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Abstract. The Kibble–Zurek mechanism is applied to the spontaneous
formation of vortices in a harmonically trapped thermal gas following a
temperature quench through the critical value for Bose–Einstein condensation.
Whereas in the homogeneous scenario, vortex nucleation is always expected, we
show that it can be completely suppressed in the presence of the confinement
potential whenever the speed of the spatial front undergoing condensation is
lower than a threshold velocity. Otherwise, the interplay between the geometry
and the causality leads to different scaling laws for the density of vortices as a
function of the quench rate, as we also illustrate for the case of a toroidal trapping
potential.
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1. Introduction

Non-equilibrium phase transitions generally lead to phases with limited long-range order. When
a system is quenched through a critical point of a second-order phase transition, both the
correlation length ξ and the relaxation time τ diverge. At the freeze-out time, t̂ , the relaxation
time of the system equals the time scale of the quench, the dynamics essentially freezes (impulse
stage), and there is a breakdown of adiabaticity. The paradigmatic Kibble–Zurek theory predicts
that the average size of the domains in the low-symmetry phase is given by the correlation length
at the freeze-out time [1, 2]

ξ̂ := ξ(t̂). (1)

Ultimately, the freeze-out time depends on the quench rate 1/τQ, which leads to a scaling law
of the density of defects as a function of the rate at which the transition is crossed,

D = ξ̂−D
∼ τ α

Q, (2)

where D is the dimension of the domains being considered and α < 0. It is well known that
dissipation as well as other non-universal mechanisms for defect losses (such as annihilation
by scattering of defects with opposite topological charges) might lead to deviations from the
Kibble–Zurek scaling whenever they become dominant. Nonetheless, this scenario is supported
by various numerical studies [3], and experiments aimed at confirmation of this prediction have
been carried out in a variety of systems [4]; see [5] for a recent review.

Recent experiments with pancake-shaped Bose–Einstein condensates have reported the
spontaneous nucleation of vortices during condensation [6]. Starting with a thermal gas in an
oblate harmonic trap, a linear quench in the temperature was applied to induce condensation.
Such a scenario can be naturally discussed in the light of the Kibble–Zurek mechanism [1, 2, 7].
A crucial feature of the experiments is the inhomogeneous character of the system arising from
the external trapping potential. As a consequence, the transition does not occur simultaneously
in the entire system and the homogeneous Kibble–Zurek mechanism (HKZM) described above
breaks down, making it necessary to extend it to scenarios where the nucleation of defects
is governed by causality [8–14]. To date, there is no experimental evidence supporting this
extension that we shall refer to as the inhomogeneous Kibble–Zurek mechanism (IKZM), whose
main prediction is the existence of two regimes: (a) one regime regime in which the phase
transition is crossed adiabatically with complete suppression of the nucleation of defects and
(b) another regime, characterized by vortex nucleation, where the density of defects after the
quench obeys a scaling law with the quenching rate, different from that in the homogeneous
mechanism described above and governed by the inhomogeneities in the system. Due to the high
control of the trapping potential which induces the inhomogeneous density profile in a trapped
cloud, the nucleation of vortices during Bose–Einstein condensation (BEC) stands out as an
ideal scenario to test the predictions of the IKZM and it is highly desirable to extend the results
of the experiments in [6] to such an aim. Here, we analyse theoretically in this experimental
setup the benchmarks of the IKZM, which are key to its verification.

2. The homogeneous Kibble–Zurek mechanism (HKZM)

We start recalling the results of the HKZM for a uniform thermal gas [15]. Consider a uniform
quench of the temperature T (t) across the critical value of condensation Tc. For a symmetric
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linear quench between the initial Ti = Tc(0) + δ and the final Tf = Tc(0) − δ temperature, it
follows that

T (t) = Ti − t
Ti − Tf

τ
= Tc(0)

(
1 −

t

τQ

)
, (3)

where t = t − τ/2 and

τQ = τ
Tc(0)

2δ
. (4)

The reduced temperature

ε(t) =
Tc(0) − T (t)

Tc(0)
(5)

governs the divergence of both the correlation length

ξ(t) =
ξ0

|ε(t)|ν
(6)

and the relaxation time

τ(t) =
τ0

|ε(t)|νz
(7)

as the system approaches the critical point (ε(t) = 0). Here, {z, ν} are the critical exponents
determined by the universality class to which the system belongs. The instant t̂ in which the
relaxation time equals the time remaining to the transition,

τ(t̂) =
ε

ε̇

∣∣∣
t̂
=: t̂, (8)

is the freeze-out time that fixes the area ξ̂ 2
= ξ(t̂)2 of the spots where the phase of the

condensate is picked homogeneously. It has been theoretically shown [16] and experimentally
demonstrated [17] that merging independent condensates with uniform random phases can lead
to the nucleation of vortices. The geometrical configuration in the merging process determines
the yield according to the geodesic principle [18]. The efficiency of this process can be captured
by a constant f independent of the critical exponents of the system. Moreover, since the system
is homogeneous, so is the transition, and defects might nucleate everywhere in the system. It
follows that the density of vortices that spontaneously nucleate under such a quench can be
estimated as the inverse of the square of the correlation length at the freeze-out time,

DHKZM =
1

f ξ̂ 2
=

1

f ξ 2
0

(
τ02δ

τTc(0)

)2ν/(1+νz)

. (9)

Experiments on the BEC of a three-dimensional (3D) thermal cloud [19] have reported a critical
exponent in agreement with the static 3D XY universality class, for which the best theoretical
estimate to date is ν = 0.6717(1) [20]. For our purposes, the approximation ν ' 2/3 will suffice.
The dynamic critical exponents are expected to be z = 3/2 as in the superfluid transition in 4He,
the model F in the classification of Hohenberg and Halperin [21], up to possible small deviations
discussed in [22]. This leads to a dependence

DHKZM ∼ τ
−2/3
Q , while DHKZM ∼ τ

−1/2
Q (10)
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follows from the mean-field values ν = 1/2, z = 2. Finite-size effects might pave the way for
an adiabatic transition whenever the correlation length at the freeze-out time surpasses the
size of the system. Otherwise, nucleation of vortices will take place no matter how slowly the
temperature is quenched.

3. The inhomogeneous Kibble–Zurek mechanism (IKZM)

In the following, we focus on the role of the inhomogeneities arising as a result of the external
trapping potential. We shall see that its presence brings two new ingredients, a local critical
temperature and a local quench rate, changing the power law for the density of defects as a
function of the quench rate.

Let us consider a thermal gas confined in a 3D oblate harmonic trap, isotropic in the
radial direction, along which the density distribution exhibits a Gaussian profile of the form
n(r) = n0 e−(mω2/2kBT )r2

. And let us focus on the nucleation of vortices on the equatorial plane.
Due to the inhomogeneous density, the critical temperature acquires a dependence on the radial
position [11],

Tc(r) = Tc(0)e−(mω2/3kBT )r2
. (11)

Here, Tc(0) is the critical temperature for the homogeneous system [23, 24]. For compactness,
we shall introduce the thermal length 1 =

√
3kBT/2mω2. Due to the spatial dependence of

Tc(r), as the temperature is quenched, different parts of the system undergo condensation
at different times. It turns out to be convenient to introduce the spatially dependent reduced
temperature

ε(r, t) =
Tc(r) − T (t)

Tc(r)
, (12)

to identify a front in the system crossing the transition at a given position and time (rF, tF)

satisfying the condition

ε(rF, tF) = 0. (13)

It follows that tF
τQ

= 1 −
Tc(r)

Tc(0)
, which in turn allows us to rewrite the relative temperature as

ε(r, t) =
t−tF
τQ(r)

, with a radial-dependent quench time

τQ(r) = τQ
Tc(r)

Tc(0)
. (14)

As a result, the relaxation time τ̂ = τ̂ (r) and the correlation length ξ̂ = ξ̂ (r) at the freeze-out
time acquire a local dependence. The process resembles closely the formation of solitons in a
1D BEC [11]. The nucleation of topological defects in an inhomogeneous transition is governed
by causality [8–14]. Indeed, when the front of the transition moves faster than the characteristic
velocity of a perturbation, defects nucleate, while otherwise the choice of the order parameter
in the broken symmetry phase is done homogeneously along the system.

Approaching the transition from the high-symmetry phase, the thermal gas starts to
condense in the centre of the cloud where the density and critical temperature are higher. The
condensate, where the U (1) symmetry is broken, grows then radially, the velocity of the front
being

vF =
Tc(0)

τQ

∣∣∣∣dTc(r)

dr

∣∣∣∣−1

=
12

|r |τQ(r)
, (15)
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where we have disregarded corrections due to the time derivative of the critical temperature
Tc(r) = Tc(r, t) arising from the quench T (t) which affects the density profile. This is
reasonable whenever the amplitude of the quench is small, δ � Tc(0). The existence of this
front and a local temperature plays a crucial role in the following discussion, and requires a
local thermalization that is fast compared to the time scale of the quench. For the defects to
nucleate, the front of the transition has to move faster than any perturbation. The characteristic
velocity of a perturbation when the dynamics stops being adiabatic; that is, at the freeze-out
time, can be upper-bounded by the ratio of the freeze-out correlation length over the relaxation
time,

v̂ =
ξ̂

τ̂
=

ξ0

τ0

(
τ0

τQ(r)

)ν(z−1)/(1+νz)

. (16)

While within the HKZM the appearance of vortices is always expected (up to finite-size effects
of the system), the trapping potential paves the way for a perfectly adiabatic condensation,
where the spontaneous nucleation is suppressed as long as

vF < v̂. (17)

Conversely, the condition for the appearance of defects, vF > v̂, leads to a threshold value of the
radius of the cloud delimiting the area within which defects might nucleate,

|r̂ | <
12

ξ0

(
τ0

τQ(r)

)(1+ν)/(1+νz)

,

<
12

ξ0

(
τ0

τQ

)(1+ν)/(1+νz)

exp

(
r̂ 2

212

1 + ν

1 + νz

)
. (18)

Within a reduced area of the condensate S∗, the formation of vortices occurs as in the HKZM,
setting the average size ξ̂ 2 of the spots with uniform local phase. Up to a numerical factor f ,
the total number of topological defects can be estimated as follows,

NIKZM '

∫
{r |vF>v̂}

dr
2πr

f ξ̂ (r)2
, (19)

and simply by NIKZM =
S∗

f ξ̂2 if one neglects the radial dependence of ξ̂ .
The transcendental inequality (18) can be approximated around the centre of the cloud

(r̂ � 1) by setting τQ(r) = τQ(0) = τQ, and consistently ξ̂ (r) = ξ̂ (0). Solving the associated
equality, one finds the effective radius r̂ = r∗, in terms of which S∗ = πr 2

∗
so that

N (0)
IKZM =

π14

f ξ 4
0

(
τ02δ

τTc(0)

)2(1+2ν)/(1+νz)

. (20)

We note that for the mean-field critical exponents, z = 2 and ν = 1/2, the exponent governing
the scaling in equation (20) is given by 2(1+2ν)

1+νz = 2, which is four times that predicted by
the HKZM. For z = 3/2 and ν = 2/3, the IKZM power-law exponent becomes 7/3, which is
also nearly four times that of the homogeneous counterpart, and constitutes an experimentally
accessible benchmark of the IKZM.

Nonetheless, note that the absolute number of defects is reduced by a factor

NIKZM/NHKZM ∼ (r∗/rM)2
∼

(
12

ξ0rM

)2 (
τ0

τQ

)2(1+ν)/(1+νz)

, (21)
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Figure 1. Ratio of the velocity of the front vF crossing the critical point for
condensation and the characteristic speed of a perturbation v̂ at the freeze-out
time, along the radial axis of a pancake-shaped atomic thermal cloud, for the
values A= 0.1, 0.4, 1/

√
e and 0.8 (from the bottom to the top). The coefficient

A=

√
1+2ν

1+νz 2ϒ
1+ν
1+νz allows one to identify the homogeneous (A> 1/

√
e) and

inhomogeneous (A6 1/
√

e) scenarios.

where rM is the radius of the cloud. Hence, it is the dependence on the quench rate and the
critical exponents inherited by the effective size of the cloud S∗ and ξ̂ that is responsible for the
new power law governing the density of defects.

For the general solution of equation (18), it is convenient to introduce the variable

ζ(r) =
r̂

1

√
1 + 2ν

1 + νz
, (22)

to find ζ <Aeζ 2/2, with

A=
1

ξ0

√
1 + 2ν

1 + νz

(
τ0

τQ

)(1+ν)/(1+νz)

. (23)

Figure 1 shows the ratio vF/v̂ along the radial coordinate of the cloud for different values of
this parameter. In the central region where the density reaches its maximum, and hence it is
approximately uniform, this ratio is always larger than unity.

One can distinguish two different regimes as a function of the value of A with respect
to the critical value Ac = 1/

√
e. (i) For A>Ac, vF is everywhere along the sample larger than

v̂, so the homogeneous KZM applies. The density of vortices is then given by equation (9).
(ii) For A<Ac there exist two solutions {ζ∗ = ζ(r∗) < ζ ′

∗
= ζ(r ′

∗
)} defining two disjoint

concentric discs with support on the interval 0 := [0, r∗] ∪ [r ′

∗
, rM] along the radial direction,

where rM is the effective radius of the cloud. As a result (see figure 2) the area S∗(A) =

π [r 2
∗

+ (r 2
M − r ′2

∗
)] where vortices might nucleate is reduced with respect to the total area

of the cloud S = πr 2
M, and so is the corresponding density of defects (note that case (i)

corresponds to r∗ = r ′

∗
, so the effective area S∗ equals the total area S). Nonetheless, for

A<AM = ζ(rM)e−ζ(rM)2/2, r ′

∗
> rM, so the outer disc can be ignored, and nucleation can be
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Figure 2. Reduction due to causality of the effective size of the cloud for
nucleation of vortices. (a) Critical values r∗ and r ′

∗
of the radial coordinate of

the cloud determining the regions where defects might nucleate as a function of
A<Ac. (b) Effective area as a function of the parameter A within the IKZM for
a pancake atomic cloud as well as for a cloud in a toroidal trap, which will be
discussed in section 4.

considered to take place only in the centre of the cloud (r < r∗). This is the regime where
equation (20) holds, up to finite-size effects that might lead to an adiabatic transition and
a breakdown of the scaling whenever ξ̂ > r∗. These different cases follow from the spatial
distribution of the regions where the ratio vF/v̂ > 1 as a function of A, exhibiting a transition
from case (i) to (ii). For instance, if in a given experiment only the quenching time is varied,
one can identify a critical value

τQ(Ac) = τ0

[
ξ0

√
e1

√
1 + νz

1 + 2ν

](1+νz)/(1+ν)

(24)

around which the scaling changes between those predicted by HKZM and IKZM.
To appreciate how the scaling is modified, we introduce the dimensionless cloud width and

quench rate

2 = 1/ξ0, ϒ = τ0/τQ, (25)

and rewrite the parameter A as

A=

√
1 + 2ν

1 + νz
2ϒ (1+ν)/(1+νz). (26)

Equating both sides of the inequality equation (18), one can find the values of r∗, r ′

∗
that

determine the effective area S∗(2, ϒ) = S∗(A)/12 where vF/v̂ > 1. This leads to the following
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Figure 3. Density of vortices as a function of the dimensionless width of the
cloud 2 and quench rate ϒ in an inhomogeneous phase transition under a
linear quench of the temperature (a) in a radially symmetric harmonic trap and
(b) in a toroidal trap. Here ν = 2/3, z = 3/2, but the same qualitative behaviour
is observed for ν = 1/2, z = 2. For small values of (2, ϒ) the density of defects
exhibits the IKZM power-law scaling of equation (20) in a harmonic confinement
and that of equation (30) in a toroidal trap. As (2, ϒ) is increased, within the
IKZM the power-law dependence breaks down and exhibits a more complicated
dependence. For large enough values of 2 and ϒ (such that A>Ac), nucleation
is possible in the whole cloud, the confinement no longer plays a role, and
the HKZM scaling in equation (9) describes the dependence of the density of
vortices in both types of trap.

equations,

ζ∗(2, ϒ) =

√
1 + 2ν

1 + νz
2ϒ (1+ν)/(1+νz)eζ 2

∗ (2,ϒ)/2, (27)

NIKZM(2, ϒ) =
2π

f

1 + νz

1 + 2ν
22ϒ2ν/(1+νz)

∫
{ζ |vF>v̂}

dζ ζeζ 2(ν/(1+2ν)), (28)

which take into account the causality argument and the local dependence of ξ̂ . Although this
expression lacks a simple power-law scaling with the temperature quench and sweeping rate
through the transition, it is still universal, in the sense that such dependences are still governed
by the critical exponents associated with the universality class to which the transition belongs.
Figure 3(a) shows the density of topological defects D =N /S as a function the dimensionless
temperature and rate. As a result of the inhomogeneity, the dependence of the density of vortices
on the cooling rate becomes much stronger than in the homogeneous case. Moreover, the
threshold AM that arises from the finite size of the cloud is responsible for an abrupt jump
in density of vortices. For the sake of illustration, in figure 3 we consider the case in which
n(rM)/n(0) = 0.1, but the results are qualitatively the same for different values of rM.

In the experiments reported in [6], a fit to the measured temperatures to (1 − t/τQ) leads
to an estimate τQ ∼ 5 s, while τ0 ∼ 0.1 s is given by the scattering time of atoms. Moreover,
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the de Broglie wavelength is ξ0 ∼ 1.6 µm and 1 ∼ 65 µm, so that A∼ 1.7, suggesting a
homogeneous scenario in the proximity of the boundary Ac. Using the explicit form of A as a
guide, we note that an experimental verification of the IKZM, and in particular of the scaling in
equation (20), will be favoured by a slow quench, ϒ = τ0/τQ < 1, and a tight trapping potential
so as to reduce 2 = 1/ξ0.

We close this section noting that our discussion is limited to quenches where the correlation
length at the freeze-out time is much smaller than the trap size. Otherwise, the finite-size scaling
modifies the power law governing the divergence of the correlation length in the neighbourhood
of the critical point, as discussed in [25].

4. Mixing the mechanisms: Bose–Einstein condensation in a toroidal trap

The Tucson group also studied the spontaneous nucleation of vortices in a toroidal trap, which
we describe in the following. Such geometry induces a new type of transition with a mixed
homogeneous–inhomogeneous character. To illustrate this, consider a squashed toroidal trap of
radius rc and transverse trapping frequency ωr. The corresponding equilibrium density profile
of a non-interacting thermal gas has the form n(θ, r) = n0 exp −(r − rc)

2/212, and as a result
the critical temperature becomes

Tc(θ, r) = Tc exp

[
−

(r − rc)
2

212

]
. (29)

The upshot is that the transition remains homogeneous as a function of θ , but it is governed
by causality in the radial direction where it is still inhomogeneous. The relative coordinate
h = r − rc plays the role of r in the preceding section. As in the harmonic trap, a complete
suppression of vortex nucleation can arise not only from finite-size effects, but also whenever
vF < v̂. As for the pancake condensate,Ac governs the transition between the homogeneous and
inhomogeneous scenarios in the radial direction. For A<Ac the effective size of the cloud is
reduced as shown in figure 2(b), and the IKZM scaling of defects is modified as follows:

N (0)
IKZM =

4πrch∗

f ξ̂ 2
=

4πrc1
2

f ξ 3
0

(
τ02δ

τTc(0)

)(1+3ν)/(1+νz)

(30)

under the approximation mentioned above, h∗ = |r∗ − rc| � 1, ξ̂ = ξ̂ (rc), which holds for
A< ζ(|rc − rM|)e−ζ(|rc−rM|)2/2. For the mean-field critical exponents N (0)

IKZM ∼ τ
−5/4
Q , at variance

with the HKZM power-law with exponent 1/2 in equation (9) and the inhomogeneous harmonic
case, see equation (20) where the exponent is 2(1+2ν)

1+νz = 2. Similarly, for ν = 2/3, z = 3/2, the
power law exponent is 3/2, intermediate between that of HKZM (2/3) and IKZM in a harmonic
trap (7/3). The general estimate in the inhomogeneous scenario (A>Ac) can be obtained
by solving numerically equation (27) as a function of the dimensionless transverse width of
the cloud 2 and quench rate ϒ , and noting that the effective area is in this case given by
S∗(2, ϒ) = 4πζ(rc)[ζ∗(2, ϒ)− ζ ′

∗
(2, ϒ) + ζ(rM)].

The result is shown in figure 3(b), which displays the change in scaling from that of
equation (9) (HKZM) to that of equation (30) (IKZM) when we increase the quenching time and
the inhomogeneity of the cloud. The boundary between the different scalings is now smoother
than for the pancake geometry, due to the mixed character of the transition. We further note that
for tight toroidal traps even when vortex nucleation is suppressed, solitons might be formed,
leading to the spontaneous generation of persistent currents, as recently discussed in [26].
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Table 1. Power laws predicted by the Kibble–Zurek mechanism for the density
of vortices D as a function of the rate τQ of a thermal quench through the critical
temperature for BEC. The exponent α of the power law D ∼ τ−α

Q is shown for
different critical exponents (ν, z) and trapping potentials. The scalings in the
harmonic toroidal and toroidal traps are restricted to situations where nucleation
is limited to a small fraction of the cloud (r∗, h∗ � 1), as discussed in the
text.

Critical exponents Homogeneous trap Harmonic trap Toroidal trap

Arbitrary (ν, z) 2ν
1+νz

2(1+2ν)

1+νz
1+3ν
1+νz

Mean-field theory
(
ν =

1
2 , z = 2

)
1
2 2 5

4

Experiments/F model
(
ν =

2
3 , z =

3
2

)
2
3

7
3

3
2

Nonetheless, for wider traps such solitons become unstable against vortex formation through
the snake instability and related mechanisms [27].

5. Conclusions

In conclusion, we have shown that the Kibble–Zurek mechanism, extended to describe spatially
inhomogeneous systems, severely modifies with respect to the homogeneous case the scaling
of the density of defects as a function of the quenching rate, as illustrated in table 1. When
the presence of a trapping potential leads to an inhomogeneous scenario, a neat power law
scaling governs the nucleation of vortices only when causality limits it to a small fraction
of the cloud. Otherwise, the local dependence of the effective quench rate is to be taken into
account, leading to a more complicated behaviour, different from a power-law. We have further
introduced a simple parameter A that allows one to estimate which is the relevant scenario
for the nucleation of defects in a trapped cloud. Indeed, the standard Kibble–Zurek scaling is
recovered for weak trapping potentials and fast quenches. We close by noting that whereas the
HKZM has been studied in a wide range of experiments [4], the mechanism of the nucleation
of topological defects in inhomogeneous systems lacks, to date, experimental evidence. Hence,
we hope that measurements of the number of spontaneously generated vortices as a function
of the cooling rate of an atomic cloud undergoing BEC might soon change this state of
affairs.
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