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Abstract

Recent theoretical and experimental breakthrough results have revealed the impor-
tance of beyond-mean-field contributions in weakly-interacting systems when the
mean-field energy is quasi-canceled due to the presence of competing interactions.
This is in particular the case in Bose mixtures and in dipolar condensates. In
this Thesis we have considered both cases, focusing on particular scenarios where
quantum fluctuations result in a qualitatively new physics.

In the first part of the Thesis, we focus on binary mixtures. We consider in particu-
lar the case of a peculiar mixture in which one of the components present enhanced
role of quantum fluctuations, whereas the second one is immiscible with the first.
We show that this may be achieved in experiments using a three-component set
up, in which two of the components are miscible and in the regime of mean-field
quasi-cancellation, forming an effective scalar component, whereas a the third one
is immiscible with the other two. We focus on how a quantum bubble formed
by the effective scalar component, behaves in a bath formed by the third compo-
nent. We show that the properties of the quantum bubble are very significantly
affected by the modification introduced by quantum fluctuation in the equilibrium
of pressures between bubble and bath. As a result, quantum fluctuations may
significantly change the dependence of the bubble volume on the bath density.
Furthermore, we show that quantum fluctuations modify the buoyancy criterion.
Interestingly, once buoyancy sets in, it may be arrested by the effect of quan-
tum fluctuations at an intermediate position between the center and the surface
of the bath, in stark contrast with standard buoyancy in mean-field immiscible
mixtures.

The second part of the Thesis is devoted to dipolar condensates, in which quan-
tum fluctuations may play as well a surprisingly important role in the weakly-
interacting regime. We focus in particular on the physics of dipolar condensates
in quasi-one-dimensional geometries. By means of the so-called Hugenholz-Pines
approach we analyze how the Lee-Huang-Yang correction resulting from quantum
fluctuations experiences for growing density, a crossover from a one-dimensional
dependence into a three-dimensional one. Such a crossover results from the role
played by the transversal modes in the determination of the quantum correc-
tion, even if the condensate itself remains one-dimensional. We show that at low
densities, quantum corrections differ very significantly from those in quasi-one-
dimensional Bose-Bose mixtures due to the peculiar momentum dependence of the
dipole-dipole interaction. As a result, quasi-one-dimensional dipolar condensates
with a residual attractive mean-field term, may be stabilized against the forma-
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tion of a bright soliton, forming rather a flat-top quantum droplet. Therefore, our
results show that quantum fluctuations change radically the density profile and
properties of a quasi-one-dimensional dipolar condensates.

Keywords:
Ultra-cold particles, Bose-Bose mixture, dipolar Bose-Einstein condensate, Lee-
Huang-Yang correction, arrested collapse, Hugenholtz-Pines formalism, anomalous
buoyancy, quantum fluctations, LHY dimensional cross-over
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Chapter 1

From Ultra-cold gases to
Bose-Einstein condensates

In 1924 a rejected paper draft by S. N. Bose about a clean derivation of Planck’s dis-
tribution based on a fully-quantum statistical approach, raised A. Einstein’s inter-
est. Einstein translated Bose’s work into German to get it published in “Zeitschrift
für Physik” with the closing note that he was going to extend Bose’s method to
ideal gases of massive particles instead of photons.[Bos24] This announcement
was followed shortly by a paper by him, which pointed out the incorrectness of a
classical theory for a system of small temperature and volume, indicating a phase
transition.[Ein25] In consequence, individually indistinguishable particles must col-
lectively occupy the lowest energy state, now known as Bose-Einstein condensate
(BEC).

Large-enough densities and sufficiently low temperatures are necessary to enter the
quantum-degenerate regime. In experiments with cold helium, which were avail-
able at that time, for achievable temperatures one needs relatively large densities,
which also imply strong interparticle interactions that make theoretical predictions
difficult. Interactions result in a relatively small condensed fraction of typically
10 %[CW02], leaving the rest in excited states. Another disadvantage of large den-
sities is posed by large three-body losses, which limit the lifetime of the system.

These problems may be avoided by working with much more dilute systems, such
that the system remains in the weakly-interacting regime. However, this decreases
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Chapter 1 From Ultra-cold gases to Bose-Einstein condensates

Figure 1.1: Three images of the momentum distributions of a gas of trapped rubid-
ium atoms at different temperatures. The left one shows the state at
the critical value for Bose-Einstein condensation. Hence only a thermal
Gaussian distribution is visible. Further evaporation reduces the tem-
perature and shows the emergence of a condensate peak in the center
plot. The right plot comes from a sample of a nearly pure condensate.
Picture reprinted from [Cor96].

the required temperature for quantum-degeneracy, which for typical ultra-cold
atom experiments goes down to the 100 nK to 1 µK regime for typical densities of
the order of 10−19 m−3 to 10−21 m−3. Such a low temperature cannot be reached
with standard cryogenic techniques, and demands sophisticated cooling techniques
like laser cooling and evaporative cooling.

The first BEC with a significant condensed fraction in the weakly-interacting
regime were created in 1995 in the groups of E. Cornell and C. Wieman with
rubidium[And+95], as well as with sodium in W. Ketterle’s group[Dav+95]. In
Figure 1.1, one can see the iconic momentum distributions of the rubidum exper-
iment for different temperatures, and the emergence of the condensate. In 2001
both groups were rewarded with the Nobel prize in physics[01].

In this Chapter, we discuss the basics of Bose-Einstein condensation. In Sec. 1.1,
we provide a general discussion on ultra-cold ideal Bose gases. Section 1.2 focuses
on the phenomenon of Bose-Einstein condensation itself. Interactions are intro-
duced in Sec. 1.3. The chapter closes with the discussion of beyond-mean-field
corrections in Sec. 1.4 and of the validity of the local-density approximation in
Sec. 1.5.

4



1.1 Ultra-cold ideal gases

1.1 Ultra-cold ideal gases

Cooling a system to a low-enough temperature brings it into the quantum-degen-
erate regime, where its properties are governed by quantum statistics. The half-
integer spin Fermions follow Fermi-Dirac statistics, and Pauli’s exclusion principle
forbid them to occupy an state more than once. On the other hand there are the
(full) integer spin Bosons, characterized by a many-body wave-function symmetric
under exchange of any two particles. Bosons follow Bose-Einstein statistics, and
in principle an arbitrary number of them may occupy a given state. For the rest
of this Thesis we will restrict ourselves solely to the case of bosons.

To describe these systems one can use the grand canonical ensemble, characterized
by the temperature T and the chemical potential µ. We consider first the case of
an ideal gas—interparticle interactions are discussed later on in this chapter. The
total Hamiltonian Ĥ is the sum over the individual one-body hamiltonians ĥi, i.e.
Ĥ = ∑

i = ĥi. Then we can get an explicit expression for the grand canonical
partition function

Z(µ, T, V ) =
∏
k

(
1 − eβ(µ−εk)

)−1
(1.1.1)

where 1/β = kBT , kB is the Boltzmann constant, and εk is the energy of the state
k. From thermodynamic principles we can infer the total number of particles by
taking the negative partial derivative with respect to the chemical potential of the
grand canonical potential Ω = −1

β
lnZ leading to

N = −∂Ω
∂µ

=
∑

k

1
eβ(εk−µ) − 1 =

∑
k

⟨Nk⟩ (1.1.2)

where ⟨Nk⟩ is the mean occupation of the k-th energy level. It is important to note
that the mean occupation ⟨Nk⟩ diverges for β(εk −µ) → 0. From this it should be
clear that the chemical potential cannot take any value and must remain smaller
than the minimal energy in the set {εk}, i.e. µ < min({εk}). This prevents us
from getting undefined or negative mean occupation numbers.

1.2 Ideal Bose-Einstein condensates

Let us consider an ideal Bose gas without any external trapping in a cubic box
of volume V . In this case the single-particle Hamiltonians ĥi have the simple
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Chapter 1 From Ultra-cold gases to Bose-Einstein condensates

form ĥi = p̂2
i

2m
. Its eigenenergies are those of a free particle εk = ℏ2k2

2m
. The lowest

energy is zero, and hence the chemical potential must always be negative, µ < 0.
When the chemical potential tends to zero, i.e. µ → 0 = ε0, the term for k = 0
diverges in (1.1.2). Therefore, one should split this case from the rest. Let us
call N0 the condensed component, given by the number of particles in the lowest
single-particle state of energy ε0. We will denote as thermal component the sum
of all other particles, N ′ = ∑

k>0 ⟨Nk⟩. We can then rewrite the total number of
particles as

N = N0 +N ′. (1.2.3)

Moving into the thermodynamic limit where N, V → ∞ but keeping the density
n = N/V constant, we can replace the sum by an integral, i.e.

N ′

V
→ 1

(2π)3

∫
k>0

d3k
1

eβ(εk−µ) − 1 , (1.2.4)

which can be integrated for µ = 0, leading to the expression[Ued10]

n = n0 +
ζ
(

3
2

)
λ3

T

(1.2.5)

where λT =
√

2πℏ2

mkBT
is the thermal de Broglie wavelength and ζ(3/2) ≈ 2.612 is the

Riemann zeta function evaluated at 3/2 [Ued10]. From Eq. (1.2.5) we can see that
as soon as the phase space density nλ3

T is larger than ζ(3/2) any additional particle
must be in the lowest state of k = 0. This is the Bose-Einstein Condensate.

Quantum degeneracy, given by the condition nλ3
T > ζ(3/2), may be interpreted as

the regime in which the wave-functions of individual particles, which are delocal-
ized in a length scale given by λT , overlap significantly, resulting in a dominant role
of quantum statistics. From the critical phase space density, i.e. nλ3

T = ζ(3/2),
we can define the critical temperature T0 for condensation as the temperature for
which the macroscopical population of the ground state sets in:

kBT0 = 2πℏ2

m

(
n

ζ(3/2)

)2/3

. (1.2.6)

Note that a very low density, as that of typical experiments, result in a very low
critical temperature for condensation.
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1.3 Weakly-interacting Bose gases

1.3 Weakly-interacting Bose gases

Up to now we have assumed an ideal gas, and indeed the BEC transition is in
principle a purely quantum-statistical effect. However, inter-particle interactions
do play a crucial role in the properties of ultra-cold gases, despite their extreme
diluteness. In this section, we first briefly review some ideas of scattering theory,
and then discuss the mean-field treatment of interacting BECs.

1.3.1 Scattering theory

We consider dilute gases, with a mean interatomic distance much larger than the
typical range of the interatomic potential r0, i.e. n−1/3 ≪ |r0|. Therefore we can
restrict our model to interactions involving only two particles simultaneously.

Let us consider two particles, labeled as 1 and 2. They are located at r1, r2 and
have masses m1, m2. The particles interact via a central potential V (r), with
r = r1 − r2. The two-particle Hamiltonian can then be written in the form:

Ĥ = ĤR + Ĥr = − ℏ2∇2
R

2(m1 +m2)
− ℏ2∇2

2m12
+ V (r) (1.3.7)

where R = m1r1+m2r2
m1+m2

is the center of mass position, ∇2
R is the Laplacian operator

with respect to R, ∇2 is the Laplacian with respect to r, and m12 is the reduced
mass. Hence the Hamiltonian splits into the center-of-mass movement, which will
not be of interest in the following discussion, and the relative motion.

For a sufficiently dilute gas the mean interatomic distance is much larger than the
radius of the interparticle potential r0, i.e. n1/3 ≪ r0 where V (r > r0) ∼= 0. The
asymptotic form for |r| → ∞ of the wave-function ψk(r) can be written in the
form [Ing+99]

ψk(r)|r→∞ = eir·k + fk(θ)e
irk

r
. (1.3.8)

Equation (1.3.8) describes an incoming wave and a scattered spherical wave with
the angle θ = arccos(r · k) dependent factor fk(θ), the scattering amplitude. This
factor includes all information of the scattered potential.

The general solution is found by expressing the wave-function in the basis of eigen-
functions of the angular momentum operators L̂2 and L̂z, splitting the wave func-
tion into an angular-dependent part and a radial one. For a given value of k the
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Chapter 1 From Ultra-cold gases to Bose-Einstein condensates

radial part then needs to be solved for all possible values of l. Since we are dealing
with spin-less bosons, odd angular momentum numbers l do not contribute to the
scattering due to symmetry.

The time-independent Schrödinger equation described by the Hamiltonian in (1.3.7)
can be solved in the relevant asymptotic case. In the low-energy limit, kr0 ≪ 1,
only the l = 0 component is relevant, and the scattering amplitude simplifies to

fk→0 = −a12 (1.3.9)

where a12 is called the scattering length between the particles 1 and 2. A more
detailed derivation can be found in various textbooks [Nol15; Ing+99].

As it is clear from Eq. (1.3.9), the low-energy scattering is characterized by a12.
As a result, we may replace the actual potential V (r) by a pseudopotential that
leads to the same scattering length:

V (r − r′) = g12δ
(3)(r − r′) (1.3.10)

where g12 = 2πℏ2a12
m12

is the coupling constant, and δ(3)(r) is the three-dimensional
delta function. In the following, we restrict ourselves to systems consisting of only
one kind of particles and hence drop the subindices. Later in Chapter 2 and 4, we
will consider systems built by two and three different species, respectively.

Feshbach resonances

Interestingly, the value of the scattering length can be controlled to a large extent
basically at will. Because of its great importance, we outline in the following
the concept of Feshbach resonances. It was first independently formulated by H.
Feshbach in 1958 in the context of nuclear physics [Fes58] and U. Fano in 1961 in
the context of atomic physics [Fan61]. This section gives a short overview. More
detailed discussions on this topic can be found in [Tim+99; BDZ08; Chi+10].

The molecular potential curve Vbg(r), as shown in black in the left panel of Fig. 1.2,
represents the energetically open channel or entrance channel. Let us consider a
collision process of small energy E. For large distances r it asymptotically connects
to two free atoms. A second molecular potential curve Vc(r) will be denoted
as the closed channel. The Feshbach resonance occurs when one of the bound
diatomic states of the closed channel couple resonantly to the open channel. The
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1.3 Weakly-interacting Bose gases
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Figure 1.2: (Left) Two-channel model for a Feshbach resonance. Two particles
collide with small energy E which can couple to an energy level in
the closed channel. (Right) Such a coupling, which may be controlled
with an external magnetic field, results in a modified scattering length,
which presents a typical divergent curve at the resonance. Reprinted
from [Chi+10].

two scattered particles are then temporarily in a quasi-bound state. An external-
applied magnetic field can tune the energy difference between the channels, and
hence influence the coupling.

The scattering length at a magnetically tuned Feshbach resonance can be well
described by the expression

a(B) = abg

(
1 − ∆B

B −B0

)
(1.3.11)

where B0 is the magnetic field of position of the resonance, abg is the background
scattering length incorporating the direct scattering effects without the bound state
and ∆B is the resonance width. The right panel of Fig. 1.2 shows the behavior of
a(B). Note that Feshbach resonances allow for controlling not only the absolute
value of the scattering length, but also its sign. As a result, with the use of these
resonances and irrespective of its natural value, experiments can create repulsive
(a > 0) and attractive (a < 0) interactions, and all the way from ideal gases
(a = 0) to unitary gases (a = ±∞).
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Chapter 1 From Ultra-cold gases to Bose-Einstein condensates

1.3.2 Mean-field description

A system of N identical spin-less bosons in an external potential Vext with inter-
particle interactions given by the interaction potential Vint is described by the
Hamiltonian

Ĥ =
∫

d3r Ψ̂†
(

−ℏ2

2m ∇2 + Vext(r)
)

Ψ̂

+ 1
2

∫
d3r d3r′ Ψ̂†(r)Ψ̂†(r′)Vint(r − r′)Ψ̂(r′)Ψ̂(r), (1.3.12)

where Ψ̂†(r) is the creation field operator, and Ψ̂ is its adjoint annihilation field
operator, which satisfy the usual bosonic commutation relations

[
Ψ̂†(r), Ψ̂†(r′)

]
=[

Ψ̂(r), Ψ̂(r′)
]

= 0 and
[
Ψ̂(r), Ψ̂†(r′)

]
= δ(3)(r − r′). The first line in Eq. (1.3.12)

represents the kinetic and external trapping contribution, whereas the second one is
given by the two-body interactions. Because of the previously demanded diluteness
na3 ≪ 1, we neglect all terms involving more than two particles.

The Hamiltonian in Eq. (1.3.12) describes the many-body system, but it is very
difficult to obtain both analytical and numerical results from it once the number
of particles N grows beyond a small number. By using the mean-field descrip-
tion one can simplify the analysis, which typically achieves excellent agreement
with BEC experiments in the weakly-interacting regime (although not under all
circumstances as we will discuss at several points in this Thesis).

N. N. Bogoliubov tackled this problem in 1946 [Bog47]. He considered a system
where the number of particles in the condensate N0 is large and of the same order
as the total number of particles, i.e. N0 ∼ N ≫ 1. Bogoliubov’s idea was to replace
the creation and annihilation operators related to k = 0 with the real numbers√
N0, i.e.

â0 , â
†
0

∼=
√
N0. (1.3.13)

This is known as the Bogoliubov approximation.

Further, he proposed to separate the condensate part from the bosonic field oper-
ator by rewriting it in the form:

Ψ̂†(r) = Ψ(r) + δ̂ψ
†(r), Ψ̂(r) = Ψ(r) + δ̂ψ(r), (1.3.14)

where Ψ(r) = ⟨Ψ̂⟩ is the mean-field, and the non-condensed part (which at zero
temperature describes quantum fluctuations) is characterized by the operators δ̂ψ†
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1.3 Weakly-interacting Bose gases

and δ̂ψ. These operators can be neglected at zeroth order, and their effect may be
considered in perturbation theory. Ψ(r) = ψ0(r)

√
N0 acts as the condensate wave

function.

Gross-Pitaevskii equation

Let us at this point establish the equation that characterizes the condensate wave
function. We start with the time evolution of the field operator. By using Heisen-
berg equations of motion iℏ∂tΨ̂(r, t) = [Ψ̂(r, t), Ĥ] and the bosonic commutation
rules we get

iℏΨ̂(r, t) =
{

−ℏ2∇2

2m + Vext(r) +
∫

d3r′ Ψ̂†(r′, t)Vint(r − r′)Ψ̂(r, t)
}

Ψ̂(r, t).

(1.3.15)

We can then apply the Bogoliubov approximation, and replace the field operators
with the condensate wave-function Ψ(r, t) =

√
Nψ(r, t), neglecting all the other

terms. When the interaction potential is governed by short-range contact processes
we can use the pseudopotential from Eq. (1.3.10), arriving at the so-called Gross-
Pitaevskii equation (GPE):

iℏ∂ψ(r, t)
∂t

=
(

−ℏ2∇2

2m + Vext(r) + gN |ψ(r, t)|2
)
ψ(r, t). (1.3.16)

This non-linear Schrödinger equation, which describes the dynamics of the con-
densate wave-function, was first derived independently by E. P. Gross and L. P.
Pitaevskii in 1961 [Gro61; Pit61].

From the time-dependent equation, we may derive the time-independent GPE
that will provide the ground-state of the system. Note that from the definition of
mean-field, Ψ(r, t) = ⟨Ψ̂⟩. Let us consider the stationary state.

Since in zeroth order we may write Ψ̂ = ψ0(r)â0, we should interpret the mean-
field as Ψ(r, t) = ⟨(N − 1)(t) |ψ0(r)â0 |N(t)⟩, where |N(t)⟩ = e−iE(N)t/ℏ |N(0)⟩ is
the stationary state for N particles, with energy E(N). Then:

Ψ(r, t) = e−i[E(N)−E(N−1)]t/ℏ ⟨(N − 1)(t = 0) |ψ0(r)â0 |N(0)⟩
= e−iµt/ℏΨ(r, 0), (1.3.17)
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Chapter 1 From Ultra-cold gases to Bose-Einstein condensates

where µ is the chemical potential. Hence for the stationary condensate wave
function, the phase evolves with the chemical potential, rather than with the
energy itself. Plugging ψ(r, t) = e−iµt/ℏψ(r, 0) into Eq. (1.3.18), we obtain the
time-independent GPE:

µψ(r) =
(

−ℏ2∇2

2m + Vext(r) + gN |ψ(r)|2
)
ψ(r), (1.3.18)

which we will employ to determine the ground-state of the condensate.

1.3.3 Thomas-Fermi regime

When the condensate density, n(r) = |Ψ(r)|2, varies slowly in space, we may ne-
glect the kinetic energy, since it depends on the Laplacian ∇2. This is the so-called
Thomas-Fermi regime (TF regime), that occurs when the interactions are suffi-
ciently large, and quantum pressure can be considered negligible in comparison.
The time-independent GPE then reduces to

Vext(r) + gn(r) = µ. (1.3.19)

For a harmonic trap with Vext = 1
2mω

2r2 where ω is the isotropic trapping fre-
quency we get the solution

n(r) = µ

g

(
1 − r2

R2
TF

)
Θ(RTF − |r|), (1.3.20)

where R2
TF = 2µ

mω2 is the so-called Thomas-Fermi radius, and Θ is the Heaviside
step function.

As mentioned above, the TF regime demands sufficiently large interactions. More
precisely, we can introduce the idea of healing length ξ, as the typical length scale
for which quantum pressure would equilibrate the interactions energy:

ℏ2
(

1
ξ

)2

2m = gn ⇝ ξ = ℏ√
2mgn. (1.3.21)

This length is the minimum distance over which the condensate wave-function can
“heal”, meaning that it can adapt to boundary conditions. If RTF ≫ ξ, then
the quantum pressure, which is proportional to 1/R2

TF will be negligibly small
compared to the interaction energy. In turn this means that µ ≫ ℏω. These two
equivalent conditions define the TF regime.

12



1.4 Lee-Huang-Yang correction to the condensate energy

1.4 Lee-Huang-Yang correction to the condensate
energy

As already mentioned, the weakly-interacting regime is typically very well de-
scribed within mean-field theory. Higher-oder terms resulting from quantum fluc-
tuations are negligibly small, and do not change the qualitative physics. As we
will discuss in detail in this Thesis this may change under appropriate conditions.
In this section, we derive the first correction to the ground-state energy of the con-
densate, assuming a three-dimensional system with solely contact interactions.

Let us start with the Hamiltonian of a weakly interacting Boson gas described by
Eq. (1.3.12) with no trapping. By assuming a uniform gas in a volume V , we can
write down the field operator as a summation over k in Fourier space,

Ψ̂(r) =
∑

k

eik·r

(2π)3/2
√
V
âk , (1.4.22)

where âk annihilates and â†
k creates a particle with momentum p = ℏk. These

operators follow the bosonic commutation relations. Substituting (1.4.22) into the
many-body Hamiltonian we obtain

Ĥ =
∑

k

ℏ2k2

2m â†
k âk + 1

2V
∑

k1,k2,q

Ṽint(q)â†
k1+q â

†
k2−q âk2 âk1 , (1.4.23)

where Ṽint(q) is the Fourier-transformed interaction potential. Since only small
momenta contribute we use the approximation Ṽint(q) ≈ Ṽint(0) =: Ṽint.

We apply the Bogoliubov approximation and replace the â†
0 , â0 with

√
N0, yield-

ing

Ĥ = Ĥkin + Ṽint

2V
∑
k ̸=0

(
N2

0 + 4N0â
†
k âk +N0â

†
k â

†
−k +N0âk â−k + O

(
(â†â )2

))
,

(1.4.24)

where Ĥkin = ∑
k

ℏ2|k|2
2m

â†
k âk . Note that due to momentum conservation, terms

with only one particle operator with k ̸= 0 do not contribute to the Hamiltonian.
We should remember from Eq. (1.2.3) how N is composed of and rewrite N0 as
N −∑

k ̸=0 â
†
k âk and hence N2

0 = N2 − 2N ∑
k ̸=0 â

†
k âk + O

(
(â†â )2

)
.

In this section we are interested in the first non-vanishing correction to the mean-
field energy. This means that we can omit higher order terms. But for the term

13



Chapter 1 From Ultra-cold gases to Bose-Einstein condensates

with the lowest order we need to incorporate the second-order Born approxima-
tion for the potential Vint = g

(
1 + g

V

∑
k ̸=0

m
ℏ2|k|2

)
. We end up with the following

Hamiltonian:

Ĥ = Ĥkin + E
(0)
0 + gn

2
∑
k ̸=0

(
mgn

ℏ2k2 + 2â†
k âk + â†

k â
†
−k + âk â−k

)
. (1.4.25)

where E(0)
0 /V = 1

2gn
2 is the ground-state energy in first approximation.

Note that the third term is not diagonal and contains terms like â†
k â

†
−k and

âk â−k . We can diagonalize it by introducing the canonical Bogoliubov transfor-
mation [Bog47]

â†
k = ukβ̂

†
k + v−kβ̂−k , âk = ukβ̂k + v−kβ̂

†
−k , (1.4.26)

where the newly introduced β̂†, β̂ create or annihilate a quasi particle, respectively,
and follow the same Bose commutation relation

[
β̂k , β̂

†
k′

]
= δk,k′ as the real particle

operators â†, â . One can easily check that this implies the condition
|uk|2 − |v−k|2 = 1. (1.4.27)

The problem of finding a diagonalized form of the Hamiltonian is now reduced to
the problem of finding the uk, vk such that the non-diagonal term vanishes while
keeping the condition (1.4.27) fulfilled. Carefully done, this yields [PS04]

Ĥ = E
(0)
0 + E

(1)
0 +

∑
k
ϵ(k)β̂†

k β̂k , (1.4.28)

where ϵ(k) is the Bogoliubov dispersion law for elementary excitations

ϵ(k) =
[
ℏ2k2

2m

(
ℏ2k2

2m + 2gn
)]1/2

. (1.4.29)

For completeness and future reference, the explicit form of the eigenfunctions
is [PS04]

uk, v−k = ±
 ℏ2k2

2m
+ gn

2ϵ(k) ± 1
2

 . (1.4.30)

The first correction E(1)
0 to the condensate energy resulting from quantum fluctu-

ations is hence of the form:
E

(1)
0
V

= ELHY

V
= 1

2V
∑
k ̸=0

(
ϵ(k) − gn− ℏ2k2

2m + m(gn)2

ℏ2k2

)
N,V →∞−−−−−→
n fixed

64
15

√
π
gn5/2a3/2. (1.4.31)

14



1.5 Local-density approximation

This correction was first derived by Lee, Huang and Yang in 1957 and hence it
is called Lee-Huang-Yang correction or just LHY correction [LHY57]. Note that
E

(1)
0 /E

(0)
0 ∝

√
na3, and hence, for dilute weakly-interacting systems, the LHY

correction is typically very small compared to the mean-field energy. As we discuss
later in this Thesis, this may be remarkably different in both binary Bose mixtures
and dipolar gases.

1.5 Local-density approximation

The results from the previous section were derived for a uniform gas and hence are
only valid in this rather unrealistic regime. However, one can expect that “locally”
it can be applied to “slowly” varying inhomogeneous distributions. The question
of the applicability is discussed in the following, based on Ref. [TTH97].

We introduce the spatial-dependent Bogoliubov transformation as a general linear
transformation relating the fluctuation operators δ̂ψ(r), δ̂ψ†(r) from Eq. (1.3.14)
to the new quasi-particle operators ξ̂(r) and ξ̂†(r),

δ̂ψ(r) =
∫

d3r′
[
U(r, r′)ξ̂(r′) − V (r, r′)ξ̂†(r′)

]
,

δ̂ψ
†(r) =

∫
d3r′

[
U(r, r′)ξ̂†(r′) − V (r, r′)ξ̂(r′)

]
.

(1.5.32)

As expected, this transformation is in general non-local. Similarly to Eq. (1.4.27)
we require the new quasiparticle operators to be canonical, so we demand for U
and V the condition∫

d3α [U(r,α)U(α, r′) − V (r,α)V (α, r′)] = δ(3)(r − r′). (1.5.33)

Since we consider systems, which have sufficiently slow spatial variations, it is
helpful to switch to the Wigner representation, which is defined for a function
A(r, r′) as [TTH97; Wig32]

AW (R,k) =
∫

d3r̄ A
(

R + r̄
2 ,R − r̄

2e
ik·̄r
)
. (1.5.34)

Both of the integrals in Eq. (1.5.33), of the form C(r, r′) =
∫

d3αU(r,α)U(α, r′),

15



Chapter 1 From Ultra-cold gases to Bose-Einstein condensates

can be rewritten in terms of a gradient expansion in Wigner representation as

CW (R,p) = UW (R,p)2

− 1
8
∑

j

(
∂2UW

∂R2
j

∂2UW

∂p2
j

+ ∂2UW

∂p2
j

∂2UW

∂R2
j

− 2 ∂2UW

∂Rj∂pj

∂2UW

∂Rj∂pj

)
+ · · · .

(1.5.35)

Hence, we obtain up to first order in the spatial derivatives a similar constrain as
in Eq. (1.4.27)

U2
W (R,p) − V 2

W (R,p) ≈ 1, (1.5.36)

leading to the LHY-correction in local-density approximation

ELHY(r)
V

= 64
15

√
π
gn5/2(r)a3/2. (1.5.37)

This expression is valid when the main contribution of the LHY correction stems
from modes with wavelengths much smaller than the condensate’s size, and hence
the spatial variation of the density is small over one wavelength of these modes.
Hence, it resembles the description of a locally homogeneous system. This con-
dition is always satisfied in the Thomas-Fermi regime [LP11; LP12]. The local-
density approximation will be used in the following chapters when deriving an
effective equation for the study of both binary mixtures and dipolar condensates.
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Part II

Binary Mixtures
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Chapter 2

Binary mixtures

Shortly after the first realizations of single-component condensates, scientists moved
to the next level of complexity by achieving condensates of two components. There
are several ways to achieve a multi-component BEC. It can be built up by differ-
ent atomic elements or isotopes. Another approach was used in the first dual-
component BEC in the group of C. E. Wieman in 1996 [Mya+97], in which 87Rb
atoms were condensed into two different hyperfine states. This chapter introduces
some important concepts of binary mixtures. The question of stability is addressed
in Sec. 2.1 from the mean-field point of view. As in the previous chapter, we ex-
tend our discussion beyond mean-field. The derivation of the corresponding LHY
correction is presented in Sec. 2.2, whereas the so-called quantum stabilization is
discussed in Sec. 2.3. The chapter ends with an overview of the current experi-
mental status in Sec. 2.4.

2.1 Mean-field stability of a binary Bose mixture

In order to properly describe two-body contact interactions in gases with two or
more components, we introduce the coupling constants gii = 4πℏ2aii

mi
and gij =

4πℏ2aij

mij
with i ̸= j where mij is the reduced mass of mi and mj, and aij is the

corresponding scattering length.
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Chapter 2 Binary mixtures

Let us consider a homogeneous binary Bose system with densities n1 and n2. The
free energy density is of the form [Tim98]

F = 1
2g11n

2
1 + 1

2g22n
2
2 + g12n1n2 − µ1n1 − µ2n2. (2.1.1)

To find stable solutions, the free energy density needs to have a minimum. The
derivative of F with respect to the densities needs to be zero, which demands

µ1 = g11n1 + g12n2,

µ2 = g22n2 + g12n1.
(2.1.2)

Since it should be a minimum, both eigenvalues of the corresponding Jacobian
matrix ∂2F

∂ni∂n2
should be positive. This demands that the trace is positive, i.e.

∂2F

∂n2
1

+ ∂2F

∂n2
2

= g11 + g22 > 0 (2.1.3)

and the determinant of the Jacobian matrix is also positive, i.e.(
∂2F

∂n2
1

)(
∂2F

∂n2
2

)
−
(

∂2F

∂n1∂n2

)2

= g11g22 − g2
12 > 0. (2.1.4)

Equations (2.1.3) and (2.1.4) determine the conditions under which the binary
mixture reaches a stable ground state. Note that instability may occur due to two
different reasons, either the mixture becomes unstable against collapse, or against
spatial phase separation.

2.2 Lee-Huang-Yang correction of a binary mixture

Let us consider both g11, g22 > 0. As discussed in the previous section, one ex-
pects a stable homogeneous system if |g12| < √

g11g22. This however just concerns
mean-field stability, since the free energy (2.1.1) was obtained in the mean-field
approximation. As we will discuss in this and the next section, the effects of quan-
tum fluctuations may become surprisingly relevant in the vicinity of the stability
threshold (against collapse) g12 ≈ −√

g11g22. In this section, we discuss in detail
the derivation of the LHY correction.

We consider in the following a homogeneous binary mixture. Let Ψ̂†
1, Ψ̂1 be

the creation/annihilation operators for component 1, and Ψ̂†
2, Ψ̂2 be those for

20



2.2 Lee-Huang-Yang correction of a binary mixture

component 2. They need to follow the usual bosonic commutation relations[
Ψ̂†

i (r), Ψ̂†
j(r′)

]
=
[
Ψ̂i(r), Ψ̂j(r′)

]
= 0 and

[
Ψ̂†

i (r), Ψ̂j(r′)
]

= δijδ
(3)(r − r′). In

second quantization, the Hamiltonian for the binary system acquires the form:

Ĥ =
∫

d3r
{

Ψ̂†
1ĥ1Ψ̂1 + Ψ̂†

2ĥ2Ψ̂2 + 1
2

∑
i,j∈{1,2}

gijΨ̂†
i Ψ̂

†
jΨ̂iΨ̂j

}
(2.2.5)

where ĥi = −ℏ2

2mi
∇2 is the single-particle Hamiltonian for component i.

We may now Fourier-transform both field operators, expressing them in terms of
the corresponding bosonic operators in momentum space, âk,i and â†

k,i. We may
then re-write the Hamiltonian in the form:

Ĥ =
∑
i,k
â†

k,i

ℏ2k2

2mi

âk,i + 1
2V

∑
i,j

gij

∑
k1,k2,q

(
â†

k1+q,iâ
†
k2−q,j âk2,j âk1,i

) . (2.2.6)

We use the Bogoliubov approximation, i.e. â†
0,i, â0,i

∼= N0,i, whereN0,i is the number
of condensed particles of type i. Developing up to second-order, and taking into
account that up to that order

â†
0,iâ

†
0,j â0,j â0,i

∼= N0,iN0,j
∼= NiNj −Nj

∑
k ̸=0

â†
k,iâk,i −Ni

∑
k ̸=0

â†
k,j âk,j, (2.2.7)

we obtain the Hamiltonian

Ĥ =
∑
i,k
â†

k,i

ℏ2k2

2mi

âk,i + 1
2V

∑
i,j

{
gijN

2
ij

+ gij

∑
k1,k2,q

(
Nij â

†
k,iâk,j +Nij â

†
k,j âk,i +Nij â

†
k,iâ

†
−k,j +Nij âk,iâ−k,j

)}
,

(2.2.8)

where Nij =
√
NiNj.

In the following, we want to diagonalize the Hamiltonian, which is clearly not in a
diagonal form because of the off-diagonal terms, like â†

k,iâ
†
−k,j. In 1963 D. Larsen

first applied a transformation in which the two components were unmixed in a new
set of operators. Then, a similar diagonalization as for a single-component may
be applied for the two blocks of the remaining matrix [Lar63].

We use here the Bogoliubov transformation directly:

âk,i = uk,iβ̂k,i + vk,iβ̂
†
−k,i, â†

k,i = uk,iβ̂
†
k,i + vk,iβ̂−k,i. (2.2.9)
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Chapter 2 Binary mixtures

We then introduce the operators

γ̂†
k = β̂†

k,1 + β̂†
k,2 =

∑
i

(
uk,iâ

†
k,i − vk,iâ−k,i

)
, (2.2.10)

demanding the commutation relation

[γ̂k, γ̂
†
k′ ] = δk,k′ , (2.2.11)

which results in ∑
i

(
|uk,i|2 − |vk,i|2

)
= 1. (2.2.12)

For each k and a certain set of uk,i and vk,i, the cross-terms like β̂†
k,iβ̂−k,j vanish

and the Hamiltonian is in its diagonal form, i.e.

Ĥ = E(0) + ELHY +
∑
±

∑
k
ε±(k)γ̂†

k,±γ̂k,±. (2.2.13)

The energies ε±(k) and the LHY correction ELHY can be easily obtained from the
Heisenberg equation of the new quasi-particle operators:

iℏ∂tγ̂k,i = εkγ̂k,i =
∑

i

(
uk,i

[
âk,i, Ĥ

]
− vk,i

[
â†

−k,i, Ĥ
])
. (2.2.14)

Sorting the terms with respect to their operators â†
k,i, âk,i we get the four Bogoliubov-

de Gennes equations
εkuk,i =

∑
j

{(
δij

ℏ2k2

2mi

+ gij
√
ninj

)
uk,i + gij

√
ninjvk,i

}

−εkvk,i =
∑

j

{(
δij

ℏ2k2

2mi

+ gij
√
ninj

)
vk,i + gij

√
ninjuk,i

} (2.2.15)

After a cumbersome, but straightforward, calculation, one may obtain the two
excitation branches [Pet15]

ε±(k) =

√√√√ϵ2
1(k) + ϵ2

2(k)
2 ±

√
(ϵ2

1(k) − ϵ2
2(k))2

4 + g2
12n1n2k4

m1m2
, (2.2.16)

where ϵi(k) =
√

ℏ2k2

2mi

(
ℏ2k2

2mi
+ 2giini

)
is the dispersion relation for a single-component

condensate, obtained in Chapter 1. With the solution of the Bogoliubov coeffi-
cients uk,i and vk,i, and considering the second Born-approximation correction to
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2.2 Lee-Huang-Yang correction of a binary mixture

the coupling constants, we may obtain the LHY correction
ELHY

V
=
∫ d3k

(2π)3
1
2

(
ε+(k) + ε−(k) − ℏ2k2

m12
− g11n1 − g22n2

+
m1g

2
11n

2
1 +m2g

2
22n

2
2 + 2mijg

2
ijn1n2

k2

)
(2.2.17)

= 8
15π2

(
m1

ℏ2

)3/2
(g11n1)5/2f

(
z = m2

m1
, x = g2

12
g11g22

, y = g22n2

g11n1

)
(2.2.18)

where f(z, x, y) > 0 is a dimensionless function.

2.2.1 Analytic expressions for different cases

Although no general analytical expression for f(z, x, y) is known, there are partic-
ularly relevant cases in which one may obtain a closed expression.

Equal scattering lengths The first one was described by D. M. Larsen for the
case where all scattering lengths are equal and positive, i.e. a11 = a12 = a22 > 0,
and where the heavy component has a much lower density than the light compo-
nent, i.e. z > 1 and y ≪ 1. The condition of equal scattering lengths is equivalent
to x = (1+z)2

4z
[Lar63].

f

(
z,

(1 + z)2

4z , y

)∣∣∣∣∣
z<1,y≪1

= 1 + y
15
16
z + 1
z − 1

[
z2

√
z2 − 1

arctan(
√
z2 − 1) − 1

]
.

(2.2.19)
Since the LHY correction does not depend on a12 but rather on a2

12 it can be
extended to negative values of a12 as well.

At mean-field instability Another approach is not to solve the integral from
(2.2.17) directly, but rather try to find an analytic expression that describes the
behavior good enough. This was done by F. Minardi et al. in 2019 [Min+19].
They considered the MF-stability threshold, g2

12 = g11g22, and found an expression
that converges for both extrema y ≪ 1 and y ≫ 1 to the single-component LHY
correction.

f (z, 1, y) ≈
(
1 + z3/5y

)5/2
. (2.2.20)

For a mass imbalance of z = 41/87 ≈ 1
2 the relative error is at most 4%.
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Chapter 2 Binary mixtures

Equal masses Another interesting and very important case where we can get an
analytic expression is when all masses are equal. D. Petrov derived the LHY term
for m := m1 = m2 in 2015 [Pet15]

f(1, x, y) = 1
25/2

∑
±

(
1 + y ±

√
(1 − y)2 + 4xy

)5/2
. (2.2.21)

This case turns out to be particularly relevant for experiments, as discussed be-
low.

2.2.2 Extended Gross-Pitaevskii equations

In the previous section we have discussed the LHY correction for an homogeneous
binary mixture. Following similar arguments as those discussed in Sec. 1.5, we may
use the knowledge of the previous section to study in local-density approximation
the effects of quantum fluctuations for an inhomogeneous condensate, obtaining
the local LHY energy. As in the discussion of Sec. 1.5 this is typically motivated
by the fact that the momenta that contribute at most to the LHY correction
are actually much larger than the inverse of the typical spatial scale of the density
variation of the condensate. We add the local LHY energy to the energy functional,
and then obtain a set of two coupled modified Gross-Pitaevskii equations, which
we call in the following extended Gross-Pitaevskii equations (eGPEs):

µψ1(r)=
(
−ℏ2∇2

2m + Vext(r) + g11N1|ψ1(r)|2 + g12N2|ψ2(r)|2

+ µLHY
1

[
|ψ1,2(r)|2

] )
ψ1(r)

µψ2(r) =
(
−ℏ2∇2

2m + Vext(r) + g22N2|ψ2(r)|2 + g12N1|ψ1(r)|2

+ µLHY
2

[
|ψ1,2(r)|2

] )
ψ2(r),

(2.2.22)

were we note the presence of the LHY local chemical potential µLHY
i [n1,2] =

d
dni

ELHY
V

[n1,2], evaluated in local-density approximation.
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2.3 Quantum stabilization

2.3 Quantum stabilization

Let us come back to the stability discussion from Sec. 2.1. The mean-field insta-
bility condition g2

12 < g11g22 gives us two possible values of g12 for the stability
threshold, corresponding to the above-mentioned instability against collapse and
against phase separation. In the following, we concentrate on the regime around
the negative one, i.e. |g12|2 ≈ g11g22 and g12 < 0, i.e. at the instability against
collapse. An equivalent formulation is that the value δg = g12 + √

g11g22 ≈ 0.
We assume that δg < 0, and hence the system will collapse in mean-field. The
mean-field energy density can be written in the form:

EMF

V
= λ+n

2
+ + λ−n

2
−, (2.3.23)

with

λ+ ≃ g11 + g22

2 , λ− ≃ δg
√
g11g22

g11 + g22
, (2.3.24)

and

n+ =
n1

√
g22 − n2

√
g11√

g11 + g22
,

n− =
n1

√
g11 + n2

√
g22√

g11 + g22
.

(2.3.25)

Note that λ− is small and negative. In contrast λ+ > 0 and potentially much larger.
It is hence energetically favorable for the system to minimize n2

+ and maximize
n2

−. This implies increasing both densities, while keeping a constant polarization
P = n2

n1
=
√

g11
g22

. We may then write the mean-field energy density in the form:

EMF

V
= δg

P

(1 + P )2n
2, (2.3.26)

with n = n1 + n2 the overall density. Note that the mixture hence behaves as a
single-component condensate with a negative coupling constant ∝ δg.

As it is known from single-component condensates, a negative coupling constant
eventually leads to a collapse unless there is a second repulsive term preventing
it. For a small number of particles in a harmonic trap this can be the quantum
pressure, but since it scales linearly with the number of particles and the contact
interaction term scales quadratically, the latter drives the collapse for large N .
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Interestingly, quantum fluctuations may prevent the collapse of the mixture. Recall
that the LHY correction (2.2.18) is repulsive and scales as n5/2, i.e. steeper than
the mean-field n2 scaling.

Note as well that in the vicinity of the mean-field instability threshold, the mean-
field energy, which is proportional to δg, is very small. Crucially, the LHY energy
does not have the same dependence with the coupling constants as the mean-field
term. As a result, whereas for a single-component condensate the ratio between
LHY correction and mean-field energy is always very small, this is not any more
the case in a binary mixture, in which the LHY term may become comparable
to the mean-field energy. Note that, crucially, this relies on the competition of
intra- and inter-component interactions, which quasi-cancel the mean-field term.
We will see later on in this Thesis, that a similar quasi-cancellation occurs as well
in single-component dipolar condensates.

When the mean-field term drives the collapse, the density n grows, but this in-
creases the LHY repulsion more than the mean-field attraction. As a result, there
is an optimal density nopt at which the overall energy (mean-field plus LHY) is
minimal. Note, however, that this density could be large. Large densities fa-
vor three-body losses, and hence reduce the lifetime. This is a relevant point for
experiments, as discussed below.

Interestingly, the interplay between mean-field attraction and LHY repulsion al-
lows for a self-bound cloud, a so-called quantum droplet, which constitutes a pe-
culiar new type of ultra-dilute quantum liquid. Note also that the optimal density
is fixed for a given set of interaction strengths. Once the number of particles in
the system is large enough to reach this optimal density, further particles will be
added at the surface, increasing the droplet size, keeping the density fixed, and a
flat-top density profile, as that shown in Fig. 2.1, forms.

2.4 Experimental realizations

In 2017 the groups of L. Tarruell [Cab+18] at ICFO (Barcelona) and M. Fattori
[Sem+18] at LENS (Florence) independently realized the regime of quantum sta-
bilization in a homonuclear mixture of 39K in the two different hyperfine states
|F = 1,mF = 0⟩ =: |1⟩ and |F = 1,mF = −1⟩ =: |2⟩. Subsequently, it was also
shown in heteronuclear mixtures of 41K and 87Rb [DEr+19; Bur+20] and also in
a mixture of 23Na and 87Rb [Guo+20].
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Figure 2.1: Droplet wave-function for various particle numbers with respect to the
rescaled radial distance r̃ = r/ξ with ξ =

√
3
2

√
g22/m1+√

g22/m2

|δg|2√
g11npeak

1
where

npeak
1 is the peak density of component 1. Note that when a suffi-

ciently large number of particles is surpassed, additional particles do
not increase the density, but are rather added at the condensate wings,
keeping the central density fixed, as determined by the interplay be-
tween the mean-field and LHY energies. As a result a flat-top profile
forms. Reprinted from [Pet15]

Figure 2.2: Scattering lengths a11 (green), a22 (blue) and a12 (red) (left scale) for
the 39K experiments discussed in the text. On the right scale are the
values for the scattering δa. Both are in multiples of the Bohr radius
a0 and are plotted against the applied magnetic field B in Gauss. The
vertical dashed line at Bc = 56.85 G separates the MF-stable regime
δa > 0 (right white area) from the MF-unstable one δa < 0 (left grey
area). Reprinted from [Sem+18].
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Figure 2.3: a) Images of the 39K experiments at different times t for different values
of δa. The top row shows the expansion of a gaseous mixture for a
repulsive δa. In the central row one sees a self-bound mixture droplet.
The bottom row shows the collapse of an attractive single-component
system in the |1⟩ state. b) Time evolution of the number of particles
(top row) and system width (center and bottom row). The blue (red)
points correspond to the droplet (gaseous) case. After around 25 ms
the droplet lost so many particles such that it enters the gaseous state
and spreads in space. Adapted from [Cab+18].

We focus in the following in the above-mentioned homonuclear 39K experiments.
Since both masses are hence equal, we only consider the scattering lengths, rather
than the coupling constants (and instead of δg we consider the corresponding δa).
At a magnetic field Bcrit = 56.85 G, a11 presents a Feshbach resonance, whereas
a12 and a22 are basically constant at around −53 a0 and 33 a0, respectively (see
Fig. 2.2). Note that there is a window around B = 56.7 −56.8 G at which δa < 0
and small.

In the experiments, they first prepared the system in the |2⟩ state in the MF-stable
regime. By applying an RF-pulse, half of the mixture was transferred to the |1⟩
state, following a ramp of the magnetic field to the desired value of δa. Finally, the
traps, which were necessary in the MF-regime for the preparation, were switched
off except for the confinement that compensated gravity.

The cloud was imaged in-situ at different times t after the removal of the radial
trap and scattering lengths, see Fig. 2.3. For experiments in the mean-field stable
regime with δa > 0 (top row) one sees a steady expansion of the width. This is
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Figure 2.4: Liquid-to-gas phase diagram in the experiments. The figure shows
the critical number of particles Nc as a function of the magnetic field
(lower horizontal axis) or δa (upper horizontal axis). The solid line is
the prediction of the extended Gross-Pitaevskii model. Adapted from
[Cab+18].

the expected behavior of an un-trapped gas. In the parameter regime of small
but negative δa (central row) we can see that the system does not expand, as
expected for a self-bound quantum droplet. For comparison, in the case of a
single-component system in |1⟩, the collapse for an attractive scattering length is
depicted in the bottom row.

Figure 2.3 (blue dots) shows the time evolution of the width for the droplet case,
i.e. δa < 0. The width remains constant for approximately 20 ms. However, for
a longer time, the droplet increases its radial width. This is due to a constantly
decreasing particle number as a result of three-body losses, which, as already
mentioned, play an important role at the relatively large densities of the quantum
droplet. With the reduced particle number, the quantum pressure at the droplet
border gains in importance, and eventually drives the expansion. This expansion
characterizes a liquid-to-gas transition at a critical number of particlesNcrit. Figure
2.4 depicts this transition for different values of δa. The solid line is inferred from
solving the eGPEs from Eq. (2.2.2).
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Chapter 3

Hugenholtz-Pines formalism

In the previous chapter, when deriving the LHY correction to the mean-field term,
one faces an ultraviolet divergence which arises from the approximated relation
between the coupling constant g and the s-wave scattering length a in the first
Born approximation g = 4πℏ2a

m
. This was solved by a proper renormalization of

the coupling constant g → g(1 + g/V
∑

k m/(ℏk)2). The sum over momentum
is then easily turned into an integral, which gave us an analytic result in the
thermodynamic limit.

In this Chapter we explore a different approach, free of divergences, based on
the idea of propagators and Green’s functions which are known from quantum
field theory. If not otherwise stated, the following derivation follows closely the
publication by N. M. Hugenholtz and D. Pines from 1959 [HP59], which in turn
makes use of a publication by S. T. Beliaev [Bel58], published one year earlier. This
approach will be used in the case of a mixture of three components in Chapter 4,
and it is crucial in the derivation of the LHY for quasi-one-dimensional dipolar
systems in Chapter 7.

The chapter starts with a short discussion on the problems of the depletion of
a condensate in Sec. 3.1. In Sec. 3.2 the Green’s function is introduced, which
eventually leads to the derivation of a general differential equation describing any
higher order term. For simplicity we restrict ourselves for this derivation to the
single component case. At the end, we briefly discuss the changes that need to
be done for the mixture case. This derivation concludes in Sec. 3.3 with a quick
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validity check by recovering the same expression of Sec. 1.4. The chapter closes in
Sec. 3.4 with a discussion of the usefulness and the actual power of this method.

3.1 Hamiltonian

As in Chapter 1, we consider a system of N interacting bosons in a d-dimensional
box of size V . The Hamiltonian can be written as the sum of the non-interacting
Ĥ0 and the interacting V̂int component, Ĥ = Ĥ0 + V̂int, where V̂int is defined as
in (1.4.23). We move to the thermodynamic limit by introducing a continuous
version of the annihilation and creation operators,

ĉ†
k = 1√

V (2π)d
â†

k , ĉk = 1√
V (2π)d

âk . (3.1.1)

These new operators fulfill the usual bosonic commutation relations

[ĉ†
k , ĉ

†
l ] = [ĉk , ĉl ] = 0, [ĉk , ĉ

†
l ] = δ(d)(k − l). (3.1.2)

The interaction part is then

V̂int = 1
4

1
(2π)d

∫
k1,k2,k3,k4

(
Ṽint(k1 − k3) + Ṽint(k1 − k4)

)
δ(d)(k1 + k2 − k3 − k4)

× ĉ†
k1
ĉ†

k2
ĉk3 ĉk4 . (3.1.3)

Since for our bosonic system the condensed part with k = 0 is special and macro-
scopically populated, we split it from the rest, as it was done in previous chapters.
The Hamiltonian then reads

Ĥ = Ĥ0 + V̂0 +
6∑

i=1
V̂i (3.1.4)

where

V0 = 1
2

1
(2π)d

(â†
0 )2â2

0
V 2 (2π)2dδ(3)(0)Vint(0)

V1 = 1
4

1
(2π)d

∫
k1,k2,k3,k4 ̸=0

(
Ṽint(k1 − k3) + Ṽint(k1 − k4)

)
δ(d)(k1 + k2 − k3 − k4)

× ĉ†
k1
ĉ†

k2
ĉk3 ĉk4
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V2 = 1
2

1
(2π)d/2

â0√
V

∫
k1,k2,k3 ̸=0

(
Ṽint(k1) + Ṽint(k2)

)
δ(d)(k1 + k2 − k3)ĉ†

k1
ĉ†

k2
ĉk3

V3 = 1
2

1
(2π)d/2

â†
0√
V

∫
k2,k3,k4 ̸=0

(
Ṽint(k3) + Ṽint(k4)

)
δ(d)(k2 + k3 − k4)ĉ†

k2
ĉk3 ĉk4

V4 = 1
4
â2

0
V

∫
k1,k2 ̸=0

(
Ṽint(k1) + Ṽint(k2)

)
δ(d)(k1 + k2)ĉ†

k1
ĉ†

k2

V5 = 1
4

(â†
0 )2

V

∫
k3,k4 ̸=0

(
Ṽint(k3) + Ṽint(k4)

)
δ(d)(k3 + k4)ĉk3 ĉk4

V6 = â†
0 â0

V

∫
k2,k3 ̸=0

(
Ṽint(k2) + Ṽint(0)

)
δ(d)(k2 − k3)ĉ†

k2
ĉk3 (3.1.5)

As in previous chapters, we apply the Bogoliubov approximation, and treat the
annihililation and creation operators of zero momentum as a c-number

√
N0. This

modifies the Hamiltonian to one that depends on the density n0 of the condensated
part, i.e. Ĥ → Ĥ(n0) = Ĥ0+V̂int(n0). By removing this special state of k = 0 from
the problem we violate particle number conservation. In particular this means that
the new Hamiltonian does not commute with the particle operator N̂ anymore.
We need to impose the system to conserve on average the number of particles, i.e.
N = N0 + ⟨N̂ ′⟩, where N̂ ′ = ∑

k>0 â
†
k âk .

An alternative to solving the Hamiltonian with the additional imposed relation is
to introduce the Hamiltonian

K̂(n0) = Ĥ(n0) − µN̂ ′ (3.1.6)

=
∫ ddk

(2π)d

ℏ2k2

2m ĉ†
k ĉk +

6∑
i=0

V (n0) − µN̂ ′ (3.1.7)

where µ = d
dn

E0
V

is the chemical potential and acts as an Lagrange multiplier to
minimize the energy of the system.

3.2 Green’s function

Up to now, the derivation is very similar to the one in the previous chapters. But
instead of proceeding with the Bogoliubov transformation we use a way closer to
quantum field theory. We define the one-particle Green’s function, or propagator,
by

G (r − r′, t− t′) = −i
〈
ψ0

∣∣∣ T {
Ψ̂(r, t)Ψ̂†(r′, t′)

} ∣∣∣ψ0
〉

(3.2.8)
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where T {} is the time ordering operator which orders its input operators from right
to left by increased time. |ψ0(n0)⟩ is the eigenstate with the lowest eigenvalue of
the Hamiltonian Ĥ(n0). In the following we set t < t′.

By Fourier transforming the Green’s function G (r, t) = (2π)d
∫

ddk eik·rG (k, t) we
obtain

G (k, t− t′) δ(d)(k − k′) = −i
〈
ψ0

∣∣∣ T {
ĉk (t)ĉ†

k′ (t′)
} ∣∣∣ψ0

〉
. (3.2.9)

Then

ℏ
d
dtG (k, t− t′) δ(d)(k − k′) =

〈
ψ0

∣∣∣ ĉ†
k′ (t′)

[
K̂(t), ĉk (t)

] ∣∣∣ψ0
〉

(3.2.10)

= −i
(
ℏ2k2

2m + ℏω − µ

)
G (k, t− t′) δ(d)(k − k′) +

〈
ψ0

∣∣∣ ĉ†
k′ (t′)

[
V̂int, ĉk (t)

] ∣∣∣ψ0
〉

(3.2.11)

where we used ĉk |ψ0⟩ = 0.

We introduce at this point the temporal Fourier transform of the G (k, t),

G (k, ϵ) =
∫ ∞

−∞
dtG (k, t) eiϵt (3.2.12)

⇔ G (k, t− t′) = 1
2π

∫
C

dϵG (k, ϵ) e−iϵ(t−t′). (3.2.13)

where C is a path in the complex plane going from −∞ in the real axis to +∞
and performing a semicircle in the upper half plane. We can take again the time
derivative like in (3.2.10) and find in the limit of t → t′

d
dtG (k, t− t′) δ(d)(k − k′) = −i

∫
C

dϵ
2πG (k, ϵ) ϵδ(d)(k − k′). (3.2.14)

Combining this with (3.2.10) and (3.2.13) we get
〈
ψ0

∣∣∣ ĉ†
k′ (t′)

[
V̂int, ĉk (t)

] ∣∣∣ψ0
〉

= −i
∫

C

dϵ
2π

[
ϵ−

(
ℏ2k2

2m + ℏω
)

+ µ

]
G (k, ϵ) δ(d)(k − k′).

(3.2.15)

Let us have a closer look to the left-hand side of this equation and use the short-
hand notation ⟨·⟩ for ⟨ψ0 | · |ψ0⟩. Remembering the bosonic commutator relations
one sees that the term counts the number of occurring ĉ†

k . When we integrate over
momentum we can conclude∫

ddk
〈
ĉ†

k′ (t′)
[
V̂int, ĉk (t)

]〉
= 2 ⟨V̂1⟩ + 2 ⟨V̂2⟩ + ⟨V̂3⟩ + 2 ⟨V̂4⟩ + ⟨V̂6⟩ , (3.2.16)
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which, crucially, can be rewritten as follows

= −2
〈
V̂int(n0)

〉
+ n0

〈
d V̂int(n0)

dn0

〉
. (3.2.17)

Since Ĥ0 does not depend on n0, we can easily see that
〈

d V̂int(n0)
dn0

〉
= µ, the

chemical potential. As a result, we can re-write Eq. (3.2.15) in the form:

〈
V̂int(n0)

〉
= 1

2

∫
ddk i

∫
C

dϵ
2π

[
ϵ−

(
ℏ2k2

2m + ℏω
)

+ µ

]
G (k, ϵ) + 1

2n0µ. (3.2.18)

The ground-state expectation value of the non-interacting part Ĥ0 is〈
Ĥ0

V

〉
= 1

(2π)d

∫
ddk

ℏ2k2

2m
〈
ĉ†

k ĉk
〉
. (3.2.19)

Directly from the definition of the Green’s function in Eq. (3.2.9), we can see that
the expectation value on the right side of Eq. (3.2.19) can be expressed in terms
of the one-particle Green’s function with (3.2.13):〈

Ĥ0

V

〉
= i

(2π)d+1

∫
ddk

∫
C

dϵ ℏ
2k2

2m G (k, ϵ) . (3.2.20)

We can now write down an equation for the expectation value of K̂/V , and move all
expressions including a Green’s function to the right-hand side of the equation:

E0

V
− 1

2n0µ = i
(2π)d+1

∫
ddk

∫
C

dϵ
ϵ+ ℏ2k2

2m
+ µ

2 G (k, ϵ) . (3.2.21)

This is a rather complicated differential equation since the energy density appears
not only on the left twice but also on the right in the chemical potential and
the Green’s function. Additionally, the parameter n0 of the condensed density
is a problem and needs to be determined. The later problem we can tackle by
subtracting 1

2n
′µ on both sides of the equation which allows us to write it in terms

of the total density n = n0 + n′. With the Green’s function definitions we can
write down an expression for the density of the depleted states, i.e.

1
2µn

′ = i
(2π)d+1

∫
ddk

∫
C

dϵ 1
2µG (k, ϵ) . (3.2.22)
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Which brings us to the differential equation
E0

V
− 1

2nµ = i
(2π)d+1

∫
ddk

∫
C

dϵ
ϵ+ ℏ2k2

2m

2 G (k, ϵ) . (3.2.23)

But still, the G (k, ϵ) depends on the energy density of the ground state.

For the proceeding steps we need to dive deeper into the theory of quantum fields,
which is beyond the scope of this Thesis. Details of the derivation can be found
in the paper by N. M. Hugenholtz and D. Pines [HP59], and may be supported
by standard literature on the introduction of quantum field theory, e.g. [PS97].
To get an explicit expression for the Green’s function we need to re-express it in
terms of the non-interacting part. This process gives us a series of terms were
in the following we are only interested in the second-order contribution. An im-
portant observation is that in the low-density regime the G (k, ϵ) has poles in the
Bogoliubov spectrum. The Green’s function can be rewritten, using the results of
the Bogoliubov-de Gennes equations, in the form:

G (k, ϵ) =
∑

ν

{
uν

1
ϵ− ϵν + iδuT

ν + vν
1

−ϵ− ϵν + iδvT
ν

}
(3.2.24)

with the Bogoliubov modes ϵν ,uν ,vν . Integrating over the contour, and employing
the residual theorem, this simplifies the differential equation to

E
(1)
0
V

− 1
2nµ

(1) = 1
2

∫ ddk

(2π)d

∑
ν

(
ℏ2k2

2m − ϵν(k)
)

(vν(k))2, (3.2.25)

where “(1)” denotes that we solve the problem up to the lowest order correction.
Equation (3.2.25) will be denoted in the following as the Hugenholtz-Pines equa-
tion.

The same technique can also be applied for a mixture of M different kinds of
bosons. The derivation is very similar but with additional summations over
all different possible inter- and intra-component interactions. The analogue of
Hugenholtz-Pines equation for a mixture acquires the form:

E
(1)
0
V

− 1
2nµ

(1) = 1
2

M∑
i

∫ ddk

(2π)d

∑
ν

(
ℏ2k2

2mi

− ϵν(k)
)

(vν,i(k))2. (3.2.26)

3.3 Recovering the LHY

For a three-dimensional system with contact interactions, we should be able to
recover the expression of Eq. (1.4.31) for the LHY energy correction. For that case,
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we have the explicit expression for the eigenvalue and eigenvectors in Eqs. (1.4.29)
and (1.4.30), respectively. Plugging this into Eq. (3.2.25) and integrating over k
we get the differential equation

E
(1)
0
V

− 1
2nµ

(1) = −2(ng)5/2

15π2 . (3.3.27)

When we take the ansatz E
(1)
0
V

= α(gn)5/2 with α to be determined, the derivative
with respect to n is the chemical potential and µ(1) = 5α

2 g
5/2n3/2. Plugging the

ansatz back into Eq. (3.3.27), we can solve for α, finding α = 8
15π2 . We hence

recover the LHY-correction

E
(1)
0
V

= 64
15

√
π
n5/2a3/2, (3.3.28)

as previously obtained using a different procedure in Sec. 1.4.

3.4 Conclusion

The method discussed in the chapter is powerful for various reasons. On one hand,
as discussed by Hugenholtz and Pines in their paper [HP59], it provides a path for
the study of even higher-order corrections beyond the LHY term. On the other
hand, the method may be easily applied to lower-dimensional systems, without
any problem associated to divergences. Moreover, it can be employed to quasi-low
dimensional systems, in which the other dimensions are e.g. harmonically trapped.
This permits the analysis of beyond-mean-field corrections in the cross-dimensional
regime, which will be exceedingly difficult to describe using the more standard
Bogoliubov analysis. This plays a crucial role in our discussion of Chapter 7.
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Chapter 4

Anomalous buoyancy of quantum
bubbles in immiscible Bose mixtures

In Chapter 2 we discussed the stability of a binary mixture at the stability thresh-
old |g12|2 < g11g22 with g12 < 0. There we had a first example of a system in
which quantum fluctuations play a surprisingly crucial role, despite the weakly-
interacting character of the mixture. In this chapter, in Sec. 4.1 we will see that at
the other side of the stability regime, i.e. for g12 > 0, phase separation between the
two components occurs. Additionally, the concept of buoyancy in a two-component
mixture is presented.

Following the spirit of this Thesis, we look for interesting physics resulting from
quantum fluctuations in weakly-interacting systems. For this, we consider a three-
component mixture, where two of the components are miscible and quasi-cancel
their mean-field energy, whereas the third one is immiscible and acts as a bath for
the other components. Using the formalism of the previous chapter we derive in
Sec. 4.2 the LHY correction for general three-component mixtures. We consider in
Sec. 4.3 the properties of a quantum bubble, formed by the miscible components,
in the bath provided by the third one, showing that quantum fluctuations change
significantly the scaling of the bubble volume with the bath density. Section 4.4
deals with the buoyancy of the quantum bubble, showing that quantum fluctua-
tions may result in the novel phenomenon of arrested buoyancy. In Sec. 4.5 we
discuss a possible feasible experimental scenario for the realization of the quantum
bubble.
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Chapter 4 Anomalous buoyancy of quantum bubbles in immiscible Bose mixtures

The results of this chapter can be found in Ref. [Edl+22].

4.1 Phase separation and buoyancy

The miscibility of a binary Bose mixture depends on the nature of the inter-
and intra-component interactions. Let us consider a homogeneous mixture of
two contact-interacting components, 1 and 2, with coupling constants gij, with
i, j = 1, 2. We can re-arrange the terms from Eq. (2.1.1) to obtain

F (r)= g11

2

[
n1(r) + n2(r)

√
g22

g11

]2

+ (g12 − √
g11g22)n1(r)n2(r) − µ1n1(r) − µ2n2(r).

(4.1.1)

For a system with repulsive intra-component interactions (g11, g22 > 0), one clearly
sees that miscibility is given by the ratio Γ = g12/

√
g11g22, between the inter-

component coupling constant g12 and the intra-component ones g11 and g22. If
Γ > 1 the system enters the immiscible regime characterized by spatial phase
separation [Tim98].

The presence of external confinement significantly affects the miscibiliity and spa-
tial distribution of binary mixtures [HS96; PB98; Tim98; Hal+98; Öhb99]. In
particular, for an immiscible mixture, depending on the relation between the con-
finement harmonic frequencies ω1,2 of the two components, a bubble of component
1 may sink to the center of the trap or float rather to the surface of component
2, in a process that resembles buoyancy in ordinary fluids [Tim98]. Similar to
Archimedes’ principle, buoyancy in a binary Bose mixture is controlled by the
equilibration of the pressures inside and outside the bubble. Buoyancy sets in,
approximately, when [Tim98]

ω1

ω2
=
(
g11

g22

)1/4

. (4.1.2)

4.2 Three-component system

In this Chapter we will be interested in how quantum fluctuations affect the prop-
erties and buoyancy of a quantum bubble, characterized by enhanced quantum
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4.2 Three-component system

fluctuations. As discussed below, a possible experimentally feasible scenario for a
quantum bubble in an immiscible bath is provided by a three-component system.
In this section, we discuss in general the LHY correction in a three-component
Bose system.

As in previous chapters, the interactions are determined by the s-wave scattering
lengths aij, with i, j = 1, 2, 3. Motivated by experimental considerations (see the
end of this chapter), we focus on the case in which the three components have
equal mass m. The interactions are hence characterized by the coupling constants
gii = 4πℏ2aii/m and gij = 2πℏ2aij/m12 for i ̸= j where m12 is the reduced mass.

In analogy to Eq. (2.2.5), we can write down the Hamiltonian for an unconfined
system of Ni particles in the i component

Ĥ =
∫

d3r


3∑
i

Ψ̂†
i ĥiΨ̂i + 1

2
∑

i,j=1,2,3
gijΨ̂†

i Ψ̂
†
jΨ̂iΨ̂j

 (4.2.3)

where ĥi = −ℏ2

2m
∇2 is the one-particle Hamiltonian. Proceeding as in Chapters 1

and 2, we move to Fourier space, and introduce the Bogoliubov transformation
(see Eq. (2.2.10)). We can define f−

k,i = uk,i −vk,i, f+
k,i = uk,i +vk,i and write down

the Bogoliubov-de Gennes equations in analogy to Eq. (2.2.14) as follows
εkf

−
k,i =

∑
j

{(
δijĥ+ 2gij

√
ninj

)
f+

k,i

}
εkf

+
k,i = ĥf−

k,i

(4.2.4)

Combining all equations in (4.2.4), the problem can be expressed in a single equa-
tion

ε2(k)f = ϵ(k) [ϵ(k)1 + 2g11n1U(P2, P3)] f (4.2.5)

where ϵ(k) = ℏ2k2/2m, and

U(P2, P3) = 1
g11

 g11 g12
√
P2 g13

√
P3

g12
√
P2 g22P2 g23

√
P2P3

g13
√
P3 g23

√
P2P3 g33P3

, Pi = ni

n1
, f =

[
f−

k,i

]
.

(4.2.6)

Let Fi(P2, P3) be the eigenvalues of the matrix U , then we can get an explicit
expression for the eigenvalues εi:

εi(k) = ϵ(k) [ϵ(k) + 2g11n1Fi(P2, P3)] . (4.2.7)

41



Chapter 4 Anomalous buoyancy of quantum bubbles in immiscible Bose mixtures

With the known excitation branches and with the help of the formalism by Hugen-
holtz and Pines introduced previously (see Eq. (3.2.26)), we can write down the
Hugenholtz-Pines differential equation that needs to be solved to obtain the LHY
correction:

E
(1)
0
V

− 1
2
∑

i

ni
∂

∂ni

E
(1)
0
V

= −1
2

∫ d3k

(2π)3

∑
i

(εi(k) − ϵ(k))3

4εi(k)ϵ(k) . (4.2.8)

Plugging Eq. (4.2.7) into (4.2.8) we obtain that

ELHY

V
− 1

2
∑

i

ni
∂

∂ni

ELHY

V
= −ℏ2

m
(n1a11)5/2 64

15
√
π
∑

i

F
5/2
i =: χ. (4.2.9)

Taking into account the form of the function χ(n1, P2, P3), we introduce the
ansatz

ELHY

V
= ℏ2

m
(n1a11)5/2G(P2, P3). (4.2.10)

Plugging this into the differential equation (4.2.9), it simplifies to

1
4G(P2, P3) = 64

15
√
π
∑

i

F
5/2
i , (4.2.11)

resulting in the LHY-correction

ELHY

V
= 256

15
√
π
ℏ2

m
(n1a11)5/2∑

i

F
5/2
i . (4.2.12)

Hence the beyond-mean field correction to the chemical potential of component i
reads

µLHY
i = ∂

∂ni

ELHY

V
= 32

3
√
π
g11(n1a11)3/2Qi (4.2.13)

with

Q1 =
∑

i

F
3/2
i

(
Fi − P2

∂

∂P2
Fi − P3

∂

∂P3
Fi

)

Q2 =
∑

i

F
3/2
i

∂

∂P2
F2

Q3 =
∑

i

F
3/2
i

∂

∂P3
F3

(4.2.14)
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4.3 Quantum bubble in a homogeneous bath

3

1-2

n

N
=
N

1
+
N

2

Density

n3

N3

Figure 4.1: Sketch of homogeneous-bubble model. A 1-2 bubble of homogenous
density n is immersed within the majority component of density n3.
The kinetic energy is hence neglected in this model.

The matrix U in Eq. (4.2.6) determines the mean-field stability of the mixture. If
all its eigenvalues are positive, the mixture is fully miscible. For the purposes of
this chapter, we restrict ourselves to the case where component 3 and components
1-2 are immiscible. Hence in the 1-2 region, we may assume P3 = 0, and we recover
the known LHY corrections for the 1-2 mixture [Pet15] obtained previously in Sec.
2.2. We simplify also the notation in the following, using P = P2 = N2/N1.

4.3 Quantum bubble in a homogeneous bath

The coupling constants g11, g22 and g12 are such that components 1 and 2 are misci-
ble and in the regime of mean-field quasi-cancellation [Pet15] discussed previously
in this Thesis. The bath is characterized by the coupling g33. The inter-component
coupling constants g13 and g23 are supposed to be large and repulsive, ensuring
immiscibility between component 3 and the other two components. Components
1 and 2 form an effective scalar component with enhanced quantum fluctuations
that we will call the 1-2 gas.

We consider at this point a spherical homogenous 1-2 bubble of volume V , with
N = N1 +N2 particles of the minority component, placed in an otherwise homoge-
neous bath of component 3, with particle density n3 as sketched in Fig. 4.1. The
bubble density will be denoted as n = N/V . The value of the density is established
by an equilibrium of pressures, as elaborated in the following.
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Chapter 4 Anomalous buoyancy of quantum bubbles in immiscible Bose mixtures

4.3.1 Equilibrium of pressures

The 1-2 contribution to the bubble energy is

E12(V ) = 1
2G(P )N

2

V
+ γ(P )g11a

3/2
11
N5/2

V 3/2 (4.3.15)

where the first and second terms correspond, respectively, to the mean-field and
LHY corrections, and

G(P ) = g11 + g22P
2 + 2g12P

(1 + P )2 , (4.3.16)

γ(P ) = 64
15

√
π

f
(

g2
12

g11g22
, g22

g11
P
)

(1 + P )5/2 (4.3.17)

with f(x, y) from Eq. (2.2.21).

The 1-2 gas, with a fixed polarization P =
√

g11
g22

, acts as a scalar component with
an effective scattering length a(P ), with G(P ) = 4πℏ2a(P )

m
. The enhanced quantum

fluctuations are achieved in the regime of mean-field energy quasi-cancellation,
which corresponds to G(P ) ≈ 0.

Due to the immiscibility between 1-2 and 3, the bubble induces a hollow spherical
cavity of volume V in the bath. The change of the bath energy ∆E3 between the
cavity system C and non-cavity system NC is ∆E3 = EC(N3) − ENC(N3), with
EC(N3) the energy of the cavity system of N3 particles and ENC(N3) the one for
the non-cavity system.

It is to be noted that quantum fluctuations are only relevant for the 1-2 mix-
ture. For the third component the LHY correction is assumed as negligibly small
compared to the mean-field energy. The cavity energy can then be rewritten as

EC(N3) ∼= ENC(N3 + δN3) − E3

V
V, (4.3.18)

where δN3 = n3V and E3
V

= 1
2g33n

2
3 is the mean-field energy density of the third

component. In turn, the non-cavity term for N3+δN3 particles can be decomposed
in the non-cavity term for N3 particles plus the energy needed to add δN3 more
particles, i.e.

ENC(N3 + δN3) ∼= ENC(N3) + µ3δN3, (4.3.19)
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4.3 Quantum bubble in a homogeneous bath

with µ3 = g33n3 the chemical potential of the bath. We may hence write

∆E3(V ) = 1
2g33n

2
3V. (4.3.20)

The energy associated to the bubble is hence E12(V ) + ∆E3(V ). Minimizing it
with respect to V , we obtain the equation for the equilibrium between the inner
pressure P12 = −∂VE12 and the outer bath pressure P3 = −∂V ∆E3:

G(P )n2 + 3γ(P )g11a
3/2
11 n

5/2 = g33n
2
3 (4.3.21)

4.3.2 Bubble volume scaling

Equation (4.3.21) determines, for a given bath density, the bubble density, and
hence its volume. The scaling of the bubble volume with the bath density changes
significantly in the different interaction regimes.

In the mean-field regime we may neglect the effect of quantum fluctuations in the
bubble. The equilibrium of pressures results

nMF =
√

g33

G(P )n3, (4.3.22)

as it is well-known for binary mean-field mixtures [Tim98]. Hence the bubble
volume is inversely proportional to n3.

The situation changes significantly when the 1-2 mean-field interactions quasi-
cancel, i.e. G(P ) = 0. For sufficiently large density, the LHY energy dominates
the bubble energy (we call this regime the LHY bubble regime). The equilibrium
of pressures leads to an anomalous dependence

nG=0 =
(

g33

3γ(P )g11a
3/2
11

)2/5

n
4/5
3 . (4.3.23)

Consequently, the volume of the LHY bubble scales as n−4/5
3 .

In contrast, for G(P ) = 0, if the bubble density is too low, we can neglect the effect
of quantum fluctuations and the bubble energy is dominated by the single-particle
kinetic contribution, associated to the inhomogeneity of the bubble wavefunction
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Chapter 4 Anomalous buoyancy of quantum bubbles in immiscible Bose mixtures

within the bath cavity, which we have neglected up to now. Approximating that
the bubble is in a spherical hard-wall cavity of volume V , the bubble energy is
E12,kin = ℏ2π2

2m

(
4π
3V

)2/3
. As before, we can get the pressure P12 = −∂VE12,kin and

equate it with the pressure P3 i.e.

1
2g33n

2
3 = π2

3

(4π
3

)2/3 ℏ2N

mV 5/3 (4.3.24)

V =
[

2π2

3

(4π
3

)2/3 ℏ2N

mg33

]3/5

n
−6/5
3 . (4.3.25)

Hence for low density bubbles we expect a scaling V ∝ n
−6/5
3 .

Extended Gross-Pitaevskii analysis

Quantum fluctuations hence significantly modify the bubble volume, and its scaling
with the bath density. In order to investigate the bubble properties we employ,
as in previous chapters, local-density approximation arguments to treat the LHY
correction for a spatially inhomogeneous mixture, obtaining a set of three coupled
extended Gross-Pitaevskii equations:

µiΨi(r) =
−ℏ2∇2

2m +
∑

j

gijnj(r) + µLHY
i ({nj})

Ψi(r) (4.3.26)

with ni(r) = |Ψi(r)|2. In our numerics, we consider a cubic hard-wall numerical
box of an edge length RB, with N3 = n3R

3
B particles in the bath. We placed

a bubble at the center of the numerical box, with N = N1 + N2 particles and
P =

√
a11/a22.

Variational analysis

Although the eGPE formalism permits a good characterization of the quantum
bubble, a simpler variational formalism, discussed in the following, is in very good
agreement with the eGPE calculation. It allows for a quick simulation of the
system, and permits additional physical insights.

We consider a spherically symmetric trial wave-function for the 1-2 bubble of the
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4.3 Quantum bubble in a homogeneous bath

form of a higher-order Gaussian:

Ψ1,2(r;σ, s) = A1,2 exp
[
−1

2

(
r

σ

)s]
, (4.3.27)

where the variational parameters σ and s characterize, respectively, the bubble
radius, and the flatness of the bubble profile. The latter interpolates between a
Gaussian (s = 2) and a flat-top solution for s ≫ 2.[LB21] For the bath, we employ
the ansatz:

Ψ3(r; r0, δr) = A3

[
1 + tanh

(
r − r0

δr

)]
, (4.3.28)

where the variational parameters r0 and δr characterize, respectively, the radius
of the hollow cavity in the bath, and the bath healing length back into the homo-
geneous density value. The amplitudes A1,2,3 are found upon normalization to the
number of particles Ni =

∫
d3r |Ψi(r)|2.

Figures 4.2(a) and (b) depict the results for G(P ) = 0, P =
√
a11/a22, N =

N1+N2 = 10 000 in two different bath densities, n3 = 9×1018 m−3 and 7×1020 m−3.
The simulations were performed for the experimentally feasible scattering lengths
of potassium (a11, a22, a13, a23, a33) = (34.5, 82, 172, 172, 60)a0 (see the discussion
below in this chapter). Note that the variational calculations are in excellent
qualitative and to a large extent quantitative agreement with the eGPE results.

For a given number of particles N in the bubble, an increase of the bath density n3
increases the outer pressure, which compresses the bubble. In turn, the increase
of the bubble density results in an enhanced role of interactions. Hence, for an
LHY bubble, i.e. G(P ) = 0, when n3 grows, the bubble transitions from a regime
dominated by the kinetic energy (as in Fig. 4.2(a)) into a regime dominated by
the LHY energy (as in Fig. 4.2(b)) where the quantum bubble acquires a flat-top
profile. The change in the character of the density profile is evident from Fig. 4.3,
where we plot the variational “flatness” parameter s as a function of the bath
density for a fixed N = 10 000. Note the transition from a Gaussian-like profile
s ∼= 2 to a flat-top, s ≫ 2.

The progressively larger role played by the LHY energy for growing n3 modifies,
according to the discussion above, the dependence of the bubble volume with the
bath density. In Fig. 4.4, we depict the volume as a function of the bath density
in a system of N = 1650 and the same scattering lengths as mentioned earlier.
Note the expected crossover between a scaling V ∝ n

−6/5
3 when the kinetic energy

dominates, and a scaling V ∝ n
−4/5
3 , when the LHY energy dominates.
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Figure 4.2: Density profile n(r) = n1(r) + n2(r) of the 1-2 gas (circles)
and of the bath (squares) obtained from the coupled eGPEs, for
(a11, a22, a13, a23, a33) = (34.44, 82, 172, 172, 60)a0, N = 104, for two
different bath densities npeak

3 = 9 × 1018 m−3 (a) and 7 × 1020 m−3 (b).
Dashed lines indicate the corresponding variational results. Reprinted
from [Edl+22]
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Figure 4.3: Exponent s that characterizes the profile of the droplet. s = 2 indicated
a Gaussian-like droplet, whereas s ≫ 2 corresponds to a flat-top profile.
The calculations are performed for the same parameters as in Fig. 4.2,
with N = 104. Note that when the bath density grows, the bubble
profile becomes progressively more flat-top. Reprinted from [Edl+22]
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Figure 4.4: Volume of the quantum bubble as a function of the bath density n3 for
the same scattering lengths as in Fig. 4.2, for G(P ) = 0 and N = 1650.
Note the crossover from a kinetic-energy dominated V ∝ n

−6/5
3 (dashed

line) dependence into a LHY-dominated V ∝ n
−4/5
3 dependence (dotted

line). Reprinted from [Edl+22]
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Figure 4.5: Sketch of the model considered. The majority component 3 acts as
a bath and has a much larger radius R(3)

TF than the width of the 1-2
bubble. The 1-2 mixture is supposed to be homogeneously distributed
within the bubble.

4.4 Anomalous buoyancy of a quantum bubble

In the previous section we had a look at a bubble in an otherwise homogeneous
bath. In this section we want to concentrate on a more realistic situation in which
the mixture is confined in an isotropic harmonic trap, characterized by a frequency
ω for the 1-2 components, and a frequency ω3 for the bath.

We assume, as before, the quantum fluctuations in the bath to be negligible and
that the interactions are strong enough to be in the Thomas-Fermi regime. Both
assumptions allow us for using the radial density profile n3(r) = n3(0)

(
1 − r2

R2
TF

)
from Eq. (1.3.20). The model is sketched in Fig. 4.5.

The presence of a trap results eventually in buoyancy [Tim98]. For a given ratio
ω/ω3 > (ω/ω3)cr, the 1-2 bubble remains at the trap center. In contrast, when
ω/ω3 < (ω/ω3)cr the bubble floats to the bath surface [Tim98]. For the case of a
mean-field bubble, when it reaches the surface, it is destroyed, forming a partial
or complete spherical shell around the bath.

In the following, we will see that quantum fluctuations significantly modify the
buoyancy condition. Moreover, they may lead to arrested buoyancy, i.e. the dis-
placement of the bubble to an intermediate position between the center and the
surface of the bath. Finally, for δa < 0, when the bubble moves to the surface it
does not spill over the surface, but undergoes a transition into a self-bound droplet
that remains compact floating at the bath surface.
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4.4 Anomalous buoyancy of a quantum bubble

4.4.1 Buoyancy condition for a uniform bubble

We first consider the simplified case in which the bubble density is homogeneous
within the hollow cavity, and in which the bubble volume is much smaller than
the overall bath volume (see Fig. 4.5). Under these conditions, we may neglect the
kinetic energy and the boundary effects associated to inter-particle interactions
between 1-2 and 3 at the domain wall.

The energy per particle of the bubble is:

E(r)
N

= 1
2mω

2r2 + 1
2G(P )n(r) + γ(P )g11a

3/2
11 n

3/2(r) + 1
2g33

n2
3(r)
n(r) (4.4.29)

In the vicinity of small r we can approximate the bubble density as

n(r) ∼= n(0)(1 + ϵ(r)) (4.4.30)

with ϵ(r) acting as a small correction term, i.e. ϵ(r) ≪ 1. Note that we have
the Thomas-Fermi relation 1

2mω
2
3R

2
TF = g33n3(0) which allows us to replace the

trapping term in Eq. (4.4.29) by

1
2mω

2r2 = g33n3(0)
(
ω

ω3

)2 ( r

RTF

)2
(4.4.31)

Plugging Equations (4.4.30) and (4.4.31) into (4.4.29) and keeping up to linear
terms in ϵ and (r/R)2, we obtain

E

N
∼= 1

2Gn(0)(1 + ϵ) + γg11a
3/2
11 n(0)3/2

(
1 + 3

2ϵ
)

+ g33n3(0)(1 + ϵ)
(
ω

ω3

)2 ( r

RTF

)2
+ 1

2g33
n2

3(0)
n(0)

[
1 − 2

(
r

RTF

)2
− ϵ

]
(4.4.32)

The terms proportional to ϵ vanish identically due to the condition of pressure
equilibrium of Eq. (4.3.21) at r = 0. Hence we are left with

E(r) − E(0)
Ng33n3(0)

∼=
[(

ω

ω3

)2
− n3(0)

n(0)

] (
r

RTF

)2
(4.4.33)
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We hence obtain the critical frequency ratio for buoyancy:

(
ω

ω3

)
cr

=

√√√√n3(0)
n(0) . (4.4.34)

We can distinguish between different regimes. For a mean-field bubble, in which
we can neglect the LHY contribution, the density ratio is given by Eq. (4.3.22), and
we retrieve the known critical frequency ratio for mean-field buoyancy[Tim98]

(
ω

ω3

)MF

cr
=
(
G(P )
g33

)1/4

. (4.4.35)

For a LHY bubble, i.e. G(P ) = 0, the equilibrium of pressures leads to a simple
dependence of n(0) on n3(0) given by Eq. (4.3.23). The critical frequency ratio
acquires the form (

ω

ω3

)G=0

cr
=
√(

3γ(P )
)2/5a11

a33

(
n3(0)a3

33

)1/5
. (4.4.36)

Note that it depends explicitly on the bath density. This is connected to the
arrested buoyancy discussed below.

A third case of special interest is when quantum fluctuations are non-negligible
but the mean-field term does not completely cancel. For this case of mean-field
quasi-cancellation, when |δa|√

a11a22
≪ 1, we can expand Eq. (2.2.21) around x = 1,

obtaining

γ(P ) ∼= γ0(P )
(

1 − 5P
(1 + P )2

δa√
a11a22

)
(4.4.37)

with γ0 := 64
15

√
π
P−5/2. At the critical frequency for buoyancy, we may substitute

the relation (4.1.2) in the equation for the equilibrium of pressures, obtaining

a(P )
a33

(
ω

ω3

)4

cr
+ 3γ(P )

(
a11

a33

)5/2√
n3(0)a3

33

(
ω

ω3

)5

cr
= 1 (4.4.38)

with a(P ) = 2P
(1+P )2 δa. We may then evaluate up to first order in |δa|√

a11a22
the critical

frequency ratio for the buoyancy of a quantum bubble
(
ω

ω3

)G̸=0

cr

∼=
(
ω

ω3

)G=0

cr

1 + a(P )
2√

a11a22

1 − 2
5

√
a11a22

a33

[(
ω

ω3

)G=0

cr

]−4

 (4.4.39)
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4.4 Anomalous buoyancy of a quantum bubble

4.4.2 Arrested buoyancy

Interestingly, when occurring, buoyancy may differ significantly from the well-
known mean-field case, due to the role played by quantum fluctuations in the 1-2
gas. Let us first consider the case of a mean-field bubble. Using the Thomas-Fermi
form of n3(r), we re-write the bubble energy as:

E(r)/N
g33n3(0) =

[(
ω

ω3

)MF

cr

]2 (
1 − r2

R2
TF

)
+
(
ω

ω3

)2 r2

R2
TF
. (4.4.40)

For ω
ω3
>
(

ω
ω3

)MF

cr
the bubble passes from the center directly to the bath surface

since the energy becomes monotonously decreasing with increasing r/RTF. At
the surface the mean-field bubble, which was solely maintained by the outer bath
pressure, is destroyed and it forms a partial or complete covering of the bath
spherical surface.

For a LHY bubble, we may express the bubble energy as:

E(r)/N
g33n3(0) = 5

6

[(
ω

ω3

)G=0

cr

]2 (
1 − r2

R2
TF

)6/5

+
(
ω

ω3

)2 r2

R2
TF
. (4.4.41)

In contrast to the mean-field case, when Λ ≡ ω
ω3
/
(

ω
ω3

)G=0

cr
< 1, the bubble energy

has a minimum at

r

RTF
=

√
1 − Λ10. (4.4.42)

Hence, when buoyancy sets in, the position of the bubble does not immediately
jump to the surface, as in the mean-field case, but rather experiences an abrupt,
but finite, position displacement, breaking spontaneously the spherical symmetry.
The red dashed curve in Fig. 4.6(a) shows, as a function of ω/ω3, the average
position for an homogeneous quantum bubble, well within the quasi-cancellation
regime for the parameters considered. As expected from the discussion above, there
is a window of frequency ratios for which the bubble is placed at an intermediate
position within the bath component.
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Chapter 4 Anomalous buoyancy of quantum bubbles in immiscible Bose mixtures

4.4.3 Buoyancy for an inhomogeneous bubble

The previous discussion neglects the kinetic energy of the bubble, which in general
may have a sizeable contribution, and assumes that the bubble size is negligible
with respect to the size of the Thomas-Fermi cloud of the bath. The latter is a
particularly crude approximation under typical conditions.

We have evaluated the ground-state of the mixture using the coupled eGPEs
(4.3.26), adding the confinement potential. The squares in Fig. 4.6(a) show our
results of the average position of the bubble for a small number of particles
N1 = 1000. For this case, the LHY term is negligible and the bubble proper-
ties are dominated by the kinetic energy. As a result, compared to Eq. (4.4.39),
a larger ω/ω3 ratio is necessary to keep the bubble confined at the center. Also,
when buoyancy sets in, there is no discernible regime of arrested buoyancy.

When the number of particles in the bubble increases (or alternatively for a growing
n3) (ω/ω3)cr decreases, and a progressively wider window of arrested buoyancy
is observed (see Fig. 4.6). Although the numerical results approach the result
of the homogeneous-droplet calculation, there are still sizable deviations of the
critical frequency ratio compared to Eq. (4.4.39), mostly due to the non-negligible
size of the bubble compared to the Thomas-Fermi cloud of the bath. Figure 4.7
shows the density profile of the mixture in the arrested buoyancy regime for N1 =
50 000 atoms. Note that, as discussed for the case of an homogeneous droplet, the
inhomogeneous bubble is placed at intermediate positions (spontaneously breaking
the spherical symmetry). Note as well, that in contrast to the mean-field case,
when the bubble reaches the boundary, it does not spread around the spherical
Thomas-Fermi surface. Since δa < 0, it rather undergoes a crossover from a bubble
into a self-bound droplet, which remains compact floating at the bath surface.

4.5 Experimental considerations

A possible implementation of the quantum bubble scenario discussed in this chap-
ter is provided by the multi-component 41K−39K mixture [Cab18], whose con-
crete parameters have been employed in our simulations. In this implementa-
tion, the 1-2 gas is composed by a 39K mixture in states |1⟩ ≡ |F = 1,mF = −1⟩
and |2⟩ ≡ |F = 1,mF = 0⟩, whereas the bath is composed by the state |3⟩ ≡
|F = 1,mF = −1⟩ of 41K. In this setting, the system is in the lowest energy state
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Figure 4.6: (a) Position of the quantum bubble for a Thomas-Fermi bath with
n3(0) = 5 × 1020 m−3 (using N3 = 800 000), for the same parame-
ters as in Fig. 4.2, for N1 = 1000 (squares), N1 = 20 000 (triangles),
N1 = 50 000 (circles) and a33 = 100a0. The dashed curve indicates
the position of the bubble obtained for the same n3(0) from the mini-
mization of the energy per particle (4.4.29). Figure (b) shows in detail
the arrested buoyancy regime in the vicinity of the critical frequency
ratio for buoyancy, Λ ≡ (ω/ω3) = 1. The (ω/ω3)cr arrested buoyancy
window becomes more apparent when the LHY dominates the bubble
physics. The scattering lengths considered are the same as in Fig. 4.6,
except that a12 is slightly shifted, such that δa = −5a0. Reprinted
from [Edl+22]
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Figure 4.7: Arrested buoyancy for the same parameters as in Fig. 4.6, for N =
8.2×104 and n3(0) = 4.7×1020 m−3. The upper (lower) panels show the
density profile of the bath n3(x, y, 0) (bubble n1(x, y, 0)). When buoy-
ancy sets in, and due to the effect of quantum fluctuations, the bubble
does not move immediately to the bath surface, but rather remains at
an intermediate distance between the center and the surface, breaking
spontaneously spherical symmetry. Note also that when the bubble
moves to the surface it remains compact, experiencing a crossover into
a self-bound droplet. Reprinted from [Edl+22]
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and inelastic spin-exchange collisions can be neglected [Tan+18b]. For the bub-
ble, the parameter δa ≤ 0 can be tuned in the vicinity of ∼ 56.9 G [Cab+18;
Sem+18] where the overlap of three different Feshbach resonances allows to con-
trol the values of a11, a22, and a12. At this magnetic field, the bath-bubble in-
teractions is set by the background 41K−39K scattering length, which is constant
(a13 = a23 ≈ 172a0).

Since the system is composed by two different potassium isotopes, high-resolution
in situ imaging detection can be performed in order to extract the bubble and
bath density profiles independently. Experiments may then readily monitor how
the contribution of the LHY energy at G = 0 affects the bubble size. For typical
densities of n3 = 1020 m−3, we can expect for large atom number in the bubble
a discrepancy of up to 40% in its radius compared to the case where quantum
fluctuations are neglected. This discrepancy becomes larger when increasing the
density n3. Hence, the analysis of the bubble size may readily reveal the effect of
quantum fluctuations and the scaling features discussed in this chapter.

4.6 Conclusions

We have considered in this chapter a peculiar effective immiscible binary mix-
ture. Two miscible components form an effective scalar condensate (1-2 gas) with
enhanced quantum fluctuations due to mean-field quasi-cancellation, and a third
component is immiscible with the other two. We have shown that due to quantum
fluctuations, the properties of the effective mixture significantly depart from those
well-known for an immiscible mean-field Bose-Bose gas. In particular, the volume
of a quantum 1-2 bubble in component 3 presents a significantly modified depen-
dence with respect to the bath density. Moreover, quantum fluctuations lead to
an anomalous buoyancy criterion. Once buoyancy sets in, in contrast to the case
of mean-field mixtures, the bubble may occupy an intermediate position between
the center and the surface of the bath (arrested buoyancy). Furthermore, once
the surface is reached the bubble may transition into a droplet, which remains
compact and floating at the bath surface.

These results, which may be readily probed in e.g. Potassium mixtures, illustrate
how quantum fluctuations, in addition to providing the stabilization mechanism
for self-bound droplets, may significantly change other general and well established
properties of Bose mixtures. We anticipate that a similar physics may be at play
as well in immiscible mixtures, in which at least one of the components (forming
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Chapter 4 Anomalous buoyancy of quantum bubbles in immiscible Bose mixtures

the quantum bubble) is dipolar within the regime of mean-field quasi-cancellation
[Bla+22] (see the discussion on dipolar gases in the following chapters). However,
the nonlocal anisotropic character of the dipole-dipole interaction may significantly
affect the droplet properties and the buoyancy condition.
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Part III

Dipolar Condensates
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Chapter 5

Dipolar Bose-Einstein Condensates

In previous chapters, we restricted our discussion to short-range interacting gases,
characterized by the s-wave scattering length. In this and the next chapter, we
shall consider dipolar gases, in which magnetic or electric dipole-dipole interactions
play a significant or even dominant role. The dipole-dipole interactions, being long-
range and anisotropic, differ radically from the short-range isotropic interactions
considered up to this point in this Thesis. As a result, the physics of dipolar gases
is qualitatively different from that their non-dipolar counterparts, as we will briefly
review in this chapter.

Electric or magnetic dipolar gases can be realized in a variety of systems. Elec-
tric dipoles have been studied in the context of polar molecules [Ni+08; Ni+10;
Osp+10a] and Rydberg gases [Ton+04; Hei+08; GP08; SWM10]. However, most
of the physics that we shall discuss in the following, and in particular quantum
stabilization of droplets,has been realized using highly magnetic atoms.

In 2005 the group of T. Pfau reported the first dipolar BEC, achieved with
Chromium atoms [Gri+05], a highly magnetic species with a magnetic dipole mo-
ment of µ = 6µB, with µB the Bohr magneton. This must be compared with that
of alkali atoms, with a magnetic dipole moment of maximally 1µB. Dipolar effects
in chromium gases were first reported in Stuttgart [Stu+05; Lah+07], and later
in Paris Nord [Bis+10], followed by the observation of geometrical stabilization of
a Chromium BEC [Koc+08], and dipole-induced d-wave collapse [Lah+08]. More
recently, experiments with magnetic lanthanides have opened up new avenues for
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ez

θ

r attr.

repulsive

Figure 5.1: Dipoles polarized along the z direction. Due to the anisotropy of the
dipole-dipole interaction potential, the interaction strength and its sign
depends on the interparticle distance r = |r|, and on the angle θ be-
tween r and ez. When staying side-by-side (θ = π

2 ) the potential is
repulsive and the dipoles repel each other, whereas in a head-to-tail
configuration (θ = 0) the interaction is attractive.

the study of dipolar physics with highly-magnetic atoms. Dysprosium (µ = 10µB)
has been Bose-condensed in Stanford [Lu+11] and later on in Stuttgart, Inns-
bruck and Pisa, whereas an erbium (µ = 7µB) condensate has been realized in
Innsbruck [Aik+12].

The chapter starts with a discussion on general properties of dipoles and their
interaction potential in Sec. 5.1. The GPE with incorporated dipolar interactions
is introduced in Sec. 5.2. The chapter continues with the presentation of the
condensation of a dipolar gas in 5.3. Section 5.4 concentrates on the geometric
stability of dipolar BEC in different trap geometries. The chapter closes in Sec. 5.5
with a discussion on phonon and roton instabilities.

5.1 Dipole-dipole interaction

Let us consider two dipoles, whose dipole moments are aligned along the unit
vectors e1 and e2, respectively. Denoting the relative position vector as r, and the
relative distance as r = |r|, the dipole-dipole interaction potential reads

Vdd(r) = Cdd

4π
(e1 · e2)r2 − 3(e1 · r)(e2 · r)

r5 (5.1.1)

where the constant Cdd is the dipolar interaction strength. For magnetic dipoles,
Cdd,mag = µ0µ

2, with µ0 the vacuum permeability, and µ the magnetic dipole
moment. For electric dipoles, the interaction strength is equal to Cdd,el = d2/ε0,
where d is the electric dipole moment, and ε0 the vacuum permittivity.
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5.1 Dipole-dipole interaction

One can compare the usual interaction strengths for magnetic atoms and polar
molecules. Typical values for the magnetic dipole in highly magnetic atoms are of
the order of µ ∼ 1µB, with µB = 9.27 × 10−24 J T−1 [Cod] being the Bohr mag-
neton. In bi-alkali polar molecules, once brought into the lowest ro-vibrational
state and properly polarized by an external electric field, it is d ∼ 1 D where
D is a more convenient Gauß unit called “Debye”, D ≈ 3.36 × 10−30 C m. Note
that Cdd,mag/Cdd,el ≈ 10−4, and hence the dipolar interactions are much weaker
in magnetic systems. Highly magnetic atoms are, however, much easier to oper-
ate with. Indeed, whereas, as discussed below, experiments on magnetic dipolar
gases are quite advanced in what concerns the study of many-body physics, exper-
iments on polar molecules have been up to now significantly hindered by inelas-
tic processes. These processes include exothermic chemical reactions [Osp+10b],
and the so-called sticky collisions [MRB12], a process yet not fully understood.
Recent experimental breakthroughs on shielding open, however, exciting perspec-
tives for near-future developments concerning many-body physics in gases of polar
molecules [Li+21; And+21; Sch+22].

In the following, we assume that the dipoles are polarized by an external field (as
sketched in Fig. 5.1). Hence, the expression in Eq. (5.1.1) simplifies to

Vdd(r) = Cdd

4π
1 − 3 cos2 θ

r3 (5.1.2)

where θ describes the angle between the polarization axis and the relative position
of the particles. The dipole-dipole interaction is most attractive when dipoles are
in a head-to-tail configuration (θ = 0). In contrast, when they are in a a side-by-
side configuration (θ = π/2), the interaction is most repulsive. At the so-called
magic angle, θ = arccos(1/

√
3) ≈ 54.7◦, the interaction vanishes.

Interestingly, the dipolar interactions may be tuned if the polarization axis is not
fixed in time, but rather rotates with a frequency Ω around an axis [GGP02]. For
definiteness we will call this axis z, and consider magnetic dipoles in the time-
dependent magnetic field B = B{cosφez +sinφ[cos(Ωt)ex +sin(Ωt)ey]} where the
rotation forms a cone of aperture 2φ (see Fig. 5.2). The angular rotation frequency
Ω must be chosen much smaller compared to the Larmor frequency ΩL = µB

ℏ and
much larger than the external trapping frequencies ωi. With this proper choice of
Ω the time-average potential of (5.1.1) reads [Lah+09]

⟨Vdd(r, t)⟩ = Cdd

4π
1 − 3 cos2 θ

r3

(
3 cos2 φ− 1

2

)
. (5.1.3)

The term in the brackets in Eq. (5.1.3) can take values from 1 at φ = 0 (no tilting)
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Figure 5.2: Modifying the time-average dipole-dipole interaction by precessing the
dipoles around the z-axis on a cone of angle 2φ. The picture was
reprinted from [Lah+09]

to −1/2 at φ = π. At the magic angle φ ≈ 54.7◦ it changes its sign. This tuning
was experimentally realized in recent experiments [Tan+18a].

5.2 Mean-field description of a dipolar condensate

The mean-field description for a dipolar BEC can be derived in a similar way as
for the contact-interacting case. A first rigorous theoretical treatment was laid by
L. You and S. Yi [YY00; YY01]. They constructed a pseudo-potential for a general
anisotropic interaction. This result can be used to derive the time-independent
GPE, which incorporates the dipole-dipole interactions as follows

µΨ(r) =
(

−ℏ2∇2

2m + Vext(r) + gn(r) +
∫

d3r′ Vdd(r − r′)n(r′)
)

Ψ(r). (5.2.4)

Note that the dipolar pseudo-potential contains also a contact part proportional to
δ(3)(r) which is absorbed into the regular contact term. This makes the coupling
constant g = g(Cdd) in principle dependent on the dipole strength.

For the calculation of the dipole term in (5.2.4) one can make use of the convolution
theorem. It states that the Fourier transform of two convoluted functions is equal
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to the product of the individually Fourier transformed functions, i.e.

F
[∫

d3r′ Vdd(r − r′)n(r′)
]

(k) = F [Vdd(r)] (k)F [n(r)] (k) (5.2.5)

where F [·](k) is the Fourier transform operator to k-space. A detailed derivation of
the Fourier transformed dipole-dipole interaction potential F [Vdd](k) = Ṽdd(k) =
Cdd

3 (3 cos2 θk − 1) can be found in the literature [SSC12] or in the Appendix A.1.
Unlike the real-space potential Vdd(r), the Fourier transformed potential does not
diverge or posses any singular points, although it still exhibits a non-continuous
behavior at the origin.

5.3 Condensate aspect ratio

Let us consider the case of a dipolar BEC, polarized along z, in an isotropic
harmonic potential. We define the trap aspect ratio λ as the ratio of the axial
and radial trapping frequencies, i.e. λ = ωz

ωρ
, which is in this case equal to one.

Following the discussions of the dipolar anisotropy in Sec. 5.1 it is evident that for
a sufficiently large relative dipolar strength

εdd = Cdd

3g , (5.3.6)

a more prolate (cigar-like) cloud is energetically favorable, since on average more
dipoles are in a head-to-tail configuration, hence reducing the energy. When we
introduce the cloud aspect ratio κ = σρ

σz
, where σi is the cloud width in the i’s

direction, we expect it to be smaller than one, κ < 1. Figure 5.3 shows the results
of experiments on condensed 52Cr atoms performed in 2007 in the group of T.
Pfau. Via a Feshbach resonance they changed the scattering length, and hence the
coupling constant. By this, they were able to tune the relative dipolar strength
εdd up to 0.5, where a clear distortion from a spherical cloud ratio is visible.

5.4 Geometric stability

Due to the anisotropic nature of the dipolar interaction, the stability of a dipolar
condensate depends strongly on the trapping geometry [San+00]. In an oblate
(pancake-like) cloud geometry, the dipoles are mostly in a side-by-side configu-
ration, which results in a repulsive dipolar interaction. On the other hand, in
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εdd ≈ 0.17 εdd ≈ 0.3 εdd ≈ 0.4 εdd ≈ 0.5

z

By

Figure 5.3: Absorption images in 52Cr after 5 ms of expansion for different dipo-
lar strengths εdd. The change is due to a Feshbach resonance which
modifies the contact interaction, and hence the ratio between contact
and dipole-dipole interactions, i.e. εdd. The stronger the relative dipole
strength, the more prolate the cloud gets. Reprinted from [Lah+07].

a prolate (cigar-like) cloud, the interactions are in average attractive due to the
mainly head-to-tail position of the dipoles. This attractive character may result
in condensate collapse, unless the dipolar interactions are properly compensated
by sufficiently repulsive contact-like interactions.

This geometrical stability was experimentally studied in 2008 in the group of T.
Pfau [Koc+08]. First, they prepared their condensate of 52Cr atoms, polarized
along z, in the regime of dominant repulsive contact interactions. Afterwards, the
contact interaction strength was reduced via a Feshbach resonance, which increased
the relative dipolar strength εdd. At a critical scattering length acrit the condensate
got unstable. This procedure can be repeated for various different trapping ge-
ometries λ, which can be seen in Fig. 5.4. The markers indicate the experimental
observation whereas the lines are the numerical findings for N = 20 000 particles
of the border of stability. The thin line corresponds to the solution of the GPE.
The thick line was achieved with a variational approach, where the wave-function
was assumed to be a Gaussian, and its widths were varied to minimize the system
energy [Koc+08; Lah+09]. Note that for a cigar-shape trap, a sufficiently large
positive scattering length is needed to prevent collapse, whereas in a pancake trap
the condensate is stable down to a critical negative scattering length.

5.4.1 Collapse of a dipolar condensate

In later experiments that year they studied the dynamics of that collapse in more
detail [Lah+08]. As before, they first prepared the condensate in the stable regime,
followed by a rapid ramp of the scattering length into the unstable regime, i.e.
af < acrit. Subsequently, the system evolved for an adjustable time thold. The traps
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5.4 Geometric stability

Figure 5.4: Stability diagram of a dipolar BEC of 20 000 52Cr atoms in a
cylindrically-symmetric harmonic trap with λ = ωz/ωρ. Note the loga-
rithmic scale in the trap ratio. The squares indicate the experimental
results for the stability threshold whereas the lines are inferred from
a theoretical simulation. The thin lines correspond to solutions of the
GPE, whereas the thick one results from a variational Gaussian ansatz.
Reprinted from [Lah+09].
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Figure 5.5: Experimental images (top row) of a condensate of 52Cr atoms after
collapse for various holding times thold. The numerical images (bottom
row) are the solutions of Eq. (5.4.7). We see an excellent agreement
with the experiment. Note the d-wave geometry of the exploding cloud
resulting from the dipolar collapse, and subsequent three-body losses.
Reprinted from [Lah+08].

were switched off, and the system was imaged after a time-of-flight of tTOF = 8 ms.
The results for different holding times are depicted in Fig. 5.5. During the collapse,
the cloud width reduces in radial direction and its density increases. This is due
to the anisotropic nature of the dipolar interaction as the collapsed mean-field
state is an infinitely thin cylinder. The condensate collapses until inelastic three-
body losses dominate at large densities, which leads to particle losses, driving the
subsequent explosion.

5.4.2 Collapse in Chromium

To incorporate the losses in the numerics one may add a non-unitary three-body
loss term of the form (−iℏL3n

2/2)Ψ to the time-dependent GPE, i.e.

iℏ∂Ψ(r, t)
∂t

=
(

−ℏ2∇2

2m + Vext(r) + gn(r, t) +
∫

d3r′ Vdd(r − r′, t)n(r′, t)

−iℏL3

2 n2(r, t)
)

Ψ(r, t),

(5.4.7)

where, for chromium experiments, L3 ∼ 2 × 10−40 m6 s−1 describes the three-body
losses that occur close to the Feshbach resonance [Lah+08]. The simulations are
in the bottom row of Fig. 5.5 and are in an excellent agreement with the experi-
ment. We will see below in this Thesis, that these results, obtained in chromium
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experiments, radically differ from those in lanthanide atoms, as dysprosium and
erbium.

5.4.3 Thomas-Fermi regime

Similar to the non-dipolar case in Sec. 1.3.2 we may neglect the quantum pressure
as long as the interactions are strong enough, entering the Thomas-Fermi regime,
where one can obtain an analytic solution.

Remarkably, although we are facing a non-trivial interaction potential, the Thomas-
Fermi solution for a trapped dipolar BEC still exhibits a similar inverted parabolic-
shaped density distribution as that of a non-dipolar case [PO08]. In particular, for
a cylindrically-symmetric trap around the dipole direction z, with axial harmonic
frequency ωz and radial frequency ωρ, the ground-state density profile reads

n(r) =

npeak

(
1 − r2

ρ

R2
ρ

− r2
z

R2
z

)
, 0 ≤ r2

ρ

R2
ρ

+ r2
z

R2
z

≤ 1

0, else
(5.4.8)

with the dipolar Thomas-Fermi radii [Lah+09; EGO05]

Rρ =
{

15gNκ
4πωρ

[
1 + εdd

(
3
2
κ2f(κ)
κ2 − 1 − 1

)]}1/5

, κ = Rρ

Rz

(5.4.9)

where

f(κ) = 1 + 2κ2

1 − κ2 − κ2 artanh
√

1 − κ2

(1 − κ2)3/2 . (5.4.10)

In the Thomas-Fermi regime, one can obtain a closed transcendental equation,
which provides a relation between the cloud aspect ratio κ, the trap aspect ratio
λ = ωz

ωρ
, and the relative dipolar strength εdd:[Lah+09; EGO05]

3κεdd

[(
λ2

2 + 1
)

f(κ)
κ2 − 1 − 1

]
+ (εdd − 1)(κ2 − λ2) = 0. (5.4.11)

The equation may be evaluated for different values of λ. The results are depicted in
Fig. 5.6. Interestingly, Eq. (5.4.11) results in more than one solution κ for a given
value of the trap ratio λ. One can see that in the regime of 0 < εdd < 1 the cloud
aspect ratio κ decreases monotonously with increasing relative dipolar strength
εdd. In other words, the cloud is more prolate than the trap. For εdd > 1 we get
two possible solutions for κ. The more oblate solution is meta-stable whereas the
more prolate one is unstable.
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Figure 5.6: Condensates aspect ratio κ = σρ

σz
as a function of the dipolar strength

εdd. Each line is for fixed trapping ratio λ = ωz

ωρ
. Reprinted from

[EGO05].

5.5 Instability mechanisms in a dipolar condensate

5.5.1 Phonon instability

The elementary excitations of a dipolar condensate can be calculated in a simi-
lar way as we discussed in previous chapters for their non-dipolar counterparts.
Note, that the interaction potential is now composed of a contact interaction and
a dipole-dipole interaction part, i.e. Ṽint(q) = g + Ṽdd(q). In the case of a ho-
mogeneous three-dimensional system, the dispersion relation can be calculated
analytically, obtaining [SSC12]

ε(k) =

√√√√ℏ2k2

2m

[
k2k2

2m + 2gn (1 + εdd(3 cos2 θk − 1))
]
. (5.5.12)

To analyse and understand the dispersion relation, first, we should have a look to
the case of small momenta, i.e. in the limit of k → 0. In that case the expression
in Eq. (5.5.12) reduces to [SSC12]

ε(k)
∣∣∣
k→0

= ℏkcs

√
1 + εdd(3 cos2 θk − 1) (5.5.13)
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where cs =
√

gn
m

is the sound velocity. In absence of dipole-dipole interactions, i.e.
εdd = 0, one recovers the usual linear phononic relation ε(k) = ℏkcs.

Due to the anisotropic nature of the dipole-dipole interactions, the spectrum is
in turn also anisotropic. The energy of modes with θk < arccos(1/

√
3) = θmagic

increases when εdd. We shall call these modes the hard modes. For θk > θmagic the
energy decreases for increasing εdd. We shall call these modes the soft modes. The
softer modes occur for θk = π/2, i.e. for momenta perpendicular to the dipolar
orientation. Then we get the dispersion relation

ε(k, θk = π/2)
∣∣∣
k→0

= ℏkcs

√
1 − εdd. (5.5.14)

When the interaction strength εdd surpasses one, the excitation modes become
purely imaginary. Consequently, the dipolar condensate becomes dynamically un-
stable against long-wave length excitation. This instability at small momentum is
also called phonon instability. This instability problem resembles that of homoge-
neous, purely contact interacting BECs, i.e. Vdd = 0, with a negative scattering
length [PS04].

5.5.2 Roton instability

Interestingly, dipolar condensates present yet another form of instability. Let us
consider a harmonically confined dipolar condensate in the z-direction, trapped
by ωz, and uniformly distributed on the xy-plane. The corresponding non-local
time-dependent GPE reads

iℏ ∂
∂t
ψ(r, t) =

[
− ℏ2

2m∇2 − µ+ mω2
zz

2

2 + gn(r, t) +
∫

d3r′ Vdd(r − r′)n(r′, t)
]
ψ(r, t)

(5.5.15)

Here, the groundstate wave-function decomposes into two parts. Hence, the inte-
gration of the dipole-dipole interaction term over the in-plane coordinates can be
performed and we can obtain a one-dimensional equation which has the form of a
GPE for a one-dimensional system with short-range interactions:[

−ℏ2

2m
d2

dz2 + mω2
zz

2

2 + (g + gd)n0 − µ

]
ψ0(z) = 0 (5.5.16)

where gd = 8πCdd/3. We shall concentrate on the case of positive g + gd where
µ > 0. When we assume µ ≫ ℏωz the BEC is in the Thomas-Fermi regime
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Figure 5.7: Dispersion relation of a dipolar BEC trapped in the dipole direction
and uniformly distributed on the xy-plane. The momentum is units
of k⊥l0 where l0 =

√
ℏ/mωz. The dash-dotted and solid lines show

a monotonous spectrum for εdd < 1 and εdd = 1, respectively. In
contrast, the dashed line features the roton-maxon spectrum. Adapted
from [SSL03].

with a density profile n0(z) = npeak(1 − z2

R2
TF

) with peak density npeak = µ
g+gd

and

Thomas-Fermi radius RTF =
√

2µ
mω2 .

Santos et al. [SSL03] showed in 2003 that the energy spectrum of a dipolar BEC
can be non-monotonic, in stark contrast to the non-dipolar case.

The elementary excitations on top of ψ0 may be studied by means of a Bogoliubov-
de Gennes analysis. As the system considered is translational invariant on the xy
plane, the in-plane momentum k⊥ can be used as a proper quantum number, and
one may look for solutions of the form:

ψ(r, t) = ψ0(z) + u(z)eik⊥·ρe−iωt + v(z)e−ik⊥·ρe−iωt. (5.5.17)

Introducing f± = u±v the Bogoliubov-de Gennes equations become of the form:

ℏωf−(z) = Ĥkinf+(z),
ℏωf+(z) = Ĥkinf−(z) + Ĥint[f−(z)],

(5.5.18)
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where

Ĥkin = ℏ2

2m

[
− d2

d2z
+ k2

⊥ + ∇2ψ0

ψ0

]
, (5.5.19)

Ĥint[f−] = 2(g + gd)ψ2
0(z)f−(z)

− 3
2k⊥gdψ0(z)

∫ ∞

−∞
dz′ ψ0(z′)e−k⊥|z−z′|f−(z′). (5.5.20)

For each k⊥ one may determine the lowest energy ω0(k⊥), which provides the
dispersion law.

For small momenta k⊥R ≪ 1 the phonon excitations are basically two-dimensional,
and since the dipoles interact in average side-by-side the phonon spectrum is stable,
i.e. there is no phonon instability. In contrast, for large-enough momenta k⊥R ≫ 1
the excitations acquire a three-dimensional character. Since the dipole-dipole in-
teraction is attractive along z, the repulsive character of the total interaction is
reduced, leading to a decrease of the eigenenergy. Eventually for even larger mo-
mentum, the kinetic term dominates and the spectrum resembles the one of a free-
particle solution. As a result, under proper conditions, the Bogoliubov spectrum of
a trapped dipolar condensate may present a local minimum, see Fig. 5.7, which re-
sembles the celebrated roton minimum in Helium [Lan47; Fey54]. One should point
however that the physics behind both rotons is of course very different. Recently,
breakthrough experiments in erbium atoms have finally proved the existence of
dipolar rotons in quasi-one-dimensional geometries [Cho+16; Pet+19].

For large-enough momenta, i.e. k⊥R ≫ 1, where the excitations have a three-
dimensional character, one can derive an analytic expression for the excitation
spectrum in the vicinity of the roton momentum (i.e. the momentum at the roton
minimum) kroton [SSL03]

ε2(k⊥) = E2
k⊥

− 2EkrotonEk⊥ + ℏ2ω2
z , (5.5.21)

with Ek⊥ = ℏ2k2
⊥

2m
, and where the equation

Ekroton = 2
3

(εdd − 1)(5εdd + 1)
(2εdd + 1)(4εdd + 1)µ (5.5.22)

provides the roton momentum. Note that

ε2(k⊥) = (Ek⊥ − Ekroton)2 + ℏ2ω2
z − E2

kroton , (5.5.23)

and the roton minimum occurs for an energy

∆E =
√
ℏ2ω2

z − E2
kroton . (5.5.24)
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When this energy reaches zero, the condensate develops a new form of instability,
the so-called roton-instability. In contrast to the phonon instability which occurred
at low momenta, the roton instability occurs for intermediate momenta. Roton
instability results in a dynamical instability against the formation of a density
modulation with the roton wavelength. This instability was observed in 2018 in a
breakthrough experiment with 166Er by F. Ferlaino’s group (see Fig. 5.8), were they
reported the first observation of the roton excitation [Cho+18]. Later experiments
in the same group mapped conclusively the roton dispersion [Pet+19].

In mean-field theory the roton instability leads eventually to the formation of
local collapses. The situation, under proper conditions, may be very different in
the presence of quantum fluctuations, as we discuss in the following chapter.
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Figure 5.8: Experimental results at F. Ferlaino’s group reporting for the first time
the observation of roton excitations in an elongated dipolar condensate,
along a direction perpendicular the dipole orientation. A quench of the
scattering length leads to roton instability, which triggers a modulation
that results in side peaks observable in the momentum distributions
ñ(kx, ky) obtained in time-of-flight experiments. The average results
over 15-25 single-shot images is shown in the top row. The bottom row
shows the corresponding cuts at kx ≈ 0. Reprinted from [Cho+18].
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Chapter 6

Dipolar quantum droplets

In the preceding Chapter 5, we introduced the physics of dipolar systems. We dis-
cussed their geometry-dependent stability, and in particular the d-wave collapse
observed in Chromium experiments. In this chapter, we shall see that this col-
lapsing behavior is not a general feature of dipolar condensates. In particular, as
discussed in Sec. 6.1, experiments in dysprosium and erbium do not show such a
collapse, but rather the emergence of ultra-dilute liquid-like droplets. The mean-
field theoretical model introduced in the previous chapter is clearly insufficient to
explain this phenomenon. Thus, in Sec. 6.2, and following ideas already intro-
duced in previous chapters, the theory of dipolar condensates is extended in order
to include the surprisingly relevant role played by quantum fluctuations. This
chapter closes in Sec. 6.4 with a brief discussion on dipolar supersolids, a new state
of matter recently observed in experiments, which results from the combined effect
of the enhanced role of quantum fluctuations and external confinement.

6.1 Dipolar quantum droplets

Dysprosium atoms have one of the largest magnetic moments of all elements in
the periodic table, with a magnetic moment of around 10µB. Additionally, the
background scattering length is relatively small, which makes it possible to achieve,
even without the use of Feshbach resonances, a large relative dipole strength εdd.
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Figure 6.1: Experimental in-situ images showing the formation of droplets in Dys-
prosium experiments after a quench of the scattering length into the
mean-field unstable regime. Reprinted from [Kad+16]

Hence, once condensation is achieved, dysprosium constitutes an optimal system
for studying dipolar condensates.

In 2015, the group of T. Pfau performed experiments with ultra-cold dyspro-
sium [Kad+16] in which they approximately repeated the procedure performed
on chromium atoms in Ref. [Lah+08], in which they observed the d-wave collapse
discussed in Sec. 5.4. They created a stable condensate of approximately 15 000
particles in an oblate trap with dipoles aligned along the z direction. With the
help of a Feshbach resonance they modified the scattering length such that εdd ≈ 1.
Subsequently, the scattering length was further lowered to achieve εdd > 1, for val-
ues in which the mean-field theory discussed in the preceeding chapter predicted
instability against collapse. Surprisingly, the experiment revealed something very
different (see Fig. 6.1). The dipole-driven collapse instead was arrested at densities
of n ≳ 5 × 1020 m−3, still well within the ultra-dilute, weakly interacting, regime,
resulting in the formation of droplets. Similar results were subsequently reported
in Erbium experiments in F. Ferlaino’s group in Innsbruck [Cho+16].

The obvious immediate question was to find the stabilization mechanism that pre-
vented collapse. Such a mechanism had to be density-dependent, to have a higher
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6.2 Lee-Huang-Yang correction for a dipolar condensate

order with density than the mean-field term, and to be repulsive to compensate the
attractive mean-field interaction. First attempts tried to explain the phenomenon
with large conservative, i.e. non particle loosing, three-body interactions. The
conservative part must have been two to three orders of magnitude larger than the
non-conservative ones [BB15]. However, no conclusive explanation for these values
could be given. It became however quickly clear that quantum fluctuations were
responsible for the observed stabilization, in a process analogous to that discussed
in Sec. 2.3 for non-dipolar binary mixtures.

6.2 Lee-Huang-Yang correction for a dipolar
condensate

Using the Hugenholtz-Pines formalism introduced in Chapter 3, we can obtain the
equation for the LHY energy density correction ELHY = ELHY/V :

ELHY(n) − 1
2n

∂

∂n
ELHY(n) = χ(n) (6.2.1)

with

χ(n) = −1
2

∫
d3k

1
(2π)3

[ε(k) − ϵ(k)]3
4ε(k)ϵ(k) (6.2.2)

where we have the free particle energy ϵ(k) = ℏ2k2

2m
and the Bogoliubov modes

ε(k) =
√
ϵ(k)[ϵ(k) + Ṽint(θk)] (6.2.3)

with

Ṽint(θk) = 2nγ(θk), γ(θk) := g + Cdd

3 (3 cos2 θk − 1). (6.2.4)

In Sec. 1.4 we already derived the LHY-correction for a three dimensional system
with only contact interactions. We found that such the LHY energy density scales
with the particles density as n5/2. Although, now we have additional dipole-dipole
interactions, from the potential in Eq. (6.2.4) we can see that this should not
change the power-law dependence. Hence, we can introduce a function G(k) and
employ the ansatz ELHY = n5/2G(k). We can apply the derivative and plug it into
the differential equation (6.2.1):

n5/2G(k) − 1
4n

5/2G(k) = −1
4ELHY = χ(n). (6.2.5)
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Chapter 6 Dipolar quantum droplets

This gives us an expression for the LHY correction energy density

ELHY(n) = 64
15

√
π
gn(na)3/2Q5(εdd), Q5(εdd) :=

∫ 1

0
du
[
1 + εdd(3u2 − 1)

]5/2

(6.2.6)

and the corresponding chemical potential

µLHY = 32
3
√
π
gn

√
na3Q5(εdd). (6.2.7)

The Q5(εdd) can be even further evaluated as [Pol+21]

Q5(εdd) = (3εdd)5/2

48

[
(8 + 26α + 33α2)

√
1 + α + 15α2 ln

(
1 +

√
1 + α√
α

)]
(6.2.8)

with α = (1 − εdd)/(3εdd). The function Q5(εdd) increases monotonously for
0 < εdd < 1, taking values in the closed interval from 1 to 3

2

√
3 ≈ 2.6. It becomes

complex for εdd > 1. The imaginary part signals a dynamical instability, as dis-
cussed in the previous chapter. For values of εdd in the vicinity of the instability,
i.e. εdd ≳ 1, the imaginary part of Q5(εdd) is several orders of magnitude smaller
than its real part, and hence it may be neglected.

In 2011, A. Lima and A. Pelster derived the very same term in Eq. (6.2.6) but using
a different approach [LP11; LP12]. Instead of the presented method, based on the
Hugenholtz-Pines formalism [HP59], they used a similar method as that discussed
in Chapter 1.4, where one needs to cure the ultraviolet divergence. One can
quickly verify that in the case of a non-dipolar system, i.e. εdd = 0, the expression
recovers the equation (1.4.31) from the first chapter. Interestingly, despite the
anisotropic dipole-dipole interaction in the mean-field term, the LHY corrections
are isotropic.

6.2.1 Quantum stabilization

Note that at the boundary of mean-field collapse instability, the contact and dipo-
lar contributions to the mean-field energy are of comparable size but opposite
sign, and hence the mean-field energy quasi-cancels. This is indeed a very similar
scenario as that of non-dipolar binary mixtures in Sec. 2.3, in which intra- and
inter-component interactions also quasi-cancelled at the mean-field level.

The overall mean-field contribution is slightly attractive, and hence energy is min-
imized for increasing densities. This caused the mean-field collapse of a dipolar
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condensate discussed in the previous chapter. However, as for non-dipolar binary
mixtures, with the included LHY-correction, with a density proportional to ∝ n5/2,
we can see that with increased density the repulsive LHY-correction becomes more
relevant. Hence, at sufficiently large densities the LHY-correction eventually bal-
ances the mean-field term, which stabilizes the system and prevents collapse. This
mechanism, as for the case of binary mixtures, explains the observation of quantum
droplets in a dipolar condensate. We note at this point that due to the anisotropy
of the dipole-dipole interactions, dipolar droplets differ from those of binary mix-
tures in the fact that they are elongated along the dipole direction, instead of being
spherical as in binary mixtures.

6.3 Extended Gross-Pitaevskii equation for a dipolar
condensate

In Sec. 2.2.2 we introduce the idea of extended Gross-Pitaevskii equation. In
2016, F. Wächtler and L. Santos introduced a non-local extended Gross-Pitaevskii
equation for the study of dipolar condensates, that includes both the mean-field in-
terplay between contact and dipole-dipole interactions, and the effects of quantum
fluctuations in local density approximation. The eGPE acquires the form:

iℏdΨ(r)
dt =

[
−ℏ2∇2

2m + Vext(r) + gn(r) +
∫

d3r′ Vdd(r − r′)n(r′)

+ 32
3
√
π
gn(r)

√
n(r)a3Q5(εdd)

]
Ψ(r). (6.3.9)

We note that this equation is obtained from the minimization of the energy func-
tional, in which one includes the effect of quantum fluctuations using local-density
approximation and the above-mentioned expression of the LHY correction in an
homogeneous dipolar condensate [WS16b]. We stress at this point that, as already
mentioned in previous chapters, the local-density approximation is generally cor-
rect if the main contribution to the LHY correction stems from short-wavelength
excitations. It was previously shown for typical values in the Thomas-Fermi regime
and the error was proven to be negligible [LP11]. However, in typical experiments
as the seminal ones of T. Pfau’s group [Kad+16], the quantum droplet is only in
Thomas-Fermi regime along the axial, z, direction. In the case of small droplets
the density profile was rather a Gaussian in radial direction. To check the validity,
Wächtler and Santos compared an adjusted LHY correction with a low momen-
tum cut-off with the full LHY and found, for typical values in the experiments,
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Figure 6.2: Different contributions to the extended Gross-Pitaevskii equation in
absolute value |µ|, considering a homogeneous density and εdd = 1.5
in all cases. In the log-log-plot, the attractive mean-field contribu-
tion (blue solid line) has a slope of 1 and dominates at low densities.
Whereas for 52Cr the three-body loss rate (grey dotted line) crosses the
curve of the mean-field energy before the beyond mean-field (BMF)
contribution (green dashed line) does, in 166Er and 164Dy the BMF
crosses first. This is crucial to understand why droplets have been ob-
served in 166Er and 164Dy, whereas collapse occurred in 52Cr. Reprinted
from [Cho+22].
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that the adjusted LHY correction is still ∼ 80 % of the total LHY correction. As
briefly discussed at the end of Chapter 7, the local-density approximation is in gen-
eral a very good approximation for typical experiments, even for relatively small
droplets. We finally note that numerical results based on Path Integral Monte
Carlo techniques have confirmed the validity of Eq. (6.3.9) for the description of
the droplets created in quench experiments [Sai16].

As for the case of binary mixtures, quantum stabilization allows for the realiza-
tion of self-bound dipolar droplets, and indeed their theoretical prediction based
on the eGPE 6.3.9 [Bai+16; WS16a] was quickly followed by their experimental
observation in T. Pfau’s group [Sch+16].

6.4 Dipolar supersolids

The presence of a sufficiently strong confinement along the dipole direction changes
the physics of dipolar droplets, resulting in a surprisingly rich physics, which is
absent in non-dipolar binary mixtures.

When we consider an ordinary liquid droplet and apply a compressional force
along a specific axis, e.g. the gravitational force, the droplet deforms and spreads
in perpendicular direction in order to maintain its density and volume. The same
happens in quantum droplets in binary mixtures. However, in the case of a polar-
ized dipolar system, we need to take the anisotropic character of the dipole-dipole
interaction into account. As mentioned above, quantum droplets acquire an elon-
gated shape along the dipole direction. The more particles enter the system, the
more elongated it gets while simultaneously keeping an optimal peak density. The
presence of a strong-enough confinement along the dipole direction changes this
picture. For a sufficiently large number of particles it becomes energetically unfa-
vorable to pile up particles in a progressively more elongated droplet. As a result,
the system minimizes its energy by creating more than one droplet. Moreover,
in an elongated trap (with its axis perpendicular to the dipole orientation) the
droplets arrange in a regular array due to the inter-droplet dipolar repulsion. The
formation of an array of quantum droplets was first reported by T. Pfau’s group
in Ref. [Wen+17].

The observation of a dipolar array opened naturally intriguing questions about
the possibility to observe a supersolid phase in dipolar condensates. Supersolids
constitute an intriguing state of matter that combines superfluidity and the crys-
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talline order characteristic of a solid [BP12]. Despite early success in the creation
of superfluidity in Helium this long-sought phase has remained elusive in these
systems [CHR13]. However, recent developments on ultra-cold gases have opened
new possibilities for its realization. Bose-Einstein condensates with spin-orbit cou-
pling [Li+17] and in cavities [Léo+17] have revealed supersolid features, although
with an externally imposed crystalline order. In contrast, recent breakthrough
experiments on dipolar condensates have opened an intriguing novel path for the
observation of supersolidity [Böt+20].

The first dipolar arrays with transient supersolid features were realized in dyspro-
sium experiments in G. Modugno’s group in Pisa in 2019 [Tan+19a], and quickly
after that by T. Pfau’s [Böt+19b] and F. Ferlaino’s [Cho+19] groups. In these
experiments the supersolid was formed in an elongated geometry (along a di-
rection perpendicular to the dipole orientation) after a quench of the scattering
length from a stable condensate into a mean-field unstable regime. Quenching
the scattering length to sufficiently low values results in the roton instability dis-
cussed in Sec. 5.5.2. Whereas in mean-field theory such an instability leads to
collapse, quantum stabilization results in the formation of the droplet array dis-
cussed above. If the scattering length is quenched to too low values, the induced
droplets become completely separated from each other, and hence an incoherent
droplet array occurs. This is the so-called individual droplet regime. However, for
an intermediate, relatively narrow, window of values of the final scattering length
after the quench, the droplets remain phase linked, and hence acquire supersolid-
like features. Subsequent experiments at F. Ferlaino’s group have realized the
supersolid regime directly by evaporative cooling, without the need of quench-
ing [Soh+21]. Later experiments studied the intriguing properties of the excita-
tion spectrum at the boundary between unmodulated condensates and supersolids
[Guo+19; Nat+19; Tan+19b]. The very recent creation of two-dimensional dipo-
lar supersolids [Nor+21; Bla+21] opens further fascinating perspectives for the
study of exotic supersolid pattern formation [ZMP19; ZPM21; Her+21; Pol+21]
and quantum vortices [Gal+20; Roc+20].
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Chapter 7

Quasi one-dimensional dipolar gas

In Chapters 2, 4 and 6 we have discussed how competing mean-field terms may
elevate the LHY correction to a crucial or even dominating term, while still being
in the weakly interacting regime. In Bose-Bose mixtures and in dipolar conden-
sates, quantum stabilization stems from the compensation between the attractive
residual mean-field interaction, proportional to the three-dimensional density n3D,
and the repulsive LHY correction, which in both systems is proportional to n3/2

3D
[Pet15; LP11]. As a result, there is a critical density at which both contributions
compensate.

Quantum fluctuations play an even more intriguing role in lower dimensions. In
particular, droplets are stabilized for a sufficiently low density in one-dimensional
Bose-Bose mixtures [PA16], against melting rather than collapse, by the competi-
tion of a residual repulsive mean-field term, proportional to the one-dimensional
density n1D, and the attractive LHY correction, proportional to −n1/2

1D . Note the
crucial change of sign of the LHY term in one-dimensional systems.

Whereas beyond-mean-field effects in three-dimensional Bose-Bose mixtures and
dipolar condensates are very similar due to the almost identical density dependence
of the quantum correction, we show in Sec. 7.2 that quantum fluctuations lead in
quasi one-dimensional dipolar condensates to a strikingly different physics com-
pared to their non-dipolar counterparts. This difference stems from the peculiar
momentum dependence of the dipole-dipole interactions in quasi one-dimensional
geometries [SS07]. As a result, not only is the density dependence of the quantum
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corrections very different, but even its sign may change due to the remarkable role
played by transversal directions in dipolar gases, even if the condensate is well
within the quasi-one-dimensional regime. We also show in Sec. 7.3 that, whereas
three-body correlations present the same density dependence in three-dimensional
dipolar and non-dipolar condensates [KSS85], they display in one-dimension a
radically different dependence.

The results of this chapter can be found in Ref. [Edl+17].

7.1 Quasi one-dimensional geometry

In the following, we consider dipolar bosons confined in the xy-plane by a harmonic
trap of frequency ω⊥, as sketched in Fig. 7.1. The axial direction, i.e. z, coincide
with the dipole polarization and remains un-trapped. The transversal confinement
is strong-enough, such that the absolute value of the chemical potential of the
system remains much smaller than the energy level spacing in the radial direction,
i.e. |µ| ≪ ℏω⊥. As a result, the condensate remains kinematically one-dimensional.
Consequently, we can assume that the condensate wave-function Ψ(r) is of the
form:

Ψ(r) = ψ(z)ϕ0(ρ) (7.1.1)
where

ϕ0(ρ) = e
− ρ2

2ℓ⊥√
πℓ⊥

(7.1.2)

is the ground state of the transversal trap, with ℓ⊥ =
√

ℏ
mω⊥

the harmonic oscillator
length in the radial direction.

The condition |µ|/ℏω⊥ ≪ 1 demands |1 − εdd| ≪ 1/2n1Da. This condition is
satisfied in all the calculations below.

7.1.1 Interactions

Let us recall the form of the interaction Hamiltonian (1.3.12)

Ĥint = 1
2

∫
d3r

∫
d3r′ Ψ̂†(r)Ψ̂†(r′)Vint(r − r′)Ψ̂(r′)Ψ̂(r). (7.1.3)
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Figure 7.1: Sketch of the system under consideration. A Bose gas is confined in
the radial direction ρ by a harmonic trapping with frequency ω⊥. The
chemical potential is much smaller than the energy level spacing in
radial direction, e.g. |µ| ≪ ℏω⊥. The dipoles are polarized along the
axial direction.

Using Eq. (7.1.1) we can re-write:

Ĥint = 1
2

∫
dz
∫

dz′ ψ̂†(z)ψ̂†(z′)Vint,1D(z, z′)ψ̂(z′)ψ̂(z), (7.1.4)

where Vint,1D is the interaction potential integrated over the radial directions, i.e.

Vint,1D(z, z′) =
∫

d2ρ
∫

d2ρ′ Vint(r − r′)|ϕ0(r′)|2|ϕ0(r)|2. (7.1.5)

Using the concrete from of ϕ0(ρ) from Eq. (7.1.2), the integration for the contact
interaction is straightforward and equals to g1D = g/2πℓ2

⊥. The dipole-dipole
interaction term is less obvious but can be found in the literature[SS07; Edl+17].
The complete quasi one-dimensional interaction potential in Fourier space then
reads[SS07; Edl+17]

Ṽint,1D(kz) = g1D
{
1 + εdd

[
3F (0, (kzℓ⊥)2/2) − 1

]}
(7.1.6)

where F (j, σ) = σj+1eσΓ(−j, σ), where Γ(−j, σ) is the incomplete Gamma func-
tion. The function F (0, kzℓ⊥) is monotonically increasing and takes values from 0
to 1. The momentum dependence of the dipolar term will play a crucial role in
the discussion below.
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Figure 7.2: Relevant collisional processes for the LHY correction. At the left, an
excited particle collides with a condensate particle changing its radial
quantum number. At the right, two condensate particles collide and
give two excited-state particles with opposite angular momentum, op-
posite axial linear momentum, and possibly different radial quantum
numbers.

7.2 Quantum fluctuations

Single-particle excited states are characterized by three quantum numbers (nρ,m,
kz) where nρ is the radial quantum number, m the angular momentum, and the
axial linear momentum is denoted by kz. Although, in quasi one-dimensional
contact-interacting systems, the transversal excitations with (nρ,m) ̸= (0, 0) play
a negligible role, in dipolar systems it may be crucially different. There are two
relevant types of interactions between particles in the condensate and excited states
we need to consider. They are sketched in Fig. 7.2. One relevant collision is when
a particle in (nρ,m, kz) collides with a particle in the condensate (0, 0, 0) and
ends in (n′

ρ,m, kz). Here the angular momentum quantum number m and the
linear momentum kz are preserved, but not necessarily the quantum number nρ.
However, as we will see later, processes where |nρ − n′

ρ| is large have only a small
contribution. The other dominant type of collision occur when two particles in the
condensate collide and form two particles in (nρ,m, kz) and (n′

ρ,−m,−kz). The
total angular moment and axial linear momentum remain zero, but the quantum
number nρ does not need to be conserved.

7.2.1 Interaction potentials for collisions with the condensate

For the derivation of the first-order energy correction we need to consider all modes
in the radial direction. The creation and annihilation operators in Eq. (7.1.3) can
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be re-expressed as a function of the Bose operators in the single-particle basis as
follows:

Ψ̂†(r) =
∑
kz

∑
nρ,m

Rnρm(ρ)eimϕeikzzânρm(kz) (7.2.7)

where the radial wave-functions are

Rnρ,m(ρ) = (−1)nρ

ℓ⊥
√
π

√√√√ nρ!
(nρ +m)!

(
ρ

ℓ⊥

)m

Lm
nρ

(
ρ2

ℓ2
⊥

)
e

− ρ2

2ℓ2
⊥ , (7.2.8)

with Lm
n being the generalized Laguerre polynomials.

To obtain the LHY correction, we proceed as in previous chapters. We apply the
Bogoliubov approximation and write down the second order contribution of the
interacting part of the Hamiltonian:

Ĥ
(2)
int
L

= (2πℓ⊥)2

2

∫ dq
2π

∑
m

∑
nρ,n′

ρ

Unρ,n′
ρ,m(q)

[
2â†

nρ,m(q)ân′
ρ,m(q)

+ â†
nρ,m(q)â†

n′
ρ,−m(−q) + ânρ,m(q)ân′

ρ,−m(−q)
]
, (7.2.9)

with

Unρ,n′
ρ,m(k) =

∫
dkρ kρṼint(k)Hm

[
Rnρ,m(ρ)R00(ρ)

]
Hm

[
Rn′

ρ,m(ρ)R00(ρ)
]

(7.2.10)

where we have introduced the m-th order Hankel transform Hm, defined as:

Hm[f(ρ)](kρ) =
∫

dρ ρf(ρ)Jm(kρρ) (7.2.11)

with Jm the Bessel function of the first kind. We can find an analytic solution of
these Hankel transformed expressions:

λnρm(kρ) := Hm

[
Rnρ,m(ρ)R00(ρ)

]
(kρ) = (−1)nρ(kρℓ⊥)2nρ+me−(kρℓ⊥)2/4

22nρ+m+1π
√
nρ!(nρ +m)!

(7.2.12)

The derivation is shown in the Appendix A.2. We should note here that two
functions λnρm, λn′

ρm with largely differing quantum numbers |nρ − n′
ρ| share very

little overlap. This justifies the claim we made earlier.

Since calculations are performed near the mean-field stability threshold of εdd = 1
in the following, for simplicity, we set it explicitly to this value and evaluate the
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integral in Eq. (7.2.10) with the help of Eq. (3.383.10) from [GR94]

Unρ,n′
ρ,m(kz) = g1Dn1D

6(−1)nρ+n′
ρ

2nρ+n′
ρ+m+1

√√√√(nρ + n′
ρ +m

nρ

)(
nρ + n′

ρ +m

n′
ρ

)

×F
(
nρ + n′

ρ +m,
(kzℓ⊥)2

2

)
. (7.2.13)

When we consider εdd = 1 in Sec. 7.1.1 we obtain an ideal, one-dimensional con-
densate where the dipolar and contact interactions perfectly cancel each other, i.e.
Ṽdd(0) = U000(0) = 0. Note, that this does not imply that there are no contribu-
tions stemming from transversal excitations. In fact, they may be of the order of
g1Dn1D and hence non-negligible.

7.2.2 Deriving the LHY correction

Following the technique discussed in Chapter 3, the LHY correction of the ground-
state energy, ∆ELHY, can be obtained by solving the differential equation

ELHY − 1
2c

d
dcELHY = χ(c) (7.2.14)

where ELHY = ∆ELHY
L

is the one-dimensional LHY energy density and c := n1Da =
g1Dn1D/2ℏω⊥. Following the same procedure as in Chapter 3 we obtain the fol-
lowing expression

χ(c) = 1
2
∑
m

∫ dkz

2π
∑
ν,nρ

(
ℏ2kz

2

2m + ℏω⊥(2nρ +m) − εν

)
v2

nρ,ν . (7.2.15)

We obtain the eigenenergies and eigenfunctions of the elementary excitations for
each value of m and kz from the Bogoliubov-de Gennes equations:

εν

(
uν

vν

)
=
(
Êm(kz) + Ûm(kz) Ûm(kz)

−Ûm(kz) −Êm(kz) − Ûm(kz)

)(
vν

uν

)
(7.2.16)

where we introduced the matrices
[
Êm(kz)

]
nρ,n′

ρ

=
(
ℏ2kz

2

2m + ℏω⊥(2nρ +m)
)
δnρ,n′

ρ
, (7.2.17)
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and [
Ûm(kz)

]
nρ,n′

ρ

= Unρ,n′
ρ,m(kz). (7.2.18)

To solve the differential equation in (7.2.14), we use the ansatz ELHY = c2G(c).
Inserting this ansatz into Eq. (7.2.14) we obtain a simplified equation for the
function G(c):

G′(c) = −2χ(c)
c3 (7.2.19)

where G′(c) is the derivative with respect to c. Integrating Eq. (7.2.19) we get

G(c) = G(c0) −
∫ c

c0
dc′ 2χ(c′)

(c′)3 , (7.2.20)

for a given c0. Plugging this back into the ansatz for ELHY we obtain

ELHY(c) = c2
[
G(c0) − 2

∫ c

c0
dc′ χ(c′)

(c′)3

]
. (7.2.21)

Note that, as discussed above, we can evaluate the function χ(c) from the Bogoli-
ubov modes. However, the integration constant G(c0) cannot be determined from
that calculation. This constant, which eventually results in a regularization of the
mean-field coupling constant (note that it provides an energy density proportional
to n2

1D), is established by comparing the LHY correction with that expected for
large densities. For growing c, the interactions couple more and more transversal
modes, and highly excited transversal modes eventually dominate the LHY cor-
rection. As a result, the LHY correction necessarily tends to its three-dimensional
form, and one may safely assume local-density approximation along the radial
Gaussian profile of the condensate. Hence, for c ≫ 1, the LHY correction ap-
proaches the form ELHY∞(c) = γ3Dc

5/2, where γ3D = 256
√

3π
5

ℏω⊥
ℓ

was obtained from
the prefactor of the LHY-correction in three-dimensions integrated over the radial
directions. Hence the asymptotic form of G(c) is G∞(c) = γ3Dc

1/2, and that of
χ(c) is therefore:

χ∞(c) = −γ3D

4 c5/2. (7.2.22)

We obtain indeed this asymptotic result from our numerical determination of χ(c)
from Eq. (7.2.15). In order to determine G(c0), we re-express G(c) in the form:

G(c) = G(c0) − 2
∫ c

c0
dc′

[
χ(c′) − χ∞(c′)

(c′)3

]
− 2

∫ c

c0
dc′ χ∞(c′)

(c′)3 (7.2.23)

= G(c0) − γ3Dc
1/2
0 − 2

∫ c

c0
dc′

[
χ(c′) − χ∞(c′)

(c′)3

]
+ γ3Dc

1/2. (7.2.24)
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Since G(c → ∞) = γ3Dc
1/2, then

G(c0) = γ3Dc
1/2
0 + 2

∫ c→∞

c0

[
χ(c′) − χ∞(c′)

(c′)3

]
dc′, (7.2.25)

where the last integral is evaluated from our numerical determination of χ(c).
Note that this evaluation is particularly challenging since it involves evaluating
the effect of many radial modes. This in practice demands a careful extrapolation
of results to an infinite number of transversal modes. Once the constant G(c0) is
determined in this way, we may express the LHY correction as a term proportional
to n2

1D plus terms of higher order in n1D.

The term proportional to n2
1D, as mentioned above, amounts for a correction of

the mean-field coupling constant g. This correction has been calculated using a
different method in Ref. [PP21]. As pointed in that paper, the correction of the
mean-field coupling constant is of the form: g → g (1 + 0.36a/ℓ⊥), i.e. the LHY
correction of the mean-field term is repulsive. We should mention at this point
that in the published version of our work this correction was improperly deter-
mined as attractive g (1 − 4.24a/ℓ⊥) due to an error in the determination of G(c0).
However, as pointed in Ref. [PP21] this does not compromise our main results,
since the error in the determination of the n2

1D term in the LHY correction may
be easily compensated by properly shifting the mean-field term. Hence, instead
of considering the case εdd = 1 for which the mean-field cancels, we will consider
in the following a slightly shifted value, εdd ≃ 1 + 4.6a/ℓ⊥, such that the resid-
ual mean-field energy compensates the error in the determination of the n2

1D term
of the LHY correction. With this regularization (which does not affect the LHY
correction itself, since it would contribute to higher orders), we recover the results
of our publication, which are slightly reworked below taking into account the new
definition of εdd.

Figure 7.3 shows the chemical potential, ∆µLHY + µMF = d
dn1D

ELHY+EMF
L

, as a
function of n1Da. For low densities, n1Da ≪ 1, the LHY correction, in addition
to the n2

1D dependence, which for the shifted value of εdd is attractive, presents a
repulsive term with a steeper power law (dominantly n3

1D at low densities) given by
the progressively more relevant role played by the transversal degrees of freedom.
As a result the chemical potential reaches a minimal value at n1Da ∼= 0.2. It then
increases further and becomes positive for n1Da ≳ 0.45. Note that, as expected
from our discussion above, for n1Da ≫ 1 the chemical potential acquires the n3/2

1D
characteristic of the three-dimensional LHY correction.
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Figure 7.3: Dimensionless function Λ = µ
ℏω⊥

ℓ⊥
a

showing the change of the chemical
potential caused by the LHY correction as a function of n1Da. The
inset shows the energy per particle as a function of n1Da.

7.2.3 Self-bound droplets

The inset of Fig. 7.3 shows the energy per particle for different n1Da. It features
a minimum at (n1Da)opt ∼= 0.3. It is hence energetically favorable for the system
to posses densities at this value. We stress that this energy minimum results
from the compensation of the residually attractive n2 term (resulting from the
regularized mean-field term) and LHY terms of higher-order in n1D (most notably
a n3

1D dependence). The existence of this minimum results in the formation of
self-bound droplets, which constitute the one-dimensional equivalent of the three-
dimensional ones discussed in previous chapters. Note the crucial difference of this
mechanism to that previously discussed in Ref. [PA16] for 1D Bose-Bose mixtures,
where droplets were stabilized against melting rather than collapse due to the
competition between a residual repulsive mean-field term, proportional to n2

1D,
and an attractive LHY correction, proportional to −n3/2

1D .

In the following, we study the formation of these one-dimensional quantum droplets,
considering an axially un-trapped, but possibly self-bound, condensate with axial
width R ≫ ℓ⊥. In this case, the use of the local density approximation (along the
axial direction) is well justified, since the momenta contributing most to the LHY
correction fulfill kR ≫ 1. The extended Gross-Pitaevskii equation in this quasi
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-
-

-

Figure 7.4: (a) Ground-state density profile obtained for N = 5000 and a/ℓ⊥ =
0.01, 0.0175, 0.025 from an eGPE analysis (left) and with a GPE in
absence of LHY correction (right). In the left panel one clearly sees
the saturation of the density resulting from the minimum of the energy
per particle minimum shown in the inset of Fig. 7.3.

one-dimensional geometry reads

µψ(z) =
{

−ℏ2

2m
d2

dz2 +
∫ dkz

2π Ṽint,1D(kz)ñ1D(kz)eikzz + ∆µLHY[n1D(z)]
}
ψ(z).

(7.2.26)

where ñ1D(kz) is the Fourier transform of n1D(z).

Figure 7.4 show our results for N = 5000 particles, and a/ℓ⊥ = 0.01, 0.0175, 0.025,
with εdd = 1 + 4.6a/ℓ⊥. As seen in the left panel of Fig. 7.4, as soon as the system
has enough particles to reach the optimal peak density, (n1Da)opt, any additional
particle will rather be put at the sides of the density distribution than in the
center, leading to a flat-top density profile. The right panel of Fig. 7.4 shows
our results when one neglects the effects of quantum fluctuations. Note that, for
the same parameters, the situation is dramatically different. In that case, since
for εdd = 1 + 4.6a/ℓ⊥ the mean-field term is slightly attractive. As expected for
one-dimensional systems, the condensate does not collapse, as it would in three
dimensions, but rather forms a bright soliton, with a density profile given by the
equilibration of mean-field attraction and kinetic energy. The density profile is
hence radically modified, and instead of a flat-top one observes a Gaussian-like
distribution.

In the left panel of Fig. 7.5 we evaluate the peak density of the droplet for different
values of εdd ≳ 1 and small a/ℓ⊥, by solving the extended Gross-Pitaevskii equation
(7.2.26), for a number of particles N = 5000. Note that the peak density npeak

1D a is
plotted in a logarithmic scale. As discussed above, the LHY correction regularizes
the mean-field n2

1D term, such that for low densities the overall energy becomes of
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Figure 7.5: Peak density as a function of a/ℓ⊥ and εdd obtained for N = 5000 par-
ticle from an eGPE analysis (left) and a GPE without LHY correction
(right). The red curve shows the stability threshold, at which the n2

1D
energy dependence changes sign. For values of εdd at the left of that
curve no self-bound solution is possible. The red circles correspond to
the cases depicted in Fig. 7.4.

the form:
Etot

L

n1D→0∼= 1
2

[
1 − εdd + 0.3645 a

ℓ⊥

]
g1Dn

2
1D. (7.2.27)

Due to the repulsive character of the rest of the LHY energy, the existence of
self-bound solutions requires an attractive n2

1D term, which clearly demands εdd >
1 + 0.3645 a

ℓ⊥
(red line in Fig. 7.5), which is a slight correction to the mean-field

condition εdd > 1.

For values of εdd = 1 + αa/ℓ⊥ for a given value of α, the energy per particle
(recall the inset of Fig. 7.3) presents a minimum for the same value of n1Da,
and hence the optimal density (n1Da)opt is the same. This is exemplified by the
red circles in the left panel of Fig. 7.5, which corresponds to the density profiles
depicted in the left panel of Fig. 7.4. Note that for a sufficiently large a/ℓ⊥
the peak density reaches the optimal value, and it becomes independent of a/ℓ⊥
as long as the points lie on the same εdd = 1 + αa/ℓ⊥ line. We stress that this
optimal density is eventually independent of the number of particles, if that number
is sufficiently large. Of course, for a sufficiently large εdd > 1 the transversal
energy level spacing becomes comparable to the chemical potential, µ ≳ ℏω⊥, and
the condensate crossovers into the 3D regime, where the repulsive LHY prevents
collapse. This would correspond to the elongated 3D macro-droplet regime, which
has been already studied experimentally [Cho+16].
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As mentioned above, the situation is radically different in the absence of LHY
corrections. The right panel of Fig. 7.5 depicts the peak density obtained from
purely mean-field calculations. One clearly sees a much higher peak density, which
has a completely different scaling with εdd and a/ℓ⊥. In particular, one clearly
looses the universality of the peak density along the εdd = 1 +αa/ℓ⊥ lines, as seen
from the different peak densities experiences for the three cases indicated with red
circles. Moreover, the peak density does depend on N , since the flat-top feature
is lost.

7.3 Local three-body correlation

The lifetime of cold-gases experiments is typically limited at sufficiently large den-
sities by three-boy losses. These losses result from three-body interactions in which
two of the partners form a dimer and the third one carries the excess energy. As a
result all three particles are lost [Hal+11]. Three-body losses scale with the cube
of the density, and may be modeled by a rate equation of the form:

ṅ = −αK(3)g(3)n3 (7.3.28)

where α is equal to three when in the process all three involved particles escape the
system [Hal+11]. The parameter K(3) contains information about the few-body
physics during the process and hence depends on the scattering length [Chi+10].

The last term g(3) is the local three body-correlation,

g(3) =

〈
(Ψ̂†)3Ψ̂3

〉
n3 . (7.3.29)

In mean-field approximation the three-body correlation for a Bose-condensed sys-
tem fulfills g(3) = 1. Including quantum fluctuations may introduce a significant
change ∆g(3), hence modifying the three-body loss rate. For a homogeneous three-
dimensional non-dipolar condensate with density n3D the correction to the three-
body correlation behaves like ∆g(3) = 64√

π

√
n3Da3 [KSS85]. This correction has

been probed in cold-atom experiments [Hal+11].

When dipoles are included, the correlation is similar, namely ∆g(3) = 64√
π

√
n3Da3(1+

Cε2
dd), with C ∼= 0.3 [Edl+17]. The dipoles introduce a shift which can be tuned

via εdd. Note, that the correction has the same density dependence as for the
non-dipolar case.
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Three-body correlations are radically different in a quasi-one dimensional geome-
try. For a non-dipolar system, the correction follows the dependence:

∆g(3) = −6
π

√
2a

n1Dℓ2
⊥

(7.3.30)

where
√

2a
n1Dℓ2

⊥
is chosen such that it is much smaller than one [GS03]. Note that the

correction is now negative, i.e. in quasi-one dimensional systems quantum effects
reduce three-body correlations. This must be compared to the three-dimensional
case, where the correction term had a positive sign. A second relevant feature to
note is that the quantum correction increases with a decreasing density. This is
a peculiar feature of one-dimensional systems, which are more strongly-correlated
when the density decreases. This results directly from the comparison between
the kinetic energy, which scales with n2

1D, and the interaction energy, which scales
with n1D. As a result, the system gets more interacting when n1D decreases.

The correction of g(3) averaged over the transversal degree of freedom may be
evaluated from the LHY correction using Hellmann-Feynman theorem

∆g(3) =
∫ d3r

L

ϕ4(x, y)∫
dx′ dy′ ϕ4(x′, y′)

〈(
Ψ̂†(r)

)3
Ψ̂3(r)

〉
n3(r) . (7.3.31)

By applying the Bogoliubov approximation from Eq. (1.3.14) and keeping only the
first non-vanishing quantum fluctuation term, we can re-express the three-body
correlation, i.e.〈

(Ψ̂†)2(r)Ψ̂2(r)
〉 ∼= n2(r) + n(r)W (r)〈

(Ψ̂†)3(r)Ψ̂3(r)
〉 ∼= n3(r) + 3n2(r)W (r)

 ⇒
〈
(Ψ̂†)3Ψ̂3

〉
n

= 3
〈
(Ψ̂†)2Ψ̂2

〉
− 2n2

(7.3.32)

where W (r) =
〈

(δ̂ψ)2 + δ̂ψ
2 + 2δ̂ψδ̂ψ

〉
contains all terms with two fluctuation

operators. Inserting this into the integral of (7.3.31) and employing the Hellmann-
Feynman theorem we get the correction to the correlation function:

∆g(3) = 6
n2

1D

∂∆ELHY/L

∂g1D
= − 6

π

√
2a

n1Dℓ2
⊥
β(εdd, n1Da) (7.3.33)

where β(εdd, n1Da) is depicted in Fig. 7.6 [Edl+17]. For all values of n1Da it is
negative and hence the local three-body correlation correction ∆g(3) is positive, as
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Figure 7.6: Correction of the three-body correlations β (see text) for εdd = 1. For
larger values of n1Da the depicted β/(n1Da) is converging to a constant
value. Hence β has a linear dependence on n1Da featuring the same
behavior for the correlation as in a three dimensional system.

for a three-dimensional system. It is to be noted that this functional behavior for
small values of n1Da occurs despite the fact that the condensate remains in the
quasi one-dimensional regime. Note, finally, that for growing n1Da the correction
of β(εdd, n1Da) converges to that expected for a 3D system, and hence ∆g(3) scales
as √

n1D.

7.4 Radially-untrapped systems

In this final section of the chapter we discuss a calculation, in which we employ
a formalism similar to that discussed above in order to estimate the validity of
the local density approximation for the description of quantum droplets. In 2019
experiments analyzed the critical atom number for a self-bound droplet as a func-
tion of the scattering length [Böt+19a]. The experimental data presented a sizable
discrepancy with the theoretical curve obtained by means of simulation of the cor-
responding three-dimensional eGPE. Several reasons could explain the observed
discrepancy. One of these reasons could be the lack of validity of the local density
approximation along the radial direction of the droplet. Note that dipolar droplets
are significantly elongated along the dipole direction. As a result, whereas one may
expect that the local-density approximation could be justifiable along the droplet
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axis, it may be less valid across the transversal directions. We discuss this possi-
bility in this section. We do it relatively briefly, since the final result is actually
that the local density approximation works for typical parameters very well, also
in the transversal direction of the droplet.

In order to address this issue, we considered the following model. We assume a
dipolar condensate uniform along the dipole direction z, but Gaussian-like on the
xy plane. We assume no trapping, also not on the xy plane, but we impose the
Gaussian-like transversal profile anyway, since that profile will be similar to that
of a droplet. We may then proceed in a similar way as above for the calculation of
the LHY correction, but we need to take into account that there is no trapping on
the xy plane. Wheres the interaction part is unaffected, the non-interacting part
of the Hamiltonian, Ĥ0, needs some adjustments:

Ĥ0

L
=
∑

nρ,n′
ρ

m,m′

∫ dkz

2π

∫ dk′
z

2π e
i(kz−k′

z)z
∫

dρ
∫

dϕ ei(m−m′)ϕ

Rn′
ρ,m′(ρ)

[
ℏ2kz

2

2m − −ℏ2∇2
ρ

2m

]
Rnρ,m(ρ)â†

n′
ρm′ (kz)ânρm (kz) (7.4.34)

=
∑

nρ,n′
ρ

m,m′

∫ dkz

2π


[
ℏ2kz

2

2m + ℏω⊥(2nρ +m+ 1)
]
δnρn′

ρ
δmm′ − C

â†
n′

ρm′ (kz)ânρm (kz)

(7.4.35)

where C

C = mω2
⊥

2 ℓ2
⊥δm,m′(−1)nρ+n′

ρ

√√√√ nρ!
(nρ +m)!

n′
ρ!

(n′
ρ +m′)!

∫ ∞

0
dx xm+1e−xLm

nρ
(x)Lm′

n′
ρ

(x)

(7.4.36)

With the Eq. (8.971.4) and (8.971.5) from [GR94] and the orthogonality property
of the Laguerre polynomials we see that we only have to deal with three non-
negligible cases. The sum over all m′ of C is

∑
m′

C = ℏω⊥

2


√
nρ(nρ +m), n′

ρ = nρ − 1
2nρ +m+ 1, n′

ρ = nρ√
(nρ + 1)(nρ +m+ 1), n′

ρ = nρ + 1
(7.4.37)

The rest of the derivation is similar to the one in the previous section. In the end
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one obtains the differential equation (7.2.14) with the function χ(n1D)

χ(n1D) = 1
2

1
2π

∑
ν

∑
nρ,m

∫
dkz

{
[ϵnρm(kz) − εν ]v2

ν;nρ,m(kz)

− Λnρ,mvν;nρ,m(kz)vν;nρ+1,m(kz)

− Λnρ−1,mvν;nρ,m(kz)vν;nρ−1,m(kz)
}

(7.4.38)

where ϵnρm(kz) = (ℏ2kz
2

2m
+ℏω⊥

2 (2nρ+m)) and Λnρ,m = ℏω⊥

√
(nρ + 1)(nρ +m+ 1).

When solving the eGPE for a radially un-trapped system one needs to solve it
first with an arbitrarily value of ω⊥. This needs to be re-done until the system
energy (including the LHY correction) is minimized with respect to ω⊥. The
comparison of the results of this analysis to those obtained from direct application
of the three-dimensional LHY energy in local density approximation (i.e. as it is
typically employed in the eGPE analysis of quantum droplets) shows, however,
that the local density approximation is actually very good even in the transversal
direction of the droplet. Moreover, the small corrections resulting from deviations
from the 3D local-density approximation approach results in a shift in the critical
number of particles, which is in the opposite direction as the shift observed in
experiments. We hence conclude from this analysis that the discrepancy between
the eGPE theory and experiments is not due to the lack of validity of the local
density approximation.

7.5 Conclusions

Whereas in three-dimensional condensates the LHY correction for a dipolar con-
densate has a very similar form as that for a non-dipolar one (just differing in the
prefactor), the momentum dependence of the dipolar interactions leads to strik-
ingly different quantum effects in quasi one-dimensional dipolar condensates com-
pared to their non-dipolar counterparts. In a dipolar condensate, in addition to a
regularization of the mean-field energy, the coupling with transversal modes results
in additional repulsive terms scaling steeper with the one-dimensional density (in
particular a cubic term at low densities). In a quasi-one-dimensional non-dipolar
condensate, the LHY term is attractive, and as a result a droplet may occur for a
repulsive mean-field due to quantum stabilization against expansion rather than
against collapse. In contrast, one-dimensional dipolar condensates present droplets
which closely resemble those formed in three-dimensional scenarios. The repulsive
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mean-field terms scaling with a higher power than n2
1D, may compensate an attrac-

tive n2
1D term, and result in flat-top droplets that differ very significantly from the

usual bright solitons expected under those circumstances in a mean-field Bose gas.
As a result, we have shown that the peak density is strikingly different compared
to the non-dipolar case. Quasi-one-dimensional dipolar condensates hence pro-
vide an exciting new scenario for the study of flat-top droplets, and in general for
the analysis of the effects of quantum fluctuations in low-dimensional geometries,
including e.g. the modification of three-body loss rates.
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Chapter 8

Conclusion and Outlook

In this Thesis, we have discussed how quantum fluctuations can lead to novel
intriguing physics for Bose systems well within the weakly-interacting regime. In-
deed, the Lee-Huang-Yang correction results in observable phenomena that are
fully missed by a purely mean-field theory. This remarkable and surprisingly
important role played by quantum fluctuations results on one side from the com-
petition of two types of mean-field interactions, which quasi-cancel each other.
Those may be intra- and inter-component interactions in binary mixtures, or con-
tact and dipole-dipole interactions in dipolar condensates. In this Thesis, we have
considered both scenarios, non-dipolar mixtures and dipolar gases.

In the first part of the Thesis we focused on the physics of binary mixtures. In ad-
dition to the by now well-known stabilization mechanism for a self-bound droplets
in a bosonic mixture, we showed that quantum fluctuations may also significantly
change other general and well established properties of Bose mixtures. We con-
sider in particular, a peculiar immiscible binary mixture, in which one of the
components has enhanced quantum fluctuations, whereas the other is well de-
scribed in mean-field. We discussed that such a peculiar mixture may be attained
in three-component Bose systems, in which two of the components form a misci-
ble mixture (forming an effective scalar condensate) in the regime of mean-field
quasi-cancellation. This effective scalar component is immersed in a bath formed
by a third component, immiscible with the other two. The system then behaves
as the desired effective binary immiscible system, in which one of the components
presents an enhanced role of quantum fluctuations. We the showed that the prop-
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erties of this effective binary mixture significantly departs from those known in
standard immiscible Bose-Bose mixtures. We considered in particular the behav-
ior of a quantum bubble formed by the miscible components immersed in the bath
of the other component. We showed that quantum fluctuation alter the equilib-
rium of pressures, leading to a modified dependence of the volume of the quantum
bubble as a function of the bath density. Moreover, the criterion for buoyancy of
the bubble is very significantly modified by quantum fluctuations. Interestingly,
once buoyancy sets in, there is an intermediate regime in which buoyancy is ar-
rested, i.e. the bubble occupies an intermediate position between the center and
the surface of the trapped bath, in stark contrast to the immediate buoyancy from
the center to the surface occurring in mean-field mixtures. Finally, once the bub-
ble reaches the surface it remains compact floating there, since it transitions into
a quantum droplet, rather than spreading over the bath surface as in standard
mean-field immiscible Bose-Bose mixtures.

The second part of the Thesis, was devoted to the study of the effect of quantum
fluctuations in dipolar Bose-Einstein condensates. We have focused in particular
on the role of those fluctuations in quasi-one-dimensional geometries. Interest-
ingly, due to the peculiar momentum dependence of the dipole-dipole interactions
in those geometries, the effects of quantum fluctuations in dipolar condensates
differ radically from those expected in their non-dipolar counterparts, including
Bose-Bose mixtures. The coupling with transversal modes leads to a crossover of
the Lee-Huang-Yang energy from its one-dimensional dependence into its three-
dimensional one (assuming local density approximation along the transversal di-
rections). We showed that such a crossover, which cannot be described using the
standard Bogoliubov approach due to difficulties related to the cure of ultravio-
let divergences, may be accomplished using the Hugenholz-Pines technique. Our
results show that the LHY correction determined in this way changes radically
the physics of quasi-one-dimensional dipolar condensates. In particular, the re-
pulsive LHY terms correcting the mean-field results, scales more steeply with the
linear density, n1D, than the mean-field (which scales with n2

1D). This is in stark
contrast with binary mixtures, where the LHY correction at low densities is neg-
ative and scales with n

1/2
1D . As a result, whereas in quasi-one-dimensional binary

mixtures quantum droplets are stabilized against expansion by the LHY for a
repulsive mean-field, for the dipolar case, droplets are stabilized against soliton
formation for a residually attractive mean-field interaction. As a consequence, the
condensate density profile (which acquires eventually a flat-top form) differs radi-
cally from the soliton profile expected in mean-field theory. Quasi-one-dimensional
dipolar condensates hence provide an intriguing novel scenario for the study of the
effects of quantum fluctuations in low-dimensional geometries, including e.g. the
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modification of three-body loss rates.

Our results of the first part of the Thesis show that quantum fluctuations may
significantly change not only the stability, but also other well-established proper-
ties of Bose mixtures, as the buoyancy effect. A similar physics could be observed
in immiscible binary mixtures, in which at least one of the components (forming
the quantum bubble) is dipolar within the regime of mean-field quasi-cancellation.
This could be an interesting topic for future studies. The physics may be however
very non-trivial, since the nonlocal anisotropic character of the dipole-dipole inter-
action may significantly affect how the bath affects the quantum bubble, and the
droplet properties in general, and buoyancy in particular, may depend non-trivially
on the geometry of the bath. Another interesting scenario for future studies could
be that in which the bath is itself a quantum droplet.

Concerning the second part of the Thesis, the application of the Hugenholz-Pines
technique may be extended to other geometries, such as e.g. two-to-three dimen-
sional crossover. Moreover, one may study how a modification of the transversal
confinement (e.g. a non-harmonic confinement) may affect the condensate proper-
ties (since it modifies the transversal states, and with it the LHY energy correc-
tion). The physics of low-dimensional dipolar systems, including their dynamics,
may be hence a fruitful topic for future studies.
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Appendix

A.1 The Fourier transformed dipole-dipole potential

In this Appendix we derive, following Ref. [SSC12], the Fourier transform of the
dipole-dipole interaction potential, introduced in Eq. (5.1.2):

Vdd(r) = Cdd

4π
1 − 3 cos2 θr

r3 . (A.1.1)

The Fourier transform, in addition to provide physical insights on the properties
of dipolar gases, is particularly useful in numerical calculations, due to the fact
that the spatial 1

r3 dependence diverges at r = 0. Such a problem is avoided, as
seen below, when working in the Fourier domain.

For the Fourier transform we employ the convention

Ṽdd(k) = F [Vdd(r)] (k) =
∫ Cdd

4π
1
r3 (1 − 3 cos2 θr)e−ik·r d3r (A.1.2)

We need to perform two replacements before we can continue with the evaluation
of the integral above. First we notice that:

1 − 3 cos2 θr = −4
√
π

5Y20(θr) (A.1.3)
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where Ylm are the spherical harmonics. Second, one can employ the expansion of
a plane wave in spherical harmonics:

e−ik·r = 4π
∞∑

l=0
iljl(kr)

l∑
m=−l

Ylm(θr, φr)Ylm(θk, φk) (A.1.4)

where jl is the l-th spherical Bessel function of first kind.

Plugging (A.1.3) and (A.1.4) into (A.1.2)

Ṽdd = −4
√
π

5Cdd

∫
dr 1

r

∫
dθr sin θr

∫
dφr Y20(θr)

×
∞∑

l=0
iljl(kr)

l∑
m=−l

Ylm(θr, φr)Ylm(θk, φk) (A.1.5)

We can make use of the orthonormality of the spherical harmonics:∫
dθr sin θr

∫
dφr Y20(θr)Ylm(θr, φr) =δl2δm0, (A.1.6)

obtaining

Ṽdd = 4
√
π

5Cdd

∫
dr 1

r
j2(k · r)Y20(k) (A.1.7)

Using that
∫

dr 1
r
j2(kr) = 1

3 we can simplify the expression:

Ṽdd = 4
3Cdd

√
π

5Y20(k) (A.1.3)= Cdd

3 (3 cos2 θk − 1) (A.1.8)

A.2 Evaluation of Eq. (7.2.12)

In this Appendix we provide a detailed derivation of Eq. (7.2.12), which we em-
ployed in the analysis of quantum fluctuations in quasi-one dimensional dipolar
condensates.

By inserting the radial wave-functions Rnr,m(ρ) and R0,0(ρ) into the Hankel trans-
form, we obtain

λnr,m(kρ) =
∫ ∞

0
dρ ρRnr,m(ρ)R0,0(ρ)Jm(kρρ)

=
∫ ∞

0
dρ ρ(−1)n

l⊥
√
π

√
n!

(n+m)!

(
ρ

l⊥

)m

Lm
n

(
ρ2

l2⊥

)
e−ρ2/2l⊥

1
l⊥

√
π
e−ρ2/2l⊥Jm(kρρ)

= (−1)n

l2⊥π

√
n!

(n+m)!

∫ ∞

0
dρ ρ

(
ρ

l⊥

)m

Lm
n

(
ρ2

l2⊥

)
e−ρ2/l⊥Jm(kρρ) (A.2.9)
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A.2 Evaluation of Eq. (7.2.12)

Introducing the dimensionless variables ρ̃ := ρ
l⊥

and k̃ρ := kρl⊥, we may re-write:

λnr,m(kρ) = (−1)n

π

√
n!

(n+m)!

∫ ∞

0
dρ̃ ρ̃m+1Lm

n (ρ̃2)eρ̃2
. (A.2.10)

Using Eq. (7.421.4) of Ref. [GR94] we find

λnr,m(kρ) = (−1)n

π

√
n!

(n+m)!2
−m−1k̃m

ρ e
−k̃2

ρ/4Λ(k̃2
ρ) (A.2.11)

where with the help of Eq. (8.970.1) in [GR94], we can re-write Λ(k̃2
ρ) = limδ→0(−δ)n

Lm
n

(
k̃2

ρ

4δ

)
in the form:

Λ(k̃2
ρ) = lim

δ→0
(−δ)n

n∑
j=0

(−1)j

(
n+m

n− j

)
1
j!

(
k̃2

ρ

4δ

)j

. (A.2.12)

Note that the terms do not vanish, only in the case of j = n, which leads us to
Eq. (7.2.12).
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