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Abstract. Hysteresis in the field effect of bilayer graphene is observed at a low
temperature. We attribute this effect to charge traps in the substrate. When the
sweep rate of the back-gate voltage is increased to higher values, the hysteresis
becomes more pronounced. By measuring the hysteresis in the field effect, the
lifetime of the charge traps is estimated as 16.9 min. It is shown that the influence
of charge traps on graphene is strongly affected by a magnetic field. Above 5T
the hysteresis remains constant.

Since the discovery of free-standing atomically thin graphite—the so-called
graphene—such monolayers of carbon have been intensively studied [1]-[3]. This system is
especially interesting because graphene exhibits a field effect, i.e. by applying a gate voltage it
is possible to change the majority charge carriers from holes to electrons [1]. In some samples,
hysteresis effects were observed by measuring the field effect of graphene at room temp-
erature [4]. The observed shift in the charge neutrality point depends on the sweep direction
of the back-gate voltage and is attributed to dipolar adsorbates, e.g. water that act as charge
traps [5]. To suppress such hysteresis under ambient conditions the substrate can be coated
with a thin layer of a hydrophobic substance [6]. Using microsoldered graphene, it was shown
that polymethylmethacrylate (PMMA) has a doping effect on graphene but does not change the
voltage-induced hysteresis [7]. At low temperatures, Yoo et al [8] observed a hysteresis effect
in graphene nanorings, which they attribute to available trap states in the rough edges of the
graphene nanoring structure. Furthermore, hysteresis effects were observed on some systems
similar to graphene, e.g. carbon nanotubes. Lee et al [9] argue that their observed hysteresis in
carbon nanotubes at 7 = 56 K is due to silanol groups (SiOH) at the surface of the substrate.
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Figure 1. The field effect of graphene when sweeping the back-gate voltage
(a) forward from —25 to +25V and (b) backwards. The left axes show the
specific resistance p corresponding to the red line; the conductivity o is
demonstrated on the right axes and as the black curve (B =0T). VB%) is the
charge neutrality point in the forward direction and Véé) for the backward
direction. The sweep rate in both cases is 0.15 V s~!. A clear hysteresis is visible.
Inset: optical images of the sample, source (S) and drain (D) contacts are marked;
contacts 1 and 2 are used for measurements.

Here, we show hysteresis effects in the field effect of graphene at a low temperature
(1.5K), which we attribute not to the edges of the sample but to charge traps in the substrate.
Additionally, the influence of the sweep rate and an applied magnetic field is discussed.

The graphene samples shown here have been prepared by micromechanical cleavage [10]
on a variety of silicon substrates with an insulating silicon dioxide layer on top; hence, a
back-gate voltage can be applied. Standard e-beam lithography and plasma etching are used
to structure the graphene flakes into Hall bars.

The inset of figure 1(a) shows an optical image of the investigated sample. The setup
allows us to perform four-point measurements. A direct current /sp = 500 nA is driven through
the contacts marked source (S) and drain (D). The longitudinal voltage is measured between
the contacts labeled 1 and 2. The etched sample is 1 um wide and the length between the
two according contacts is 3.6 um. During the measurements the device is placed in a helium
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Figure 2. The field effect of a single-crystal bilayer sample on substrate B does
not show any hysteresis; that is the black and red curves (back and forth sweep
of the back-gate voltage as indicated by the arrows) show no shift.

bathcryostat, so that the temperature is controllable down to 1.5 K. At the same time, a magnetic
field B can be applied perpendicular to the sample surface.

In figure 1, the measured field effect at B=0T and 7 = 1.5 K is shown. In figure 1(a),
the back-gate voltage is swept forward from —25 to +25V, whereas it is swept backward in
figure 1(b); in both cases the sweep rate is 0.15 V s~!. The left axes show the resistivity p in
units of /1/4e?, with h being Planck’s constant and e the elementary charge. The right axes show
the conductivity o. The dashed lines are a guide to the eye to stress the partially linear behavior
of the conductivity. In figure 1(a), the charge neutrality point for the forward sweep Vég is
reached at 0.8 V. The conductivity shows a linear behavior in the region from —25 to +9 V. For
higher positive back-gate voltages the conductivity shows a kink and stays below the dotted
line in figure 1(a). In figure 1(b), a linear behavior is observed in the region from +25 to —4 V.
The neutrality point for the backward sweep Vg is found at 16 V. The splitting (Via—Vyq) is
reproducible as verified for several cycles.

A linear behavior in the conductivity is expected for undoped graphene. It is theoretically
understood that molecular adsorbates cause an asymmetry in the field effect of graphene and a
nonlinear behavior as observed here in our experiments [11].

To reduce the number of adsorbates, we annealed the sample. Before and after this
annealing process the hysteresis was observed in a similar way although the charge neutrality
point is shifted by 27V, i.e. a reduction of the number of adsorbates does not change the
hysteresis?.

To further clarify the origin of the observed hysteresis effect, different samples were
produced. Whereas a clear hysteresis was observed in samples produced on substrate A with
265 nm SiO, on top, no hysteresis was found in samples on substrate B with 330 nm SiO,.
Figure 2 depicts the field effect of a bilayer sample on substrate B at 7 = 1.2 K. For both the
shown sweep directions of the back-gate voltage, the charge neutrality points are found at a
finite voltage Vg = 17V, due to residual adsorbates on the sample. There is another piece of
evidence that adsorbates do not cause this hysteresis.

These two substrates were provided by different manufacturers. The supplier revealed
that charge traps are present in substrate A. The concentration of mobile charges in the oxide

2 The sample discussed here was annealed for 1.4 h at 150 °C in an atmosphere of 80% N, and 20% H,. The charge
neutrality point in the field effect is moved from 40 to 13 V back-gate voltage, indicating residual adsorbates on the
sample. Additional samples were annealed within a helium atmosphere; as they were manufactured on the substrate
A used here they show the hysteresis effect as well.
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Figure 3. (a) Position of the peak in the field effect (at B =0T) versus the
sweep rate of the back-gate voltage (VB(IG) is the back-gate voltage of the
charge neutrality point when the gate is swept from —25 to 25V and VB(QG) is
for the backward direction). The lines are exponential fits to the data points.
(b) Logarithm of the splitting (VBEZG)—VEfg ) versus the time that is needed to sweep

the back-gate voltage from the first peak V¢ to return to the second peak Vig.

layer is 9.04 x 10'* cm~2 and the concentration of interface trapped charges is given as 2.5 x
10" eV~'ecm~? at room temperature. The concentration of traps in substrate B was measured in
the same way as in substrate A. However, it was found to be below the detection limit. Hence,
in contrast to Yoo et al [8], where the authors argue that rough edges of the graphene nanoring
structure create available trapped states, we find that the cause of the hysteresis described here
is charge traps within the substrate. Furthermore, additional measurements with samples being
covered by PMMA showed the same hysteresis, indicating that PMMA does not cause the
hysteresis effect [7] and changing the surface properties of the sample does not influence the
hysteresis.

To investigate the charging mechanism of the traps with regard to a changing electric field
in more detail, the sweep rate of the back-gate voltage is varied from 6.6 to 160mV s~!. These
measurements are carried out at B=0T and 7 = 1.5 K. In figure 3(a), the voltage, when the
charge neutrality point is reached, is plotted against the sweep rate. At a low sweep rate of
6.6mV s~! the charge neutrality points for the two sweep directions are almost the same, i.e.
the splitting between them is almost 0 V. The charge neutrality point for both sweep directions is
found at Vg = 13 V (see figure 3(a)). With rising sweep rates the charge neutrality point for the
forward direction VB%) moves to lower back-gate voltages, as depicted by the lower red curve in
figure 3(a), whereas the charge neutrality point for the backward direction VB%) moves to higher
back-gate voltages for higher rates, as shown by the upper black curve in figure 3(a). In contrast
to measurements under ambient conditions, which are explained by adsorbed water molecules
acting as charge traps [4], we find the smaller that the splitting between the charge neutrality
points in the field effect, the lower the sweep rate of the back-gate voltage.

To analyze the specific time dependence of the hysteresis, in figure 3(b), the splitting
between the charge neutrality points for the two sweep directions is plotted against the time
it takes to sweep the back-gate voltage from the charge neutrality point in the forward direction
VB(_Q to Vpg = 25 V and back to the charge neutrality point for the backward direction VézG) (gray-
colored areas in figure 1). It is clearly seen that if a rather short time is needed to return to the
charge neutrality point, a large splitting is observed. The more slowly the back-gate voltage
returns to the charge neutrality point, the smaller the splitting between the two charge neutrality
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Figure 4. Color plot of the field effect as a function of the magnetic field B;
(a) the back-gate voltage is swept from —25 up to +25V; (b) the back-gate
voltage is swept backwards from +25 to —25V, (c) the position of the charge
neutrality point versus the magnetic field in both sweep directions of the back-
gate voltage; (d) columnwise shifted color plot of (b); and (e) cross-section
through (d) at fixed back-gate voltage (Vg = 10 V). The gray sections underline
the rising slopes in the Subnikov—de Haas oscillations. The charge carrier
concentration is n = 7.5 x 10" m~2,

points. When it takes about 3300 s (55 min), almost no splitting in the charge neutrality points
is measured. When ¢ = 182 s is needed to sweep the back-gate voltage from the neutrality point
Vo to Vie with a rate of 160mV s, the splitting is 16 V. As this observed behavior indicates
a charge relaxation of the traps, the data points shown in figure 3(b) are fitted by the following
expression:

(Vaa — Va) (1) = A -exp(—C - 1). (1)

A=19.47V and C=0.984x103Hz=1/t~1/16.9min"" are found to be the fitting
parameters. The fit in figure 3(b) shows that the characteristic time of the charge traps is
7 = 16.9 min for this system at the temperature 7" = 1.5 K. The lifetime of the charge traps at a
low temperature was found to be in the same range (of several minutes) for different graphene
samples on the same substrate A. By increasing the temperature to 20 K the splitting vanishes:
hence, the hysteresis effect described here is not found at room temperature in contrast to the
hysteresis discussed in [4, 5, 7].

So far, all the shown experiments were performed without a magnetic field applied (B =
0T). To study the influence of a magnetic field on the hysteresis a magnetic field is applied
perpendicular to the sample surface. The magnetic field is varied in steps of AB =50 mT.
At each field the back-gate voltage is swept and the field effect is measured. The result is
shown in figures 4(a) and (b) for each sweep direction of the back-gate voltage. In figure 4(a),
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the resistance of the sample is shown as a function of the magnetic field when sweeping the
back-gate voltage forward with a sweep rate of 0.15V s~!. It is clearly visible that additional
maxima appear with rising magnetic field B. These maxima corresponding to Landau levels are
expected to show a linear behavior with rising magnetic field. As can be seen in figure 4(a),
those maxima show a nonlinear dependence on the magnetic field. By comparing figures 4(a)
and (b), differences were obvious. The charge neutrality point for B =0T is shifted to higher
back-gate voltage with respect to the other sweep direction of the back-gate voltage (as already
noted in figure 1). As in figure 4(a) the maxima in figure 4(b) are bent, although in a different
direction. To investigate this behavior in more detail, the position of the charge neutrality point
versus the magnetic field is depicted in figure 4(c) for each sweep direction. It is clearly visible
that by increasing the magnetic field the splitting between the charge neutrality points shrinks.
Whereas the splitting stays more or less constant up to 0.3 T, it is drastically reduced between
0.3 and 5T and remains more or less constant with a splitting of about 2 V for higher fields.

The two curves in figure 4(c) are used to shift and recalibrate each back-gate voltage sweep
in figures 4(a) and (b) in such a way that each field effect (at different magnetic fields) shows its
maximum at Vgg = 0 V. The result is shown in figure 4(d) for the backwards sweep direction.
The expected Landau fan with the linear behavior of the peaks can be seen. In figure 4(e), the
typical Shubnikov—de Haas oscillations at fixed back-gate voltage (Vg = 10 V) are shown. The
resistance is plotted against nh/eB, with a carrier concentration n = 7.5 x 10> m~2. We find
minima in the oscillations at v,,;, = 4i, with v = nh/e B being the filling factor and i an integer.
This and the optical contrast indicate that the sample used here is a single-crystal bilayer [12].
For graphene the charge carrier concentration is manipulated by the back-gate voltage. Thus, the
magnetic field dependence of the hysteresis does not depend on the charge carrier concentration
as is observed for the whole back-gate voltage range. Therefore, the magnetic field dependence
observed here shows the interaction of the charge traps and the external magnetic field. With
rising magnetic field the influence of the charges traps on the field effect of graphene decreases.
Clearly, at about B = 5T a transition to a much weaker influence occurs. Hence, the ability to
trap and detrap charges is dramatically changed by the magnetic field. An adequate model is
still needed for describing this magnetic field dependence of the charge traps.

We show here that graphene is used to detect and to distinguish charging effects in its
vicinity. A common difficulty in measuring the dielectric properties of molecular solids at low
temperature is that frequently they contract faster than the electrodes, and if the electrodes
cannot follow the contraction, the sample cracks [13]. Graphene helps us to avoid this difficulty,
and by just measuring the field effect, the characteristics of charging effects close to graphene
can be measured and the dielectric properties of the material can be accessed.

In conclusion, we have used graphene to probe, at low temperature, charge traps in the
underlying substrate. It was demonstrated that the splitting in the field effect strongly depends
on the sweep rate. A bilayer graphene was used here to determine the lifetime of the charge
traps to be 16.9 min. The measurements carried out here have shown clearly that the hysteresis
effect in the graphene devices depends strongly on the magnetic field. By rising the magnetic
field the hysteresis was strongly suppressed. Above 5 T the hysteresis remained constant.
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