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Abstract

To develop mitigation measures for the protection of bats in close proximity to onshore wind
turbines, new detection techniques covering large-scale environments and techniques,
which are able to track individuals are required. Radar based observations, successfully
applied in ornithological studies, offer a promising potential, but come with challenges
regarding the comparability of measurements and noise interference (ground clutter) from
objects within detection range. This paper presents improvements of a commercially avail-
able inexpensive pulse radar for 3D spatial detection of bat-sized objects in onshore wind
parks. A new analytical spatial detection volume model is presented incorporating calibrated
radar data and landscape parameters such as clutter. Computer simulation programs to pro-
cess the analytical spatial detection volume model were developed. For model calibration,
the minimum signal power of the radar was experimentally determined with the radar cross
section (RCS) of an artificial bat (similar to Nyctalus noctula), resulting in a maximum detec-
tion range of 800 m and a corresponding RCS of 12.7 cm?. Additionally, the spatial volume
for radar detection was optimized with a clutter shielding fence (CSF). Adjusting the volume
model by incorporating a theoretical model of the CSF, an extension of the detection volume
by a factor of 2.5 was achieved, while the total volume of a 105° horizontal angular radar
image section yields 0.0105 km?3. Extrapolation and comparison with state-of-the-art acous-
tic bat detection result in a 270 times larger volume, confirming the large-scale detection
capabilities of the pulse radar.

Introduction

The vast growing number of wind parks has significant impact on bat populations. Besides
causing bat casualties during migration flights, wind turbines (turbines) are also harmful to
resident bats [1-4]. Studies from Germany realized between July and September show an aver-
age value of 9.5 deceased bats per turbine and year (minimal 0 to maximal 57.5) [1]. Although
still under investigation, direct collision with the turbine rotor blades or the barotrauma are

PLOS ONE | https://doi.org/10.1371/journal.pone.0239911

September 30, 2020 1/22


http://orcid.org/0000-0002-4283-5706
https://doi.org/10.1371/journal.pone.0239911
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239911&domain=pdf&date_stamp=2020-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239911&domain=pdf&date_stamp=2020-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239911&domain=pdf&date_stamp=2020-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239911&domain=pdf&date_stamp=2020-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239911&domain=pdf&date_stamp=2020-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239911&domain=pdf&date_stamp=2020-09-30
https://doi.org/10.1371/journal.pone.0239911
https://doi.org/10.1371/journal.pone.0239911
http://creativecommons.org/licenses/by/4.0/
mailto:energie@haw-hamburg.de

PLOS ONE

Volume model for radar bat detection in wind parks

Funding: The study is part of the superordinate
project "FLEDERWIND", which is funded by the
German Federal Ministry of Education and
Research (funding code 13FH1EOQ3IA). The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing interests: The authors have declared
that no competing interests exist.

currently seen to be the most lethal [5]. This is in strong contrast with the European law, listing
all European bat species, their breeding sites and resting places as being protected. There have
been several studies covering the activities of bats at turbines, providing guidelines for moni-
toring bats [1-4, 6-9]. Although several hypothesizes exist, none of the proposed collision
risks and attraction effects could be confirmed so far [10, 11]. Shut down algorithms imple-
mented in the turbine controller are therefore based on assumptions of bats temporally limited
activities [7, 9, 12]. In order to develop risk mitigation measures and to better understand bats
behavior in wind parks, further studies, especially regarding the 3D movement of bats in wind
parks are required [2, 3].

Due to their small size, bats are difficult to locate in larger areas such as the periphery of tur-
bines or within a complete onshore wind park. Current state of the art bat detection is based
on acoustic detectors, sampling bats ultrasonic calls [6, 8]. However, acoustic detectors have a
huge disadvantage, because of the limited detection range of 15 m to 60 m depending on the
emitted frequency of the bat and the utilized detector sensitivity [13]. Recent turbine nacelle
heights of more than 150 m and rotor diameters exceeding 100 m make observations of bats
even more challenging. Therefore, improved detection methods, that cover a large spatial vol-
ume are required for further investigation in the proximity of turbines [4].

Detecting bats with radar is a promising way to overcome the range limitations [14, 15].
Furthermore, radar has the huge advantage of tracking individual objects, which is almost
impossible with standard acoustic detectors [16, 17]. Analytic description of electromagnetic
radiation has been around for more than a half century [18, 19]. So far, most studies presented
where mainly carried out by ornithologists utilizing radar technology for the detection of birds
[14, 19-28]. Only a few radar studies have been published investigating more complex shapes
such as bats [2, 4, 23, 29, 30]. Biological radar studies of insects also gained little coverage so far
[31, 32]. However, a few radar systems optimized for the detection and tracking of birds, such
as the MERLIN radar from DeTect, the Robin Radar System or the Swiss Birdradar have been
developed [33]. Unfortunately, these radar systems are very expensive. Furthermore, opti-
mized radar systems are mostly designed for object detection in high altitudes (up to several
kilometers), often implemented with vertical oriented antennas. Additionally, the focus is fre-
quently on tracking single objects. For the 3D tracking of bats in large-scale wind parks with
maximum heights of up to 200 m, X-band marine radar systems are more suitable [25, 34].

A further challenge of marine radar studies is the comparability of the measurements,
which is so far ignored in most of the published studies [25]. For comparability of the studies,
radar calibration is very important to calculate a theoretical detection volume for the studied
objects [25, 28, 32], whereas the determination of their maximum detection range [27, 35] is
only an intermediate step in the 3D volume calculation. Accurate calibration is required to cal-
culate object densities defined as counted objects per space, or to calculate mean traffic rates,
derived from ornithological studies [28, 36]. Radar detection of bats in an onshore environ-
ment is also challenging, because of ground clutter, which is particularly difficult to avoid. It is
impossible in certain regions to distinguish weak echoes reflected by bats from interfering sig-
nals, resulting in a smaller detection volume.

The objective of this paper is to present an analytical spatial detection volume model of a
commercially available inexpensive pulse radar for 3D spatial detection of bat-sized objects to
track their flight paths. For visualization, an example of a theoretical detection volume for bat-
sized objects is shown in Fig 1, neglecting effects from ground clutter. In total six different
input parameter of the model were defined, divided into two superordinate categories:

o Radar calibration data (radar specifications, radar cross section and the minimum detectable
signal power)
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Fig 1. Theoretical 3D spatial detection volume example of a Furuno FAR 2117 marine radar for bat-sized objects (RCS of 12.7 cm?) without influence from
clutter. In the satellite image [37] of the wind park and surroundings the radar is positioned in the origin, covering 5 turbines in horizontal dimension, but not fully
covering their height up to 180 m.

https://doi.org/10.1371/journal.pone.0239911.9001

 Radar image information (the individual study environment including landscape parame-
ters, e.g. clutter).

This model is a novel approach for the determination of the 3D detection volume with a
marine pulse radar system and can easily be applied to other studies with similar radar systems
and other objects to be studied. Furthermore, only standardized data is utilized, without any
modification of the radar system itself.

Radar calibration was performed each time after warm-up. Calibration data for the maxi-
mum detection range of our radar for bat sized objects is neither provided by the radar manu-
facturer, nor available in the literature [25]. The detection range calibration is depending on
the radar cross section (RCS) of the object under investigation, the selected radar settings and
definitions for the radar image analysis procedure.

Therefore, experiments with a self-developed bat model and additional shapes to provide
first estimates of bats RCS and the minimum detectable signal power of the radar were part of
this study. An analysis procedure is proposed, providing a conservative detection threshold for
bats. It is assumed that the detection threshold is sufficient for the further analysis of automatic
tracking algorithms [16, 17].

To optimize the spatial detection volume by minimizing ground clutter, a practical imple-
mentation of a physical fence, a so-called clutter shielding fence (CSF), shielding the ground
directed radiation is presented. The dimensioning of the CSF is based on laws from physical
optics and early military radar shielding studies [38, 39]. To incorporate the influence of the
CSF in the spatial detection volume model and to analyze its shielding and diffraction charac-
teristics, a simulation model of the CSF was developed and experimentally verified. Since the
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entire radar beam is affected by the clutter, the detection range and the detection height of the
simulation allows for the comparison of different geometrical setups leading to an optimized
CSF. Optimized detection and tracking volumes and increased visibility of the radar inside the
wind park can be visualized. Finally, this paper presents recommendations of the optimized
settings for a practical pulse radar to study bats in onshore wind parks.

Material and methods
Radar setup and study site

The commercially available marine X-band Furuno FAR 2117 pulse radar chosen for this
study consists of a magnetron based power-oscillator-transmitter with a peak output power of
12 kW fed into a Furuno XN24AF slotted waveguide antenna, rotating in the horizontal plane
with a speed of 24 min™" [40]. Table 1 lists an overview of the radar processor specification and
configuration applicable to all measurements presented in this paper.

For all measurements provided, the built-in software clutter reduction features were dis-
abled. The utilized pulse length and pulse repetition frequency limit the theoretical range reso-
lution to 10.5 m, while the angular resolution is highly dependent on the distance between the
radar unit and the target, allowing for a resolution of approximately 20 m of small targets in
range. The digitized radar image delivers an even higher resolution of 3.027 m per pixel at set
1.5 km range in both horizontal X and Y directions. For image extraction in this study, the dig-
ital reference signal, visible on the plan position indicator (PPI), is sampled with a digital video
interface often referred to as frame grabber (model: Epiphan DVI2USB 3.0).

As the magnetron degrades over time and the receiver unit is sensitive to environmental
conditions [18] a calibration procedure must be regularly performed. Therefore, the gain and
the tuning frequency were manually adjusted before each session to achieve comparable results
[40, 41]. The selectable gain was adjusted so that the receiver noise was just beginning to
appear. At this point no more than approximately 75 noise blips (single echoes with small spa-
tial extension) appeared on the PPIL.

All studies were conducted in a North German wind park near Hamburg-Curslack, consist-
ing of five turbines with a nacelle height of 120 m. The landscape inside the wind park consists

Table 1. Radar specification and hardware parameter for radiation measurements.

Furuno FAR 2117 radar processor configuration

Specification

Range

Pulse length t

Pulse repetition freq. PRF

Interference Rejection

Echo Stretch

Furuno FAR 2117 system specification
Specification

Pulse Power P,

Frequency f

Hardware for radiation measurements
Device

Power Meter

Power Sensor

Horn Antenna

https://doi.org/10.1371/journal.pone.0239911.t001

Configuration Specification Configuration
1,5 km Echo Average Off
0,07 us Noise Rejection Off
3000 Hz Auto Sensitivity Time Control Off

Auto Rain Off

Video Contrast 2-B
Configuration Specification Configuration
12 kW Antenna Gain g (max.) 31.6dB
9410 MHz

Type/Specification

Agilent E4418B

Agilent E9300A

gain = 15,5 dBi, manufacturer: Procon
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of farmland (mostly pasture) with many small ditches, bushes and a few isolated trees. Clear
visibility from radar at eye height into the wind park is provided. In close proximity to the
wind park more complex structures such as woods, roads and buildings can be found.

Analytical model of spatial detection volume

When analyzing bat echoes, the number of echoes or tracks in relationship to the detection
volume (e.g. density) is very important to make different studies comparable. Therefore, we
developed a 3D model simulating the detection boundaries of height and distance for objects
with a defined RCS and given pulse radar parameter. To describe our simulation model we
start with the standard radar equation given by [18]:

R _ 4 PtG2}»20' (1)
" (4”)3Pmin

Rinax is the maximum detection range, P, is the transmitter power, G is the antenna gain, A is

the wavelength, o is the RCS and P,,,;, is the minimal detectable signal power. To obtain the

receiving signal power P, for an object with defined RCS at range R in 3D space we substitute

Ponin with P, and R, with R and rearrange Eq (1):
P,G’A’c

= 3 (2)

R*(4rm)

In addition to the physical radar detection parameters described by the variables in Eq (2),

clutter has a great influence on the successful detection of small objects. We therefore consider

clutter causing landscape parameters of the radar images in our spatial detection volume

model as an input parameter.

Inputs of the analytical model of spatial detection volume.

1. The radar equation, rewritten to simulate P, (Eq (2)) and fixed values of P, and A (see
Table 1).

2. The vertical antenna diagram of the radar antenna to consider the vertical gain distribution:
G(¢), where ¢ is the elevation angle (available from radar manufacturer).

3. The RCS o of the object of interest.

4. The minimum detectable signal power P,;, corresponding to the defined analysis proce-
dure (described in the following section).

5. Aradar image (or the defined image section) to be analyzed. Based on the resolution and
range settings, pixel dimensions A, must be calculated (A = 9.16 m” for this study).

6. A clutter threshold based on the echo resolution to define the clutter signal power (The Fur-
uno FAR 21x7 radar possesses an echo signal resolution of 32 levels, where each level is rep-
resented as an RGB (red, green and blue) value of the RGB color space).

Radar calibration

Determination of bats radar cross section. To determine the RCS of the largest bat (Nyc-
talus noctula) found in this wind park, experiments with an artificial bat model and further
test objects for comparative purposes were performed. A detailed description of the bat model-
ling and the test objects is given in the RCS modelling section. Based on maximum detection
range experiments with the bat model in the wind park, the related RCS was calculated by

PLOS ONE | https://doi.org/10.1371/journal.pone.0239911 September 30, 2020 5/22


https://doi.org/10.1371/journal.pone.0239911

PLOS ONE

Volume model for radar bat detection in wind parks

rewriting the standard radar Eq (1) [18]:

R, *(4n)°P,,
o_: max min (3)
P,G*A’

Where P, G and A are constants, while only P,..;,, accumulating all losses (e.g. due to noise),
must be determined separately (described in the next section).

Sample points were placed between 350 m and 950 m in steps of 150 m from the radar and
chosen to be in areas with minimum background clutter. At each sample point a set of 11 con-
secutive radar images were captured at a frequency of 0.4 Hz. This image set together with the
visibility definition (see below) between consecutive radar scans provides sufficient data to
compensate echo fluctuations. The odd number of 11 was chosen experimentally after a series
of trials with different visibility definitions (definition see below). The bat model was attached
to a thin string dangling between two poles at a height of 2.5 m, which is equal to the antenna
height. As echoes are fluctuating and represented with a resolution of 32 levels (unitless, visual-
ized in a different RGB value per pixel, see also input 6 of the volume model) the analysis pro-
cedure, described in detail in the flow chart in Fig 2 was applied. If the echoes in the single
radar images meet certain thresholds (defined in Fig 2) they are counted visible. The sample
point is determined as “visible”, when more than 50% of all images meet the threshold criteria,
so that at least one strong echo in every second radar scan remains. The selected thresholds
(e.g. matrix dimension and the mean intensity level) were defined after several iterations in
manual analyses of radar images with fluctuating clutter and provide a very conservative
threshold for object identification (see an example non-manipulated radar image in support-
ing information S1 Fig).

Determination of the minimum detectable signal power. The minimum detectable sig-
nal power P,,;,, underlays statistical fluctuations of the signal to noise ratio and individual
losses of the radar system [18]. Recommendations for a theoretically calculation of Py, are
given by [32]. Since the theoretical parameters can vary between different radar systems, we
followed a more practical approach. We recalculated P, from a field experiment with an
object of known RCS. Therefore, we experimentally determined R ., of the object with
known RCS using the analysis procedure, similar to the RCS determination method of the bat
model. With this result, the known RCS and rewriting Eq (1), Pyin could be calculated.

An ideal test object with known RCS is a perfectly conducting sphere, e.g. a metal sphere,
where the RCS is independent from the physical appearance [41], but a function of its cross-
sectional area and the wavelength A [19]. Therefore, a solid metal sphere from an industrial
bearing with a diameter of 1 cm and a radar cross section of 0y, = 2.8 cm” was used in the
experiments as depicted in Fig 3D. The calculation of a perfectly conducting sphere allows
simplified calculations compared to calculations of more complex shaped objects. The calcula-
tion of several normalized shapes can be found in e.g. [42], allowing the calculation of the
absolute cross section Oppere Of 2 metal sphere for a given radius r to:

o-sphere :fratiokﬂ’.r2 (4)

where k is the scattering factor and £, the diffraction.

The influence of diffraction is depending on the ratio of r over A, which is ~1 in the optical
region. The scattering factor corresponds to the dielectric constant €, of the material. It is
approximately 1 for a perfectly conducting sphere [43]. A sphere with a circumference smaller
than approximately ten times the wavelength is leaving the optical region and experiences a
huge variation in their RCS due to Mie-Scattering (e.g. diffraction around the sphere leads to
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Fig 2. Analysis procedure for radar images. Each image of a set of 11 consecutive images (image counter “i”) at
individual sample points is compared against the mean intensity level of 25 (where 25 is a unitless radar intensity level
based on the RGB value). Brighter samples cause the visibility counter “v” to increment. After each set of images is

« »

executed, the visibility counter “v” is compared against a threshold value of 5. The sample point is defined “visible”
when “v” exceeds the value of 5 (>50%).

https://doi.org/10.1371/journal.pone.0239911.9002

positive and negative interference with direct reflected radiation). For smaller circumferences
than the wavelength, the cross section drops due to Raleigh-Scattering [19, 44].

Radar cross section modelling of bat-sized objects. For modelling small size objects such
as bats, a concept invented by radar ornithologists was utilized. Since the RCS varies depending
on the material, appearance, size, wavelength and polarization [41] making theoretical calcula-
tions difficult, Houghton and Schaefer simplified the RCS of birds to water spheres and spher-
oids [20, 21, 43]. Hereby the bird’s torso, mainly consisting of water was understood as being
the main reflector, whilst the bird’s feathers are negligible. For the calculation of a water spheres
RCS, Eq (4) can be applied, leading to similar variations due to diffraction effects. However, the
scattering factor is now adjusted to k = 0.56 as suggested by Eastwood [19].

As a reference test sample, the largest endangered bat found in the wind park (Nyctalus noc-
tula) was modelled with a torso weight of 30 g, torso length of 8 cm. and a wingspan of 40 cm
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Fig 3. Test objects to experimentally determine the maximum radar detection range. (a) reference bat model with
water filled PET bottle as torso (water sphere simplification) and leather wings, (b) empty water bottle (water filled
bottle without wings is not displayed), (c) dead bat, (d) metal sphere (bearing steel 100Cr6) for calculation of
minimum signal power.

https://doi.org/10.1371/journal.pone.0239911.g003

[45]. In contrast to the concept from ornithologists, wings were also considered and attached
to the model, because an influence on the RCS caused by the different material characteristics
of bat wings is assumed. Based on the water sphere simplification, the torso consists of a tiny
cuboid PET plastic bottle filled with 30 ml of water (density of 1 g/ml). Measurements with a
calibrated power meter (see specifications listed in Table 1) have shown that the influence of
the plastic material can be neglected. Calculating the RCS for a water sphere with a volume of
30 ml (corresponding to a radius of 19.3 cm) in the optical region, Eq (4) with k = 0.56 and f,,,_
tio = 1 results in an RCS of 0,pical = 6.65 cm’. Including Mie-scattering the RCS rises to Oyjie;
~ 7.5 cm?, which is equal to the result found by [46] and close to the result found by [42] for
the RCS of &~ 8.1 cm”. The wings of the bat model consist of two 0.4 mm thick leather slices
with a total area of 234 cm” and are glued to a thin wooden frame. The underlying assumption
of this task was that leather has similar properties to bats real wings. The assembled model is
shown in Fig 3A. The shape of the wings were modelled according to pictures and drawings
from [47].

Since the water content seemed to have the biggest influence on reflectivity, the water con-
tent of the artificial wings was compared to the water content of wings from a dead bat. Mass
related relative water content of the artificial wing was 9.8%, while the wing of the bat speci-
men contained 17.7% water. Comparing the weights of the wings, the artificial wing had
approximately double the weight whilst covering the same area (total weight per artificial wing
was 6.32 g). For comparison, the RCS of the single torso (bottle with and without water, see
Fig 3B) was also assessed in the RCS experiments described above. Furthermore, a dead bat
with a weight of 14.7 g served for comparison as the fourth sample (see Fig 3C).

Optimization of the spatial detection volume

Design and calculation of a CSF. A typical marine pulse radar with a slotted waveguide
antenna has a vertical antenna gain distribution of approximately + 10° (for the -3 dB region)
around the horizontal plane. Pulse radar onshore scanning typically results in strong reflec-
tions from surface structure, so called land clutter [48]. To optimize the spatial detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0239911 September 30, 2020 8/22


https://doi.org/10.1371/journal.pone.0239911.g003
https://doi.org/10.1371/journal.pone.0239911

PLOS ONE

Volume model for radar bat detection in wind parks

volume, a physically constructed reflective shield (CSF) was developed and simulated to be
incorporated in the volume model. CSF are used in military applications since the sixties [38,
39] and are still commonly used today, for example in earth and space science radars to reduce
land clutter [49]. The general idea is to have a fully opaque fence with respect to the utilized
wavelength, positioned at a fixed distance to the radar antenna covering an area of several
square meters [38].

To shield the X-Band radar waves (A = 3.1 cm) a stainless-steel wire fence with a mesh spac-
ing of 1 mm was assembled. Our mesh wire fence is relatively light weight (approximately 1
kg/m?) and permeable to wind, reducing wind pressure on the CSF. Initial measurements of
the wire fence showed one-way attenuation in the range of -20 to -25 dB indicating that most
of the radiation is reflected by the wire fence. The wire fence is mounted on rectangular
wooden frames, which are arranged in a polygon around the antenna as depicted in Fig 4. The
fence consists of six sides with a width of 2 m covering approximately 110°. The inner polygon
radius is 5.99 m, while the outer radius is 6.08 m leading to an average radius of 6 m (dcgr)-
This distance was chosen based on preliminary shielding effectiveness assumptions [38]. The
fence height (hcr) was chosen to be 2.2 m, as most clutter is assumed to be received from
ground level, whilst the radar antenna height (hg, up to the center of the antenna) is adjustable
in order to find the optimum height setting in combination with the fixed height of the CSF.

The diffraction induced by the upper edge of the fence effects the receiving signal power P,
in Eq (2) and therefore the shadow region behind the CSF cannot be ignored (shown below
the dotted line in Fig 4A). Based on data from [38] our CSF setup with hcpr =2.2m, hg =2 m
and dcpr = 6 m yields a relative one way clutter suppression of approximately 10 dB. This
accounts for objects ranging in height from 0 to hy behind the CSF independent from their
distance.

Theory of diffraction at the fence edge. Wave diffraction is a well known phenomenon in
optics and is defined as the deviation of wave propagation behind an obstacle, such as the edge
of a CSF or a hole from its original geometrical direction [50]. Two major mathematical mod-
els to describe this phenomenon exist, namely Fresnel diffraction and Fraunhofer diffraction,
where the latter is a simplified version of Fresnel diffraction and only valid for planar waves in
the far-field. Because of the infinite dimensions in y and z-direction shown in Fig 5, we cannot
apply Fraunhofer’s planar wave simplification to our CSF edge. Instead, we apply the mathe-
matical sharp edge Fresnel diffraction model for spherical waves.

In the following section, an overview of the most important diffraction principles [51] is
given to finally modify the analytical model of spatial detection volume. Fresnel diffraction at a
rectangular aperture, shown in Fig 5, describes the intensity of the radiation emitted from
source S received at point P (direct lines of py, 1y), which is interfered with secondary radiation
coming from all points inside the hole (indirect lines of p and r). The interference is deter-
mined by the geometrical setup of the hole between S and P, while sharp edge diffraction is
simply this hole with infinite dimensions on the Y-axis and the positive Z-axis.

The intensity Ip at point P for a rectangular hole can be calculated with the help of the Fres-
nel integrals C and S:

IPZ%O{[C(uz)—C(ul)]2+[5(uz)—5(u1)]2} <{[C(vy)=C)"+[S(ry) =8I} (5)

Where I, is the intensity of the undisturbed radiation, u and v are dimensionless variables,
describing geometrically the hole in the y- and z-axis and incorporating the wavelength of the
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Fig 4. Radar and CSF setup. a) Side view showing the shadow region. b) The CSF of 2.2 m height covers an angular
section of approx. 110° around the radar and shields the lower part of the simplified radiation (drawing is not true to

scale).

https://doi.org/10.1371/journal.pone.0239911.9004

radiation:

2(pytry)
_ 6
"= 2por (6)
_ [2(pot1o) )
Aoty

When the dimensions of the hole are small in relation to py and r it can be assumed, that the

Fresnel obliquity factor equals one, therefore:

1 1
PT  Poly

(8)

PLOS ONE | https://doi.org/10.1371/journal.pone.0239911 September 30, 2020

10/22


https://doi.org/10.1371/journal.pone.0239911.g004
https://doi.org/10.1371/journal.pone.0239911

PLOS ONE Volume model for radar bat detection in wind parks

Fig 5. Fresnel diffraction at a rectangular hole, adapted from [51]. The intensity of the radiation emitted from source S and received
at point P through a rectangular hole is interfered by all points inside, depended on their geometrical description, here visualized for a
single point A connected by the indirect radiation lines p, r.

https://doi.org/10.1371/journal.pone.0239911.9005

For the sharp edge diffraction of the CSF u, = v, = co and u; = -0, Eq (5) simplifies to:

I, :IEO{ E_ C(vl)r—i—E—S(vl)r} 9)

where only the calculation v; (Eq (7)) in the vertical z-axis is required.

Modification of the spatial detection volume model. The influence of the diffraction is
considered by multiplying the receiving signal power P, from Eq (2) in the analytical volume
model (e.g. input 1) with the normalized intensity Ip of Eq (9). This yields to the modified
receiving signal power P,

P.m=P,I, (10)

Where the intensity Ip appears in the send and received signal. Because Eq (9) is based on
spherical waves, we can assume that the main beam of the antenna always focuses on the CSF
edge and further, that for lower elevation angles the antenna gain is relatively constant. This is
the case for standard marine slot antennas, whilst for higher angles, the diffraction has only lit-
tle influence and deviations in the calculations are therefore negligible.

Experimental determination of the optimal detection volume. In practical experiments,
radar images were captured at different heights of the radar antenna in relation to the CSF
(hcpr in Fig 4). The height was varied in range between -0.096 m to 0.91 m by adjusting the
radar antenna height (hg; antenna exceeds the edge of the fence at negative values), whilst the
position of the CSF remained unchanged. These adjustments lead directly to a variation of the
geometrical dimensions in the variable v of Eqs (7) and (9) changing the shielding characteris-
tics of the CSF. For absolute value comparison, a radar image without CSF was also captured.
These images served as a 5™ input of the analytical model to calculate the corresponding detec-
tion volume. Thereby only the radar image section inside the CSF coverage (see Fig 8) is con-
sidered in the calculation, as the fence is not covering 360°. Input 3 and 4 (o = 12.7 cm? P, =
-74 dBm) were selected based on the calibration results. By varying hcgr and the clutter
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threshold as 6™ input of the analytical model from a level of 0 to 24 with a step size of 8, an
optimal detection volume was determined.

Simulation of the optimized spatial detection volume

In order to compute the spatial detection volume based on the analytical model inputs, a com-
puter simulation was programmed in Python. Thereby two steps are combined, each providing
detection information in two dimensions, to finally calculate the 3D detection volume. When
optimization is applied, the first step is divided into two subsections.

1a. Simple detection range simulation. In the first step the detection height over distance
is calculated by incorporating radar calibration parameters.

1b. Advanced detection range simulation. Adjustment of the first step by incorporating
the equations describing the optimization effects from the CSF.

2. Horizontal visibility simulation. In the second step landscape parameters from the
radar image and clutter threshold settings describing the visibility in the horizontal plane are
considered.

To confirm the reliability of the ground clutter shield in simulation 1b, two different verifi-
cations were performed. First, the visibility of bat sized objects in the transition to the geomet-
rical shadow region of the CSF (see Fig 4) was evaluated in a practical field test. Second, the
influence on the radar beam due to Fresnel diffraction was evaluated with radiation measure-
ments in the most affected region (measurement hardware, see Table 1) behind the CSF. Both
outcomes were compared with simulation results.

Results and discussion
Bats radar cross section and minimum detectable signal power

Fig 6 shows a visible and an invisible echo signature (two different radar scans) as example
from the detection range experiments, which served as basis for the bat models RCS

Invisible empty bottle

Visible bat'model

Fig 6. Echo examples of the detection range experiments. (a) shows the visible bat model at a mean intensity level of
31 and (b) an invisible empty bottle at a mean intensity level of 18, both at 650 m distance from the radar and marked
with the 3x3 analysis pixel matrix around the brightest pixel. The poles of the measurement setup clearly surround the
test object, while green pixel result from radar range markers.

https://doi.org/10.1371/journal.pone.0239911.g006
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calculation. The echoes of the poles from the experimental setup are also clearly visible. The
visibility evaluation is shown in column 2 to 6 of Table 2. Here the measured results for 5 dif-
ferent distances from the radar are listed. For each distance measurement, the echoes of 11
radar images were analyzed based on the previously described procedure not only for the bat
model, but also for the comparative test objects.

The bat model was visible up to a distance of 800 m. At 950 m distance, none of the objects
were visible. The water filled bottle and the dead bat had a very similar echo signature; but were
only visible up to a distance of 650 m. This result proofs the RCS water sphere simplification
assumed for birds without wings, as the dead bat had its wings closed. Since the bat model had
open wings and the same water bottle as torso and was visible at greater distance, an influence of
the wings could be identified, which is in line with the results from [52]. Interestingly, this result
is contrary to that shown for birds [20], where the authors conclude that bird wings are negligible
regarding the RCS. From the biological body structure the contrasting results are reasonable, as
feathers from birds include almost no water and consist mostly of the protein keratin [53], while
the water content of the wings (9.8%) accounts for the RCS extension of the bat wings.

Based on these measurements, a calculation of the bat model’s RCS, Eq (3) and P ;, = -74
dBm (value taken from results below) lead to Opa¢ model = 12.7 cm?. These results are very simi-
lar to the results presented by [35, 43, 52]. RCS calculations of the water bottle and the dead
bat with a maximum detection range of 650 m result in Ggead_bat = Owater_bottle = 5-3 cm? This
is comparable to the theoretical results of 7.5 cm* and 8.1 cm? for a 30 g water sphere evaluated
by [46] and [42]. Since the empty bottle was only visible up to a distance of 350 m, it can be
concluded that the PET bottle itself has very little influence on the reflection properties of the
bat model torso. This would indicate that the RCS of the empty bottle is approximately Gempty. -
bottle = 0.5 cm’.

Against our expectation, the number of visible echoes at 500 m distance of the water bottle
and the dead bat was very low. This behavior could be a result of strong signals from a nearby
turbine and two trees at the sample point, which may raise the threshold for signal detection in
the radar processor in the whole area. The detection threshold at 500 m distance could have
been slightly above the echo signal strength from the dead bat and the water bottle, but just
below the threshold in case of the bat model (the largest RCS of our samples). As these thresh-
olds are generally unknown at every position, it is recommended to have large clutter free
areas around each sample point to make results more comparable. In this study, however, it
was very difficult to find appropriate sample points at short ranges (up to approximately 600
m) due to large clutter areas.

In the second detection range experiment, Ry, ., of the metal sphere with a diameter of 1 cm
was determined to be 550 m, which served as a reference for the calculation of the minimal

Table 2. Detection ranges of the bat model and the additional test samples.

Visible echoes per distance from radar

350 m 500 m 650 m 800 m 950 m
Bat model 11/11 10/11 9/11 6/11 0/11
Water bottle 9/11 0/11 10/11 0/11 0/11
Empty bottle 10/11 0/11 0/11 0/11 0/11
Dead bat 10/11 4/11 11/11 0/11 0/11

At each distance shown in row 2, a set of 11 consecutive radar images (echoes) for every test object was evaluated
according to the defined analysis procedure. The table lists the number of visible echoes found in respect to the 11

consecutive radar images.

https://doi.org/10.1371/journal.pone.0239911.t1002
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detectable signal power. Again, the analysis procedure was applied to the data. Solving Eq (1)
for the minimal detectable signal power P,;, leads, for the determined R, = 550 m and the
previously calculated RCS of 2.8 cm?, to -74 dBm.

The extracted RCS of our models match accurately with the theory as well as with results
from similar studies, which further indicates that our experimental results are very precise.
However, the minimum detectable signal power is relatively high, compared with other studies
[28, 32, 33, 35]. This fact is due to the conservatively selected mean intensity level of 25, defin-
ing the visibility of the analysis procedure. The RCS of moving objects such as bats is depen-
dent upon the orientation of the object with respect to the radar beam [18, 19, 41]. In our case
the chosen constant RCS can be understood as an average RCS.

Computation of the spatial detection volume

In the first step of the volume calculation (1a. Simple detection range simulation), the 2D
detection range of an object with a definable RCS (here the bat model with o = 12.7 cm?) is
simulated over distance and height as shown in Fig 7, representing a vertical cross section of
Fig 1. The simulation processes inputs 1 to 4 of analytical volume model and calculates the
receiving signal power of the defined object in distance from the radar, which is positioned in
the origin. With the minimum detectable signal power (here P,;,, = -74 dBm), the detection
range was calculated for the bat model (yellow line) and has a maximum of 800 m in distance
and of 120 m in height.

In the second step (2. Horizontal visibility simulation), a selectable image of the radar site
(input 5, Fig 8A) is scanned to extract visible regions (Fig 8B) based on a set clutter threshold
(input 6) in a defined image section in the horizontal plane (e.g. range and angle). With a
lower threshold, the green colored visible regions (and therefore the number of green pixel)
increase. The example radar image in Fig 8A contains a large amount of clutter of various
intensities, where the yellow hue visualizes the signal strength (see input 6 of the volume
model for description of the radar resolution).

The two-dimensional output data of the detection range model depicted in Fig 7 and the
two-dimensional visible radar image section data depicted in Fig 8B are now combined to
compose the final 3D volume model.

The following algorithm is applied to each pixel p shown in Fig 8B:

0
140 -10
-20
120 -30
£ -40
£ 100 -50
£ -60
g 80 o
g o —80
- 4 -90
N0 10 -100
-110
20 -120
-130
0

0 200 400 600 800
xy-plane: distance in m

Fig 7. Simple simulation of 2D radar receiving power in dBm and the max. detection range for objects with ¢ = 12.7 cm®. The radar is positioned in the origin
indicated in red. Every object inside the yellow boundary (P, = -74 dBm) is detectable. The dotted arrow indicates the detection height for an object at distance d.

https://doi.org/10.1371/journal.pone.0239911.9007
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Fig 8. Visibility of a radar image section. In (a) a highly cluttered radar image section from 25° to 120° and a max distance of 1000 m in the
xy-plane with various yellow colored clutter intensities is shown (radar is positioned at the red dot). (b) shows the remaining visible regions
in green color after reducing clutter below an intensity level of 11 and the distance d to an arbitrary visible pixel p.

https://doi.org/10.1371/journal.pone.0239911.9008

1. Calculate the distance d from the radar to the visible pixel p

2. Determine the detection height h of pixel p at its distance d (this data is taken from the yel-
low detection range curve in Fig 7)

3. Calculation of the represented volume of pixel p by multiplying its surface area Ay, (A is
constant 9.16 m”) with the pixel’s detection height

The overall volume V is the sum of all visible pixel volumes:
V=D, A h(d,) (1)

Where n is the total amount of visible pixel.

By incorporating the optimization of the CSF, the first simulation step is adjusted with the
advanced detection range simulation (1b). Hereby the modifications to input 1, described ear-
lier in Eq (10) are applied in the 2D detection range simulation. The simulation output for a
geometrical clutter setup according to the definitions in this study (see CSF design section) is
shown in Fig 9. Compared with Figs 7 and 9 shows far less signal power at ground level, mini-
mizing ground clutter at all target distances. The amount of visible pixel in the radar images is
increased, the detection volume is enlarged, while the detection range has a raised new lower
boundary (lower part of the yellow dotted line rising from 200 m distance).
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Fig 9. Advanced simulation of 2D radar receiving power in dBm and the max. detection range due to diffraction at a CSF. The Fresnel sharp edge diffraction at the
CSF leads to the desired attenuation of ground signal power, whilst for higher elevation angles a modulation resulting in maxima and minima appears. The radar is
positioned in the origin indicated by the red dot. Settings: hg =2 m, hcp =22 m, dcgr = 6 m, 0 =12.7 cm?, P, = -74 dBm.

https://doi.org/10.1371/journal.pone.0239911.g009
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Fig 10. Increase of the radar detection volume for bats calculated with the analytical model of spatial detection volume. Columns show the volume in km?
for four different clutter thresholds, each with and without a CSF. CSF is always 0.16 m higher than radar. Volume increase factor given in the grey boxes (radar
image was analyzed between 25° - 120°, h = 2.04 m, hep = 2.2 m, depg = 6 m, 0 = 12,7 cm?, Py, = -74 dBm).

https://doi.org/10.1371/journal.pone.0239911.9g010
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As a side effect, the modulation of the signal power at higher elevation angles lead to little
volume reductions, which are also a result of the Fresnel diffraction. However, the above-men-
tioned increase of visible pixel predominates very much, optimizing the whole detection
volume.

Significance of the advanced 2D detection range simulation. The verification experi-
ments follow very well the simulated data of Fig 9 and verify the shadow region (with lower
detection boundary) behind the CSF and the visible region up to the second detection range
maximum of the modulated detection range curve (yellow curve in Fig 9 inclining from the
origin to the 2™ maximum at approximately 700 m distance and 110 m height). With the gen-
eral existence of the lower detection boundary, the shielding effectiveness in the shadow region
is verified. The boundary’s exact position is also an indicator for correctness of the maximum
detection range and the absolute signal power of the antennas main beam, which induces the
sharp edge diffraction. The modulation at high elevation angles could not be analyzed, as its
dimensions in space exceeded the studies possibilities. However, as assumed in the methodol-
ogy section, the diffraction influence in that region is negligible.

Optimized radar detection volume for bat detection in onshore wind parks

Largest volume optimization. Changing the CSF geometrical setup influences not only
the shape of the maximum detection range curve in the 2D simulation diagram (Fig 9), but
also the amount of land clutter on the radar image since both effects are cross-linked. The best
optimization in terms of the largest radar detection volume for bats with the CSF utilized in
this study (e.g. 6 m radius and 2.2 m in height) is dependent on the tolerable clutter threshold
(definition: see input 6 in the analytical volume model) and of the height difference from the
CSF to the radar antenna (hcggr). Results of the detection volume simulated with the analytical
model for the utilized radar system, which also takes the experimental results as an input, are
given in Fig 10. Four different clutter thresholds were considered, each with (orange column)
and without a CSF (blue column). Independent of the clutter threshold, hcpgr was determined
to be ideally 0.16 m as for lower and higher hcgg the detection volume decreases.

The maximum relative detection volume increases to more than double the volume (factor
2.5, grey box in Fig 10), when using a CSF and a threshold set to a level of 0. Even with higher
clutter thresholds, the volume increase is in all cases huge and constant close to factor 2, show-
ing the high optimization achieved with the CSF. The absolute detection volume increases
with higher clutter thresholds, as more regions or pixel (see Eq (11)) on the radar image reach-
ing up to the threshold level will be considered in the model. For the optimized case, the abso-
lute detection volume is more than five times bigger, when comparing a threshold level of 24
with a level of 0. Selection of an appropriate threshold level and determining the absolute vol-
ume is depending on the subsequent data processing methods. Manual and automatic process-
ing must be capable of detecting a bat echo even in clutter up to the set threshold level [16, 17].
It can be argued that the clutter threshold could be set to a level below the mean intensity
threshold for echo visibility of 25. This would allow objects still to be distinguishable from
background clutter. However, visual observations do not allow distinguishing the RGB com-
position of such close threshold levels. Furthermore, the clutter is not static and fluctuates
between several threshold levels. This also limits the perceptibility when automated compari-
sons of thresholds are performed, as performed by the track extraction software radR [17].

Based on the current research and the explained difficulties, a clutter threshold of level 8 is
recommended for further studies. Hereby the optimized volume includes 0.0105 km® of air-
space for the analyzed radar image section between 25° and 120°. Extrapolating for 360° radar
operation, the volume is 270 times (rounded) bigger compared to a single acoustic bat
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(@) hcrr =-0.096 m (b) hcrr =0.220 m (¢) herr =0.720 m

Fig 11. Variation in bat model visibility and maximum detection range of the radar shielded by a CSF section for three heights differences. Visible pixels
are shown in green color (clutter threshold level of 8); the red dot shows the radar position; the white circle section shows the maximum detection range
simulated for the bat model; the orange circle shows a visible turbine (hcp = 2.2 m, dcpr = 6 m, 0= 12,7 cm?, P = -74 dBm).

https://doi.org/10.1371/journal.pone.0239911.9011

detector, assuming a hemisphere shaped microphone detection characteristic with radius of 40
m. Of course, this is an approximation, and is highly depended on the landscape parameters
influencing the radar image. However, it very well shows the advantages of the pulse radar.

Recommendations for practice. A taller CSF (hcgr > 0) results in better clutter reduction
at ground level, because more ground directed radiation is shielded, improving the radar visi-
bility. At the same time, the lower detection boundary increases in height. This is a result of
the geometrical depended Fresnel diffraction. In addition, a larger hcgr, decreases the maxi-
mum detection range. Less intense radiation from the outer radar beam, extracted from the
antenna diagram, is emitted above the CSF, whilst the main beam is shielded. To conclude,
exceeding hcpgr above 0.16 m minimizes the detection volume. Fig 11 shows the visible pixels
of three radar images for different hcpg values for the utilized CSF, while the clutter threshold
is set to a level of 8 as defined in the best optimization section. The increase of visible pixels
from Fig 11A to 11c is very well recognizable and shows the optimization of the radar image
due to the shielding of the CSF. For example, Fig 11A does not show a turbine because of the
heavy overlay of clutter, while the turbine is visible in Fig 11B (orange circle) and even better
visible in Fig 11C. However, without considering the results from the advanced 2D detection
range simulation, the radar images may mislead the observer to set the CSF to very high values
of hcpr. Considering the detection ranges (plotted as white lines) might lead to a different
selection of hcrg, as the detection range decreases from Fig 11A to 11c, where the turbine is
almost out of detection range.

Based on the current CSF setup, which doubles the detection volume, practical recom-
mended values for hcpg are in the range of 0.15-0.4 m for bat in wind parks. When observing
a single turbine in close distance, a large hcpgr value can be recommended. This helps for stron-
ger clutter reduction, while the simultaneously higher positioned lower detection boundary is
negligible and comes mainly into effect at large distances. Besides, a large detection volume is
less important for this scenario. For both cases, the actual CSF dimensions offer a good
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compromise between material, physical space required and the achievable optimization of the
radar image.

Conclusions

In this study, we have shown that standard marine pulse radar offers a great potential to inves-
tigate the behavior of bats in wind parks for the development of risk mitigation measures. We
conclude that it is not necessary to technically modify the radar itself in order to receive reli-
able results. However, to compare radar studies, calibration and the consideration of landscape
parameters is required. This has been neglected in most previous research studies. By intro-
ducing a new analytical spatial detection volume model for a low-cost standard marine pulse
radar, we presented a tool delivering comparable detection boundaries in 3D space for bat-
sized objects. This model is easily adoptable to different field studies. The calibration inputs of
the volume model were practically examined with a bat model and a metal sphere and deliv-
ered results in line with other studies. Nevertheless, the calculated detection boundaries are
limited by a fixed RCS threshold, which does not automatically adopt to smaller RCS. The set-
tings of the echo analysis procedure are currently chosen to be very conservative. By further
modifying these settings, it is most likely, that the detection volume can be further improved.

To optimize the spatial detection volume, we have shown a clutter reduction method, utiliz-
ing a clutter shielding fence, which is necessary to track bats in an onshore environment. Sim-
ulation and experimental verification of the CSF characteristics incorporated in the analytic
volume model have shown excellent compliance. We conclude that a CSF is a very helpful and
comparatively cheap and an easily applicable tool for clutter reduction, without modifying the
radar itself to improve the special detection volume. Nevertheless, even the optimized volume
has still capabilities to be further increased. Therefore, further shielding techniques should be
investigated, but also other methods of radar beam manipulation techniques could be suitable
to improve the radar performance.

Supporting information

S1 Fig. Example radar image with large amount of clutter and an echo signature of a mean
intensity level of 25 (3x3 pixel).
(TIF)
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