of cp′,l′ changes too quickly. According to the co-
sine in Equation 4.14, the phase difference will result in a power decrease if
|∆αp′,l′(z)| > π/2 and if the second term dominates the first one at this point.
For a certain |∆αp′,l′(z)| ≈ π/2, the two terms cancel each other out and cp′,l′

merely affects the phase of ap′,l′ such that the harmonic power remains con-
stant.

The following numerical simulations will show how the second harmonic genera-
tion and the conversion efficiencies of the individual excited modes depend on these
four parameters.

4.1.2 Single-pass simulation for TEM0,0 and LG3,3

TEM0,0 single-pass SHG

In general, the TEM0,0 mode allows for the highest conversion efficiencies. It only ex-
cites one single harmonic mode, which implies the largest possible value for
c′p′,l′ = c′0,0 = 1, provides the highest pump intensity, that is the largest Cp,l , and has
the smallest possible difference in the Gouy phase factors ∆γp,l,p′,l′ = ∆γ0,0,0,0 = 1,
such that ∆γ0,0,0,0Ψ(z) = atan(z/zR) in Equation 4.15. Figure 4.33 shows the simula-
tion of the accumulated power in the harmonic TEM0,0 mode through the nonlinear
crystal in relation to the phase difference for different focusing parameters (see also
Appendix A.1). It assumes the waist to be located at the centre of the crystal and
is split up into the focusing regimes below (weak, left figure) and above (strong,
right figure) optimum focusing, where optimum focusing corresponds to ξ = 2.84
[BK68]. The simulation produces the same relative results for any set of wavelengths
λ1,2, refractive indices n1,2, effective nonlinearity deff and pump power if the pump
field is treated as undepleted. Since the same pump power is assumed in each case,
the ratios of the final harmonic powers at z = L (refering to the figure axis) are equal
to the ratios of the respective conversion efficiencies.

A detailed description of the results for the different focusing parameters can be
found in [HVW20b]. In the following, the main aspects are summarised to under-
stand the different limitations below and above the optimum focusing:

1. Below optimum focusing
According to Figure 4.2, weak focusing implies a small pump intensity, that is
a small Cp,l through the crystal. Hence, the pump field does only weakly inter-
act with the nonlinear medium and cannot generate high levels of harmonic
power.
Weak focusing also implies a weak influence of the Gouy phase term
∆γ0,0,0,0Ψ(z) = atan(z/zR) on the phase difference. In this regime, very good

3The z range of the figure is 0 ≤ z ≤ L with respect to the crystal, while the range of the simulation
is actually −L/2 ≤ z ≤ L/2 with respect to the waist position in the crystal centre.
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Figure 4.3: Numerical simulation of the SHG pumped by the TEM0,0 mode for
different focusing parameters ξ and wavevector mismatches ∆n [HVW20b]. The
waist is located at the centre of the crystal. The solid lines refer to the left y axis
and show the accumulated harmonic power. The dashed lines refer to the right y
axis and illustrate the phase difference between the harmonic field and the excited

harmonic field for the harmonic TEM0,0 mode.

phase matchings with |∆α0,0| ≈ 0 through the crystal can be achieved with
an appropriate wavevector mismatch. The compensation with the wavevector
mismatch works, if needed at all, because only the linear part of the arctan-
gent is relevant within the crystal. The good phase matching can, however,
not compensate for the small pump intensity which is the main limiting factor
in this regime.

2. Above optimum focusing
According to Figure 4.2, strong focusing implies a strong divergence of the
pump field such that significant conversion only occurs around the waist at
the crystal centre. There, the extremely high pump intensity could theoreti-
cally still result in higher conversion efficiencies assuming the crystal is not
damaged.
However, the strong focusing also implies a steep slope in the atan(z/zR)z=0
term. Around the waist, this term increases the phase difference up to the
range where the accumulated harmonic power remains constant or even de-
creases. It cannot be properly compensated by the wavevector mismatch, any-
more, because the wavevector mismatch is linear in z while the nonlinear part
of the arctangent is now relevant within the crystal. The phase matching is the
main limiting factor in this regime.

3. Optimum focusing
The optimum focusing regime provides the best trade-off of the above men-
tioned limitations. The pump intensity is relatively high in the whole crystal,
even though it is smaller around the waist than in the strong focusing regime
and potentially smaller far from the waist than in the weak focusing regime.
A phase matching as good as in the weak focusing regime is not possible due
to the nonlinear part of the arctangent which cannot be perfectly compensated
by the wavevector mismatch. But the phase difference can still be kept in the
range where the interference is rather constructive. Hence, the highest conver-
sion efficiency is achieved.
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LG3,3 single-pass SHG

The LG3,3 mode excites the harmonic modes LG0,6, LG2,6, LG4,6 and LG6,6, and the
achievable conversion efficiencies are fundamentally smaller than for the TEM0,0
mode for the same focusing due to the more uniform intensity distribution which
leads to a smaller pump intensity and thus C3,3(z) < C0,0(z). This argument al-
ready holds if only the total harmonic power, i.e. the sum over all four excited
harmonic modes, is considered. If the excited harmonic modes are analysed indi-
vidually, their conversion efficiencies are additionally smaller because c′p′,6 < c′0,0
and ∆γ3,3,p′,6 ≥ ∆γ0,0,0,0 as shown in Table 4.1. Figure 4.4 presents a simulation of
the accumulated total harmonic power and the individually accumulated harmonic
powers in the excited modes in relation to their individual phase differences for the
same settings as in the TEM0,0 case except for ξ = 50.

Table 4.1: Composition of the harmonic field excited by the LG3,3 mode.

p′, l′ |c′p′,l′ |2 ∆γ3,3,p′,l′

0,6 0.2129 13
2,6 0.1342 9
4,6 0.1610 5
6,6 0.4919 1

Again, a more detailed description can be found in [HVW20b]. In the following,
the main aspects and differences to the TEM0,0 mode are summarised:

1. The harmonic LG6,6 mode
Since ∆γ3,3,6,6 = ∆γ0,0,0,0 = 1, this mode shows the same qualitative behaviour
and dependence on the focusing, when pumped by the LG3,3 mode, as the
TEM0,0 mode, when pumped by the TEM0,0 mode. Hence, the optimum focus-
ing would be ξ = 2.84. Its individual conversion efficiency is, however, signif-
icantly smaller due to the lower pump intensity and |c′6,6|2 ≈ 0.5 < 1 = |c′0,0|2.

2. The harmonic LG0,6, LG2,6 and LG4,6 mode
Already in the weak focusing regime, the individual conversion efficiencies
of these modes are smaller than the one of the LG6,6 mode because, for them,
|c′p′,6|2 < |c′6,6|2. If the focusing additionally gets stronger, their larger ∆γ3,3,p′,6

values further reduce their efficiencies compared to the LG6,6 mode because
the Gouy phase leads to completely destructive interferences and a maximum
power decrease. A wavevector mismatch can still slightly improve the effi-
ciency for the LG4,6 which has a sufficiently small ∆γ3,3,p′,6 value. For the LG0,6
and LG2,6 mode, the effect of the simulated wavevector mismatches is, how-
ever, insignificant.

3. The total harmonic output field
The harmonic output field is given by the superposition of the four excited
modes at z = L (refering to the figure axis). The relations of their individually
accumulated harmonic power at z = L shows that the harmonic output field
depends on the focusing, as well. The LG6,6 mode is always dominating but the
contributions of the other three modes are smallest around optimum focusing
and larger in the very weak and very strong focusing regime.
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Figure 4.4: Numerical simulation of SHG pumped by the LG3,3 mode for different
focusing parameters ξ and wavevector mismatches ∆n [HVW20b]. The waist is
located at the centre of the crystal. The solid lines refer to the left y axis and show
the accumulated harmonic power. The dashed lines refer to the right y axis and
illustrate the phase difference between the respective mode in the harmonic field

and the excited harmonic field.
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Conclusion for the single-pass simulations

The general ability of a pump mode to interact with a nonlinear medium and to
generate a harmonic field depends on its intensity distribution and can be quanti-
fied by a pump-mode dependent effective nonlinearity dp,l (see Eq. 4.16). The ratio
d3,3/d0,0 ≈ 0.4 means that the LG3,3 mode only generates 0.42 ≈ 1/7th of the har-
monic power which the TEM0,0 mode generates in a finitely small segment of the
nonlinear medium. This factor becomes potentially even smaller if the conversion
along the whole crystal is considered. Except for the limit of plane waves, three of
the four harmonic modes excited by the LG3,3 mode will then have a significantly
worse phase matching than the TEM0,0 mode. Especially around the optimum fo-
cusing regime where the LG6,6 mode clearly dominates the harmonic LG3,3 output
field, the factor thus reduces to

(
d3,3c′6,6/d0,0

)2 ≈ 1/14. Here, d3,3 can be understood
as weighted by the mode contributions in the final harmonic output field. This is
illustrated in Figure 4.5 where the factor still remains at roughly 1/7 for ξ = 0.05 but
is close to 1/14 for all other cases.

0 0.2 0.4 0.6 0.8 1

10-2
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100

Figure 4.5: Comparison of the accumulated total harmonic power for different
focusing parameters ξ and no wavevector mismatch (∆n = 0) [HVW20b]. The
solid and dashed lines refer to the TEM0,0 and LG3,3 mode, respectively. The data

are normalised to the final harmonic power of TEM0,0, ξ = 3.
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Figure 4.6: Normalised final harmonic intensity distribution in the far-field
(z = 100zR) for different focusing parameters ξ when pumped by the LG3,3 mode

[HVW20b].

Besides the conversion efficiencies, the dependence of the harmonic output field
on the focusing is another important difference. While the TEM0,0 mode only excites
the harmonic TEM0,0 mode, the harmonic LG3,3 output field is a focusing-dependent
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superposition of four modes (see Fig. 4.6). In the weak focusing regime, their rela-
tion roughly remains constant through the crystal and is more or less equal to LG2

3,3
(compare with Fig. 4.1). In the optimum focusing regime, the harmonic output field
can be approximated by the harmonic LG6,6 mode. In the strong focusing regime,
where the LG6,6 mode has a significantly worse phase matching, the output field is
a mixture of the two others.

The optimum choice of ξ for the single-pass LG3,3 SHG depends on the goal.
High conversion efficiencies require a focusing parameter close to 2.84 as for the
TEM0,0 mode. However, in this focusing regime, the harmonic modes LG0,6, LG2,6
and LG4,6 are strongly suppressed in the harmonic field. If the goal is to obtain a
harmonic output field with a good balance between all excited harmonic modes, the
weak focusing regime is better suited. So far, this shall be understood as a general
rule. The criteria which have to be fulfilled by the SHG as part of a higher-order
mode squeezed light source require the theory outlined in Section 5.1.

4.1.3 Double-pass and cavity-enhanced configuration

This section will simulate the SHG in a cavity configuration equal to the design of
the experiment in Section 4.2 to allow for a direct comparison between the simula-
tion and the experimental measurements. In this experiment, the SHG is enhanced
in a linear hemilithic cavity with ξ ≈ 0.5 which is formed by an incoupling mirror
and a curved end face of a nonlinear crystal (see Fig. 4.7). While the crystal end face
is highly reflective for both the fundamental and harmonic wavelength, the incou-
pling mirror only reflects light at the fundamental wavelength to resonantly enhance
the pump power. It does not reflect light at the harmonic wavelength such that
the harmonic field does not resonate and is effectively generated in a double-pass
configuration through the crystal. As in the single-pass configuration, the relative
simulation results are again independent of the pump power; hence, its resonant en-
hancement can be ignored and the double-pass simulation can directly be applied
to this specific cavity design. Furthermore, the pump field can still be approximated
as undepleted even though conversion efficiencies close to 1 are possible and were
achieved in the experiment. At this level of conversion efficiency, the simulated cav-
ity has a power buildup factor of about 40 such that the circulating intra-cavity field
is still only depleted by about 2.5 %.

The main difference of the double-pass simulation to the single-pass is that the
fundamental and harmonic field usually experience different phase shifts under the
reflection off the crystal end face. The phase shift values of the used crystal as indi-
cated by Laseroptik GmbH are ϕ1064 nm = 29.1◦ and ϕ532 nm = 1.3◦ and their effect
can be identified in Figure 4.7 as jumps in the phase difference by
2ϕ1064 nm − ϕ532 nm ≈ π/3 at z = L (refering to the figure axis).

The accumulated harmonic power and phase differences in the simulation of the
LG3,3 double-pass follow the same rules as explained in Section 4.1.2. An additional
simulation of the TEM0,0 is omitted because it would again be qualitatively identi-
cal to the conversion from the LG3,3 to the harmonic LG6,6 mode. The double-pass
simulation with ξ ≈ 0.5 and without a wavevector mismatch predicts that the LG6,6
mode dominates the harmonic output field by about 95 % and the same can be con-
cluded for the assumed SHG cavity. As in the single-pass case, similar results apply
to the regime around optimum focusing with ξ ≈ 3 and if a wavevector mismatch
is included. Hence, the ratio of the pump-mode dependent effective nonlineari-
ties d0,0/d3,3, weighted by the mode contributions in the final harmonic output field
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Figure 4.7: Left: Schematic of the double-pass and cavity configuration. In both
cases, the crystal end face acts as the (cavity end) mirror. Right: Numerical simu-
lation of a double-pass SHG pumped by the LG3,3 mode for ξ = 0.5 and ∆n = 0.
The waist is located at the centre of the crystal. The solid lines refer to the left
y axis and show the accumulated harmonic power. The dashed lines refer to the
right y axis and illustrate the phase difference between the respective mode in the

harmonic field and the excited harmonic field (based on [HVW20b]).

(see conclusion of previous section), is close to 3.77 where the exact value in an ex-
periment will slightly differ due to a wavevector mismatch and the exact focusing
parameter.4

These results and predictions are based on the assumption of equal TEM0,0 and
LG3,3 pump power. For the cavity configuration, this refers to an equal circulat-
ing intra-cavity pump power. An equal intra-cavity pump power will, however, be
achieved at different injected pump powers for the following reason. The same in-
jected pump power leads to different double-pass conversion efficiencies due to the
discussed fundamental differences in the TEM0,0 and LG3,3 mode SHG. The double-
pass conversion efficiency, however, determines the intra-cavity loss of the funda-
mental field, thereby affecting the impedance matching of the cavity and the cir-
culating pump power. Hence, the double-pass simulation is not sufficient to make
practical predictions for the cavity configuration because, in the experiment, the in-
jected pump power is measured rather than the intra-cavity power.

For practical predictions, the conversion efficiency can be simulated with respect
to the injected pump power by the Non-Linear Cavity Simulator [Las10] given the
cavity parameters of the experiment: λ1 = 1064 nm, n = 2.23 (nominal refrac-
tive index for 7 % doped MgO:LiNbO3), ∆n = 0, Rend = 0.999 (at both wave-
lengths), Rin,1064 nm = 0.98, Rin,532 nm = 0, L = 6.5 mm (geometric crystal length),
w0 = 31.4 µm (pump waist size corresponding to ξ = 0.5) and deff = 3 pm V−1

(typical effective nonlinearity for 7 % doped MgO:LiNbO3). The TEM0,0 and LG3,3
mode can then be compared by setting deff,0,0 = deff and deff,3,3 = deff,0,0/3.7 given
the double-pass result that the LG6,6 mode is dominating the harmonic LG3,3 out-
put field. The result of this simulation is shown in Figure 4.8. The assumption
deff,0,0/deff,3,3 = 3.7 translates into a factor of 3.72 ≈ 14 between the injected TEM0,0
and LG3,3 pump power where the same conversion efficiency is reached.

4The ratio is only independent of the focusing parameter in a finitely small segment of the crystal,
i.e. without the influence of phase matching.
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Figure 4.8: Numerical simulation of a cavity-enhanced SHG pumped by the
TEM0,0 and LG3,3 mode for ξ = 0.5, ∆n = 0 and deff,0,0/deff,3,3 = 3.7 [HVW20b].

Conclusion for the cavity-enhanced simulation

A linear SHG cavity in which the harmonic field is not resonating can be treated as a
double-pass configuration with enhanced pump power, and the main difference to
the single-pass configuration is a jump in the phase difference at the reflection off the
cavity end mirror. In the double-pass configuration, the conversion follows the same
rules as outlined for the single-pass. In the focusing regime of ξ ∼ 0.5 to 3 which the
focusing parameter of the experiment in Section 4.2 can also be counted to, the LG6,6
mode is predicted to dominate the harmonic LG3,3 output field by roughly 95 %
which then depends on the exact wavevector mismatch and focusing parameter.
Inserting the double-pass results into the Non-Linear Cavity Simulator shows that
the predicted ratio of d0,0/d3,3 ≈ 3.7 implies that the LG3,3 mode requires about 14
times the injected pump power in comparison to the TEM0,0 to achieve the same
conversion efficiency.

4.2 Experiment

On the one hand, the goal of this experiment was to compare the conversion effi-
ciencies of the TEM0,0 and LG3,3 mode in the same SHG cavity, and to measure their
harmonic output fields in order to test the predictions from Section 4.1. Since the
predictions on the conversion efficiencies mainly refer to the pump-mode depen-
dent effective nonlinearities d0,0 and d3,3, which cannot directly be measured, the ex-
perimental data are compared to simulation results computed with the Non-Linear
Cavity Simulator (NLCS) [Las10]. In this way, dp,l can be derived as a fitting parame-
ter. On the other hand, a second goal was to investigate the influence of astigmatism
on the conversion efficiency and on the harmonic output field of the LG3,3 mode.

4.2.1 Setup

Figure 4.9 shows the experimental setup which allows to compare the second har-
monic generation of the TEM0,0 and LG3,3 mode in the same SHG cavity. A non-
planar ring laser (NPRO), which is protected against back-reflections by a Fara-
day isolator (FI), continuously emits light in the TEM0,0 mode at a wavenlength
of 1064 nm with an optical power of about 2 W. Then, two removable mirrors en-
able the switching between the TEM0,0 and LG3,3 operation. In the latter case, the
beam propagates along the upper path where it is partly converted into the LG3,3
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DBS: dichroic beamsplitter
DOE: diffractive optical element
EOM: electro‐optical modulator
FI: Faraday isolator
RF: RF signal generator
MC: mode cleaner
NPRO: non‐planar ring oscillator
PD: photodetector
PM: powermeter
SHG: second harmonic generation
        : fundamental field (1064 nm)
        : harmonic field (532 nm)
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Figure 4.9: Schematic of the experimental setup (based on [HVW20a]). Two re-
movable mirrors can switch between the TEM0,0 and LG3,3 operation. The mode-
filtered pump field is coupled into the SHG cavity, the power is set via the right
Faraday isolator and half-wave plate. Injected, reflected and transmitted funda-
mental power and the harmonic output power are measured by photodetectors
and powermeters to infer the conversion efficiency and to correct for the effective
pump mode matching. The SHG cavity length is stabilised via the Pound-Drever-
Hall scheme. Not shown: electronics for the length stabilisation of the MC cavity.

mode by a diffractive optical element (DOE) (see also “Higher-order mode gener-
ation with a phase plate” in Sec. 2.3.3). The used DOE requires an incoming waist
size of 3.5 mm; hence, the beam is first collimated with two lenses, accordingly. For
the TEM0,0 operation, the lower beam path is used. Since the beam radii evolve dif-
ferently in the two beam paths, two individual sets of lenses are used for the mode
matching of the beam to the corresponding eigenmode of the mode-cleaner cavity5

(MC). Downstream the sets of lenses, the beam paths are recombined and a quarter-
and half-wave plate set the electric field to s-polarisation.

The MC cavity is used to obtain a pure pump mode for the SHG, as described
in Sec. 2.3.3, and its length is stabilised via the Pound-Drever-Hall (PDH) scheme
[Bla01], accordingly (electronics not shown in Fig. 4.9). The subsequent Faraday iso-
lator provides the proper polarisation for the SHG (s-polarisation), prevents optical
cross-talk between the MC and SHG cavities and controls the SHG pump power in
combination with the half-wave plate. Next, an electro-optical modulator (EOM),
driven at a radio frequency (RF) of about 120 MHz, modulates the phase of the elec-
tric field for the length stabilisation of the SHG cavity, again using the PDH scheme.
The corresponding error signal is generated by demodulating the signal from the
photodetector PDrefl in reflection of the SHG cavity at the pick-off behind a mirror
with a transmission of 1 %. Downstream from the EOM, the pump power can be
measured with a portable powermeter (PMin) and the pump field is then coupled
into the SHG cavity which is stabilised to the resonance condition of the respective
pump mode. PDtrans and PMout measure the transmitted fundamental and harmonic
output power, respectively. A dichroic beamsplitter (DBS) separates the harmonic
field from the incoming fundamental pump field.

Figure 4.10 shows the hemilithic SHG cavity which is formed by the incoupling

5Finesse of about 300, linewidth (full width at half maximum) of about 2.3 MHz.
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Figure 4.10: The hemilithic SHG cavity (based
on [HVW20a]). The allocated parameters are
used in Eqs. 4.17 and 4.18. btrans is assumed to
be negligible, the Peltier element is omitted.

mirror and the curved face of the
7 % doped MgO:LiNbO3 crystal, which
measures 2.0 × 2.5 × 6.5 mm in x, y
and z (propagation) direction, respec-
tively. The reflectivities for the funda-
mental field are Rin,1064 nm = 98.2 %
(measured) and Rend,1064 nm > 99.96 %
(nominal) at the incoupling mirror and
curved crystal face, respectively. For
the harmonic field, the nominal val-
ues are Rin,532 nm < 0.2 % and
Rend,532 nm = 99.9 %. The plane crys-
tal face is coated anti-reflective for both wavelengths and the radii of curvature are
Rc,in = 25 mm and Rc,end = 12 mm, setting the waist of the fundamental field’s
eigenmodes to about 30 µm in radius near the crystal centre. This corresponds to a
focusing parameter of ξ ≈ 0.5 (compare with Sec. 4.1). A peltier element stabilises
the crystal temperature via a control loop for a maximum SHG conversion efficiency,
i.e. phase matching (see Sec. 3.2.2), at each level of pump power.

4.2.2 Correcting for an imperfect pump mode matching

The external conversion efficiency ηext = Pout/Pext
in indicates how much of the in-

jected fundamental pump power is converted into the harmonic output field and can
easily be measured with PMin and PMout. However, an imperfect mode matching of
the pump field to the corresponding SHG cavity eigenmode results in a fraction of
the injected pump power which is not resonating in the stabilised SHG cavity but
reflected even if the cavity is impedance-matched. Additionally, astigmatism can
alter the cavity eigenmodes, especially the Laguerre-Gaussian ones (see Sec. 2.3.3),
and further reduce the effective pump mode matching. The effectively used pump
power is thus smaller than Pext

in . It is reasonable to expect that this effect is not signif-
icant for the TEM0,0 case as mode matchings close to 100 % are feasible and since this
mode can resonate in an astigmatic cavity. In the higher-order LG3,3 case, however,
this effect is potentially much stronger due to astigmatism and also due to a higher
sensitivity to spatial mismatches (see Sec. 2.3.3). Hence, the LG3,3 SHG conversion
efficiency is likely to be significantly below of what is theoretically possible.

ηcor = Pout/Pmat
in will be the corrected conversion efficiency which corrects the

pump power in terms of the effective pump mode matching. Here, the matched frac-
tion of the pump power is defined as Pmat

in = |κ|2 Pext
in where the coupling coefficient

|κ|2 is the absolute value squared of the spatial overlap integral between the injected
pump field and the resonating SHG cavity eigenmode. In the TEM0,0 case, |κ|2 can
directly be inferred from the transmission spectrum measured by PDtrans while the
length of the SHG cavity is scanned. This holds under the assumption that the trans-
mission spectrum is not significantly affected by conversion during the length scan
in which case the pump field would not properly build up. For the TEM0,0 mode,
|κ|2 = 97.5(15)% was measured independent of the pump power.

Inferring |κ|2 in the LG3,3 case is more difficult. The level of astigmatism does
not only depend on the mirror geometries of the SHG cavity but also on the micro-
scopic crystal structure which is especially affected by any kind of heat impact (see
Figure 4.11). On the one hand, this implies that the crystal temperature should not
be adjusted to solely optimise the phase matching, as in the TEM0,0 case, but needs
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Figure 4.11: Resonance peak of the injected LG3,3 pump mode in the SHG cavity
in terms of the transmitted power while the SHG cavity length is scanned. The
deformation of the resonance peak is a measure for the astigmatism of the cav-
ity. (a) demonstrates the influence of the pump power Pext

in for a constant crystal
temperature, while (b) demonstrates the influence of the crystal temperature Tc
for a constant pump power. All of the peaks are normalised. The x axis of each

individual peak measurement was adjusted for a clear figure.

to optimise the trade-off between maximum phase matching and minimum astig-
matism. On the other hand, the astigmatism during the SHG length scan is likely
to be different than the relevant astigmatism when the SHG length is stabilised, be-
cause the resonantly enhanced pump field leads to a higher absolute absorption in
the crystal than during the length scan. Hence, the LG3,3 measurement required a
more elaborate scheme to infer |κ|2 and ηcor.

While the SHG cavity is stabilised, PDtrans and PMout measure the transmitted
fundamental power Ptrans (the transmitted harmonic power is negligible) and the
harmonic output power Pout, respectively, while the reflected fundamental power
Prefl can be inferred from the DC signal of PDrefl.6 For each level of pump power,
these three values can be inserted into the corresponding steady-state equations of
the SHG cavity for the power reflection coefficient rrefl of the fundamental field, the
power transmission coefficient rtrans of the fundamental field and ηext. This set of
three equations can then be solved for the single-pass power absorptions coefficient
la of the fundamental field, the single-pass power conversion coefficient c, and the
parameter of interest |κ|2:

rrefl :=
Prefl

Pext
in

= 1 − γ |κ|2 = 1 −
[
1 − |arefl(la, c)|2

]
|κ|2

rtrans :=
Ptrans

Pext
in

= |atrans(la, c)|2 |κ|2

ηext :=
Pout

Pext
in

= |bout(la, c)|2 |κ|2

(4.17)

6Prefl is given by the ratio of the signal when the SHG cavity is stabilised to the maximum signal
when its length is scanned, where the latter is equal to Pext

in .



4.2. Experiment 67

with

arefl(la, c) = ρa
1 −

(τa
1 )

2(τa
AR)

2ρa
2(1 − la − c)

1 − ρa
1ρa

2(τ
a
AR)

2(1 − la − c)

atrans(la, c) = − τa
1 τa

2 τa
AR

√
1 − la − c

1 − ρa
1ρa

2(τ
a
AR)

2(1 − la − c)

bout(la, c) = −
τa

1 τa
ARτb

AR

√
c
(
(ρb

2)
2 + (1 − la − c)(ρa

2)
2
)

1 − ρa
1ρa

2(τ
a
AR)

2(1 − la − c)

(4.18)

where γ is the power reflection coefficient due to the impedance condition of the
SHG cavity; ρ and τ are amplitude reflection and tranmission coefficients, respec-
tively; 1, 2 and AR refer to the incoupling mirror, crystal end face, and anti-reflective-
coated crystal face, respectively; and a and b refer to the fundamental and harmonic
field, respectively. These allocations are illustrated in Figure 4.10. The absorption
and conversion of the fundamental field are assumed to be equal for both passes
through the crystal during one roundtrip in the SHG cavity because the fundamen-
tal field is nearly undepleted after the first pass. Furthermore, the absorption of the
harmonic field is neglected. The transmission and reflection coefficients of the in-
coupling mirror were measured separately and those of the crystal were taken as
indicated from the manufacturer. In Equations 4.17 and 4.18, the uncertainty of the
nominal value for ρa

2 has the largest impact on the result for |κ|2, and the uncertainty
in the corrected conversion efficiency ηcor is in the order of ±10 %.

4.2.3 Results

The results are shown in Figure 4.12, where the x axis refers to Pext
in or Pmat

in in case of
the external and corrected conversion efficiency (left y axis), respectively. The con-
version efficiency of the TEM0,0 mode reached a maximum of ηext = 95.69(11)% at
Pext

in ≈ 80 mW which is corrected to a maximum of ηcor = 98.7(15)% at
Pmat

in ≈ 78 mW using |κ|2 = 97.5(15)%. The steep increase within the pump power
range below the maximum and the slow decrease above it, which both the external
and corrected curves show, can be explained as follows: the impedance matching
condition of the SHG cavity with respect to the fundamental pump field is given
by the transmissivity coefficients of the incoupling mirror and curved crystal face as
well as by the intra-cavity “losses” due to absorption and conversion. In general,
the SHG cavity is highly over-coupled because the transmission through the curved
crystal face is close to zero. Hence, a fraction of the injected pump field is effectively
reflected by the SHG cavity even if the pump field is well mode-matched. How-
ever, the intra-cavity conversion increases with increasing pump power such that
the SHG cavity transitions towards being impedance-matched. Consequently, less
pump power is reflected and the external conversion efficiency approaches a maxi-
mum. If the pump power is further increased, the SHG cavity eventually transitions
to being under-coupled and the external conversion efficiency decreases again.

In the LG3,3 case, the conversion efficiency reached a maximum of
ηext = 45.1(2)% at Pext

in ≈ 664 mW which corresponds to a harmonic output power
of about 300 mW and is corrected to ηcor = 72(7)% at Pmat

in = 420(40)mW using
Equations 4.17 and 4.18. The corresponding values for |κ|2 are also displayed in Fig-
ure 4.12, refering to the right y axis, and decrease from 0.71(11) to 0.63(6). Despite
the large uncertainty, it is reasonable to assume that the coupling coefficient, and
thus the effective pump mode matching, actually decreased with increasing pump
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Figure 4.12: Measured external and corrected SHG conversion efficiencies (left y
axis) of the TEM0,0 and LG3,3 mode, including the NLCS simulations for the cor-
rected curves as solid lines (based on [HVW20a]). The x axis refers to the measured
input power Pext

in in case of the external efficiencies as well as the coupling coeffi-
cient |κ|2 (right y axis), and to the estimated matched pump power Pmat

in in case of
the corrected efficiencies.

power. This evolution correlates with a flattening of the external conversion effi-
ciency curve which seems to approach a maximum around 50 % rather than close
to 100 %. Another indication for a true decrease in |κ|2 is the harmonic output field
which is shown in Figure 4.13 for an injected pump power of about 130 mW and
660 mW. While both output fields are clearly distorted by the astigmatism of the
SHG cavity, the one at maximum pump power is even less homogenous featuring
larger ring segments with almost no intensity. Hence, the larger absolute absorption
of the fundamental field in the crystal at higher pump power most likely caused a
stronger astigmatism leading to a smaller effective pump mode matching, a decreas-
ing slope in the conversion efficiency and an increasing distortion of the harmonic
output field.

In Figures 4.13a and 4.13b, the seven-ring intensity structure of the LG6,6 mode,
which is expected to dominate the harmonic output field, is hard to identify by eye
due to the additional astigmatic structures in the inner ring. The method to estimate
the LG6,6 mode purity via one charged coupled device (CCD) picture, which was
used in [HVW20a], yielded about 71 % and 64 % for the Figures 4.13a and 4.13b, re-
spectively, but is not conclusive (see. Sec. 4.4). Before using the incoupling mirror
with Rin,1064 nm = 98.2 %, the same measurement was, however, conducted with
another incoupling mirror of Rin,1064 nm = 90 % and an NPRO laser with an out-
put power of only 1 W. This mirror results in a smaller power buildup of the pump
field in the SHG cavity and only a maximum conversion efficiency of about 0.5 % for
Pext

in = 282 mW could be achieved; hence, both components were changed after-
wards. But the astigmatism of the SHG cavity was apparently weaker with the 90 %
mirror and Figure 4.13c clearly confirms that the harmonic output field is dominated
by a mode with seven intensity rings which shows a high overlap to a theoretical
LG6,6 intensity distribution.

To derive the pump-mode dependent effective nonlinearities d0,0 and d3,3 from
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(a) Injected pump power:
Pext

in = 130 mW.
(b) Injected pump power:

Pext
in = 660 mW.

(c) Lower incoupling reflec-
tivity: Rin,1064 nm = 90 %.

Figure 4.13: CCD pictures of the harmonic SHG output field when pumped by the
LG3,3 mode. For (a) and (b), the incoupling reflectivity was Rin,1064 nm = 98.2 %.
Both pictures show the output field for different levels of pump power with distor-
tions due to the astigmatism of the SHG cavity. The seven-ring intensity distribu-
tion of the expected LG6,6 mode can hardly be identified conclusively. In (c), with
a different incoupling mirror, the output field is less distorted and clearly shows

seven intensity rings at a pump power of about 280 mW.

the measurement data, the NLCS tool [Las10] was used to simulate the corrected
conversion efficiency ηcor as a function of the matched input power Pmat

in with the pa-
rameters of the SHG cavity (solid lines in Fig. 4.12). As a free parameter, the effective
nonlinearity can then be adjusted to optimise the match between the measurement
data and the simulation. This procedure yielded d0,0 = 2.6 pm/V, d3,3 = 0.51 pm/V
and a ratio of d0,0/d3,3 = 5.1 which is a factor of about 1.4 larger than d0,0/d3,3 ≈ 3.7
as predicted from Sec. 4.1.3. A less astigmatic SHG cavity would be required for a
more significant comparison of theory and experiment in this regard.

Furthermore, the LG3,3 measurement data revealed that the ratio rabs of the power
Pabs, which was absorbed by the crystal, to the injected power Pext

in

rabs :=
Pabs

Pext
in

≈ 1 − rrefl − rtrans − ηext (4.19)

was unexpectedly high. rabs decreased from about 10 % to 2 % with increasing pump
power. Still, such high values can very well be explained by Equation 4.17 with a
single-pass power loss coefficient of la ∼ 10−4 which is reasonable for the used 7 %
doped MgO:LiNbO3 [Vah+08]. This high absorption loss in the crystal is likely to
enhance the influence of the LG3,3 pump field on the astigmatism of the crystal via
heat transfer compared to the TEM0,0 mode.

4.3 Summary

Section 4.1 described the theory behind second harmonic generation with an em-
phasis on higher-order spatial modes, and explained how they behave differently
to the TEM0,0 mode in a single-, double-pass and cavity-enhanced configuration
via numerical simulations. The findings can be split up into two main differences.
First, most higher-order modes excite several harmonic modes instead of just a sin-
gle one. Due to the Gouy phase, these harmonic modes show different individual
phase matchings and conversion efficiencies where the influence of the Gouy phase
depends on the focusing parameter. Hence, the harmonic output field, as the final
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superposition of all excited harmonic modes, depends on the focusing parameter as
well. Second, higher-order modes require more pump power to achieve the same
conversion efficiency as the TEM0,0 mode in the same configuration. Their more
uniform intensity distributions are a disadvantage in nonlinear processes if high ef-
ficiencies are the goal. One way to quantify this difference is to extend the effective
nonlinearity of a nonlinear medium by including the influence of the used pump
mode. Higher-order, and thus less efficient, pump modes can then be associated
with an accordingly smaller pump-mode dependent effective nonlinearity dp,l . For
a focusing parameter regime of about 0.5 to 3 in a cavity-enhanced SHG, the sim-
ulation results for the TEM0,0 and LG3,3 mode predict a ratio of d0,0/d3,3 ≈ 3.7,
independent of the nonlinear medium, and that the harmonic output field of the
LG3,3 mode consists of the LG6,6 mode to more than 90 %.

In Section 4.2, these predictions were tested in a cavity configuration with a
focusing parameter of ξ ≈ 0.5. Conversion efficiencies of 96 % and 45 % could
be achieved for the TEM0,0 and the LG3,3 mode, respectively. These results were
especially a success because this level had not been demonstrated before for any
higher-order mode [Zho+14; Cou+97]. Since the SHG cavity, nevertheless, showed
to be astigmatic while the theoretical predictions assume an ideal cavity, an elabo-
rate scheme to correct the LG3,3 results, accordingly, had to be implemented for a
reasonable comparison. A ratio of d0,0/d3,3 ∼ 5 was derived which agrees with the
theoretical prediction within the uncertainties of the correction scheme. In a sepa-
rate experiment with another SHG incoupling mirror and a weaker astigmatism, it
could further be confirmed that the harmonic output field is dominated by the LG6,6
mode as predicted.

The corrected ratio d0,0/d3,3 ∼ 5 implies that the LG3,3 mode should require
about 25 times the pump power compared to the TEM0,0 mode to reach the same
conversion efficiency in an ideal SHG cavity. However, this factor was in the order
of 100 in the experiment due to astigmatism (compare the curves “TEM0,0, ext” and
“LG3,3, ext” in Fig. 4.12) and would even be larger if the mode purity of the har-
monic output field was taken into account. Hence, the results of this chapter second
the findings of several other experiments [Bon+11; Hon+11; Sor+13] that astigma-
tism constitutes a huge challenge for Laguerre-Gaussian modes and their usage in
high-precision applications like gravitational-wave detectors. Currently, there are
no follow-up plans regarding a squeezed light source for gravitational-wave detec-
tors in a Laguerre-Gaussian mode. Squeezed states in the LG3,3 mode have already
been generated, e.g. in [Ma+20], at low efficiency with a quantum noise reduction of
about 1.2 dB.

The next chapter will turn to the more promising alternative to Laguerre-
Gaussian modes and present a complete and efficient squeezed light source for
Hermite-Gaussian modes.

4.4 Erratum

In [HVW20a], the output mode purity of the harmonic field with respect to the LG6,6
mode was estimated via the intensity distribution measured by a CCD camera. If
Aout is the output field, the CCD camera measures |Aout|2. The idea was to approxi-
mate the output mode purity as follows:

µout =

∣∣∣∣∫ A∗
6,6Aout dxdy

∣∣∣∣2 ≈
∣∣∣∣∫ |A6,6|2 |Aout|2 dxdy

∣∣∣∣2 , (4.20)
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assuming that all fields and intensity distributions are normalised. Similar
approaches to estimate mode purites were employed e.g. in [Ful+10] and [Car+13].
However, at least in [Ful+10], a more elaborate scheme with additional simulations
was used. At the time of writing [HVW20a], we assumed that one CCD picture
would suffice for a reasonable purity estimation. This method can, however, lead to
large errors. These errors depend on the mode(s) which are associated with the im-
purity and their relative phases to the intended mode. In short, an “impurity mode”
can be interpreted as a modulation of the intended mode which the CCD camera
can sense if mainly the amplitude is modulated over the transverse plane (relative
phase of about 0◦ or 180◦). If mainly the phase is modulated (relative phase of about
±90◦), the CCD camera will hardly sense this impurity. Simulating these errors for
some LG and HG modes suggests that this problem is more severe for HG modes
where an estimated purity of 98 % could already include an error of 20 % in an ex-
treme case. The LG6,6 mode seemed to be more robust in this regard; however, errors
in the order of 20 % are still possible, especially given that the actual mode purity of
the harmonic output field was only moderate in this experiment.

With this erratum, I want to clarify that the uncertainty of our method to estimate
the mode purity of the harmonic output field is significantly larger than we indicated
in [HVW20a]. Hence, I do not include the effective conversion efficiency in this
thesis.
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Chapter 5

Squeezed Light Source for
Higher-Order Hermite-Gaussian
Modes

This chapter is based on the publication [HWV22] and reports on the efficient gen-
eration of squeezed states of light in the Hermite-Gaussian modes TEM0,0, HG1,1,
HG2,2 and HG3,3 and their characterisation with a balanced homodyne detector.

The scheme for the generation of squeezed states as outlined in Section 3.2.2
can be adapted to higher-order spatial modes in two distinct ways. In the indirect
method, the squeezed states are first generated in the TEM0,0 mode which allows
for a very high efficiency [Vah+16]. Afterwards, the squeezed TEM0,0 mode is con-
verted into a higher-order mode. With the currently available mode conversion tech-
niques, this step, however, adds optical loss to the squeezed field due to absorption
and the partial conversion into unwanted modes [Car+13; Ast+21]. Hence, the re-
sults for this indirect method have remained below 3 dB of quantum noise reduction
so far [Ma+20]. In the second method, the OPA directly generates squeezed states
in a higher-order mode without the intermediate TEM0,0 process. In practice, this
method is more efficient because it does not require any spatial manipulation of the
squeezed field. 5 dB in a first-order mode and 3 dB for higher mode orders have
been the highest results for the direct generation of squeezing and entanglement so
far [Ste+18; Guo+17; Las+06].

For this thesis, the more promising direct method has been chosen, and the next
section discusses in more detail how to efficiently pump the direct generation of
squeezed states in higher-order modes.

5.1 Pump field simulations for direct squeezed light genera-
tion

In general, the nonlinear process which is used in this thesis to generate squeezed
states, parametric down-conversion, can be interpreted as a reversed second har-
monic generation (SHG). The most important consequence is that every harmonic
mode that is excited in the SHG of a given fundamental mode can, in turn, gener-
ate squeezed states in this mode. Employing this on Section 4.1, for instance, yields
that an arbitrary superposition of the harmonic modes LG0,6, LG2,6, LG4,6 and LG6,6
will generate squeezing in the LG3,3 mode. Of course, different superpositions are
differently efficient and very similar considerations as for the SHG apply. This prin-
ciple has already been mentioned and experimentally investigated e.g. in [Las+06]
and [Guo+17], respectively. In the first article, the general possibility to pump the
squeezing process of the HG1,0 and HG2,0 mode with several harmonic modes is
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stated; nevertheless, they exclusively used the harmonic TEM0,0 mode in their exper-
iment. In the latter article, a pump superposition of the harmonic modes TEM0,0 and
HG2,0 could reduce the threshold power of a type-II optical parametric oscillator by
53.5 % compared to only using the harmonic TEM0,0 mode to generate entanglement
in the HG1,0 mode. Since the threshold power corresponds to the pump power for
which the highest squeezing level is obtained (in the absence of phase noise) [BK68;
Las10], it can serve as a measure for the pump efficiency and should be minimised.

The article [BK68] only discusses the TEM0,0 mode and, thus, only states an equa-
tion for the TEM0,0 threshold power. This equation can, however, be generalised to
an arbitrary squeezed mode. [BK68] start their calculation in Equation (3.3) where
the time average power gain of the idler field ∆P2 through the nonlinear medium is
written as (Eq. (3.4) already inserted)

∆P2 = −Im
(

ω2

2
χ
∫

E∗
2 (r)E∗

1 (r)E3 (r) dV
)

. (5.1)

1, 2 and 3 denote the signal, idler and harmonic field, respectively, E1,2,3 are the cor-
responding three-dimensional amplitude distributions and the integral is evaluated
over the nonlinear medium. In the case of degenerate parametric down-conversion,
the signal and idler field are degenerate and can both be described by the amplitude
distribution of the squeezed field. To further keep the notation of this thesis, that
1 and 2 denote the fundamental and harmonic field and that A denotes an ampli-
tude distribution instead of E, the following renaming can be done: ∆P2 → ∆Pi,s
where i and s denote the idler and signal field, respectively, ω2 → ω1, E1,2 → Asqz
and E3 → Ap where the subscript p denotes the pump field. Moreover, the nega-
tive imaginary part accounts for the influence of an arbitrary relative phase between
the squeezed and pump field. Assuming the optimum relative phase, the negative
imaginary part can be replaced by the absolute value, finally yielding

∆Pi,s ∝
∣∣∣∣∫ [A∗

sqz (r)
]2

Ap (r) dV
∣∣∣∣ , (5.2)

which describes the power gain in the idler or signal field. Following the definitions
of H̄ in Equations (3.19) and (3.23), and of h̄ in Equation (3.32) of [BK68], the spatial-
mode dependence of the threshold power Pthr in Equation (3.34) can be generalised
to

Pthr ∝
∣∣∣∣∫ [A∗

sqz (r)
]2

Ap (r) dV
∣∣∣∣−2

. (5.3)

This volume integral dV = dAdz can be split up into a surface integral, evaluated
over the transverse plane, and a line integral, evaluated along the propagation axis.
The surface integral computes the spatial overlap of the pump field to the square
of the squeezed field which has to be non-zero for a finite threshold power, that is,
for the generation of squeezed states. Hence, the surface integral determines which
harmonic modes can generate squeezed states in a given fundamental HGm,n mode,
at all, and the general pump field can be written as an arbitrary superposition of
them [Las+06]:

Ap (HGm,n) =
m

∑
k=0

n

∑
j=0

a2k,2jHGh
2k,2j , (5.4)

where the harmonic modes HGh
m,n are denoted by the superscript h and have a re-

duced waist size (wh
0 = w0/

√
2). According to this equation, the squeezing process
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of the HGm,n includes (m + 1)(n + 1) possible pump modes. More specifically, the
general pump fields for the spatial modes in this thesis read

Ap(HG0,0) = a0,0HGh
0,0

Ap(HG1,1) = a0,0HGh
0,0 + a2,0HGh

2,0 + a0,2HGh
0,2 + a2,2HGh

2,2

Ap(HG2,2) = a0,0HGh
0,0 + a2,0HGh

2,0 + a0,2HGh
0,2 + a2,2HGh

2,2

+ a4,0HGh
4,0 + a4,2HGh

4,2 + a0,4HGh
0,4 + a2,4HGh

2,4 + a4,4HGh
4,4

Ap(HG3,3) = a0,0HGh
0,0 + a2,0HGh

2,0 + a0,2HGh
0,2 + a2,2HGh

2,2

+ a4,0HGh
4,0 + a4,2HGh

4,2 + a0,4HGh
0,4 + a2,4HGh

2,4

+ a4,4HGh
4,4 + a6,0HGh

6,0 + a6,2HGh
6,2 + a6,4HGh

6,4

+ a0,6HGh
0,6 + a2,6HGh

2,6 + a4,6HGh
4,6 + a6,6HGh

6,6 .

(5.5)

The line integral in Equation 5.3, on the other hand, evaluates the phase matching
between the squeezed and pump field.

Let us first assume a pump field which only consists of one of the harmonic
modes from Equation 5.4. In this case, the optimum choice is the highest-order mode
HGh

2m,2n which provides the highest spatial overlap as well as the best phase match-
ing, thus, simultaneously maximises the surface and line integral and minimises
the threshold power. This is in perfect agreement with the findings in Section 4.1
where the LG3,3 SHG conversion was most efficient into the excited harmonic mode
with the highest mode order (LG6,6), as well. A comparison with Table 4.1 allows
to associate the spatial overlap in Equation 5.3 with the c′ parameter and, for both
processes, a smaller difference ∆γ in the Gouy phase factors implies a better phase
matching. ∆γ is always minimised and equal to 1 for the relation HGm,n ↔ HGh

2m,2n.

10-1 100 101
100

101

102

Figure 5.1: Calculated threshold power for the cases as indicated by the legend
dependent on the focusing parameter. The curves are normalised to the TEM0,0

minimum, their ratios are ξ-independent.

Figure 5.1 presents the threshold power calculated with Equation 5.3 for the
TEM0,0, HG1,1, HG2,2 and HG3,3 mode, when pumped by the respective HGh

2m,2n
mode, dependent on the focusing parameter ξ. For each value 0.05 ≤ ξ ≤ 10, the
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wavevector mismatch ∆k = 2ksqz − kp is optimised. The curves evolve qualitatively
identically due to the identical ∆γ values, each having a single minimum at ξ ≈ 3
which coincides with the focusing parameter for highest SHG conversion efficiency
if ∆γ = 1. The ratios of the curves, which result from the differently efficient pump
intensity distributions and from the different spatial overlaps regarding the surface
integral in Equation 5.3, amount to 4.0, 7.1 and 10.2 for the HG1,1, HG2,2 and HG3,3
mode, respectively, compared to the TEM0,0 mode. These ratios do not only im-
ply that the threshold power of the HG1,1 mode equals 4 times the threshold power
of the TEM0,0 mode but, generally, that the HG1,1 mode requires 4 times the pump
power in the HGh

2,2 mode compared to the pump power the TEM0,0 mode requires in
the harmonic TEM0,0 mode to achieve any given level of quantum noise reduction.

Proceeding from the most efficient single-mode pump field, additional modes
can now be added. This will increase the spatial overlap between the pump and
(square of the) squeezed field, at least up to a certain ratio of the relative amplitudes,
but also deteriorate the phase matching. With this in mind, the additional modes can
significantly improve the pump efficiency, especially if the next highest-order modes
are added because they have the smallest effect on the phase matching. Since the
parameter space for an arbitrary superposition as in Equation 5.4 is enormous and
the influence of additional pump modes even depends on the focusing parameter,
Figure 5.2 only presents some examples on how different pump superpositions affect
the threshold power of the HG1,1 mode. The focusing parameter is fixed at ξ = 0.5
because this value is close to the one of the squeezed light source presented in this
thesis. Several main aspects are mentioned in the following.

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

Figure 5.2: Calculated threshold power of the HG1,1 mode at ξ = 0.5 for the pump
fields as indicated by the legend dependent on the relative amplitude factor. The

curves are normalised to the single-mode HG2,2 pump field.

1. As a single pump mode, the TEM0,0 mode is significantly less efficient than
the HG2,2 mode. The ratio of 4 solely results from the smaller spatial overlap
while the worse phase matching is negligible for ξ = 0.5. The ratio increases,
however, from 4 to 14 for ξ = 3.

2. The optimum superposition of the modes TEM0,0 and HG2,0 with zero relative
phase between them can reduce the threshold power by about 54 % compared
to only using the TEM0,0 mode.

3. Adding the HG2,0 to the HG2,2 mode can reduce the threshold power by about
17 % compared to the HG2,2 mode for a relative phase of zero. With a relative
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phase factor of i, the threshold power increases independent of the relative
amplitude due to a reduced spatial overlap. At A2,2 = 0, both curves approach
2 because the spatial overlap for the HG2,0 mode is half the one of the HG2,2
mode. The worse phase matching is again negligible for ξ = 0.5.

4. The HG2,0 and HG0,2 mode jointly increase the spatial overlap more than in-
dividually. Adding both to the HG2,2 mode with relative phases of zero can
reduce the threshold power by about 31 % compared to the HG2,2 mode and
results in a threshold power equal to the single-mode HG2,2 case for A2,2 = 0.

5. The dependence on the focusing parameter becomes very clear with a compar-
ison to ξ = 3. For this value, none of the above assumed superpositions can
outperform the single HG2,2 mode due to the increased influence of the Gouy
phase and worse phase matching.

For a given OPA cavity, the optimum pump superposition could now be derived
with Equation 5.3. There may, however, be limitations as to which pump superposi-
tion can be generated in a given setup. These limitations and the resulting choice of
the pump field will be outlined for this thesis in the following.

In the squeezed light source presented in this thesis, a cavity-enhanced SHG first
generates a harmonic field in the harmonic TEM0,0 mode which is then optionally
converted into a higher-order pump field by a phase-only spatial light modulator
(SLM, compare with Section 2.3.3 and Appendix A.2). In general, this is not neces-
sarily the most efficient order. If an experiment is operated in only one higher-order
mode, a spatial light modulator could also first generate this mode which could then
pump the corresponding higher-order mode SHG. In this case, the design of the
SHG cavity could be optimised for a maximum conversion efficiency at the avail-
able pump power in the chosen spatial mode. Due to the similarity of the SHG and
parametric down-conversion, it is a reasonable assumption that the pump field for
the squeezing process would even be (close to) the optimum superposition, already,
if the SHG focusing parameter would be identical to the one of the optical paramet-
ric amplifier. However, the optimum SHG cavity design, especially with respect to
the reflectivity of the incoupling mirror, depends on the higher-order mode and its
individual SHG pump efficiency. To decouple the SHG conversion efficiency from
the spatial mode of operation in this thesis, the SHG is exclusively performed in the
TEM0,0 mode which is then optionally converted into a higher-order pump field by
the SLM.

As shown above, certain pump superpositions can achieve higher pump effi-
ciencies than a single-mode pump field. Let us thus investigate whether an SLM
can theoretically generate a pump superposition with a sufficiently high conversion
efficiency such that this benefit still holds, and whether this can be confirmed in
practice. As an example, let us assume that we want to generate squeezed states in
the HG1,1 mode with the following pump superposition

Ap =
√

A2,2 HGh
2,2 +

√
1 − A2,2 HGh

2,0 . (5.6)

According to Figure 5.2, Ap should achieve the highest pump efficiency at A2,2 ≈ 0.9.
Next, we can apply the method to estimate the conversion efficiency of an SLM from
Section 2.3.3 to Ap. In this case, the SLM generates the field

Ares(x, y, z = 0) ∝ I0,0(x, y, 0)Φp(x, y, 0) , (5.7)
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Figure 5.3: Calculated conversion efficiency of a spatial light modulator from the
TEM0,0 mode into Ap (as indicated in the legend) for an incoming/outgoing waist

ratio of 2.15. The phase plate is assumed to be at the waist position (z = 0).

where Φp is the phase distribution of Ap. Then, the conversion efficiency yields

ηconv =

∣∣∣∣∫ A∗
p(x, y, 0)Ares(x, y, 0) dxdy

∣∣∣∣2 . (5.8)

Figure 5.3 presents the results dependent on A2,2 and assuming the optimum waist
ratio for the HG2,2 mode of win/wout = 2.15 (compare with Fig. 2.4). Evidently,
the conversion efficiency significantly decreases when A2,2 decreases from 1. At
A2,2 ≈ 0.9, this reduction amounts to about 10 %. Still, the reduction in the threshold
power at A2,2 ≈ 0.9 is about 17 %. Ideally, this should result in an effective reduction
in the threshold power by 1 − 0.83/0.9 ≈ 8 % for the combined system of SLM and
OPA cavity.

Let us now compare this calculation with experimental results. For this thesis,
different pump superpositions for the different squeezed modes, including the dis-
cussed Ap for the HG1,1 mode, were tested and compared with respect to the para-
metric gain ([Che07]) they could achieve in an OPA cavity for a given harmonic
power. Here, the single HGh

2m,2n always achieved the best results. This discrepancy
to the calculation above could originate from technical imperfections in the mode
generation. Furthermore, the actual focusing parameter of the OPA cavity could
be slightly larger than 0.5 which would reduce the benefit of a pump superposi-
tion compared to a single-mode pump field. The exact reason for the discrepancy
was not further investigated as sufficient pump power (at least, for the HG1,1 mode)
was available, anyway. Consequently, only the HGh

2m,2n mode is used to generate
squeezed states in the HGm,n mode in this thesis. In theory, a multi-mode pump field
could more reliably be generated with two SLMs (or generally two phase plates)
[Jes+08], or if the SHG is directly operated in a corresponding higher-order spatial
mode, or if the pump field is split up into several paths, where each path generates
an individual pump mode, which are then recombined. The latter approach was
successfully implemented in [Guo+17].
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The design of the OPA cavity

For gravitational-wave detectors (though not in GEO600), the OPAs are typically
operated as a dual-resonant cavity, that is, the pump and squeezed field are simul-
taneously resonant and the pump field is used to stabilise the length of the OPA
cavity [MV20; Tse+19]. If, however, the harmonic HGh

2m,2n mode is used to gen-
erate squeezed states in the HGm,n mode, the squeezed and corresponding pump
mode do not share the same mode order (except for the TEM0,0 mode squeezing)
and are, in general, non-degenerate in a cavity due to their different Gouy phase
evolutions. This does not render the typical OPA design impossible but, given the
goal to compare four modes with the same OPA cavity, a single-resonant cavity de-
sign is more practical to implement. In this design, the squeezed field is resonating
while the incoupling mirror is completely transmissive for the pump field such that
the latter cannot be used for the OPA length stabilisation. Hence, an auxiliary OPA
control field at the fundamental frequency in the spatial mode which is squeezed is
required (see Fig. 5.4). In the linear OPA cavity of this thesis (same general design
as in Fig. 4.10, details given below), about 1 % of this control field is transmitted and
causes a coherent amplitude in the squeezed field such that bright squeezed states
in the respective HG modes are produced (see Sec. 3.2.4). Furthermore, the OPA
control field requires an additional control loop to stabilise its relative phase to the
pump field [Ebe13]. This loop keeps the OPA control field in the state of parametric
deamplification in the OPA cavity and is also needed to properly control the mea-
sured squeezing quadrature angle.

5.2 Generation and detection of squeezed states in Hermite-
Gaussian modes

This section presents the squeezed light source for the Hermite-Gaussian modes
TEM0,0, HG1,1, HG2,2 and HG3,3 and characterises the individual performances by
analysing and comparing the balanced homodyne detection of the generated states.
It is taken from [HWV22] to a large extent.

5.2.1 Setup

Figure 5.4 shows a schematic of the experimental setup (see photgraphs in Fig. 5.5).
It is operated with a 2 W non-planar ring laser (NPRO) continously emitting light
in the TEM0,0 mode at a wavelength of 1064 nm. The quarter-wave plate minimises
the elliptical polarisation and the half-wave plate in combination with the input po-
lariser of the Faraday isolator (FI) determines the power injected into the whole
experiment. A phase modulation at a frequency of 120 MHz, driven by the radio-
frequency generator RF1, is imprinted by the electro-optical modulator (EOM) for
the length stabilisation of the SHG cavity and the mode cleaner1 (MC) via the Pound-
Drever-Hall scheme [Bla01]. The light field is then split up into two paths. The ma-
jor fraction of the power propagates to the SHG for the generation of the harmonic
pump field which is separated from the incoming field by a dichroic beamsplitter
(DBS). Another combination of a half-wave plate and an FI controls the pump power
sent to the OPA. Then, two removable mirrors can switch between bypassing the
Hamamatsu LCOS spatial light modulator SLM2 for the TEM0,0 squeezed light gen-
eration and converting the harmonic TEM0,0 mode into a higher-order pump mode

1Finesse of about 290, linewidth (full width at half maximum) of about 2.5 MHz.
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Figure 5.4: Schematic of the experimental setup (based on [HWV22]). In the fun-
damental and harmonic beam path, two removable mirrors can each switch be-
tween the TEM0,0 and higher-order mode operation where the latter includes the
respective spatial light modulators for the mode generation. The mode-filtered
fundamental field is used as a local oscillator at the balanced homodyne detec-
tor and as a control field to stabilise the OPA cavity length. The harmonic pump
field is not mode-filtered and directly injected into the OPA cavity with a tunable
power. The squeezed states are guided to the signal input port of the detector and

the noise power spectrum is displayed by a spectrum analyser.

with SLM2. In both cases, a harmonic power of up to 1 W at a wavelength of 532 nm
is available downstream this stage. The pump field is injected into the OPA cavity
and a second DBS separates the squeezed field (dashed line) from the pump field.
The squeezed field is sent to the balanced homodyne detector and a spectrum anal-
yser calculates the power spectrum of the detected signal with a resolution band-
width of 300 kHz and a video bandwidth of 300 Hz in the frequency range of 1 MHz
to 20 MHz (“full-span”).

The lesser fraction of the infrared power in reflection of the T = 92 % beamsplit-
ter can also either bypass SLM1 (same type as SLM2) for the TEM0,0 operation or be
converted into a higher-order mode by SLM1. The subsequent mirror can be con-
trolled via a piezo-electric transducer (PZT) to stabilise the relative phase between
the pump field and the OPA control field to the state of parametric deamplification
of the control field in the OPA. The corresponding error signal is generated by de-
modulating the signal from the photodiode at the FI port (to the right of the OPA in
Fig. 5.4). The length of the MC cavity is stabilised to the resonance condition for the
respective mode that is squeezed to obtain an optimal local oscillator field (with re-
spect to the mode purity) downstream. The subsequent half-wave plate determines
how the transmitted power is then split up at the polarising beamsplitter (PBS). The
transmitted fraction serves as the local oscillator field at the balanced homodyne de-
tector and is set to a power of about 17 mW which enables an optimum use of the
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Figure 5.5: Squeezed light source. Top: beam paths of the fundamental field up
to the mode cleaner on the bottom right (red: TEM0,0 field, orange: higher-order
mode field via SLM1 on the very left, yellow: TEM0,0 path to SHG). Bottom: beam
paths of harmonic and fundamental field (dark green: TEM0,0 pump field from
SHG to OPA, bright green: same for the higher-order mode pump field via SLM2
on the top left, red and orange: as in top figure, left arrow: LO beam path, right

arrow: squeezed field path, bottom path: OPA control field).
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dynamic range of the homodyne detector photodiodes. Another half-wave plate ad-
justs the polarisation of the local oscillator field to the one of the squeezed field. The
PZT mirror in this path stabilises or scans the relative phase between the squeezed
field and the local oscillator field to enable the measurement of the squeezing and
anti-squeezing level. Here, the corresponding error signal results from demodulat-
ing the output signal of the homodyne detector. The part which is reflected by the
PBS is the OPA control field. The second EOM imprints a phase modulation at a
frequency of 45 MHz, driven by RF2, which is used for the length stabilisation of the
OPA cavity as well as for the two phase stabilisations mentioned above. The com-
bination of the half-wave plate downstream from this EOM and the subsequent FI
controls the power in the OPA control field. It was set to the minimum power of
about 500 µW which still allowed to properly stabilise the OPA cavity length. The
half-wave plate between the FI and the OPA adjusts the polarisation to the one of
the squeezed field.

The hemilithic linear OPA cavity generally has the same design as the SHG cav-
ity shown in Figure 4.10. It contains a periodically poled potassium titanyl phos-
phate (PPKTP) crystal which measures 1.0 × 2.0 × 9.3 mm in x, y and z (propaga-
tion) direction. The curved crystal face serves as a highly reflective end mirror,
Rend,1064 nm > 99.96 % and Rend,532 nm = 99.9 %, while the plane face is anti-reflective
coated for both wavelengths. The nominal reflectivities of the incoupling mirror are
Rin,1064 nm = 92 % and Rin,532 nm < 0.2 % such that the OPA’s half width at half max-
imum (bandwidth) is about 25 MHz. The radii of curvature are Rc,in = 25 mm and
Rc,end = 12 mm, setting the waist of the squeezed field’s eigenmodes to about 33 µm
in radius near the crystal center. A peltier element stabilises the crystal temperature
via a control loop and is used to optimise the phase matching. The SHG cavity in
this setup has the same geometry and crystal but a reflectivity of the incoupling mir-
ror of Rin,1064 nm = 90 % to enable high conversion efficiencies at high fundamental
input power.

5.2.2 Results

Figure 5.6 shows the results for a measurement frequency of 4 MHz dependent on
the total harmonic power. The data points were deduced from individual full-
span measurements as shown in Figure 5.7. Table 5.1 summarises the maximum
squeezing levels for the four modes together with the corresponding total harmonic
power. As seen in Figure 5.6, the higher-order modes require significantly more
pump power than expected from Figure 5.1 to achieve the same squeezing levels as
the TEM0,0 mode for a combination of two reasons. First, the conversion efficiency of
SLM2 is not perfect and the generated higher-order pump field is not mode-filtered.
The exact efficiency could not be measured but it can be estimated from SLM1 under
the assumption that both SLMs reach similar efficiencies due to the similarity of the
models. The conversion efficiency of SLM1 was measured for the HG4,4 mode to be
close to 29 %, i.e. 29 % of the TEM0,0 power incident on SLM1 could be detected in
transmission of the MC cavity at the HG4,4 resonance condition. Second, the mode
matching of the pump mode to the OPA cavity rapidly decreases with increasing
mode order (see Sec. 2.3.3, “Sensitivity to spatial mismatches”). Hence, the pump
field effectively consists of the intended pump mode to less than 29 %. Figure 5.1
indicates the measured “total harmonic OPA pump power” that is injected into the
OPA cavity (short: total harmonic power) instead of the effective pump power which
is coupled to the intended OPA eigenmode. Nevertheless, the balanced homodyne
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Figure 5.6: Squeezing and anti-squeezing results at a measurement frequency
of 4 MHz, normalised to the noise level of the vacuum state [HWV22]. The
measurement points were derived from individual full-span measurements (see

Figure 5.7). Solid lines: theoretical model fitted to the measurement data.

detector only measures the vacuum/squeezed noise in the intended mode due to
the mode-filtered local oscillator.

Table 5.1: Summary of the characterisation of the squeezed light source. n.c.: not
conclusive.

Maximum Total Homodyne Expected Fitted Fitted
squeezing harmonic contrast detection detection phase noise
level (dB) power (mW) (%) efficiency (%) efficiency (%) (mrad)

TEM0,0 11.8(3) 41.8(4) 98.5(5) 94.6(12) 94.4(3) 4 (≤10)
HG1,1 10.1(3) 608(6) 98.0(5) 93.6(12) 92.7(3) 16 (≥15)
HG2,2 7.5(3) 1005(10) 96.0(5) 89.8(12) 89.0(3) n.c.
HG3,3 4.5(3) 1000(10) 95.5(5) 88.8(12) n.c. n.c.

The measurement data are also compared to the theoretical model from Equa-
tion 3.44 by varying the detection efficiency, phase noise and threshold power to
obtain the best match between this theoretical model and the measurement results
(solid lines in Figure 5.6). The fitted parameters are shown in Table 5.1 apart from
the threshold power because its value is misleading due to the discrepancy between
the effective pump power and the total harmonic power.

The fitted detection efficiencies are in good agreement with the expectations
which are derived from the expected total optical loss (see also Sec. 3.2.3). Included
in the total optical loss are the OPA escape efficiency, which is at 99.0(5)%, the quan-
tum efficiency of the homodyne detector’s photodiodes, which is at 99.0(5)%, and
loss from optics in the path of the squeezed field with 0.4(2)%. These three values
are assumed to be equal for the four modes. Finally, the homodyne detector only
measures the quantum noise reduction in the fraction of the squeezed field which
is mode-matched to the local oscillator field. The corresponding homodyne contrast
was measured as described in Sec. 3.2.3 with the LO and OPA control field. The
results can also be found in Table 5.1. A high homodyne contrast becomes more
challenging with increasing mode order (see again Sec. 2.3.3).
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Figure 5.7: Measurement result for the HG1,1 mode at a total harmonic power of
610 mW, normalised to the vacuum state noise level [HWV22]. LO: local oscillator
field. Resolution bandwidth: 300 kHz, video bandwidth: 300 Hz, electronic dark
noise (not shown): about −25 dB over full span and not subtracted from the data.

The effect of phase noise only becomes clearly visible in the regime of high anti-
squeezing. If this regime is reached, phase noise distinctly increases the frequency
where the maximum quantum noise reduction is observed (see Fig. 3.10). If this
regime is not reached and if technical laser noise additionally dominates at lower
frequencies, the effect of phase noise cannot be conclusively distinguished from the
effect of a reduced detection efficiency. For the HG2,2 and HG3,3 mode, the available
harmonic pump power was not sufficient to reach the regime of sufficiently high
anti-squeezing. In the range of the expected detection efficiency for the HG2,2 mea-
surement, the theoretical model can only derive an upper limit for the phase noise
of 50 mrad. For the HG3,3 mode, the harmonic power did not suffice to take enough
data points for a reasonable fit in Figure 5.6. The single conducted HG3,3 full-span
measurement can be explained with a detection efficiency of 87(6)% and a phase
noise of 80(70)mrad. Due to these large uncertainties, both parameters cannot be
properly inferred from the theoretical model, even though the expected detection
efficiency is within the range of the fitted value. There is, however, a clear difference
of at least 5 mrad in the fitted phase noise of the TEM0,0 and HG1,1 measurements.
Since the only differences in the setups for these two modes are the two SLMs, they
are the most likely cause for the higher phase noise. However, the exact mechanism
has to be further investigated.

Furthermore, the low TEM0,0 phase noise of about 4 mrad, which is not signifi-
cantly larger than e.g. in [Vah+16], indicates that the residual technical laser noise of
the bright squeezed field (see Sec. 3.2.4) was negligible at a measurement frequency
of 4 MHz. Otherwise, it would have led to higher fitted phase noise values. Since
the coherent power in the squeezed field was mode-independent, the same applies
to the higher-order modes.

Figure 5.7 shows one HG1,1 full-span measurement with a squeezing level of
10 dB at 4 MHz for a total harmonic power of about 610 mW. For the squeezing
and anti-squeezing curves, the relative phase between the squeezed field and local
oscillator field was stabilised, accordingly. Both curves decrease towards higher fre-
quencies in agreement with effects due to the OPA bandwidth. For the “scanned
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LO phase” curve, this relative phase was scanned over more than two cycles during
the scan time of the spectrum analyser which results in the oscillation between the
squeezing and anti-squeezing levels. The increased noise in the squeezing curve at
low frequencies is the residual technical laser noise of the fraction of the OPA con-
trol field which is transmitted through the OPA and also measured by the balanced
homodyne detector.

5.3 Summary

Section 5.1 discussed the main aspects of the theory behind an efficient pump field
for the direct generation of squeezed states in higher-order modes. The squeezing
process of any higher-order Hermite-Gaussian mode can be pumped with an arbi-
trary superposition of a corresponding set of harmonic modes. Different superpo-
sitions provide different spatial overlaps to the squeezed field and different phase
matchings, and the optimum superposition for a given OPA cavity can be derived
either via the equation for the threshold power or via experimental testing.

In this thesis, the pump field was limited to the most efficient single pump mode
due to the limited ability of the used spatial light modulator to generate superposi-
tions of different pump modes. Furthermore, the pump field was not mode-filtered
and effectively included at least 70 % of “wasted” pump power. If a pump field
with both higher pump efficiency and higher purity is available, the required pump
power will be significantly smaller than in the presented squeezed light source. A
reduction in the order of 75 % is theoretically possible. The required pump power
could further be reduced via an OPA incoupling mirror with higher power reflec-
tivity. For this thesis, such an incoupling mirror was, however, not immediately
available.

The characterisation of the squeezed light source in Section 5.2 showed that
squeezed states in higher-order modes were generated and detected with high and
unprecedented squeezing levels. Previous results for higher-order modes were lim-
ited to a maximum quantum noise reduction of 5 dB [Ste+18], measured in a first-
order mode. Hence, 10 dB in the HG1,1 mode, 7.5 dB in the HG2,2 mode and 4.5 dB in
the HG3,3 mode represent a new milestone and could, for the first time, significantly
reduce the gap to the TEM0,0 mode (here, 12 dB). The fitted detection efficiencies are
in good agreement with the expected optical loss budgets and the spatial light mod-
ulators used to generate the higher-order modes most likely increased the phase
noise in the higher-order mode measurements. The HG2,2 and HG3,3 results were
primarily limited by the available pump power.

These results demonstrate the general feasibility of experiments which require
a high quantum noise reduction in higher-order spatial modes. The adaptation of
this scheme to other frequency bands (e.g. the audio-band for gravitational-wave
detectors) and the generation of squeezed vacuum states are now technical steps
which can be carried out in the same way as for the TEM0,0 mode [Che+07; Vah+10].
In the GEO600 detector, for instance, the OPA cavity length is stabilised using an
auxiliary control field in the polarisation orthogonal to the one of the squeezed field,
where a degenerate resonance condition with the squeezed field is obtained via a
variable frequency shift of the control field [Vah+10]. In this way, the control field
does not introduce technical laser noise in the squeezed field and the squeezed light
source generates squeezed vacuum states.

The next chapter presents the application of the presented squeezed light source
in a tabletop Michelson interferometer.
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Chapter 6

Quantum-enhanced Michelson
Interferometer in Higher-Order
Hermite-Gaussian Modes

The previous chapter presented the squeezed light source and aimed to demonstrate
that high levels of quantum noise reduction, comparable with those in the TEM0,0
mode, can be achieved in higher-order Hermite-Gaussian modes. This was done
in a pure “squeezed light generation” setup. This chapter, first of all, targets the
same demonstration but in an actual measurement application, that is, in a Michel-
son interferometer with an injected signal. Second of all, this chapter also follows
a specific goal for the TEM0,0 mode: the first demonstration of a 10 dB sensitivity
improvement of a shot-noise limited Michelson interferometer via squeezed states
of light, as targeted for the future gravitational-wave detectors.

This chapter first provides a rationale for implementing the balanced homodyne
detection scheme instead of the direct readout scheme in the Michelson interferom-
eter. Then, the setup and results are discussed. The Sections 6.2 and 6.3 are taken
from the publication [Hei+22] to a large extent.

6.1 Direct vs. balanced homodyne readout

6.1.1 Regarding advanced gravitational-wave detectors

Direct readout

During the joint observation run O3 in 2019 and 2020, the Advanced LIGO, Ad-
vanced Virgo, KAGRA and GEO600 detectors employed the direct readout scheme,
also referred to as DC readout (see Fig. 6.1). This is a special kind of homodyne de-
tection where the GW detector is set to an offset from the dark fringe. Hence, the
interferometer output provides a static local oscillator field whose amplitude can
be adjusted via the dark fringe offset and which co-propagates with the signal field
such that it is automatically mode-matched to it. This detection scheme, however,
has several disadvantes which are, for instance, discussed in [FEF14; ET 20].

First of all, the dark fringe offset enables a direct coupling of laser power noise,
which is imprinted on the static LO field, from the interferometer input field to
the gravitational-wave readout. Furthermore, the operation of Advanced LIGO re-
vealed that the offset in the differential arm length, which is required for the DC
readout, enables a coupling channel from the residual motion of the signal recycling
cavity length to the GW readout [FEF14]. This constitutes a sensitivity limitation at
low signal frequencies. The DC readout also increases the requirements on the laser
noise because the arm cavities are operated slightly off their resonance condition.
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Figure 6.1: Simplified schematics for the direct and balanced homodyne readout.
Left: an offset from the dark fringe provides a static local oscillator (LO) field
which co-propagates with the signal field until being detected by a photodetector.
Right: a separate local oscillator field is superimposed with the signal field at the
50:50 beamsplitter of the balanced homodyne detector. Via a phase shifter in the
LO beam path, the readout quadrature can be set freely. This is only one example
for how the LO field can be obtained. The interferometer is set to the dark fringe.

This asymmetry results in a stronger coupling from the laser power fluctuations to
the gravitational-wave readout via radiation pressure [CB11].

An additional challenging aspect is the constant co-propagation of the local oscil-
lator (LO) and signal field. As one consequence, a fraction of the LO field can be sent
back into the interferometer, unintentionally via backscattering or intentionally due
to the signal recycling, which can lead to increased noise in the gravitational-wave
readout. Furthermore, the constant LO field influences the interferometer alignment
control scheme whose error signals are derived from measuring samples of the in-
terferometer output field [FEF14].

A final drawback of the DC readout is the inability to freely set the readout
quadrature, i.e. the relative phase between the LO and signal field. This degree of
freedom will, however, be critical for new quantum nondemolition readout schemes
which may be implemented in the detectors at some point in the future [FEF14].

Balanced homodyne readout

The balanced homodyne detection scheme as also shown in Figure 6.1 works very
similar to the characterisation of squeezed states via a balanced homodyne detector
as discussed in Section 3.2.3 and used in Section 5.2. Here, the interferometer sig-
nal field is only superimposed with a separate local oscillator field at the detection
stage. Thus, an offset from the dark fringe is not required and the associated issues
do not arise, or are at least strongly suppressed. Additional advantages are the theo-
retical insensitivity to noise in the LO field in case of a high common mode rejection
and the ability to freely choose the readout quadrature as the phase of the LO field
can be controlled individually. With respect to the application of squeezed light,
the balanced homodyne readout also has an advantage because it allows for slightly
higher levels of quantum noise reduction. Due to the symmetry of the interferom-
eter, minimising or, theoretically, completely avoiding the static leakage field in the
interferometer output also minimises the fraction of the squeezed field which leaks
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towards the interferometer input and cannot be used for a quantum noise reduction
in the output.

The balanced homodyne readout has an own set of challenges. For example,
the LO field has to be stabilised with respect to amplitude noise and path length
fluctuations [Ste+15], and the LO field also needs to be stably mode-matched to the
signal field [Zha+17]. Nevertheless, the third-generation detectors as well as the
upgrades to the Advanced LIGO detectors, LIGO-LF [Yu+18] and LIGO Voyager
[Adh+20], plan to implement the balaned homodyne readout scheme.

6.1.2 Regarding the presented tabletop interferometer

For the tabletop Michelson interferometer in this thesis, the balanced homodyne
detector has an additional advantage over the DC readout because no output mode
cleaner is implemented. This is explained in the following.

In general, the local oscillator (LO) field ALO can be in an arbitrary superposition
of spatial modes (compare with Sec. 3.2.3)

ALO ∝ ∑
i

ci Ai with ∑
i
|ci|2 = 1 (6.1)

such that it beats with the vacuum fluctuations in all of these modes. Hence, the
vacuum fluctuations in a given mode Ai significantly contribute to the measured
shot noise in the interferometer output for a sufficiently large |ci|2. If the squeezed
field has zero spatial overlap to this mode, it cannot reduce this mode’s contribution
to the measured shot noise and a fraction |ci|2 of the squeezed field is effectively lost.
Thus, a maximum spatial overlap between the LO and squeezed field is necessary
for a minimum effective optical loss and a high shot noise reduction.

Let us now assume a simple Michelson interferometer as shown in Figure 6.2
with a 50:50 beamsplitter, using the convention where a transmitted field experi-
ences a phase shift of 90◦ (compare with Sec. 1.2.2). Let us further assume that the
sensing field, injected through the interferometer input port, as well as the field in
the north arm are in the same pure, normalised spatial mode of operation ASMOP
with respect to a given eigenbasis. However, the field in the east arm that returns to
the beamsplitter is not purely in the mode ASMOP, e.g. due to some misalignment or
imperfect mirror parameters. For normalised unit input power, it is:

aN =

√
1
2

ASMOP ,

aE = i

√
1
2

(√
µASMOP +

√
1 − µAmis

)
eiφ ,

(6.2)

where aN/E are the fields from the north and east arm just before recombination, µ
is the spatial overlap between these two fields, Amis is the normalised field contri-
bution associated with the spatial mismatch (no spatial overlap to ASMOP) and φ is
the relative phase between the recombining fields which is here completely assigned
to aE. The output field in the interferometer south port, which is the local oscillator
field in the DC readout scheme, yields

ALO(µ, φ) =
i
2

[(
1 +

√
µeiφ

)
ASMOP +

√
1 − µAmiseiφ

]
. (6.3)
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Figure 6.2: Simple quantum-enhanced Michelson interferometer at the dark fringe
including a contrast defect. The coherent sensing field and the squeezed field are
injected through the east (input) and south (output) port, respectively. Assump-
tions: they are perfectly mode-matched to each other, but the recombining arm
fields aN and aE are not. Close to the dark fringe with respect to the sensing field
at the output port, the sensing field’s leakage field ALO and the reflected squeezed
field Asqz will then have a reduced spatial overlap as the plots of the intensity
distributions on the right show (assuming a waist size mismatch and that the in-

terferometer is operated in the TEM0,0 mode).

Repeating this calculation for the squeezed field which is both injected and detected
at the output yields:

Asqz(µ, φ) =
1
2

[(√
µeiφ − 1

)
ASMOP +

√
1 − µAmiseiφ

]
, (6.4)

assuming that the squeezed field is perfectly mode-matched to the sensing field in
the north and east arm, respectively.

In the DC readout scheme, two optical loss contributions for the squeezed field
arise from these equations. First, a fraction of the squeezed field is lost towards
the interferometer input port if the interferometer is operated at a dark fringe offset
(with respect to the sensing field at the output port). The remaining fraction rsqz of
the squeezed field which is reflected back to the output port can be computed as

rsqz(µ, φ) =
∫ ∣∣Asqz(µ, φ)

∣∣2 dxdy =
1
4

(∣∣∣√µeiφ − 1
∣∣∣2 + 1 − µ

)
. (6.5)

The second loss contribution arises due to the imperfect spatial overlap between the
local oscillator and squeezed field. Close to the dark fringe at φ = π, it is

ALO(µ, φ ≈ π) ≈ i
2

[
(1 −√

µ) ASMOP −
√

1 − µAmis

]
Asqz(µ, φ ≈ π) ≈ −1

2

[
(1 +

√
µ) ASMOP +

√
1 − µAmis

] (6.6)

Hence, for small contrast defects µ ≈ 1, we have Asqz ≈ −ASMOP while the local
oscillator field has a significant contribution from Amis (see Fig. 6.2). The spatial
overlap between the sensing and squeezed field in the output, normalised to their
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Figure 6.3: DC readout in a simple Michelson interferometer: small contrast de-
fects (C: contrast) due to an imperfect spatial overlap of the recombined beams
can lead to a large effective optical loss for the squeezed field. In addition to the
leakage loss towards the interferometer input due to the dark fringe offset (blue
curve, C = 100 %), a highly reduced spatial overlap between the squeezed and
local oscillator field is the reason. Pin: optical power in the coherent sensing field
injected into the interferometer input port, Pout: the sensing field’s leakage power

in the interferometer output port.

fractions which reach the output port, can be computed as

µout(µ, φ) =

∣∣∣∫ A∗
sqz(µ, φ)ALO(µ, φ) dxdy

∣∣∣2
rsqz(µ, φ)×

∫
|ALO(µ, φ)|2 dxdy

. (6.7)

In conclusion, a fraction rsqz of the squeezed field is reflected back to the interferom-
eter output and a fraction µout of rsqz is matched to the local oscillator field. Hence,
a fraction rsqz µout of the squeezed field can effectively be used for the quantum
noise reduction such that the total effective optical loss from these two loss sources
amounts to

Ltotal(µ, φ) = 1 − µout(µ, φ)rsqz(µ, φ) . (6.8)

This effective optical loss is shown in Figure 6.3 dependent on the dark fringe
offset which is indicated as the ratio of the input and output power of the sensing
field. For µ = 1, the interferometer contrast is C =

√
µ = 100 %1 and the leakage

towards the interferometer input is the only loss source for the squeezed field. In
this case, the loss is equal to the dark fringe offset due to the symmetry of the in-
terferometer. For a decreasing interferometer contrast, the reduced spatial overlap
of the squeezed and LO field becomes increasingly important. Especially at small
dark fringe offsets where the Amis contribution in the LO field is large, this can cause
several tens of percent more loss even for relatively small contrast defects of a few
0.1 %. In practice, the interferometer contrast always shows some defects (see e.g.
Tab. 6.1).

Ltotal could be significantly reduced with an output mode cleaner which would

1Assuming that the contrast only depends on µ for an otherwise ideal lossless interferometer.
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filter out the Amis contributions.2 In this case, µout(µ, φ) = 1 such that the loss con-
tribution from the contrast defect would ideally vanish. However, such an output
mode cleaner is not implemented in the tabletop interferometer presented below. In
this case, using the balanced homodyne detection scheme has a similar effect. Here,
the separate LO field is not affected by the interferometer contrast defects and ide-
ally remains in the pure spatial mode of operation ASMOP such that µout(µ, φ) ≈ 1 for
Asqz ≈ −ASMOP, which should hold close to and at the dark fringe. In addition, the
loss towards the interferometer input is also minimised because the interferometer
is operated directly at the dark fringe in the balanced homodyne readout scheme.

6.2 Setup

6.2.1 Overview of the complete setup

The setup as shown in Figure 6.4 (schematic) and 6.5 (photograph) operates with
a 2 W non-planar ring laser (NPRO) which continuously emits light in the TEM0,0
mode at a wavelength of 1064 nm. The major fraction of the light field is directed
towards the squeezed light source where the cavity-enhanced second harmonic gen-
eration (SHG) converts the incoming field to a wavelength of 532 nm to provide the
pump field for the parametric down-conversion in a type-I optical parametric ampli-
fier (OPA). The SHG is exclusively performed in the TEM0,0 mode and the harmonic
field then either bypasses the Hamamatsu LCOS spatial light modulator SLM2 or is
converted into a higher-order pump mode via SLM2 (see Section 2.3.3) for a TEM0,0
or a higher-order mode operation of the OPA, respectively. The OPA cavity then
generates squeezed states in the respective spatial mode of operation (SMOP) which
are injected into the interferometer’s output port. Further details on the squeezed
light source can be found in Chapter 5.

The fraction of the 1064 nm field which is transmitted by the first mirror either
bypasses SLM1 (same type as SLM2) to remain in the TEM0,0 mode or is converted
by SLM1 into the SMOP. The subsequent input mode cleaner (IMC) is stabilised to
the resonance condition of the SMOP to provide a mode-filtered beam for a three-
fold downstream application. First, about 500 µW are reflected to the squeezed light
source for the length stabilisation of the OPA cavity to the resonance condition of
the SMOP. Second, 7 mW are directly guided to the balanced homodyne detector
as the local oscillator field. Third, 2 mW enter the interferometer through the input
port. The Michelson interferometer consists of a 50:50 beamsplitter and two highly-
reflective end mirrors with attached piezo-electric transducers (PZT) and has an arm
length of 10 cm. PZT1 is driven at a radio-frequency (rf) of 100 kHz and generates
phase-modulation sidebands whose beat note with the interfered carrier fields from
both interferometer arms is detected by the photodetector in reflection of the in-
terferometer. With the demodulated signal, the interferometer is stabilised to the
dark fringe with respect to the output port (further explained in Sec. 6.2.2). PZT2
can optionally inject a signal, which will be called GW signal. The frequency of this
GW signal is matched to the frequency of highest observed quantum noise reduc-
tion: 4 MHz for the HG1,1 and HG2,2 mode and 5 MHz for the TEM0,0 mode. The
interferometer output field propagates to the balanced homodyne detector and is
superimposed with the local oscillator field on a 50:50 beamsplitter. PZT3 optimises
the readout quadrature via the local oscillator phase for a maximum detected GW

2An output mode cleaner could, however, also cause effective optical loss for the squeezed field
due to an imperfect mode matching to the cavity and a limited linewidth.
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Figure 6.4: Schematic of the experimental setup (based on [Hei+22]). The Michel-
son interferometer can be operated in the TEM0,0 or a higher-order spatial mode
generated by SLM1. It is stabilised to the dark fringe with respect to the output
port via a 100 kHz beat note which arises from a modulation by PZT1 and is de-
tected in reflection of the interferometer. PZT2 can inject an artificial signal at
megahertz frequencies. The squeezed states (source discussed in Chapter 5) are
injected into the interferometer output port via a polarising beamsplitter. Using
the Faraday rotator, the squeezed field co-propagates with the signal field to the
balanced homodyne detector where both are superimposed with the local oscilla-
tor field. PZT3 optimises the readout quadrature for a maximum detected signal
and PZT4 controls the phase of the squeezed field via a beat note in the detector

output signal for the measurement of the squeezing and anti-squeezing level.

signal. A spectrum analyser then measures the power spectrum of the subtracted
photodetector signals.

The combination of the polarising beamsplitter (PBS) and Faraday rotator (FR)
first injects the squeezed field into the interferometer and then transmits it towards
the balanced homodyne detector after being effectively reflected by the interferom-
eter. Phase-modulation sidebands, which remain in the squeezed field from the
length stabilisation of the OPA cavity, provide a 45 MHz beat note in the detector
signal. This beat note is used to stabilise the relative phase between the squeezed
and local oscillator field via PZT4 for the controlled measurement of the squeezing
and anti-squeezing levels.

6.2.2 Stabilisation to the dark fringe

The Michelson interferometer is stabilised to the dark fringe via one of the arm end
mirrors which can be actuated by an attached piezo-electric transducer (PZT) (see
Fig. 6.6). First, this PZT modulates the phase of the light field in the north arm at a
frequency of Ω = 100 kHz. Omitting the oscillation at the optical carrier frequency,



94
Chapter 6. Quantum-enhanced Michelson Interferometer in Higher-Order

Hermite-Gaussian Modes

OPA

PZT4
PBS

FR

50:50

50:50

PZT3

PZT1

PZT2

detector
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cavity (bottom left) and the balaned homodyne detector including retro-reflectors
(bottom right). Red: interferometer input and signal field, thin red on top left:
field detected for stabilisation to dark fringe, orange: local oscillator field, yellow

and yellow dotted: squeezed field.

the north arm field just before the point of recombination is given by

aN =
ain√

2
eiβ cos(Ωt)

≈ ain√
2

(
1 + i

β

2
eiΩt + i

β

2
e−iΩt

)
,

(6.9)

where the phase modulation is expressed in terms of Bessel functions and approxi-
mated according to [Bla01]. β is the modulation index.

The east arm field just before the point of recombination is

aE = i
ain√

2
eiφ , (6.10)

where the relative phase φ is again completely assigned to aE. Hence, the reflected
field and power are

arefl =
aN√

2
+ i

aE√
2
=

ain

2

(
1 + i

β

2
eiΩt + i

β

2
e−iΩt − eiφ

)
Prefl = |arefl|2 .

(6.11)

Prefl is detected by the photodetector, then demodulated at the frequency Ω by the
mixer and low-pass filtered. Thus, terms in Prefl which are constant or evolve with
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Figure 6.6: Dark fringe stabilisation: the piezo-electric transducer (PZT) mod-
ulates the phase of the light field in the north arm at a radio frequency (rf) of
100 kHz. After demodulation and low-pass filtering, the obtained error signal has

zero-crossings at the bright and dark fringe.

2Ω can be neglected:

Prefl ∝ i
β

2

[
−ei(Ωt−φ) − e−i(Ωt+φ) + e−i(Ωt−φ) + ei(Ωt+φ)

]
+O(0Ω) +O(2Ω)

∝ sin (Ωt − φ)− sin (Ωt + φ) +O(0Ω) +O(2Ω)
(6.12)

Then, the demodulation at Ω is mathematically expressed as a multiplication with
sin(Ωt + φdemod) including a demodulation phase φdemod. Applying this to Prefl at
φdemod = 90◦ and taking the low-pass filter into account results in the following
error signal

ϵ(φ) = Pref × sin (Ωt + 90◦)
low-pass filter

∝ sin φ . (6.13)

This error signal can be used to stabilise the interferometer to the bright fringe (at
φ = 0, 2π, . . . ) with respect to the photodetector in reflection, which coincides with
the dark fringe with respect to the output port, because ϵ(0, 2π, . . . ) = 0 and
d ϵ(φ)

d φ

∣∣∣
φ=(0,2π,... )

̸= 0. This is also shown in Figure 6.6.

6.3 Results

Figure 6.7 presents the measured power spectra of the interferometer output field in
the signal (phase) quadrature with and without injected squeezed states (“squeezed
noise” and “vacuum noise”, respectively). A maximum quantum shot noise reduc-
tion of 10.0(3)dB at a measurement frequency of 5 MHz and a harmonic OPA pump
power of 55 mW could be observed in the TEM0,0 mode. At a measurement fre-
quency of 4 MHz, 8.8(3)dB at a pump power of 550 mW and 7.5(3)dB at a pump
power of 800 mW in the HG1,1 and HG2,2 mode were achieved, respectively. In each
case, the injected GW signal had an amplitude of about −5.3 dB and could hardly
be detected in the vacuum state related noise floor. However, it appears as a dis-
tinct peak in the squeezed state related noise curves. See Section 5.2 regarding the
significantly different levels of pump power.
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Figure 6.7: Highest measured quantum noise reduction in the TEM0,0, HG1,1 and
HG2,2 mode with an injected GW signal, normalised to the noise level of the vac-
uum state [Hei+22]. Resolution bandwidth: 10 kHz, video bandwidth: 10 Hz,
electronic dark noise (not shown): about −22 dB and subtracted from the data.
Anti-squeezing levels (not shown): about 18 dB (TEM0,0), 16 dB (HG1,1) and 15 dB

(HG2,2).

6.3.1 Technical laser noise and phase noise

In Section 5.2, technical laser noise only arose due to the residual OPA control field
which was transmitted through the OPA cavity and caused a coherent amplitude in
the detected squeezed field. At the measurement frequency of 4 MHz (and above),
technical laser noise had no significant contribution which the fit of the theoretical
model confirmed via small phase noise values. However, technical laser noise af-
fected the measurement of the quantum noise reduction in the presented Michelson
interferometer at and even above 4 MHz.

The contribution of the residual OPA control field was the same as in Sec. 5.2
since the control field was injected into the OPA cavity with the same optical power.
In transmission of the OPA cavity and including the parametric deamplification,
when the pump field is also injected, about 2 µW remained as a coherent ampli-
tude in the squeezed field. The Michelson interferometer was, however, a second
source for a coherent amplitude in the detected field at the homodyne detector due
to contrast defects and a possible small dark fringe offset. Hence, there was always
some leakage power in the output even at the dark, or darkest possible, fringe (see
Tab. 6.1). This interferometer leakage power is highly sensitive to the interferometer
alignment and was typically 2.5 (TEM0,0) to 4 (HG2,2) times as large as the power
in the residual OPA control field. Since this contribution from the interferometer
leakage field dominated over the power in the OPA control field, the total coherent
power in the detected field was always larger than in Sec. 5.2, even if the two co-
herent amplitudes interfered destructively. The charateristics of the technical laser
noise can be identified in the squeezed noise of each mode at low frequencies in
Figure 6.9, where the noise peak in the HG1,1 measurement was atypically large
and affected the squeezing level up to a frequency of 6 MHz. This HG1,1 measure-
ment was prepared with the same care as the others and shows how sensitive the
setup is with respect to the interferometer alignment and resulting leakage power.
The preparation procedure for each measurement was done in the following order:
adjusting the interferometer contrast via the PZT1 and PZT2 mirrors, adjusting the
alignment between the squeezed field and coherent interferometer field via mirrors
around PZT4, adjusting the alignment between the squeezed field from the north
arm and the LO field via mirrors around PZT3 and adjusting the alignment between
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the squeezed field from the east arm and the LO field via PZT2. The last step is theo-
retically redundant and was only used as a final alignment check. Still, for the HG1,1
measurement in Figure 6.9, this last step may have reduced the interferometer con-
trast unintentionally. The measurement is shown, nonetheless, for demonstration
purposes.

Table 6.1: Parameters of the Michelson interferometer setup. In the category “opti-
cal loss source”, the values indicate the optical loss (not efficiency) associated with

the sources in the left column.

Optical loss source TEM0,0 HG1,1 HG2,2

OPA escape efficiency (%) 1.0(5) 1.0(5) 1.0(5)
Optics in path of squeezed field (%) 3.0(5) 4.0(5) 4.5(5)
Leakage to interferometer input port (%) 0.3(1) 0.3(1) 0.4(1)
Homodyne contrast (%) 2.2(6) 2.8(6) 6.0(6)
Detector’s quantum efficiency (%) 0.7(4) 0.7(4) 0.7(4)

Expected detection efficiency (%) 92.8(10) 91.2(10) 87.4(10)
Fitted detection efficiency (%) 92.6(10) 91.4(10) 87.7(10)

Maximum interferometer contrast (%) 99.92(2) 99.87(2) 99.74(2)
Interferometer leakage power (µW) 5(2) 6(2) 8(2)

The larger coherent amplitude in the detected field has two consequences (as
further explained in Sec. 3.2.4). First, the technical noise peak at low frequencies is
larger than in Sec. 5.2 and can significantly affect the quantum noise reduction up to
a frequency of 5 MHz, dependent on the achieved squeezing level. For the HG1,1 and
HG2,2 measurement, the highest quantum noise reduction could still be observed at
4 MHz; however, the TEM0,0 measurement reached a level where the technical laser
noise limited the squeezing at 4 MHz to below 10 dB, thereby shifting the frequency
of highest observed quantum noise reduction to 5 MHz. A corresponding (small)
rising slope in the squeezed state related noise curves in Figure 6.7 can be identified
on the left side of each signal peak. Second, the coherent amplitude in the detected
field reduces the squeezing level over the whole frequency band because it beats
with the vacuum fluctuations entering from the local oscillator port of the detector.
In general, this leads to an effective pseudo-dark noise floor (when only the local os-
cillator port of the detector is blocked) that was typically observed to be 1 dB to 2 dB
above the actual electronic dark noise (when both detector input ports are blocked).
This effect can reduce the measured squeezing level by about 0.2 dB at 10 dB for an
electronic dark noise floor of −22 dB, and only the actual electronic dark noise was
subtracted in all presented measurements. This effect also appeared in the measure-
ments in Chapter 5 but was negligible due to the smaller coherent amplitude in the
detected field.

With the technical laser noise and the amplification of the LO field’s vacuum fluc-
tuations, the reduction in the squeezing level due to the coherent amplitude in the
detected field dominated and masked the effect of phase noise. The latter can, thus,
not be conclusively inferred for this setup. To additionally confirm that the phase
noise had no significant contribution to the measurement results, the quantum noise
reduction for the TEM0,0 mode was measured at a level of 8 dB without an elec-
tronic stabilisation of the interferometer. By setting the interferometer to the dark
fringe “by hand”, measurements with and without the 100 kHz modulation from
PZT1 could be conducted. This modulation increases the phase noise as it causes
deterministic phase jitter in one of the interferometer arms. For this comparison, the
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Figure 6.8: The squeezed-light reduced power spectra of the quantum noise for
the TEM0,0 mode are compared for the cases of no 100 kHz modulation via PZT1
and a 100 kHz modulation with an amplitude five times larger than used for the

results in Fig. 6.7.

modulation amplitude was increased to five times the amplitude which was used
for the results in Figure 6.7; however, both measurements showed no significant dif-
ferences. This indicates that the effects due to the technical laser noise dominate
the effects due to phase noise. Please note, however, that the validity of this test is
slightly reduced because the interferometer leakage power is likely to be larger if the
interferometer is not electronically stabilised to the dark fringe. To reduce this influ-
ence, the “min hold” function of the spectrum analyser was used for both of these
measurements. With this function, the spectrum analyser displays the minimum
value that was measured at each frequency in several frequency scans during the
total measurement time of about 10 s, thereby selecting the data points which were
taken when the interferometer was closest to the dark fringe. This kind of measure-
ment is not suited to characterise the experiment but still allows for a reasonable
comparison between these two measurements.

6.3.2 Detection efficiency

The detection efficiency for the squeezed states is reduced due to a combined ef-
fect from the OPA escape efficiency, loss from optics in the path of the squeezed
field, the homodyne contrast between the local oscillator and squeezed field, leak-
age towards the interferometer input port and the homodyne detector’s quantum
efficiency. The individual values for the three spatial modes are indicated in Ta-
ble 6.1. The OPA escape efficiency is equal to the one in Sec. 5.2. The loss from
the optics in the path of the squeezed field was determined by using a strong OPA
control field and comparing the power upstream the injecting PBS to the maximum
power upstream from the lenses that focus the laser beam onto the homodyne de-
tector photodiodes when the interferometer was scanned through the fringes via
PZT1. Among the optics, the Faraday rotator in combination with the PBS causes
the highest loss which amounted to about 1 % to 1.5 % per single pass and increased
with the mode order due to additional clipping loss (aperture radius: about 2.5 mm,
beam radius: about 1 mm). The imperfect homodyne contrast includes several influ-
ences (see Sec. 2.3.3, “Astigmatism and mode degeneracy” and “Sensitivity to spatial
mismatches”): beam misalignments and mismatches in the waist size and waist po-
sition are always present in practice and cause a larger reduction in the homodyne
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Figure 6.9: Noise power spectra for the TEM0,0, HG1,1 and HG2,2 mode for low
levels of anti-squeezing and no injected GW signal, normalised to the noise level
of the vacuum state [Hei+22]. The results correspond to a harmonic OPA pump
power of about 10 mW, 100 mW and 150 mW, respectively. Resolution bandwidth:
300 kHz, video bandwidth: 300 Hz, electronic dark noise (not shown): about

−22 dB and subtracted from the data.

contrast with increasing mode order; possible rotations around the optical axis can
reduce the contrast for the higher-order HG modes; and mode degeneracies are also
potentially more severe for the higher-order modes. While the homodyne contrasts
of the different modes were not analysed with respect to these influences, the dif-
ferences between the contrasts can theoretically be explained by the first influence
alone (increasing mismatch sensitivity). Specific issues with rotations or degenera-
cies were not observed. The leakage loss of the squeezed field towards the interfer-
ometer input port was assumed to be equal to the interferometer leakage power of
the sensing field in the output port: 5 µW to 8 µW relative to the injected 1.9 mW. Fi-
nally, the quantum efficiency of the homodyne detector’s photodiodes was slightly
larger than in Sec. 5.2 because retro-reflectors were used to recycle the light which is
reflected by the anti-reflective coated photodiodes. The resulting expected detection
efficiency is also indicated in Table 6.1.

If the squeezing and anti-squeezing levels are compared to the theoretical model
from Equation 3.43 at low harmonic OPA pump power and up to a measurement
frequency of 20 MHz, the expected detection efficiencies can be checked against the
measurement data in a regime where the measurement does not show significant
disturbances from either technical laser or phase noise (see Fig. 6.9). The parameters
ηdet and Pthr can be varied until the optimum match between the model and the
measurement data is obtained (dashed lines in Fig. 6.9). The derived values for the
detection efficiencies are indicated in Tab. 6.1 and agree well with the expectations.

6.4 Summary

This chapter presented the application of squeezed states of light in higher-order
Hermite-Gaussian modes in a tabletop Michelson interferometer with balanced ho-
modyne detection, which is proposed for future gravitational-wave detectors. First,
Section 6.1 explained the choice of the detection scheme and compared it to the cur-
rently used direct readout scheme. These schemes differ in how the local oscillator
field is obtained. While the balanced homodyne scheme is not without challenges,
it can avoid some disadvantages of the direct scheme, for instance, by suppressing
the coupling of some noise sources (e.g. laser power noise) to the gravitational-wave
readout. The proposed change to the balanced homodyne readout scheme in future
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GWDs demands for the investigation of the quantum noise reduction in a Michelson
interferometer with the balanced homodyne detection topology.

In Sections 6.2 and 6.3, a simple tabletop Michelson interferometer with an arm
length of 10 cm was studied in the shot-noise limited frequency range of 4 MHz to
20 MHz. Here, the sensitivity could be improved by up to 10 dB, 8.8 dB and 7.5 dB
when the interferometer was operated in the spatial modes TEM0,0, HG1,1 and HG2,2,
respectively. This is, to my knowledge, the first demonstration of a quantum noise
reduction of 10 dB, as targeted by future gravitational-wave detectors, in any Michel-
son interferometer topology. So far, a squeezed-light sensitivity enhancement of
10 dB could only be achieved in a tabletop Mach-Zehnder interferometer [Zan21]
which fundamentally implies less optical loss because the injection of the squeezed
light does not require a Faraday rotator unit. The highest quantum noise reduction
via squeezed light including a Faraday rotator unit had been 8.2 dB in a tabletop
zero-area Sagnac interferometer operated in the TEM0,0 mode [Ebe+10].

In the presented Michelson interferometer, optical loss from such a Faraday ro-
tator unit and loss associated with the homodyne contrast primarily limited the de-
tection efficiency for the squeezed light. Furthermore, technical laser noise, which
becomes relevant due to a coherent amplitude in the detected field, further reduced
the squeezing level below measurement frequencies of 5 MHz and also affected the
frequency at which the highest quantum noise reduction was observed.

If a quantum noise reduction of 10 dB via squeezed light could not be achieved
in a tabletop Michelson interferometer, this target would very likely not be realised
in the advanced GW detectors, as well. Hence, the presented results constitute an
important demonstration towards the quantum noise target in future GW detectors.

The findings, moreover, represent an unprecedented milestone for the efficient
usage of nonclassical states of light in higher-order spatial modes in a measurement
application. The quantum noise reduction in the HG1,1 of 8.8 dB mode is a great
achievement and could even exceed the TEM0,0 result of 8.2 dB in [Ebe+10] even
though the presented Michelson topology does not imply fundamentally less optical
loss than a zero-area Sagnac topology.
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Summary and outlook

This thesis investigated how squeezed states of light in higher-order spatial laser
modes can be efficiently generated and used in quantum metrology. While the main
motivation was the proposed usage of higher-order modes for a better thermal noise
reduction in future gravitational-wave (GW) detectors, these modes also offer poten-
tial benefits over the fundamental Gaussian TEM0,0 mode in various other optical
disciplines like imaging techniques and quantum communication.

Theoretically and given a spherical mirror geometry, a better thermal noise re-
duction in GW detectors can be achieved with both higher-order Laguerre- (LG)
and Hermite-Gaussian (HG) modes. However, several experiments and theoretical
studies revealed that the LG modes are highly sensitive to any kind of astigmatism
in an optical system. Hence, they appear to be too challenging for their application
in GW detectors and an experiment on the second harmonic generation of the LG3,3
mode in Chapter 4 confirmed this conclusion.

Previously published results on squeezed states in higher-order spatial modes
were limited to a minimum noise power level of 3 dB or 5 dB below that of a vac-
uum state, dependent on the implemented method. In Chapter 5, the observation of
a quantum noise reduction of 10 dB in the Hermite-Gaussian HG1,1 mode at a wave-
length of 1064 nm and a measurement frequency of 4 MHz thus represents a new
benchmark and significantly reduces the gap to commonly achieved squeezing lev-
els in the TEM0,0 mode. In the future, the presented squeezed light source could be
adapted to produce squeezed vacuum states in the audio-band, e.g. by implement-
ing control schemes similar to the squeezed light source of the GEO600 detector.

The main limitation for the detection efficiency was the increased sensitivity of
higher-order modes to spatial mismatches, thereby reducing the homodyne con-
trast at the balanced homodyne detector. In addition, the spatial light modulators
which generated the higher-order modes in the fundamental and harmonic field
most likely increased the phase noise. These findings suggest that properly counter-
acting these two effects, e.g. via electronic control schemes and/or a different higher-
order mode generation technique, will further enhance the squeezing.

In Chapter 6, the generated squeezed states were applied in a tabletop Michel-
son interferometer, including the more complex but also more versatile balanced
homodyne detection scheme which is planned for the future GW detectors. In the
TEM0,0 operation, the first 10 dB quantum noise reduction in the Michelson topol-
ogy, as targeted by the future GW detectors, could be demonstrated. Moreover,
similarly strong sensitivity enhancements could be demonstrated when the interfer-
ometer was operated in the HG1,1 and HG2,2 mode, respectively. Here, the achieved
8.8 dB in the HG1,1 were especially a success as they even exceed the highest previ-
ously published result for the TEM0,0 mode in a topology with a comparable optical
loss budget (zero-area Sagnac topology) by about 0.6 dB.
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These results are a strong argument for an improved thermal noise mitigation in
future GW detectors via higher-order spatial modes and greatly motivate further re-
search in this field. Especially because squeezing measurements are very sensitive to
several kinds of imperfections, e.g. mode impurities, spatial mismatches and beam
jitter, this work is a general statement that higher-order modes can be handled with
high efficiency and precision. This is in spite of the fact that these modes, taken by
themelves, are already more sensitive to such spatial mismatches compared to the
TEM0,0 mode. As a next step, the tabletop Michelson interferometer could be ad-
vanced gradually towards a dual-recycled version with arm cavities, alignment con-
trol schemes and quantum enhancement in the audio-band via squeezed vacuum
states. If high quantum noise reduction levels can then still be achieved in higher-
order modes, these results will have a huge significance—and future GW detectors
may be operated in a higher-order spatial laser mode, after all.
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Matlab scripts

A.1 Numerical simulation of the LG3,3 SHG

The same script was used for the TEM0,0 mode in an adapted version.

clear all

focparam = ; %focusing parameter

dk = ; %wavevector mismatch

n = ; %refractive index

lambda = ; %wavelength of fund. field

L = ; % half crystal length

omega0 = sqrt( 2 * L * lambda / 2 / pi / focparam / n ); %waist fund. field

zR = pi * n * omega0^2 / lambda; %Rayleigh range of fund. field

zresolution = ; %data points along propagation axis

dz = 2 * L / ( zresolution - 1 ); %step size along propagation axis

rresolution = ; %data points in radial direction

dg06 = 13; %difference in Gouy phase factors for LG06

dg26 = 9; %...

dg46 = 5; %...

dg66 = 1; %...

frac06 = sqrt( 0.2129 ); %spatial overlap with LG33^2 for LG06

frac26 = sqrt( 0.1342 ); %...

frac46 = sqrt( 0.1610 ); %...

frac66 = sqrt( 0.4919 ); %...

fac = 1 * dz;

%obejcts for values of crys. polarisation corr. to LG06, LG26, LG46 and LG66

c06List = zeros( zresolution , 3 );

c26List = zeros( zresolution , 3 );

c46List = zeros( zresolution , 3 );

c66List = zeros( zresolution , 3 );

%objects for values of harm. field corresponding to LG06, LG26, LG46 and LG66

a06List = zeros( zresolution , 3 );

a26List = zeros( zresolution , 3 );

a46List = zeros( zresolution , 3 );

a66List = zeros( zresolution , 3 );
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%objects for phase difference (and change in harmonic power)

%corresponding to LG06, LG26, LG46 and LG66

phaseDifference06 = zeros( zresolution , 2 );

phaseDifference26 = zeros( zresolution , 2 );

phaseDifference46 = zeros( zresolution , 2 );

phaseDifference66 = zeros( zresolution , 2 );

%objects for total harmonic power

PtotalList = zeros( zresolution , 1 );

m = 1; %count for iteration steps

z = -L; %initial z position

while z < L + dz %while loop through crystal

omega = omega0 * sqrt( 1 + ( z / zR )^2 ); %beam radius

%at crystal front and rear side

radius = 5 * omega; %sufficiently large radius for transverse integration

dr = radius / ( rresolution - 1 ); %step size in radial direction

r = 0 : dr : radius; %radial coordinate

%radial amplitude distribution of pump field squared at z

S = LGmode1D( 3 , 3 , omega0 , radius , rresolution , n , z , lambda );

S = S.^2;

s_abs = sqrt( abs( 2 * pi * sum( r .* conj( S ) .* S ) * dr ) );

%phase values of crystal polarisation

c06_phase = exp( 1i * dg06 * atan( z / zR ) ) * exp( 1i * dk * z );

c26_phase = exp( 1i * dg26 * atan( z / zR ) ) * exp( 1i * dk * z );

c46_phase = exp( 1i * dg46 * atan( z / zR ) ) * exp( 1i * dk * z );

c66_phase = exp( 1i * dg66 * atan( z / zR ) ) * exp( 1i * dk * z );

%full crystal polarisation term

c06 = -1i * fac * frac06 * s_abs * c06_phase;

c26 = -1i * fac * frac26 * s_abs * c26_phase;

c46 = -1i * fac * frac46 * s_abs * c46_phase;

c66 = -1i * fac * frac66 * s_abs * c66_phase;

%allocation to objects

c06List( m , 1 ) = c06;

c26List( m , 1 ) = c26;

c46List( m , 1 ) = c46;

c66List( m , 1 ) = c66;

c06List( m , 2 ) = abs( c06 )^2;

c26List( m , 2 ) = abs( c26 )^2;

c46List( m , 2 ) = abs( c46 )^2;

c66List( m , 2 ) = abs( c66 )^2;

c06List( m , 3 ) = angle( c06 );
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c26List( m , 3 ) = angle( c26 );

c46List( m , 3 ) = angle( c46 );

c66List( m , 3 ) = angle( c66 );

if m == 1 %inital iteration step

%harmonic field amplitude equals crystal polarisation

a06List( m , 1 ) = c06;

a26List( m , 1 ) = c26;

a46List( m , 1 ) = c46;

a66List( m , 1 ) = c66;

%power change is equal to total harmonic power (no phase difference)

phaseDifference06( m , 2 ) = abs( a06List( m , 1 ) )^2;

phaseDifference26( m , 2 ) = abs( a26List( m , 1 ) )^2;

phaseDifference46( m , 2 ) = abs( a46List( m , 1 ) )^2;

phaseDifference66( m , 2 ) = abs( a66List( m , 1 ) )^2;

else %any other iteration step

%phase difference between harmonic field and crystal polarisation

phaseDifference06( m , 1 ) = angle( conj( a06List( m - 1 , 1 ) ) * c06 );

phaseDifference26( m , 1 ) = angle( conj( a26List( m - 1 , 1 ) ) * c26 );

phaseDifference46( m , 1 ) = angle( conj( a46List( m - 1 , 1 ) ) * c46 );

phaseDifference66( m , 1 ) = angle( conj( a66List( m - 1 , 1 ) ) * c66 );

%interference of harmonic field and crystal polarisation

a06List( m , 1 ) = a06List( m - 1 , 1 ) + c06;

a26List( m , 1 ) = a26List( m - 1 , 1 ) + c26;

a46List( m , 1 ) = a46List( m - 1 , 1 ) + c46;

a66List( m , 1 ) = a66List( m - 1 , 1 ) + c66;

%power change

phaseDifference06( m , 2 ) = abs( a06List( m , 1 ) )^2 -...

abs( a06List( m - 1 , 1 ) )^2;

phaseDifference26( m , 2 ) = abs( a26List( m , 1 ) )^2 -...

abs( a26List( m - 1 , 1 ) )^2;

phaseDifference46( m , 2 ) = abs( a46List( m , 1 ) )^2 -...

abs( a46List( m - 1 , 1 ) )^2;

phaseDifference66( m , 2 ) = abs( a66List( m , 1 ) )^2 -...

abs( a66List( m - 1 , 1 ) )^2;

end

%harmonic field amplitude converted to power

a06List( m , 2 ) = abs( a06List( m , 1 ) )^2;

a26List( m , 2 ) = abs( a26List( m , 1 ) )^2;

a46List( m , 2 ) = abs( a46List( m , 1 ) )^2;

a66List( m , 2 ) = abs( a66List( m , 1 ) )^2;

%harmonic field amplitude converted to phase

a06List( m , 3 ) = angle( a06List( m , 1 ) );

a26List( m , 3 ) = angle( a26List( m , 1 ) );

a46List( m , 3 ) = angle( a46List( m , 1 ) );
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a66List( m , 3 ) = angle( a66List( m , 1 ) );

%total harmonic power as sum over all harmonic modes

PtotalList( m ) = a06List( m , 2 ) + a26List( m , 2 ) +...

a46List( m , 2 ) + a66List( m , 2 );

m = m + 1;

z = z + dz;

end

The function for the normalised 1D LG mode amplitude distribution:

function LG = LGmode1D(p,l,omega0,radius,resolution,n,z,lambda)

r = 0:radius/(resolution-1):radius;

zR = n*pi*omega0^2/lambda; %Rayleigh range

omega = omega0.*sqrt(1+(z./zR).^2); %beam radius

gouy = atan(z./zR); %part of Gouy phase term

q = z+1i*zR; % complex beam parameter

k = 2*n*pi/lambda; %wavevector

LG = 1./omega .* ...

sqrt(2*factorial(p)/(pi*factorial(abs(l)+p))) .* ...

exp(1i.*(2*p+abs(l)+1).*gouy) .* ...

(sqrt(2).*r./omega).^(abs(l)) .* ...

laguerreL(p,abs(l),2.*r.^2./omega.^2) .* ...

exp(-1i.*k.*r.^2./2./q) .* ...

exp(-1i.*k.*z);

end

A.2 SLM control

This is the script by which the spatial light modulator in the fundamental beam
path was controlled (Hamamatsu LCOS-SLM X15213-03). The conversion from the
mode’s phase distribution to the SLM output image, however, differs dependent on
the SLM model and was also slightly more complex for the spatial light modulator
in the harmonic beam path (Hamamatsu LCOS-SLM X13138-09).

clear all

%% set properties of SLM model and desired mode output

%SLM parameters

xresolution = 1272;
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yresolution = 1024;

xLength = 15.9e-3;

yLength = 12.8e-3;

%mode parameters

wavelength = ;

x = ; %mode index corr. to horizontal axis

y = ; %mode index corr. to vertical axis

waist = ; %desired waist of outgoing beam

%% import flatness correction and phase modulation data

correctionData = double( imread( '.bmp' ) );

convertValue = 217;

LCOS_SLM_correction = mod( correctionData , 256 );

LCOS_SLM_correction = LCOS_SLM_correction .* convertValue ./ 255;

LCOS_SLM_correction = uint8( LCOS_SLM_correction );

%% convert desired amplitude distribution into LCOS_SLM_mode image

%generate the mode's amplitude distribution

desiredMode = HGmode( x , y , waist , xresolution , yresolution ,...

xLength , yLength , wavelength );

disp( 'Mode has been successfully created!' )

%generate the mode's phase distribution

mode_phase = angle( desiredMode );

mode_inputValues = mode_phase .* 128 ./ pi;

%generate SLM phase image

LCOS_SLM_mode = mod( mode_inputValues , 256 );

LCOS_SLM_mode = LCOS_SLM_mode .* convertValue ./ 255;

LCOS_SLM_mode = uint8( LCOS_SLM_mode );

disp( 'LCOS_SLM_mode has been successfully created!' )

%% combine correction and desired data to LCOS_SLM output

output_inputValues = mode_inputValues + correctionData;

LCOS_SLM_output = mod( output_inputValues , 256 );

LCOS_SLM_output = LCOS_SLM_output .* convertValue ./ 255;

LCOS_SLM_output = uint8( LCOS_SLM_output );

disp( 'LCOS_SLM_output has been successfully created!' )

The function for the 2D HG mode amplitude distribution:

function HG = HGmode(m,n,omega0,radius,resolution,nr,z,lambda)
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zR = nr*pi*omega0^2/lambda; %Rayleigh range

R = z*(1+(zR/z)^2); %wavefront radius of curvature

omega = omega0*sqrt(1+(z/zR)^2); %beam radius

gouy = atan(z/zR); %part of Gouy phase term

k = 2*nr*pi/lambda; %wavevector

%generate meshgrid from Cartesian coordinates

x = -radius:2*radius/(resolution-1):radius;

y = -radius:2*radius/(resolution-1):radius;

[x1,y1] = meshgrid(x,y);

r = sqrt(x1.^2+y1.^2);

dx = 2*radius/(resolution-1);

%generate corr. meshgrid from Hermite polynomials

hermiteH_x = hermiteH(m,sqrt(2).*x./omega);

hermiteH_y = hermiteH(n,sqrt(2).*y./omega);

[H_x,H_y] = meshgrid(hermiteH_x,hermiteH_y);

HG = omega0./omega .*...

H_x.*H_y.*...

exp(1i.*(m+n+1).*gouy).*...

exp(-r.^2./omega^2).*...

exp(-1i.*k.*r.^2./(2.*R)).*...

exp(-1i.*k.*z);

end
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