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Abstract: We investigate the asymptotic symmetry group of the free SU(N)-Yang-Mills

theory using the Hamiltonian formalism. We closely follow the strategy of Henneaux and

Troessaert who successfully applied the Hamiltonian formalism to the case of gravity and

electrodynamics, thereby deriving the respective asymptotic symmetry groups of these the-

ories from clear-cut first principles. These principles include the minimal assumptions that

are necessary to ensure the existence of Hamiltonian structures (phase space, symplectic

form, differentiable Hamiltonian) and, in case of Poincaré invariant theories, a canonical ac-

tion of the Poincaré group. In the first part of the paper we show how these requirements

can be met in the non-abelian SU(N)-Yang-Mills case by imposing suitable fall-off and

parity conditions on the fields. We observe that these conditions admit neither non-trivial

asymptotic symmetries nor non-zero global charges. In the second part of the paper we

discuss possible gradual relaxations of these conditions by following the same strategy that

Henneaux and Troessaert had employed to remedy a similar situation in the electromag-

netic case. Contrary to our expectation and the findings of Henneaux and Troessaert for

the abelian case, there seems to be no relaxation that meets the requirements of a Hamilto-

nian formalism and allows for non-trivial asymptotic symmetries and charges. Non-trivial

asymptotic symmetries and charges are only possible if either the Poincaré group fails to

act canonically or if the formal expression for the symplectic form diverges, i.e. the form

does not exist. This seems to hint at a kind of colour-confinement built into the classical

Hamiltonian formulation of non-abelian gauge theories.
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1 Introduction

Asymptotic symmetries are those symmetries that appear in theories with long-ranging

fields, such as gravity and electrodynamics. They appear in the formalism once the analytic

behaviour of fields near infinity is specified. Although the first studies concerning general

relativity at null infinity appeared more than half a century ago [1–3], the subject have

been revitalised more recently after it has been conjectured that it may be related to the

solution of the long-standing information-loss paradox [4] and it has been a very active

area of research in the last years. Several studies have already analysed many aspects of

the topic, such as the situation at null infinity and the connection to soft theorems [5–14],

the relation with the potentially-detectable memory effect [15–17], the asymptotic (A)dS

case [18, 19], and the situation at spatial infinity [20–25]. It is in particular the latter that

deeply connects with the present paper.

The study of asymptotic symmetries at spatial infinity uses the machinery of the Hamil-

tonian formulation of classical field theories and is complementary to the analogous studies

at null infinity, which appeared chronologically sooner and are, perhaps, less demanding

on the computational side. The reason why one wishes, nevertheless, to study also the

Hamiltonian treatment of the problem is not only that one should find the equivalence of

the two approaches, but more importantly, that the Hamiltonian tools are very well suited

for a systematic characterisation of state spaces and the symmetries it supports. Needless

to emphasise that it also provides the basis for the canonical quantisation of the theory.

The systematic Hamiltonian study of asymptotic symmetries was started by Henneaux

and Troessaert, whose analysis covered a plethora of aspects: they analysed the case of

general relativity [20], electrodynamics in four [21] and higher dimensions [22], the coupled

Maxwell-Einstein theory [23], and the massless scalar field [24]. The purpose of the present

paper is to include non-abelian gauge fields in this list, which means to study special-

relativistic SU(N)-Yang-Mills theory in a proper Hamiltonian setting. This requires, first

of all, the following basic structures to exist:

(i) a phase space;

(ii) a symplectic form on phase space;

(iii) a Hamiltonian as a differentiable function on phase space;

(iv) a symplectic (or even Hamiltonian) action of the Poincaré group on phase space.

Regarding the last point, we recall that the action is symplectic or “canonical”, if it pre-

serves the symplectic structure. It is Hamiltonian if, in addition, Poincaré transformations

on phase space are generated by phase-space functions, giving rise to globally defined

Hamiltonian vector fields, whose Poisson brackets form a faithful representation of the Lie

algebra of the Poincaré group. This is also known as a comoment for the action of the

group; compare, e.g., [26, Chap. 3.2]. For general Lie groups there may be obstructions to

turn a symplectic action into a Hamiltonian action (i.e. against the existence of a como-

ment), and even if the latter exists, it need not be unique. These issues of existence and

uniqueness are classified by the Lie algebra’s second and first cohomology group, respec-

tively. In case of the Poincaré group, these cohomology groups are both trivial, and these
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issues do not arise; compare, e.g., [26, Chap. 3.3]. In that case it is sufficient to demand a

symplectic or, as we will henceforth say, canonical action.

It should be clear that the possibility to simultaneously meet the requirements (i-iv)

listed above will delicately depend on the precise characterisation of phase space. For field

theories this entails to characterise the canonical fields in terms of fall-off conditions and,

as it turns out, also parity conditions. The former ones tell us how quickly the fields vanish

as one approaches spatial infinity, whereas the latter ones tell us the parity of the leading

term in the asymptotic expansion of the fields as functions on the 2-sphere at spatial

infinity. In the context of Hamiltonian general relativity it has long been realised that

parity conditions are necessary in order to ensure the existence of integrals that represent

Hamiltonian generators of symmetries that one wishes to include on field configurations

that are asymptotically Minkowskian and represent isolated systems; compare [27, 28].

Quite generally, the task is to find a compromise between two competing aspects:

the size of phase space and the implementation of symmetries. On the one hand, phase

space should be large enough to contain sufficiently many interesting states, in particular

those being represented by fields whose asymptotic fall-off is slow enough to allow globally

‘charged’ states, like electric charge for the Coulomb solution in Electrodynamics, or mass

for the Schwarzschild solution in General Relativity. On the other hand, for the symmetry

generators to exist as (differentiable) Hamiltonian functions, phase space cannot be too

extensive. Since we are dealing with relativistic theories, the compatible symmetries should

contain the Poincaré group, but might likely turn out to be a non-trivial extension thereof

if we are dealing with gauge or diffeomorphism-invariant theories.

Let us illustrate this last point in a somewhat more mathematical language. In any

gauge- or diffeomorphism-invariant theory, there is a large, infinite-dimensional group act-

ing on the fields which transforms solutions of the equations of motions to solutions (of

the very same equations). For example, in ordinary gauge theories, these are certain

(infinite-dimensional) groups of bundle automorphisms, or, in general relativity, the group

of diffeomorphisms of some smooth manifold. Let us call it the “symmetry group” Sym.

Now, inside Sym, there is a normal subgroup of “gauge transformations”, denoted by Gau.

They, too, are symmetries in the sense that they map solutions of the field equations to so-

lutions, but they are distinguished by their interpretation as “redundancies in description”.

This means that any two phase-space points connected by the action of Gau are physically

indistinguishable; they are two mathematical representatives of the same physical state.

Accordingly, physical observables cannot distinguish between these two representatives,

which means that physical observables are constant on each Gau-orbit in phase space. In

the Hamiltonian setting the subset Gau ⊂ Sym is usually characterised as the group that

is generated by the constraints. Accordingly, the space of physical observables is then

defined to be the subset of phase-space functions that cannot separate points connected

by Gau, i.e. that Poisson-commute with the constraints on the set of points in phase-space

allowed by the constraints. Following [29], elements of Gau are also called “proper gauge

transformations”.

The crucial observation is that Sym is strictly larger than Gau, so that the quotient

group Asym := Sym/Gau is again a group of symmetries, now to be interpreted as proper
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physical symmetries, in the sense of mapping states and solutions to new, physically dif-

ferent states and solutions. It is this quotient group that one should properly address as

group of asymptotic symmetries and which should somehow contain the Poincaré group

and — possibly — more. Note that Asym contains residuals of those “gauge transforma-

tions” whose fall-off is too weak in order to be generated by constraints. These are often

called “improper gauge transformations” [29].

It has long been realised the insufficient distinction between proper and improper gauge

transformations may result in apparently paradoxical conclusions, like that of an apparent

violation of conservation of global non-abelian charges which follows as consequence if

long-ranging (and hence improper) gauge transformations are taken for proper ones; see,

e.g., [30]. Strictly speaking, the improper gauge transformations do not only contain those

with insufficient fall off, they also may contain those of rapid fall-off which are not in

the component of the identity. This is because the group Gau that is generated by the

constraints is, by definition, connected. Elements outside the component of the identity

are sometimes referred to as “large gauge transformations”.

Quite generally, improper gauge transformations will combine with other symmetries,

like the Poincaré group, into the group Asym. That combination need not be a direct

product. Often it is a semi-direct product or, more generally, an extension of one group by

the other. In fact, non-trivial extensions already appear when large gauge transformations

are properly taken into account, with potentially interesting consequences for the physical

content of the theory. For example, it may happen that the electromagnetic U(1) is ex-

tended to its (non-compact) universal cover R, or that the spatial SO(3) is extended to its

universal cover SU(2); see [31].

Previous studies of Yang-Mills theory in Hamiltonian formulation include [29, 32]

among others. Although the focus is on the spherically-symmetric case, they nevertheless

highlight some general and important features. We also mention the detailed discussion of

boundary conditions allowing for globally charged states in [33].

Based on the results obtained in the study of the asymptotic symmetries of Yang-Mills

fields at null infinity [34, 35] and of the results obtained in the Hamiltonian approach of

other gauge theories, such as electrodynamics [21] and general relativity [20], one expects

to find a well-defined Hamiltonian formulation of the non-abelian Yang-Mills theory, which

features a canonical action of a non-trivial group of asymptotic symmetries. Quite surpris-

ingly, we were not able to obtain this result. Rather, we did find a well-defined Hamiltonian

formulation of the theory, but the group of asymptotic symmetries turned out to be trivial

in this case and, accordingly, the total colour charge had do vanish. Moreover, we find

that if one tries to weaken the parity conditions in order to accommodate for a non-trivial

asymptotic-symmetry group and for a non-vanishing value of the total colour charge one

either has to give up the existence of a symplectic form or looses the Hamiltonian action

of the Poincaré transformations.

The paper is organised as follows. In section 2 we begin with a brief review of the

Hamiltonian formulation, thereby outlining our assumptions and also fixing the notation.

In this introductory section, we do not pay much attention to typical issues of a proper

Hamiltonian formulation, such as the finiteness of the symplectic form and the functional-
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differentiability of the Hamiltonian, as they would be the subject of thorough discussions

in the next sections. Specifically, in section 3, we infer the fall-off conditions of the fields

from the requirement that they should support Poincaré transformations. In addition, in

section 4, we find parity conditions, which, in combination with the fall-off conditions,

make the theory to have a finite symplectic structure, a finite and functionally differen-

tiable Hamiltonian, and a canonical action of the Poincaré group. However, these parity

conditions seem too strong in that they exclude the possibility of a non-trivial asymptotic

Lie-algebra of symmetries and in preventing us to have a non-zero total colour charge. At

this stage our finding is somewhat analogous to that in [21] for electrodynamics and not too

surprising. In section 5 we review how this issue was resolved for electrodynamics in [21],

which leads us to try a similar strategy in the Yang-Mills case in section 6. Interestingly, in

the non-abelian case, this strategy now seems to manifestly fail for reasons that we outline

in detail. Finally, our conclusions are stated in section 7.

Conventions and notation. Throughout this paper, we adopt the following conven-

tions. Lower-case Greek indices denote spacetime components, e.g. α = 0, 1, 2, 3, lower-

case Latin indices denote spatial components, e.g. a = 1, 2, 3, and lower-case barred Latin

indices denote angular components, e.g. ā = θ, ϕ. We adopt the mostly-plus convention

(−,+,+,+) for the spacetime four-metric 4g.

Moreover, upper-case latin indices denote the su(N) components and range from 1

to N2 − 1. We identify su(N) with the image of its fundamental (also called “defining”)

representation, in which its elements are represented by N2 − 1 anti-hermitian N × N

matrices {TA}A=1,...,N2−1. In this fashion, we embed the Lie algebra into the associative

algebra of endomorphisms with (associative) product being matrix multiplication. In this

way, the Lie product becomes the associative product’s commutator and, moreover, we may

speak of (associative) products of elements of the Lie algebra, like, e.g., in formulae (1.2)

and (1.4) below, which is very useful — though not necessary — for many later calculations

and which would not make sense on an abstract level of Lie algebras. Note that the matrix

product of elements in su(N) will generally yield matrices outside su(N).

The structure constants fABC are defined by the relation [TB, TC ] = fABCTA. On

su(N), we consider a positive-definite inner product, which we obtain from the Killing

form, κ, through multiplication with (−2N)−1. This will turn out to be a convenient

normalisation in later calculations. To explain this in slightly more detail, we recall that

the Killing form itself is a symmetric bilinear form on the Lie algebra, defined by

κ(TA, TB) := tr
(
ad TA ◦ ad TB

)
= fNAMf

M
BN , (1.1)

where ◦ denotes the operation of composition (of endomorphisms). On su(N) the Killing

form defines a negative-definite inner product (like for any compact Lie algebra). Moreover,

through our identification of su(N) with its image under the fundamental representation,

we can eliminate the occurrence of the adjoint representation in the definition of the inner

product and express it directly trough traces of products of Lie algebra elements in a form

that is only valid for su(N):

κ(TA, TB) = 2N tr(TATB) . (1.2)
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Here, juxtaposition of matrices in su(N) refers to matrix multiplication. Now, the inner

product we shall be using is

S := − 1

2N
κ . (1.3)

Its components with respect to the basis {TA}A=1,...,N2−1 are therefore

SAB = −tr(TATB) . (1.4)

Its inverse has components SAB and satisfies

SAMSBM = δAB . (1.5)

In our paper, we shall exclusively use S and hence continue, for simplicity, to refer to it as

“Killing inner product”, keeping in mind that it is actually a negative multiple of κ.

We use SAB and SAB to raise and lower indices in the standard fashion, e.g., in order

to define the index-lowered structure constants

fABC := SAA′fA
′
BC , (1.6)

which are easily seen to be completely antisymmetric, using fABC = −tr
(
TA[TB, TC ]

)
and

the cyclicity of the trace.

Finally, given two Lie-algebra-valued functions φ := φATA and ψ := ψATA, we denote

their positive-definite inner product by a dot, like

φ · ψ := φASABψ
B , (1.7)

and the commutators by

φ× ψ := [φ, ψ] . (1.8)

Inner product and commutator then obey the familiar rule

φ · (ψ × χ) = ψ · (χ× φ) = χ · (φ× ψ) , (1.9)

with the same cyclic property of the triple product. In this notation, the Jacobi identity

reads

φ× (ψ × χ) + ψ × (χ× φ) + χ× (φ× ψ) = 0 . (1.10)

In addition, by means of the positive-definite inner product, we may and will identify (as

vector spaces) the Lie-algebra and its dual and this we extend to functions. So, if φ̂ is

dual-Lie-algebra-valued function, we assign it to the unique Lie-algebra-valued function

φ satisfying φ̂(ψ) = φ · ψ for all ψ. Examples of such dual-Lie-algebra-valued functions

that we will encounter in the following sections and identify with their corresponding Lie-

algebra-valued functions are the conjugated momenta πα and the Gauss constraint G .

– 5 –
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2 Hamiltonian of free Yang-Mills theory

In this section, we briefly review the Hamiltonian formulation of Yang-Mills theory on

a flat Minkowski background. We follow mostly the line of argument and the notation

of [36], which discusses the case of electrodynamics. In order to have a description as self

contained as possible, we begin by deriving the Hamiltonian of free Yang-Mills theory from

the more-commonly-used Lagrangian picture, in which the action is

S[Aα, Ȧα; g] = −1

4

∫
d4x
√
−4g 4gαγ 4gβδ Fαβ · Fγδ + (boundary) , (2.1)

where Aα is the su(N)-valued one-form potential, Fαβ := ∂αAβ − ∂βAα + Aα × Aβ is the

curvature two-form, and 4g is the four-dimensional flat spacetime metric. The boundary

term in the action is necessary to make the Lagrangian functionally-differentiable and to

make the following manipulations meaningful. For now, we just assume its existence and

postpone a thorough discussion about it to the next sections.

The spacetime four-metric 4g is (3 + 1)-decomposed into

4gαβ =

(
−1 0

0 gab

)
.

Although we are dealing with flat Minkowski spacetime, it is more convenient to leave the

three-metric g in general coordinates for now. Later on, we will express it in radial-angular

coordinates, but there is no advantage in doing it at this stage. From now on, spatial

indices are lowered and raised using the three-metric g and its inverse. The action becomes

S =
∫
dtL[A, Ȧ; g], where the Lagrangian is

L[Aα, Ȧα; g] =

∫
d3x
√
g

[
1

2
gabF0a · F0b −

1

4
Fab · F ab

]
+ (boundary) . (2.2)

The variation of the Lagrangian (2.2) with respect to Ȧα yields the conjugated three-

momenta

πa :=
δL

δȦa
=
√
g gabF0b , (2.3)

which are vector densities of weight +1, and the primary constraints

π0 :=
δL

δȦ0

≈ 0 . (2.4)

Note that these are N2 − 1 independent constraints since π0 has N2 − 1 independent

components. From this, one obtains straightforwardly the Hamiltonian

H0[A, π; g;µ] =

∫
d3x

[
πa · πa
2
√
g

+

√
g

4
Fab · F ab −A0 · (∂aπa +Aa × πa) + µ · π0

]
+ (boundary) ,

(2.5)
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after using the definition H :=
∫
d3xπα · Ȧα − L, replacing Ȧa with πa by means of (2.3),

adding the constraints (2.4) with a Lagrange multiplier µ, and absorbing Ȧ0 in the Lagrange

multiplier µ. Finally, the symplectic form, from which the Poisson brackets ensue, is

Ω0[Aα, π
α] =

∫
d3xdπα∧ · dAα :=

∫
d3xdπαA ∧ dAAα , (2.6)

where the bold d and ∧ are, respectively, the exterior derivative and the wedge product

in phase space. Moreover, the symbol ∧ · means that, at the same time, we are doing the

wedge product in phase space and (the negative of) the Killing inner product in the su(N)

degrees of freedom.

2.1 Secondary constraints and constraints’ algebra

The constraints π0 ≈ 0 are not preserved by time evolution. Indeed,

π̇0 = {π0, H0} = ∂aπ
a +Aa × πa , (2.7)

which is, in general, different from zero. Therefore, one enforces the secondary constraints

G := ∂aπ
a +Aa × πa ≈ 0 , (2.8)

so that the primary constraints (2.4) are preserved by time evolution. Note that the

expression in (2.8) is precisely the term multiplied by A0 in the Hamiltonian (2.5) and that

it is build using the gauge-covariant derivative Dbπ
a := ∂bπ

a +Ab × πa.
At this point, one needs to ensure that also the secondary constraints (2.8) are pre-

served by time evolution. This is indeed the case since

Ġ = {G , H0} = −A0 × G ≈ 0 . (2.9)

This shows that we have found all the constraints of the theory, π0 and G . These con-

straints are first class. Indeed, if we decompose them into components, π0
A := π0 · TA and

GA := G · TA, and we compute their Poisson brackets, we get

{π0
A(x), π0

B(x′)} = 0 ,

{π0
A(x),GB(x′)} = 0 ,

{GA(x),GB(x′)} = fMAB GM (x)δ(x− x′) .
(2.10)

Notably, the last one of the expressions above shows that the constraints {GA}A=1,...,N2−1

form a Poisson-representation of the su(N) algebra.

2.2 Hamiltonian of free Yang-Mills theory

As well as the primary constraints (2.4), also the secondary constraints (2.8) need to be

included in the Hamiltonian (2.5) multiplied by a Lagrange multiplier λ. Doing so and

reabsorbing A0 in the definition of λ, one obtains the extended Hamiltonian of free Yang-

Mills theory

Hext[Aα, π
α; g;µ, λ] =

∫
d3x

[
πa · πa
2
√
g

+

√
g

4
Fab · F ab + µ · π0 + λ · G

]
+ (boundary) .

(2.11)
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As in the case of electrodynamics, one can remove the degrees of freedom corresponding

to π0 and A0, since they do not contain any physical information. Indeed, their equations

of motion are

Ȧ0 = µ , π̇0 = 0 , π0 ≈ 0 , (2.12)

so that the derivative of A0 is completely arbitrary and π0 is identically zero. Therefore,

we discard these degrees of freedom obtaining the symplectic form

Ω[A, π] =

∫
d3xdπa∧ · dAa (2.13)

and the Hamiltonian of free Yang-Mills theory

H[A, π; g;λ] =

∫
d3x

[
πa · πa
2
√
g

+

√
g

4
Fab · F ab + λ · G

]
+ (boundary) , (2.14)

where the only constraints left are the (N2 − 1) first-class Gauss-like constraints

G := ∂aπ
a +Aa × πa = Daπ

a ≈ 0 . (2.15)

Finally, the knowledge of the symplectic form (2.13) and of the Hamiltonian (2.14)

allows one to compute the equations of motion

Ȧa = {Aa, H} =
πa√
g
−Daλ , (2.16)

π̇a = {πa, H} = ∂b(
√
g F ba) +

√
g Ab × F ba + λ× πa . (2.17)

The presence of the Gauss constraints (2.15) in the Hamiltonian (2.14) causes the equations

of motion above to include a gauge transformation, whose gauge parameter is the arbitrary

function λ(x). We briefly discuss gauge transformations in the next subsection.

2.3 Gauge transformations

Gauge transformations are those transformations generated by first-class constraints, like

the ones that we have encountered so far in this paper. In particular, the canonical gener-

ator of the gauge transformations of Yang-Mills is

G[λ] :=

∫
d3xλ(x) · G (x) , (2.18)

which is the Gauss constraints (2.15) smeared with an arbitrary function λ(x). The above

expression is precisely the last term appearing in the Hamiltonian (2.14). The variation of

the gauge generator (2.18) is

δG[λ] =

∫
d3x

[
−δπa · (∂aλ+Aa × λ)− δAa · λ×Aa

]
+

∮
S2
∞

d2sk λ · πk , (2.19)

where the last integral in the expression above has to be understood as the integral over

a sphere whose radius is sent to infinity. When the surface term in the expression above
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vanishes, the generator (2.18) is functionally differentiable with respect to the canonical

fields and one gets the infinitesimal gauge transformations

δλAa := {Aa, G[λ]} = −Daλ , (2.20)

δλπ
a := {πa, G[λ]} = λ× πa , (2.21)

which are exactly the last terms appearing in (2.16) and in (2.17). As it is well known,

two field configurations related by gauge transformations are physically equivalent and

the degrees of freedom in the description of the theory are redundant. The infinitesimal

transformations above can be integrated to get the gauge transformations with parameter

U := exp(−λ) ∈ SU(N)

Aa 7→ ΓU (Aa) = U−1Aa U + U−1∂a U , (2.22)

πa 7→ ΓU (πa) = U−1πa U , (2.23)

where the products on the right-hand sides are products among matrices.

Whether or not the surface term in (2.19) is zero depends on the asymptotic behaviour

of the canonical fields and of the gauge parameter λ(x), which topic is going to be thor-

oughly discussed in the following sections. After this discussion is made, we will come back

to gauge transformations and examine them in more detail in section 4.1.

This concludes the brief survey of the derivation of the Yang-Mills free Hamiltonian.

The symplectic form (2.13), the Hamiltonian (2.14), and the Gauss constraints (2.15) are

the starting points and the fundamental parts of the ensuing discussion, whose goal is to

provide a well-defined Hamiltonian formulation of the Yang-Mills theory.

3 Poincaré transformations and fall-off conditions

The symplectic form and the Hamiltonian derived at the end of the last section are not

yet providing a well-defined Hamiltonian description of free Yang-Mills on a Minkowski

spacetime. This happens mostly for two reasons, which were left aside in the previous

section. First, the integral in (2.13) might not be finite and, as a consequence, the sym-

plectic form would not be well defined. Secondly, one needs to make sure that also the

Hamiltonian (2.14) is finite and, moreover, functionally differentiable with respect to the

canonical fields. In order to achieve this, it may happen that one needs to add a boundary

term in the Hamiltonian. In addition to these two problems, we would also like to include

a well-defined canonical action of the Poincaré group on the fields.

The method to solve the aforementioned problems works as follows. First, one makes

the space of allowed field configurations smaller by requiring that the fields satisfy some fall-

off conditions at spatial infinity. This step will be the topic of this section. The fall-off con-

ditions should be strong enough, so that the Hamiltonian is finite and the symplectic form

is, at most, logarithmically divergent. At the same time, they should be weak enough not

to exclude any potentially interesting solution of the equations of motion. Moreover, since

one wishes to include the Poincaré transformations as symmetries of the theory, one also

needs to impose that the fall-off conditions are preserved by Poincaré transformations. For,

otherwise, the transformations would map allowed filed configurations to non-allowed ones.
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Second, one makes the symplectic form finite by requiring that the leading terms in the

asymptotic expansion of the fields have a definite parity, either even or odd, as functions

on the sphere. These parity conditions are chosen so that the logarithmically divergent

contribution to the symplectic form is, in fact, zero. In some cases, such as electrodynamics,

it is also possible to relax a bit the parity conditions [21], so that one makes the space of

allowed field configurations bigger. We will discuss parity conditions and their possible

relaxation in sections 4, 5, and 6.

The reason for leaving the symplectic form logarithmically divergent when imposing

the fall-off conditions and making it finite with parity conditions, rather than making it

finite directly by means of the fall-off conditions, is that, in this way, the phase space is

larger and, therefore, one obtains potentially more solutions of the equations of motion.

3.1 Poincaré transformations of the fields

In this subsection, we determine how the fields transform under Poincaré transformations.

We begin by establishing the transformation of the fields under a generic hypersurface

deformation. Then, we specialize the results in the case of a deformation corresponding to

Poincaré transformations.

A generic hypersurface deformation can be decomposed into a component normal to

the hypersurface, which we denote by ξ⊥, and components tangential to the hypersurface,

denoted by ξi. The transformation of the fields under such a deformation is generated by

H[ξ⊥, ξi] =

∫
d3x

[
ξ⊥H (A, π; g) + ξi Hi(A, π; g)

]
+ (boundary) . (3.1)

Whether or not the generator (3.1) is finite and functionally differentiable depends on the

asymptotic behaviour of ξ and of the canonical fields. At the moment, we assume that (3.1)

is finite and functionally differentiable and we check a posteriori in section 4 if this is true

for the Poincaré transformations, after we have specified the fall-off and parity conditions

of the canonical fields.

One way to obtain an explicit expression for (3.1) would consist in redoing the analysis

of section 2 using a general (3 + 1)-decomposition for the metric, which includes lapse and

shift. The Hamiltonian that one would find would correspond to the generator (3.1),

after identifying ξ⊥ with the lapse and ξi with the shift. Another and quicker way, which

provides the same result, consists in noting that the generator (3.1) needs to produce a

time translation when ξ⊥ = 1 and ξi = 0. Therefore, in this case, it should coincide with

the Hamiltonian (2.14), from which one reads

H =
πa · πa
2
√
g

+

√
g

4
Fab · F ab + λ · G . (3.2)

Note that, due to the last term in (3.2), the generator (3.1) includes a gauge transformation

with gauge parameter ζ := ξ⊥λ. The tangential part of the generator Hi can be determined

by geometrical reasons. One simply requires that Aa behaves like a covector field and πa

like a density-one vector field under tangential deformations. As a results, one finds

Hi = πa · ∂iAa − ∂a(πa ·Ai) . (3.3)
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Having determined completely the form of the generator (3.1), one can compute the trans-

formation of the fields under a generic hypersurface deformation, finding

δξ,ζAa :=
{
Aa, H[ξ⊥, ξi]

}
= ξ⊥

πa√
g

+ ξi∂iAa + ∂aξ
iAi −Daζ , (3.4)

δξ,ζπ
a :=

{
πa, H[ξ⊥, ξi]

}
=
√
g Db(ξ

⊥F ba) + ∂i(ξ
iπa)− ∂iξaπi + ζ × πa . (3.5)

Finally, one can find out the behaviour of the canonical fields under Poincaré trans-

formations. Indeed, in Cartesian coordinates (t, xi), these corresponds to a hypersurface

deformation parametrized by

ξ⊥ = a⊥ + bix
i and ξi = ai + ωijx

j , (3.6)

where a⊥ is responsible for the time translation, ai for the spatial translations, bi for the

Lorentz boost, and the antisymmetric ωij := gi`ω
`
j for the spatial rotations. Note that,

following [20, 21], we have absorbed the contribution of the boost t bi, which would appear

in ξi, into the parameters ai. The reason for doing so is that these two terms have the

same dependence on the radial distance in the asymptotic expansion at spatial infinity.

For the following discussion, it is actually more convenient to move to spherical coor-

dinates (t, r, x), where x are coordinates on the unit two-sphere, such as the usual θ and

ϕ. The flat three-metric is

gab =

(
1 0

0 r2 γāb̄

)
,

where γāb̄ is the metric of the unit round sphere and indices with bars above, such as ā,

run over the angular components. Using these coordinates, the components of the vector

field (3.6) corresponding to Poincaré transformations are

ξ⊥ = rb+ T , ξr = W , ξā = Y ā +
1

r
γām̄ ∂m̄W . (3.7)

In the above expression, b, Y ā, T , and W are functions on the sphere satisfying the

equations

∇ā∇b̄W + γāb̄W = 0 , ∇ā∇b̄b+ γāb̄b = 0 , LY γāb̄ = 0 , ∂āT = 0 , (3.8)

where ∇ is the covariant derivative on the unit round sphere. Moreover, b, Y ā, T , and W

are related to the parameters a⊥, ai, mi := −εijkωjk/2, and bi by the expressions

b(θ, ϕ) = b1 sin θ cosϕ+ b2 sin θ sinϕ+ b3 cos θ , (3.9)

Y (θ, ϕ) = m1

(
− sinϕ

∂

∂θ
− cos θ

sin θ
cosϕ

∂

∂ϕ

)
+m2

(
cosϕ

∂

∂θ
− cos θ

sin θ
sinϕ

∂

∂ϕ

)
+m3

∂

∂ϕ
, (3.10)

W (θ, ϕ) = a1 sin θ cosϕ+ a2 sin θ sinϕ+ a3 cos θ , (3.11)

T (θ, ϕ) = a⊥ , (3.12)

where we have used explicitly the usual θ and ϕ as angular coordinates.
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The Poincaré transformations of the fields are, therefore, obtained by inserting (3.7)

into the expressions (3.4) and (3.5). There is no need to write down the explicit expression of

the Poincaré transformations at this stage. We will show explicitly how the transformations

act on the asymptotic part of the fields after we have determined the fall-off behaviour of

the fields.

3.2 Fall-off conditions of the fields

In this subsection, we determine the fall-off conditions of the fields. In order to do this, we

demand the following requirements to be satisfied. First, the symplectic form (2.13) should

be, at most, logarithmically divergent. Second, the fall-off conditions of the fields should

be preserved by the Poincaré transformations, discussed in the last subsection. Third, the

asymptotic expansion of the fields should be of the form

Ar(r, x) =
1

rα
Ar(x) +O(1/rα+1) , πr(r, x) =

1

rα′ π
r(x) +O(1/rα

′+1) ,

Aā(r, x) =
1

rβ
Aā(x) +O(1/rβ+1) , πā(r, x) =

1

rβ′ π
ā(x) +O(1/rβ

′+1) .

(3.13)

The dependence of the fields on the time coordinate t, though present, is not denoted

explicitly in the above expressions and in the following ones. Note that we require the

leading term in the expansion to be an integer power of r and the first subleading term

in the expansion to be the power of r with exponent reduced by one. Functions whose

fall-off behaviour is between the two next powers of r, such as those one could build using

logarithms, are excluded at the first subleading order. Fourth, the fall-off conditions should

be the most general ones compatible with the previous three requirements, so that the space

of allowed field configurations is as big as possible. In addition, we also expand the gauge

parameter appearing in (3.4) and (3.5) according to

ζ =
1

rδ
ζ(x) +O(1/rδ+1) . (3.14)

To begin with, the requirement that the symplectic form (2.13) is, at most, logarith-

mically divergent implies the relations

α+ α′ ≥ 1 and β + β′ ≥ 1 (3.15)

among the exponents defined in (3.13). If the two inequalities above are satisfied strictly,

then the symplectic form is actually finite.

Then, one checks when the fall-off conditions (3.13) and (3.14) are preserved by the

Poincaré transformations. To do so, one considers the transformation of the fields, which

are obtained by the combination of (3.4) and (3.5) with (3.7), and inserts, into these

expressions, the asymptotic expansions (3.13) and (3.14). As a result, one finds that the

fall-off conditions are preserved by the Poincaré transformations if

1 ≤ α < 2 , α′ = α− 1 , β = 0 , β′ = 1 , δ ≥ 0 . (3.16)
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Note that these equations already imply (3.15). Finally, requiring that the fall-off condi-

tions are the most general ones of all the possible ones, one obtains that the fields behave

asymptotically as

Ar(r, x) =
1

r
Ar(x) +O(1/r2) , πr(r, x) = πr(x) +O(1/r) ,

Aā(r, x) = Aā(x) +O(1/r) , πā(r, x) =
1

r
πā(x) +O(1/r2)

(3.17)

and the gauge parameter behaves as

ζ(r, x) = ζ(x) +O(1/r) . (3.18)

Of course, the gauge parameter λ appearing in (2.14) and (2.18) needs to satisfy the same

fall-off behaviour of ζ, so that gauge transformations (2.20) and (2.21) preserve the fall-off

conditions (3.17) of the canonical fields.

To sum up, we have determined the most general fall-off conditions of the fields and

of the gauge parameter, under the requirements that they are preserved by the Poincaré

transformations and that they make the symplectic form, at most, logarithmically diver-

gent. Specifically, the fall-off conditions (3.17) imply that the symplectic form is precisely

logarithmically divergent and not yet finite. We will solve this issue in section 4 by means of

parity conditions. But before we do that, we spend the remainder of this section to work out

the explicit expressions for the Poincaré transformations of the asymptotic part of the fields.

3.3 Asymptotic Poincaré transformations

The Poincaré transformations of the fields were not written explicitly, when they were

discussed in subsection 3.1. We will now fix this lack, at least for what concerns the action

of the Poincaré transformations on the asymptotic part of the fields. The results of this

subsection will be used when discussing the parity conditions in the next section.

The procedure to obtain the Poincaré transformation of the asymptotic part of the

fields is straightforward, although a little cumbersome. One inserts the asymptotic expan-

sions (3.17) and (3.18) into the transformations (3.4) and (3.5) combined with (3.7). After

neglecting all the subleading contributions, one finds

δξ,ζAr =
b πr√
γ

+ Y m̄∂m̄Ar + ζ ×Ar , (3.19)

δξ,ζAā =
b πā√
γ

+ Y m̄∂m̄Aā + ∂āY
m̄Am̄ −Dāζ , (3.20)

δξ,ζπ
r = D

m̄(
b
√
γ Dm̄Ar

)
+ ∂m̄(Y m̄πr) + ζ × πr , (3.21)

δξ,ζπ
ā = Dm̄

(
b
√
γ F

m̄ā
) + b

√
γ D

ā
Ar ×Ar + ∂m̄(Y m̄ πā)− ∂m̄Y ā πm̄ + ζ × πā , (3.22)

where angular indices are raised and lowered with the use of γāb̄ and γāb̄ respectively,

F m̄n̄ := ∂m̄An̄−∂n̄Am̄+Am̄×An̄ and Dā := ∇ā+Aā× is the asymptotic gauge-covariant

derivative, being ∇ā the covariant derivative on the unit round sphere.
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One sees immediately that the asymptotic transformations above are affected only by

the boost b and the rotations Y m̄, but not by the translations T and W . Moreover, these

transformations exhibit two main differences with respect to the analogous transformations

in electrodynamics [21]. First, the radial and angular components of the fields do not

transform independently, due to the mixing terms in the transformation of the momenta.

Secondly, none of the asymptotic fields are gauge invariant. Both these properties are a

consequence of the non-abelian nature of the gauge group and will play an important role

in the discussion of parity conditions in the next section.

4 Well-defined Hamiltonian formulation and parity conditions

The fall-off conditions (3.17) are not sufficient to ensure the finiteness of the symplectic

form (2.13), which is, indeed, still logarithmically divergent. This problem can be fixed in

the following way. First, one assigns, independently to one another, a definite parity to the

asymptotic part of the fields, Ar(x) and Aā(x), so that they are either odd or even functions

on the two-sphere. Secondly, one imposes the opposite parity on the asymptotic part of

the corresponding conjugated momenta, πr(x) and πā(x). This way, the logarithmically

divergent term in the symplectic form is, in fact, zero once integrated on the two-sphere.

Specifically, let us assume that Ar has parity s ∈ Z2 and that Aā has parity σ ∈ Z2,

i.e., they behave under the antipodal map,1 denoted hereafter by x 7→ −x, as

Ar(−x) = (−1)sAr(x) and Aā(−x) = (−1)σ Aā(x) . (4.1)

Then, the symplectic form is made finite by assuming that πr has parity s + 1 and that

πā has parity σ + 1. The key observation is that the values of s and σ are unequivocally

determined by the requirement that the Poincaré transformations are canonical and that

they preserve the parity transformations. In electrodynamics, it is possible to relax the

strict parity conditions leaving the symplectic form still finite [21]. We will review how this

procedure works in electrodynamics in section 5 and attempt to apply it to the Yang-Mills

case in section 6.

4.1 Proper and improper gauge transformations

Before we determine the parity conditions, let us extend the discussion of subsection 2.3

and provide some more details about gauge transformations. As we have already mentioned

in subsection 2.3, gauge transformations are generated by

G[λ] :=

∫
d3xλ(x) · G (x) , (4.2)

which is functionally differentiable with respect to the canonical fields if, and only if, the

surface term ∮
S2
∞

d2sk λ · πk =

∮
d2x λ · πr (4.3)

1In the usual angular coordinates (θ, ϕ), the antipodal map x 7→ −x corresponds explicitly to the

transformation (θ, ϕ) 7→ (π − θ, π + ϕ). See [21] for details.
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vanishes. In the right-hand side of the above expression, we have inserted the fall-off

behaviour of the fields (3.17) and of the gauge parameter (3.18). Note that the integral on

the right-hand side is an integral over a unit sphere, since the dependence on the radial

coordinate r disappears after taking the limit to an infinite-radius sphere in the left-hand

side. One sees immediately that the surface term vanishes for every allowed πr if, and only

if, the asymptotic gauge parameter λ has parity s, which is the opposite parity of πr.

There is an alternative way to make the generator (4.2) differentiable. Precisely, one

defines the extended generator

Gext.[ε] :=

∫
d3x ε(x) · G (x)−

∮
d2x ε(x) · πr(x) , (4.4)

where the function ε(x) is required to satisfy the same fall-off behaviour (3.18) of λ(x)

and ζ(x), but its asymptotic part ε is not restricted to have a definite parity. One can

easily verify that Gext.[ε] is functionally differentiable and that it generates the infinitesimal

transformations

δεAa := {Aa, Gext.[ε]} = −∂aε+ ε×Aa , (4.5)

δεπ
a := {πa, Gext.[ε]} = ε× πa . (4.6)

Moreover, one can also verify that
{
Gext.[ε], H

}
= 0, so that Gext.[ε] is the generator

of a symmetry. The infinitesimal transformations above can be integrated to get the

transformations with parameter U := exp(−ε) ∈ SU(N)

Aa 7→ ΓU (Aa) = U−1Aa U + U−1∂a U , (4.7)

πa 7→ ΓU (πa) = U−1πa U , (4.8)

where the products on the right-hand sides are products among matrices.

Note that, when ε has parity s, the surface term in (4.4) vanishes and Gext.[ε] coincides

with G[ε] In this case, the symmetries generated by Gext.[ε] are precisely the already-

discussed gauge transformations connecting physically-equivalent field configurations. We

will refer to them in a rather pedantic way as proper gauge transformations, in order to

avoid any possible misunderstanding in the following discussion.

When ε has parity s + 1, the surface term in (4.4) does not vanish any more. The

transformation generated by Gext.[ε], in this case, connects physically-inequivalent field

configurations. We refer to this transformations as improper gauge transformations, fol-

lowing [29]. These, on the contrary of proper gauge transformations, are true symmetry of

the theory connecting physically-inequivalent field configurations.A general transformation

generated by Gext.[ε] will be the combination of a proper gauge transformation and of an

improper one.

The generator (4.4) is made of two pieces. The former consists of the Gauss con-

straints G smeared with the function ε(x). As a consequence, this term vanishes when

the constraints are satisfied. The latter is a surface term. One can compute the value of

the generator when the constraints are satisfied, which is, in particular, the case for any
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solution of the equations of motion. One obtains

Gext.[ε] ≈ −
∮
d2x ε(x) · πr(x) =: −Q[ε] , (4.9)

where we have defined the charge Q[ε]. When the Lie-algebra-valued function ε(x) is

constant over the sphere, we can write Q[ε] = ε · Q0 in terms of the total colour charge

measured at spatial infinity

Q0 :=

∮
d2xπr(x) . (4.10)

Finally, let us determine the transformation of the asymptotic fields under proper and

improper gauge transformations. Expanding the equations (4.5) and (4.6) using the fall-off

conditions (3.17), one finds

δεAr = ε×Ar , δεAā = −∂āε+ ε×Aā , δεπ
r = ε× πr , δεπ

ā = ε× πā , (4.11)

whereas, expanding the equations (4.7) and (4.8), one finds

ΓU (Ar) = U−1
Ar U , ΓU (Aā) = U−1

Aā U + U−1
∂ā U , (4.12)

ΓU (πr) = U−1
πr U , ΓU (πā) = U−1

πā U , (4.13)

where U := exp(−ε). Note that the total colour charge transforms non-trivially under

proper and improper gauge transformations as

ΓU (Q0) =

∮
d2x U−1

(x)πr(x)U(x) . (4.14)

We will complete this discussion once that we have determined the parity conditions in the

next subsection.

4.2 Poincaré transformations and parity conditions

In this subsection, we elaborate on some aspects of the Poincaré transformations, that were

left aside in the previous discussions in section 3 and we determine the parity conditions of

the asymptotic fields, that is the values of s and σ, which were introduced at the beginning

of this section. In order to do so, we require the Poincaré transformations to be canonical

and to preserve the parity conditions.

To this end, let us take into consideration the asymptotic Poincaré transforma-

tions (3.19)–(3.22). The parts of the transformations depending on ζ are in fact a proper

gauge transformation, which we will discuss below. The rest of the transformations pre-

serves parity conditions as long as σ = 1, as one can easily check.

Let us now impose that the Poincaré transformations are canonical. This is achieved

by imposing that LXΩ = 0 or, equivalently,

d(iXΩ) = 0 , (4.15)
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where Ω is the symplectic form (2.13), L is the Lie derivative in phase space, and X is the

vector field in phase space defining the Poincaré transformations. The left-hand side of the

above expression is

d(iXΩ) =

∫
d3x
[
d
(
δξ,ζπ

a
)
∧ · dAa + dπa∧ · d

(
δξ,ζAa

)]
.

This expression can be evaluated by inserting the explicit value of the transformations (3.4)

and (3.5), together with (3.7). After a few lines of calculations and after the use of the

fall-off conditions (3.17), one finds

d(iXΩ) =

∮
d2x b

√
γ dAm̄∧ · d(D

m̄
Ar) . (4.16)

One can note three things. First, after the fall-off conditions have been imposed, the only

part of the Poincaré transformations which could lead to some problem is the boost sector.

Secondly, the above expression is precisely the non-abelian analogous of the one derived

in [21] for electrodynamics. Lastly, if σ = 1, the right-hand side vanishes as long as s = 0,

which fully determines the parity conditions.

In short, the asymptotic fields need to satisfy the parity conditions

Ar(−x) = Ar(x) , Aā(−x) = −Aā(x) , πr(−x) = −πr(x) , πā(−x) = πā(x) . (4.17)

Moreover, the gauge parameter of proper gauge transformations satisfies

εproper(−x) = εproper(x) . (4.18)

It is easy to check that proper gauge transformations — including the parts of the Poincaré

transformations (3.19)–(3.22) depending on ζ term — preserve the parity conditions.

The parity conditions (4.17) and (4.18) on the fields have a few consequences, other

than making the symplectic form (2.13) finite. First, the Hamiltonian (2.14) is finite and

functionally differentiable, as one can easily check. With the exclusion of term containing

the Gauss constraint, this was already true after that we had imposed the fall-off condi-

tions (3.17). The parity conditions make it true also for the last term.

Second, improper gauge transformations are, at this stage, not allowed. Indeed, they

change the asymptotic fields as in (4.11) when the asymptotic part of the gauge parameter

has parity

εimproper(−x) = −εimproper(x) . (4.19)

However, these transformations do not preserve the parity conditions (4.17). Therefore, if

they were allowed, they would transform one point of the space of allowed field configu-

rations to a point that does not belong to this space any more, which is not possible. In

subsection 6.1, we will discuss whether or not it is possible to modify parity conditions in

order to restore the improper gauge transformations into the theory.

Third, the Poincaré transformations are canonical. Their generator, which is presented

in the next subsection, is finite and functionally differentiable. Note that, with the excep-

tion of the boost, the transformations were already canonical even before imposing the par-

ity conditions. The parity conditions presented in this section fix the behaviour of the boost.
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Last but not least, since πr(x) is an odd function of x, all the charges Q[ε] defined

in (4.9) are vanishing when ε(x) is an even function. Notably, this includes the total

colour charge Q0, defined in (4.10), which is therefore zero. Note that, despite the colour

charge is not a gauge-invariant quantity, the statement that it is actually equal to zero

is a gauge-invariant statement. Indeed, using equation (4.14), one sees that the colour

charge vanishes for every gauge transformation U(x) = exp
[
− εproper(x)

]
, after imposing

the parity conditions (4.17) and (4.18).

The above considerations would suggest that there are some issues if one wants a

well-defined Lorentz boost and a non-zero colour charge in the Yang-Mills theory. A

similar suggestion, coming from a different approach, was already present in [37], where

Christodoulou and ó Murchadha studied the boost problem in General Relativity and

briefly commented, at the end of their section 5, that the boost problem does not seem to

have solutions for charged configurations in the Yang-Mills case, quite in contrast to the

behaviour of General Relativity.

4.3 Poincaré generator and algebra

Now that we know that the Poincaré transformations are canonical, we present their finite

and functionally-differentiable canonical generator, included the needed boundary term.

This is obtained from (3.1), in the particular case in which ξ⊥ and ξi are the ones in (3.7).

After having reassembled and renamed the various terms, one finds

P [ξ⊥, ξi, ζ] =

∫
d3x

[
ξ⊥P0 + ξi Pi + ζ · G

]
+

∮
d2x B , (4.20)

where the generator of the normal component of the Poincaré transformations is

P0 =
πa · πa
2
√
g

+

√
g

4
Fab · F ab , (4.21)

the generator of the tangential component is

Pi = πa · ∂iAa − ∂a(πa ·Ai) , (4.22)

the generator of the proper gauge transformations G is the Gauss constraint (2.15),and the

explicit expression of the boundary term is

B = πr · Y āAā , (4.23)

which is needed to make the generator (4.20) functionally differentiable with respect to the

canonical fields.

Finally, the Poincaré generator satisfy the algebra{
P
[
ξ⊥1 , ξ

i
1, ζ1

]
, P
[
ξ⊥2 , ξ

i
2, ζ2

]}
= P

[
ξ̂⊥, ξ̂, ζ̂

]
, (4.24)

where

ξ̂⊥ = ξi1∂iξ
⊥
2 − ξi2∂iξ⊥1 , (4.25)

ξ̂i = gij(ξ⊥1 ∂jξ
⊥
2 − ξ⊥2 ∂jξ⊥1 ) + ξj1∂jξ

i
2 − ξ

j
2∂jξ

i
1 , (4.26)

ζ̂ = Aig
ij(ξ⊥1 ∂jξ

⊥
2 − ξ⊥2 ∂jξ⊥1 ) + ξi1∂iζ2 − ξi2∂iζ1 + ζ1 × ζ2 . (4.27)
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This concludes this section, in which we have shown that imposing the fall-off con-

ditions (3.17) together with the parity conditions (4.17) lead to a well-defined symplectic

form with a well-defined Hamiltonian and a well-defined canonical action of the Poincaré

group on the fields. Moreover, enforcing the parity conditions (4.17) has two consequences

other than the ones listed above. First, the improper gauge transformations are not al-

lowed any more and, as a result, the asymptotic symmetry group is trivial. Secondly, some

of the charges (4.9) measured at spatial infinity, and in particular the Q[ε] with even ε,

are vanishing. Notably, this includes the total colour charge Q0.2 In the next section,

we explore the possibility of modifying the parity conditions, in order to restore improper

gauge transformations as symmetries of the theory.

5 Relaxing parity conditions and asymptotic symmetries in

electrodynamics

In the previous analysis, we have imposed fall-off and parity conditions on the canonical

fields and we have obtained, as a result, a well-defined Hamiltonian picture. However, at

least in the case of electrodynamics, it is possible to weaken the parity conditions so that

the symplectic form is still finite and improper gauge transformations are allowed, as it was

shown in [21]. Before we investigate this possibility in the case of Yang-Mills, let us briefly

show, in this section, how the procedure works in the simpler case of electrodynamics.

5.1 Relaxing parity conditions

To begin with, let us note that the equations of the electromagnetic case can be inferred

from the equations of this paper by replacing formally the one-form Yang-Mills potential Aa
with one-form electromagnetic potential AED

a and the Yang-Mills conjugated momentum

πa with the electromagnetic conjugated momentum πaED. In addition, one also needs to

replace the Killing scalar product · with the product among real numbers and set to zero

every term containing the non-abelian contributions given by × . In the remainder of this

section, we will not write explicitly the subscript and the superscript “ED” on the fields,

since we will consider only the electromagnetic case.

If we followed the same line of argument of section 3 in the case of electrodynamics, we

would arrive at the same fall-off conditions (3.17) and (3.18) for the canonical fields and the

gauge parameter, respectively. These are precisely the fall-off conditions presented in [21].

Then, if we determined the parity conditions with the same reasoning of the section 4,

we would find out that any choice of definite parity for Ar and Aā would be preserved by

the Poincaré transformations. However, these would be canonical only if the parity of Ar
were opposite to that of Aā. At this point, we choose the parity of πr to be even, so that

2In order to have a non-vanishing colour charge, we would need the radial components to satisfy the

opposite parity conditions to the ones presented in this section. However, these would make the Poincaré

transformations non canonical. Whether or not there is a way to implement the different parity conditions

leaving the Poincaré transformations canonical will be discussed in the next section. In addition, these parity

conditions would also exclude the possibility of making proper gauge transformations with a non-vanishing

part at infinity, but would allow improper gauge transformations.
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Coulomb is an allowed solution. Therefore, we arrive at the parity conditions

Ar(−x) = −Ar(x) , πr(−x) = πr(x) , Aā(−x) = Aā(x) , πā(−x) = −πā(x) . (5.1)

One consequence of these parity conditions is that the improper gauge transformations are

not allowed, since they would add an odd part to the even Aā. However, this issue can

be easily solved by requiring that the fields satisfy the parity conditions given above up to

an improper gauge transformation. That is, we ask the field to satisfy the slightly weaker

parity conditions

Ar = A
odd
r , πr = πreven , Aā = A

even
ā − ∂āΦ

even
, πā = πāodd , (5.2)

where Φ
even

(x) is an even function on the sphere. With these parity conditions, the

symplectic form is not finite any more. Indeed, it contains the logarithmically divergent

contribution∫
dr

r

∮
S2

d2x dπa∧dAa = −
∫
dr

r

∮
S2

d2x dπā∧d∂āΦ
even

=

∫
dr

r

∮
S2

d2x d∂āπ
ā∧dΦ

even
,

where we have integrated by parts in the last passage. As it was noted in [21], supplement-

ing the parity conditions (5.2) with the further condition

∂āπ
ā = 0 , (5.3)

which is nothing else than the asymptotic part of the Gauss constraint, makes the sym-

plectic form finite without excluding any potential solution of the equations of motion.

Furthermore, one notes that also the alternative parity conditions

Ar = A
odd
r , πr = πreven , Aā = A

odd
ā − ∂āΦ

odd
, πā = πāeven , (5.4)

supplemented with (5.3) lead to a finite symplectic form while allowing improper gauge

transformations. Either the choice of (5.2) for the parity conditions or that of (5.4) sup-

plemented with (5.3) provides a theory of electrodynamics, in which the symplectic form

is finite and improper gauge transformations are allowed. The former choice of parity

conditions is preferable since the latter excludes the possibility of magnetic sources and

leads generically to divergences in the magnetic field as one approaches future and past

null infinity, as pointed out in [21].

5.2 Making Poincaré transformations canonical

The extended parity conditions (5.2) and (5.4) come with the advantage of including im-

proper gauge transformations as symmetries of the theory at the cost, however, of making

the Poincaré transformations non canonical. Indeed, with these relaxed parity conditions,

the left-hand side of (4.16) does not vanish any more. The solution to this issue, presented

in full details by Henneaux and Troessaert in [21], works as follows.

One introduces a new scalar field Ψ and its corresponding canonical momentum πΨ,

which is a scalar density of weight one. In radial-angular coordinates, the scalar field and

its canonical momentum are required to satisfy the fall-off conditions

Ψ =
1

r
Ψ(x) +O(1/r2) and πΨ =

1

r
π

(1)
Ψ (x) + o(1/r) . (5.5)
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Note that one assumes that the subleading contributions of scalar field Ψ are O(1/r2), i.e.

vanishing as r tends to infinity at least as fast as 1/r2. At the same time, one assumes that

the subleading contributions of the momentum πΨ are only o(1/r), i.e. vanishing faster

than 1/r, but not necessarily as fast as 1/r2. Moreover, one imposes the constraint

πΨ ≈ 0 , (5.6)

so that the scalar field Ψ is pure gauge in the bulk. At this point, one modifies the

symplectic form to

Ω =

∫
d3x

[
dπa ∧ dAa + dπΨ ∧ dΨ

]
+ ω , (5.7)

which contains the standard contributions in the bulk and, in addition, the non-trivial

surface term

ω :=

∮
d2x

√
γ dΨ ∧ dAr . (5.8)

Finally, one extends the Poincaré transformations to

δξ,ζAa = ξ⊥
πa√
g

+ ξi∂iAa + ∂aξ
iAi + ∂a(ξ

⊥Ψ− ζ) , (5.9)

δξ,ζπ
a = ∂b(

√
g ξ⊥F ba) + ξ⊥∇aπΨ + ∂i(ξ

iπa)− ∂iξaπi , (5.10)

δξ,ζΨ = ∇a(ξ⊥Aa) + ξi∂iΨ , (5.11)

δξ,ζπΨ = ξ⊥∂aπ
a + ∂i(ξ

iπΨ) . (5.12)

Note that, up to gauge transformations and to constraints, the first two equations are

the usual Poincaré transformations of Aa and πa. It is now straightforward to show that

the symplectic form is finite, that the fall-off conditions are preserved under Poincaré

transformations, and that these latter are canonical.

In this paper, we present also an alternative way to achieve the same result. First we

introduce a one-form φa and the corresponding canonical momentum Πa, which is a vector

density of weight one. In polar coordinates, these new fields are required to satisfy the

fall-off conditions

φr = φr(x) +O(1/r) , φā = rφā(x) +O(r0) , (5.13)

Πr =
1

r2
Πr

(1)(x) + o(1/r2) , Πā =
1

r3
Πā

(1)(x) + o(1/r3) . (5.14)

Note, as before, the different requirements for the subleading contributions of the field (O)

and of the momentum (o). Furthermore, we also impose the constraints

Πa ≈ 0 , (5.15)

so that the new field φa is pure gauge in the bulk, and we modify the symplectic form to

Ω′ =

∫
d3x

[
dπa ∧ dAa + dΠa ∧ dφa

]
+ ω′ , (5.16)

which contains the non-trivial surface term

ω′ :=

∮
d2x

√
γ d(2φr +∇āφā) ∧ dAr . (5.17)
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Finally, one extends the Poincaré transformations to

δξ,ζAa = ξ⊥
πa√
g

+ ξi∂iAa + ∂aξ
iAi + ∂a(ξ

⊥∇iφi − ζ) , (5.18)

δξ,ζπ
a = ∂b(

√
g ξ⊥F ba)− ξ⊥Πa + ∂i(ξ

iπa)− ∂iξaπi , (5.19)

δξ,ζφa = ξ⊥Aa + ξi∂iφa + ∂aξ
iφi , (5.20)

δξ,ζΠ
a = −∇a(ξ⊥∂iπi) + ∂i(ξ

iΠa)− ∂iξaΠi . (5.21)

Again, note that, up to gauge transformations and to constraints, the first two equations

are the usual Poincaré transformations of Aa and πa. Moreover, the symplectic form is

finite, the fall-off conditions are preserved under Poincaré transformations, and these latter

are canonical.

5.3 Asymptotic algebra

In this subsection, we compute the asymptotic algebras of the two cases presented in the

previous section and we show that these are equivalent.

The first case, which introduces the scalar field Ψ and its momentum πΨ, is the solution

presented in [21]. The Poincaré transformations are generated by

P (1)[ξ⊥, ξi] =

∫
d3x

[
ξ⊥P

(1)
0 + ξi P

(1)
i

]
+

∮
d2x B(1) , (5.22)

where the generator of the normal component is

P
(1)
0 =

πaπa
2
√
g

+

√
g

4
FabF

ab −Ψ∂aπ
a −Aa∇aπΨ , (5.23)

the generator of the tangential component is

P
(1)
i = πa∂iAa − ∂a(πaAi) + πΨ∂iΨ , (5.24)

the generator of the proper gauge transformations is the Gauss constraint G = ∂aπ
a,and

the explicit expression of the boundary term is

B(1) = b
(

Ψπr +
√
γ Aā∇

ā
Ar

)
+ Y ā

(
πrAā +

√
γΨ∂āAr

)
, (5.25)

which is needed to make the generator (5.22) functionally differentiable with respect to the

canonical fields. In addition, the proper and improper gauge symmetries are generated by

G(1)
ε,µ =

∫
d3x

(
εG + µπΨ

)
−
∮
d2x

(
ε πr +

√
γ µAr

)
, (5.26)

which, together with (5.22), satisfies the algebra{
P

(1)

ξ⊥1 ,ξ1
, P

(1)

ξ⊥2 ,ξ2

}
= P

(1)

ξ̂⊥,ξ̂
,

{
G(1)
ε,µ, P

(1)

ξ⊥,ξ

}
= G

(1)
ε̂,µ̂ ,

{
G(1)
ε1,µ1

, G(1)
ε2,µ2

}
= 0 , (5.27)

where

ξ̂⊥ = ξi1∂iξ
⊥
2 − ξi2∂iξ⊥1 , ξ̂i = gij(ξ⊥1 ∂jξ

⊥
2 − ξ⊥2 ∂jξ⊥1 ) + ξj1∂jξ

i
2 − ξ

j
2∂jξ

i
1 , (5.28)

µ̂ = ∇i(ξ⊥∂iε)− ξi∂iµ , ε̂ = ξ⊥µ− ξi∂iε . (5.29)
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In the second case presented in the previous subsection, which introduces the one-form

φa and its momentum Πa, the Poincaré transformations are generated by

P (2)[ξ⊥, ξi] =

∫
d3x

[
ξ⊥P

(2)
0 + ξi P

(2)
i

]
+

∮
d2x B(2) , (5.30)

where the generator of the normal component is

P
(2)
0 =

πaπa
2
√
g

+

√
g

4
FabF

ab −∇aφa∂bπb + ΠaAa , (5.31)

the generator of the tangential component is

P
(2)
i = πa∂iAa − ∂a(πaAi) + Πa∂iφa − ∂a(Πaφi) , (5.32)

the generator of the proper gauge transformations is the Gauss constraint G = ∂aπ
a, and

the explicit expression of the boundary term is

B(2) = b
[
(2φr +∇āφā)πr +

√
γ Aā∇

ā
Ar

]
+ Y ā πr Aā , (5.33)

which is needed to make the generator (5.30) functionally differentiable with respect to the

canonical fields. In addition, the proper and improper gauge symmetries are generated by

G(2)
ε,χ =

∫
d3x

(
εG + χa Πa

)
−
∮
d2x

[
ε πr +

√
γ (2χr +∇āχā)Ar

]
, (5.34)

which can be combined with (5.30) into the generator

A(2)[ξ⊥, ξ, ε, χa] := P (2)[ξ⊥, ξ] +G(2)[ε, χ] , (5.35)

satisfying the algebra{
A(2)[ξ⊥1 , ξ1, ε1, χ1], A(2)[ξ⊥2 , ξ2, ε2, χ2]

}
= A(2)[ξ̂⊥, ξ̂, ε̂, χ̂] , (5.36)

where

ξ̂⊥ = ξi1∂iξ
⊥
2 − ξi2∂iξ⊥1 , (5.37)

ξ̂i = ξ̃i + ξj1∂jξ
i
2 − ξ

j
2∂jξ

i
1 , (5.38)

ξ̃i := gij(ξ⊥1 ∂jξ
⊥
2 − ξ⊥2 ∂jξ⊥1 ) , (5.39)

χ̂a = ξ⊥1 ∂aε2 − ξ⊥2 ∂aε1 + ξi1∂iχ
2
a − ξi2∂iχ1

a + ξ̃a∇mφm − ξ̃m∂mφa − ∂a(ξ̃mφm) , (5.40)

ε̂ = ξi2∂iε1 − ξi1∂iε2 + ξ⊥2 ∇aχ1
a − ξ⊥1 ∇aχ2

a . (5.41)

The asymptotic algebras (5.27) and (5.36) are equivalent. To see this, one has to con-

sider in the two cases the group of all the allowed transformations and take the quotient

of it with respect to the proper gauge. Only then, one can compare the brackets (5.27)

and (5.36). In the first case presented above, the proper gauge amount to those transfor-

mations for which ε is odd and µ is even. In the second case presented above, the proper

gauge amount to those transformations for which ε is odd and ∇ · χ := 2χr +∇āχā is even.

The equivalence is then shown by identifying µ with ∇ · χ.
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6 Relaxing parity conditions and asymptotic symmetries in Yang-Mills

In this section, we try to apply the methods of the previous section to the non-abelian Yang-

Mills case. The goal is to obtain a Hamiltonian formulation of Yang-Mills with canonical

Poincaré transformations and with allowed improper gauge transformations. As we shall

see, this goal cannot be entirely fulfilled.

6.1 Relaxing parity conditions in Yang-Mills

Let us now study the possibility of relaxing the parity conditions in Yang-Mills, in order

to restore the improper gauge transformations also in this case. Following the same line

of argument of the electromagnetic case, we begin by requiring the asymptotic fields to

satisfy the parity conditions (4.17) up to asymptotic improper gauge transformations (4.12)

and (4.13), so that

Ar = U−1
A

even
r U , πr = U−1

πrodd U , (6.1)

Aā = U−1
A

odd
ā U + U−1

∂ā U , πā = U−1
πāeven U , (6.2)

where U(x) = exp
[
−Φ

odd
(x)
]
∈ SU(N) and the Lie-algebra-valued function Φ

odd
(x) is odd

under the antipodal map x 7→ −x. Therefore, the Lie-group-valued function U(x) behaves

as U(−x) = U(x)−1 under the antipodal map. These new parity conditions introduce the

logarithmically divergent part∫
dr

r

∮
S2

d2x dπa∧ · dAa =

=

∫
dr

r

∮
S2

d2x

{(
dU U−1

)
∧ · d

(
∂āπ

ā
even +A

even
r × πrodd +A

odd
ā × πāeven

)
+

− 1

2

[(
dU U−1

)
∧ ×

(
dU U−1

)]
·
(
∂āπ

ā
even +A

even
r × πrodd +A

odd
ā × πāeven

)}
(6.3)

in the symplectic form, whose precise derivation is presented in appendix A.

At this point, we note that the second factor in both summands of the right-hand

side of (6.3) is nothing else than the asymptotic Gauss constraint G 0 evaluated when

Φ
odd

= 0, which is related to the asymptotic Gauss constrain G with non-vanishing Φ
odd

by the expression G = U−1
G 0 U , so that the one vanishes if, and only if, the other does.

Therefore, we can keep the symplectic form finite by restricting the phase space to those

field configurations that satisfy, together with the fall-off conditions (3.17) and the parity

conditions (6.1) and (6.2), also the asymptotic Gauss constraint

∂āπ
ā +Ar × πr +Aā × πā = 0 . (6.4)

Note that imposing this further condition does not exclude any of the former solutions to

the equations of motion, since every solution was already satisfying the (asymptotic part

of the) Gauss constraint. This shows that it is possible to relax the parity conditions in

order to allow improper gauge transformations, but nevertheless leaving the symplectic

form finite.
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In electrodynamics, one notes that it is possible to start with a different set of parity

conditions and to relax them, so that the symplectic form is nevertheless finite. These

freedom, was used in section 5.1 in order to present two possibility for the parity of the

angular components of the asymptotic part of the fields.3 One could wonder whether or

not this freedom is present also in the Yang-Mills case.

First, one notes that picking the opposite parity for the angular part is problematic.

Specifically, the asymptotic part of the Poincaré transformations (3.19)–(3.22) contains

the term F āb̄ and the operator Dā := ∇ā + Aā × . If we took Aā to be of even parity

(up to asymptotic proper/improper gauge transformations) we would end up with terms

of indefinite parity after applying the Poincaré transformations.

Secondly, one could try to pick the opposite parity conditions for the radial components

of the asymptotic fields (up to asymptotic proper/improper gauge transformations). This

choice would have the advantage of allowing a non-vanishing value of the colour charge,

as discussed in footnote 2. However, for this choice, the method used above to make the

symplectic form finite does not work any more even after imposing the asymptotic Gauss

constraint.4

To sum up, we have found a way of relaxing the strict parity conditions of section 4

in order to allow improper gauge transformations, but leaving the symplectic form finite.

We have also discussed why different choices for the parity conditions are less appeal-

ing and more problematic in Yang-Mills compared to electrodynamics. As expected, the

price to pay when relaxing the parity conditions is that the Poincaré transformations are

not canonical any more. We will discuss what can be done to fix this issue in the next

subsection.

6.2 Attempt to make the Poincaré transformations canonical

In order to make the Poincaré transformations canonical the following expression, which is

the Lie derivative of the symplectic form, has to vanish:

LXΩ = d(iXΩ) =

∮
S2

d2x b
√
γ γm̄n̄ dAm̄∧ · d(D

m̄
Ar) , (6.5)

possibly adding a surface term to the symplectic form and introducing new fields, which are

non-trivial only at the boundary. One could try to follow the line of reasoning of section 5.2

also in Yang-Mills. Since the Lie derivative of the symplectic form fails to vanish due to

the Lorentz boost, we will focus on the Lorentz boost and neglect the rest of the Poincaré

transformations in the following. In other words, we will consider the case in which ξ⊥ = rb

and ξi = 0. Moreover, we discuss, separately, the possible implementation of each one of

the two solutions presented in section 5.2 and adapted to the Yang-Mills case.

3In principle, one could use the same freedom for the parity of the radial component of the asymptotic

fields, but this was already fixed by the physical requirement that Coulomb is a solution.
4The method used to make the symplectic form finite in this subsection works if Ar and Aā are chosen

so that they have opposite parity when Φ
odd

= 0. Therefore, the method presented in this section would

still work if we chose, at the same time, the opposite parity conditions both for the radial and for the

angular components, with respect to those presented in (6.1)–(6.2). However, we have already discussed

that changing the parity conditions of the angular components leads to other issues.
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6.2.1 Case 1

First, let us consider the solution described in section 5.2 which uses the scalar field Ψ

and its conjugated momentum πΨ, first found in [21]. Also in the Yang-Mills case, we

supplement the field with the fall-off conditions (5.5), the further constraint πΨ ≈ 0, and

the symplectic structure in the bulk

Ω =

∫
d3x

[
dπa ∧ · dAa + dπΨ ∧ · dΨ

]
. (6.6)

Moreover, we impose the action of the Lorentz boost on the fields to be

δξ⊥Aa = ξ⊥
πa√
g

+Da(ξ
⊥Ψ) , (6.7)

δξ⊥π
a = ∂b(

√
g ξ⊥F ba) + ξ⊥∇aπΨ − ξ⊥Ψ× πa , (6.8)

δξ⊥Ψ = ∇a(ξ⊥Aa) , (6.9)

δξ⊥πΨ = ξ⊥G , (6.10)

which preserve both the fall-off conditions and the constraints. The above transformations

would be generated by

P [ξ⊥] :=

∫
d3x ξ⊥

[
πa · πa
2
√
g

+

√
g

4
Fab · F ab −Ψ · G −Aa · ∇aπΨ

]
+ (boundary) , (6.11)

if a suitable boundary term existed, so that the generator above were functionally differen-

tiable with respect to the canonical fields (as we shall see in the following, such boundary

term does not exist). Let us now denote with X ′ the vector field in phase space defining

the Lorentz boost (6.7)–(6.10) and let us define

ω0 :=

∮
S2

d2x
√
γ dΨ∧ · dAr , (6.12)

such that one finds

LX′(Ω + ω0) =

∮
S2

d2x b
√
γ
[
dAm̄ ∧ · d(A

m̄ ×Ar)− dΨ∧ · d(Ψ×Ar)
]

(6.13)

At this point, one needs to find a second boundary term ω1, whose phase-space Lie deriva-

tive LX′ω1 is the opposite of the expression above. However, one immediately faces the

issue that even the first term inside square brackets of the expression above cannot be

compensated by some expression contained in LX′ω1, for any ω1 built from the canonical

fields. Indeed, the first term in (6.13) contains only the asymptotic part of the field A,

without any derivative, but the asymptotic transformations of the fields under Lorentz

boosts do not contain any such term. In other words, one cannot find an extra surface

term to the symplectic structure ω := ω0 + ω1, which is build from the given fields and

satisfies LX′(Ω + ω) = 0.
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6.2.2 Case 2

Secondly, one could try to adapt to the Yang-Mills case the other solution described in

section 5.2, namely the one introducing the one form φa and its conjugated momentum Πa.

Also in this case, we supplement the fields with the fall-off conditions (5.13), the further

constraints Πa ≈ 0, and the symplectic form in the bulk

Ω′ =

∫
d3x

[
dπa ∧ · dAa + dΠa ∧ · dφa

]
. (6.14)

Moreover, we impose the action of the Lorentz boost on the fields to be

δξ⊥Aa = ξ⊥
πa√
g

+Da(ξ
⊥D iφi) , (6.15)

δξ⊥π
a = ∂b(

√
g ξ⊥F ba)− ξ⊥Πa + ξ⊥πa ×D iφi + ξ⊥ c φa × G , (6.16)

δξ⊥φa = ξ⊥Aa , (6.17)

δξ⊥Πa = −Da(ξ⊥G ) , (6.18)

where Da := ∇a+c1Aa×+c2 πa× and c1, c2 ∈ R are free parameters that one can set later

to suitable values in order to make the Lorentz boost canonical. One can verify that the

above transformations preserve both the fall-off conditions and the constraints. Moreover,

they would be generated by

P ′[ξ⊥] :=

∫
d3xξ⊥

[
πa ·πa
2
√
g

+

√
g

4
Fab ·F ab−Daφa ·G +Aa ·Πa

]
+(boundary) , (6.19)

if a suitable boundary term existed, so that the generator above were functionally differen-

tiable with respect to the canonical fields (as we shall see in the following, such boundary

term does not exist). One can easily compute that

LX′Ω′ =

∮
S2

d2x b
[√

γ dAm̄ ∧ · d
(
Dm̄Ar

)
+ dπr ∧ · dDφ

]
, (6.20)

where

Dφ := 2φr +∇m̄φm̄ + c1

(
Ar × φr +A

m̄ × φm̄
)

+ c2

(
πr × φr + πm̄ × φm̄

)
is the leading contribution in the expansion of Daφa = Dφ/r + O(1/r2) and X ′ is the

vector field on phase space that defines the Lorentz boost (6.15)–(6.18).

One hopes that, with respect to the previous case concerning Ψ and πΨ, one can now

tackle the problem more efficiently, since there are now fields transforming asymptotically

as the asymptotic part of Aa without derivatives. Namely, the one form φa transforms

asymptotically under Lorentz boosts like δξ⊥φa = bAa.

In order to compensate for the terms contained in (6.20), we use the following ansatz

for the boundary term of the symplectic form:

ω′ =

∮
S2

d2x
√
γ
[
a0 d

(
∇m̄φm̄

)
∧ · dAr + a1 dφr∧ · dAr + a2Ar · dφ

m̄ ∧ × dAm̄+

+ a3 φr · dA
m̄ ∧ × dAm̄ + a4Am̄ · dA

m̄ ∧ × dφr+

+ a5Am̄ · dφ
m̄ ∧ × dAr + a6 φm̄ · dA

m̄ ∧ × dAr

]
,

(6.21)
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where a0, . . . , a6 ∈ R are free parameters that can be set to a suitable value in order to

achieve LX′(Ω′+ω′) = 0. Note that one has to restrict the possible values of the parameters

a0, . . . , a6, in order to ensure that the two-form ω′ is closed. In any case, one can show

that no value of the parameters a0, . . . , a6, c1, and c2 can be found in order to make the

Lorentz boost canonical. A more detailed discussion about the reasons why we used the

ansatz above and the computations needed to show that no value of the free parameters

make the Lorentz boost canonical can be found in appendix B.

In conclusion, we were not able to find a solution to the problem of making the Poincaré

transformations canonical after having relaxed the parity conditions in the Yang-Mills case.

7 Conclusions

In this paper, we have studied Yang-Mills theory with a particular focus on the fall-off and

parity conditions that are needed in order give it a Hamiltonian formulation. Amongst

the required structures is foremost the symplectic structure itself, a finite and functionally-

differentiable Hamiltonian, and a canonical action of the Poincaré group. Our aim was

to find out to what extent these requirements allow for non-trivial groups of asymptotic

symmetries and globally charges states, fully analogous in spirit and technique to the corre-

sponding investigations by Henneaux and Troessaert for electrodynamics [21], gravity [20],

and in the combination of the two [23].

The fall-off conditions can be unequivocally determined from a power-law ansatz if one

requires that the usual action of the Poincaré transformations leaves them invariant. The

discussion on the parity conditions is more involved, as was expected from the experience

with the electromagnetic case.

We started by showing that strict parity conditions can be employed which allow the

theory to meet all the required Hamiltonian requirements, though they turned out to not

allow for improper gauge transformations and non-zero global charges.

We certainly did expect some additional constraints on the range of such conditions,

over and above those already known from the electrodynamic case. After all, there are

additional terms from the non-vanishing commutators in the covariant derivatives which

one needs to take care of. But we did not quite expect these constraints to be as restricting

as they finally turned to be.

In a second step we investigated into the possibility to regain non-trivial asymptotic

symmetries and colour charges by carefully relaxing the parity conditions. We found that

it is possible to relax the parity conditions so that they are still preserved under Poincaré

transformations, that the symplectic form is still finite, and that non-trivial improper

gauge transformations exist. But this possibility had two independent drawbacks: first,

the Poincaré transformations ceased to be canonical. We originally expected to be able

to fix this issue in a manner similar to that employed in the electromagnetic case in [21],

but this turned out not to work. Second, the relaxed parity conditions allowing non-zero

colour charge fail to ensure the existence of a symplectic form.

Let us clearly state that we do not pretend to have proven the impossibility of non-

trivial asymptotic symmetries and non-vanishing global charges in an entirely rigorous
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sense, taking full account of functional-analytic formulations of infinite-dimensional sym-

plectic manifolds. However, the constraints we encountered are not of the kind that one can

expect to simply disappear through proper identifications of function spaces. We believe

that the obstructions we encountered point towards a deeper structural property of non-

abelian Yang-Mills theory that has hitherto not been taken properly into consideration,

despite the fact that similar concerns were already raised several years ago in [37, section 5]

based on a careful asymptotic analysis of the field equations. Given that this view is cor-

rect, it is tempting to speculate that further clarification of that structure might tell us

something relevant in connection with the problem of confinement. After all, the general

idea that confinement might be related to structures already seen at a purely classical level

is not new; see, e.g., [38].

An important further step would be to reconcile the Hamiltonian treatment at spacelike

infinity with the already existing study at null infinity [34, 35]. Here, too, a confirmation of

the obstructions we have seen would highlight a clear difference between non-abelian Yang-

Mills theory on one hand, and electrodynamics and gravity on the other. In particular, it

would be of interest to learn whether such a reconciliation is possible only at the price of

allowing certain symmetries to act non canonically.
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A The logarithmically-divergent contribution to the symplectic form

In this appendix, we present a step-by-step computation of the logarithmically-divergent

contribution to the symplectic form, which arises once we relax the parity conditions to

match (6.1) and (6.2), as discussed in subsection 6.1. In short, we will evaluate∮
S2

d2x dπa∧ · dAa =

∮
S2

d2x

[
d
(
U−1

πrodd U
)
∧ · d

(
U−1

A
even
r U

)
+

+ d
(
U−1

πāeven U
)
∧ · d

(
U−1

A
odd
ā U

)
+

+ d
(
U−1

πāeven U
)
∧ · d

(
U−1

∂ā U
)]
.

(A.1)

Let us call Ω1, Ω2, and Ω3 the contributions of the first, the second, and the third summand

of the above expression, respectively. In the following, we compute these three contributions

separately.
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A.1 Preliminaries

In order to make the ensuing computation of the three contributions easier to follow, let

us evaluate in advance a few useful quantities. To begin with, we note that most of the

contributions in (A.1) are of the form

d
(
U−1F U

)
= d

(
U−1)F U + U−1

dF U + U−1F dU =

= U−1
(
dF + F dU U−1 − dU U−1F

)
U =

= U−1
(
dF + F ×

(
dU U−1))U ,

(A.2)

where F needs to be replaced by one of definite-parity parts appearing in the canonical

fields. In the above expression, we have made use of the identity d
(
U−1)

= −U−1
dU U−1

,

in order to obtain the expression on the second line. Moreover, let us also compute

d
(
U−1

∂ā U
)

= d
(
U−1)

∂ā U + U−1
∂ā
(
dU
)

=

= U−1
[
− dU U−1

∂ā U U
−1

+ ∂ā
(
dU
)
U−1

]
U =

= U−1
[
dU ∂ā

(
U−1)

+ ∂ā
(
dU
)
U−1

]
U =

= U−1
∂ā

(
dU U−1

)
U ,

(A.3)

where we have made use of the further identity ∂ā
(
U−1)

= −U−1
∂ā U U

−1
, in order to

obtain the expression on the third line.

Finally, let us evaluate
(
U × ω

)
∧·
(
V × ω

)
, where U and V are su(N)-valued functions

and ω is a su(N)-valued one-form on phase space to which the exterior product refers. From

our definition (1.4) of the inner product, we get(
U × ω

)
∧ ·
(
V × ω

)
= −tr

(
U × ω ∧ V × ω

)
= −tr

([
U, ω

]
∧
[
V, ω

])
, (A.4)

where next to the exterior product of su(N)-valued one-forms matrix multiplication in

su(N) is also understood. In the following we shall also temporarily drop the wedge-

product symbol. We only need to remember to insert an extra minus sign every time we

invert the order of the two ω. Expanding the commutators and the composition, we get(
U × ω

)
∧ ·
(
V × ω

)
= −tr

(
UωV ω + ωUωV − UωωV − ωUV ω

)
. (A.5)

Using the cyclicity of the trace and taking into account the minus sign whenever the order of

the two one-forms ω changes, we immediately see that the first two terms cancel. Therefore,

applying the same rules, we get(
U × ω

)
∧ ·
(
V × ω

)
= −tr

(
− UωωV − ωUV ω

)
= −tr

(
− ωωV U + ωωUV

)
. (A.6)

This can be factorised in the form(
U × ω

)
∧ ·
(
V × ω

)
= −tr

(
ωω
[
U, V

])
= −tr

(
1

2

[
ω, ω

] [
U, V

])
, (A.7)
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where we have replaced the product ωω with the commutator divided by two using the

antisymmetry of the exterior product.5 Finally, recalling our definition (1.4) of the inner

product and again displaying the exterior product, we arrive at the desired identity(
U × ω

)
∧ ·
(
V × ω

)
=

1

2

(
ω∧ × ω

)
·
(
U × V

)
. (A.8)

We are now ready to present the actual computation of the three terms Ω1, Ω2, and Ω3,

whose sum gives the divergent contribution (A.1) to the symplectic form.

A.2 Computation of the divergent contribution

First, let us compute Ω1, the first line of the right-hand side of (A.1). Using (A.2), we get

Ω1 :=

∮
S2

d2x d
(
U−1

πroddU
)
∧·d

(
U−1

A
even
r U

)
=

=

∮
S2

d2x U−1
[
dπrodd +πrodd×

(
dU U−1

)]
U ∧·U−1

[
dA

even
r +A

even
r ×

(
dU U−1

)]
U =

=

∮
S2

d2x
[
dπrodd +πrodd×

(
dU U−1

)]
∧·
[
dA

even
r +A

even
r ×

(
dU U−1

)]
, (A.9)

where, on the last step, we have simplified U with U−1
using the cyclicity of the trace,

which appears in the definition of the Killing inner product. At this point, we can expand

the product of the two terms in square brackets. The term dπrodd∧ · dA
even
r vanishes upon

integration because it is an odd function on the sphere. Using the symmetries of the triple

product and being careful in putting an extra minus sign every time we change the order

of the forms in the exterior product, we can rearrange the terms as

Ω1 =

∮
S2

d2x

{(
dU U−1

)
∧ ·
(
A

even
r × dπrodd + dA

even
r × πrodd

)
+

+
[
πrodd ×

(
dU U−1

)]
∧ ·
[
A

even
r ×

(
dU U−1

)]}
.

(A.10)

The second factor in the first summand can be rewritten as d
(
A

even
r × πrodd

)
, simply using

the Leibniz rule. Moreover, the second summand can be rewritten using the identity (A.8).

Hence, we arrive at the expression

Ω1 =

∮
S2

d2x

{(
dU U−1

)
∧ · d

(
A

even
r × πrodd

)
+

− 1

2

[(
dU U−1

)
∧ ×

(
dU U−1

)]
·
(
A

even
r × πrodd

)}
.

(A.11)

Second, let us note that the second line of (A.1) is analogous to the first line, so that

we can get the value of Ω2 with a computation almost identical to the one for Ω1, obtaining

Ω2 =

∮
S2

d2x

{(
dU U−1

)
∧ · d

(
A

odd
ā × πāeven

)
+

− 1

2

[(
dU U−1

)
∧ ×

(
dU U−1

)]
·
(
A

odd
ā × πāeven

)}
.

(A.12)

5Note that the commutator of the two ω does not identically vanish because it is combined with the

(antisymmetric) exterior product.
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Third, let us compute the last contribution Ω3. Using (A.2) and (A.3), we get

Ω3 :=

∮
S2

d2x d
(
U−1

πāeven U
)
∧ · d

(
U−1

∂ā U
)

=

=

∮
S2

d2x U−1
[
dπāeven + πāeven ×

(
dU U−1

)]
U ∧ · U−1

∂ā

(
dU U−1

)
U .

(A.13)

Once again, we can simplify U and U−1
using the cyclicity of the trace employed in the

definition of the Killing inner product. Expanding afterwards the expression, we get

Ω3 =

∮
S2

d2x

{
dπāeven ∧ · ∂ā

(
dU U−1

)
+
[
πāeven ×

(
dU U−1

)]
∧ · ∂ā

(
dU U−1

)}
=

=

∮
S2

d2x

{
− d

(
∂āπ

ā
even

)
∧ ·
(
dU U−1

)
+
[
∂ā

(
dU U−1

)
∧ ×

(
dU U−1

)]
· πāeven

}
,

(A.14)

where we have integrated by part the first summand. Moreover, in the second summand,

we have used the symmetries of the triple product and inserted an extra minus sign due

to the ordering of the forms in the exterior product. The above expression can be easily

rewritten as

Ω3 =

∮
S2

d2x

{(
dU U−1

)
∧ · d

(
∂āπ

ā
even

)
+

1

2
∂ā

[(
dU U−1

)
∧ ×

(
dU U−1

)]
· πāeven

}
=

=

∮
S2

d2x

{(
dU U−1

)
∧ · d

(
∂āπ

ā
even

)
− 1

2

[(
dU U−1

)
∧ ×

(
dU U−1

)]
· ∂āπāeven

}
,

(A.15)

where we have integrated by part the second summand.

Finally, we find the logarithmically-divergent contribution to the symplectic form by

summing the three contributions Ω1, Ω2, and Ω3, given by the expressions (A.11), (A.12),

and (A.15), respectively. The result coincides exactly with the expression (6.3) presented

in subsection 6.1.

B Details about the computations of section 6.2

In this appendix, we provide a more detailed discussion about the attempts to make the

Poincaré transformations canonical after having relaxed the parity conditions in the Yang-

Mills case. In particular, we extend the information of subsection 6.2.2. There, some

assumptions were made in the behaviour of the fields under Poincaré transformations and

in the ansatz (6.21) for the boundary term of the symplectic form. In the following, we

comment on the fact that these assumptions are actually not so restrictive.

B.1 Poincaré transformations of the fields

We remind that, in section 6.2.2, we introduced a one form φa and the conjugated momenta

Πa. These new canonical fields were required to satisfy the fall-off conditions (5.13) and

the further constraint Πa ≈ 0. At this point, we have to specify how the fields transform

under the Poincaré transformations and, in particular, the Lorentz boost. In order to do

so, let us make a few assumptions.
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First, we wish that, ultimately, the Poincaré transformations would be generated by

the Poisson brackets with a function P on phase space, as it is in the case of general

relativity and electrodynamics. So, let us write the candidate for the generator of the

boost as

P ′[ξ⊥] :=

∫
d3x ξ⊥

[
πa · πa
2
√
g

+

√
g

4
Fab · F ab + P ′

(1)

]
+ (boundary) , (B.1)

where the first two summands in the square brackets are responsible for the usual trans-

formations (3.4) and (3.5), while P ′
(1) takes into account the transformation of φa and Πa,

as well as some possible new contributions to the transformation of Aa and πa. For now,

we ignore any issue concerning the existence of a boundary term which makes the gener-

ator above well defined. We pretend that it exists, in order to allow the following formal

manipulations, and check at the end whether or not this is consistent. It is the goal of this

appendix to show that such boundary term does not actually exist. Note that, due to the

presence of an unspecified boundary term in the expression above, P ′
(1) is defined up to a

total derivative. We will implicitly make use of this fact in some of the following equalities.

Secondly, the attempt done in section 6.2.1 failed because it was not possible to com-

pensate for the term containing dAm̄ ∧ · d(A
m̄ ×Ar) in LXΩ. Indeed, there was no

field transforming (asymptotically) as (the asymptotic part of) Aa without any derivative.

Therefore, as a further assumption, we ask that φa transforms exactly as δξ⊥φa = ξ⊥Aa,

thus finding

P ′
(1) = Aa ·Πa + P ′

(2) , (B.2)

where P ′
(2) does not depend on Πa.

Thirdly, we ask that the transformations of Aa and πa differ from the ones in (3.4)

and (3.5) by, at most, gauge transformations and constraints. Since P ′
(2) cannot depend

on the constraints Πa ≈ 0, this implies that P ′
(2) = F · G , for some function F of the

canonical fields (except for Πa) and their derivatives. Note that, since G is a weight-one

scalar density, F needs to be a scalar in order for the integral in (B.1) to make sense.

Finally, we require that the transformations of Aa and πa are exactly the ones in (3.4)

and (3.5), when the new fields φa and Πa are set to zero. Therefore, we can write, up to

boundary terms, F = Daφa, where the operator Da is built using the fields Aa, π
a, and

φa, as well as an arbitrary number of derivatives and su(N) commutators. At the lowest

order in the derivatives and in the fields, we find

Daφa = c0∇aφa + c1A
a × φa + c2π

a × φa , (B.3)

where c0, c1, c2 ∈ R are three free parameters. After noting that c0 can be set to 1 by

redefining φa, we find exactly the transformations (6.15)–(6.18), that were assumed in

section 6.2.2.

B.2 The boundary term of the symplectic form

Before we can verify whether or not the Poincaré transformations are canonical, we need to

specify how the symplectic form is affected by the introduction of the new fields φa and Πa.
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We assume that the contribution in the bulk is of the usual form dΠa ∧ · dφa. Therefore,

the symplectic form in the bulk Ω′ is given by (6.14). To this, we add a boundary term

ω′ built using the asymptotic part of the fields. There is potentially an infinite number of

possibilities when one writes contributions to ω′. However, a few things need to be taken

into consideration.

First, we want to achieve LX′(Ω′ + ω′) = 0. Now, LX′Ω′ contains non-zero boundary

contributions as shown in (6.20). In order for LX′(Ω′+ω′) to be actually zero, we need that

terms in (6.20) are compensated by some terms in LX′ω′. The ansatz (6.21) is designed

exactly in this spirit. In particular, the terms with coefficients a0 and a1 should compensate

those parts of (6.20) containing derivatives of A and those containing πr, whereas the terms

with coefficients a2, . . . , a6 should tackle the part in (6.20) containing dAm̄ ∧·d(A
m̄ ×Ar).

Secondly, introducing contributions to ω′ built using the momenta πa does not help,

since these would introduce terms with at least two derivatives of Aa in LX′ω′, due to

their asymptotic transformations under boost — see (3.21) and (3.22) — while LX′Ω′ only

contains terms with at most one derivative.

Thirdly, having terms in ω′ containing a great number of fields and of their commuta-

tors would introduce a big complication in the problem. Furthermore, it would be difficult

to justify such terms when comparing the theory at spatial and at null infinity.

In conclusion, we consider the ansatz (6.21) for the boundary term of the symplectic

form for the aforementioned reasons. Although it is not the most general ansatz, it is general

enough to show that the Yang-Mills case is substantially different from electrodynamics

and general relativity.

B.3 The Poincaré transformations are not canonical

We finally show that no value of the free parameters a0, . . . , a6, c1, and c2 makes the

Poincaré transformations canonical. To begin with, the symplectic form Ω′ + ω′ must be

a closed two-form on phase space. Since dΩ′ = 0, one need to impose that also dω′ = 0.

One can easily check that this amount to consider the general ansatz (6.21) with the free

parameters a0, . . . , a6 restricted by the two conditions

a3 + a4 = 0 and a2 + a5 + a6 = 0 . (B.4)

The two conditions above imply that one can rewrite the boundary term ω′ of the symplectic

form as

ω′ =

∮
S2

d2x
√
γ
[
a0 d

(
∇m̄φm̄

)
∧ · dAr + a1 dφr∧ · dAr

+ ã2 dAm̄ ∧ · d
(
A
m̄ × φr

)
+ ã3 dAm̄ ∧ · d

(
Ar × φ

m̄)
+ ã4 dAr ∧ · d

(
Am̄ × φ

m̄)]
,

(B.5)

where the three parameters ã2, ã3, and ã4 are related to a2, . . . , a5 by

ã2 = a3 , ã3 = −a2 , and ã4 = −a5 . (B.6)

Note that (B.5) is not only close but also exact.
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It is now not difficult to show that the Poincaré transformations are not canonical

for any value of the free parameters a0, a1, ã2, ã3, ã4, c1, and c2. Indeed, the Poincaré

transformations would be canonical if, and only if,

LX′Ω′ = −LX′ω′ . (B.7)

The left-hand side of the above expression was already computed in (6.20). It contains a

first summand with the term dAm̄ ∧·d
(
Dm̄Ar

)
, which would appear also on the right-hand

side of the above expression if we imposed

a0 = 1 and ã3 = ã2 + 1 . (B.8)

Moreover, the left-hand side of (B.7) contains a second summand with the term dπr ∧·dDφ.

This contribution would be compensated by a similar contribution on the right-hand side

of (B.7) if we imposed the further conditions

a1 = 1 , c1 = 0 , and c2 = 0 . (B.9)

After restricting the free parameters to those satisfying (B.8) and (B.9), every term in the

left-hand side of (B.7) appears also on the right-hand side. However, the latter contains

also other terms, which one has to set to zero with an appropriate choice of the remaining

parameters, if this is actually possible. In particular, the right-hand side still contains,

among others, some contribution proportionate to dπr. These would vanish, if we set

ã2 = −1 and ã4 = 0 . (B.10)

These conditions, together with the previous ones (B.4), (B.6), (B.8), and (B.9), completely

fix the values of the free parameters, so that

ω′ =

∮
S2

d2x
√
γ
[
d
(
2φr +∇m̄φm̄

)
∧ · dAr − dAm̄ ∧ · d

(
A
m̄ × φr

)]
(B.11)

does not depend any more on any free parameter, nor do the Poincaré transforma-

tions (6.15)–(6.18). One can now easily verify by direct computation that LX′(Ω′+ω′) 6= 0,

i.e., the Poincaré transformations are not canonical, as we wanted to show. In particular,

this also shows that the boundary term in (B.1) cannot exist.
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