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Abstract
Dipolar Bose–Einstein condensates in an array of double-well potentials realize an effective transverse
Isingmodel with peculiar inter-layer interactions, thatmay result under proper conditions in an
anomalousfirst-order ferromagnetic–antiferromagnetic phase transition, and non-trivial phases due
to frustration. The considered setup allows aswell for the study of Kibble–Zurek defect formation,
whose kink statistics follows that expected from the universality class of themean-field one-
dimensional transverse Isingmodel. Furthermore, randomoccupation of each layer of the stack leads
to random effective Ising interactions and local transverse fields, thatmay lead to theAnderson-like
localization of imbalance perturbations.

1. Introduction

Anew generation of experiments with ultra-coldmagnetic atoms [1–4], polarmolecules [5–8], andRydberg-
dressed atoms [9] are starting to reveal novel fascinating physics of dipolar gases.Whereas in non-dipolar Bose
gases inter-particle interactions are short-range and isotropic, dipolar gases present significant or even
dominant dipole–dipole interactions(DDI), which are long-range and anisotropic. As a result, the physics of
dipolar gases strongly differs from that of their non-dipolar counterparts [10, 11], featuring effects such as
geometry-dependent stability [12], roton-like excitations [13, 14] and roton-dominated immiscibility [15, 16],
strongly anisotropic vortices [17–19] and solitons [20, 21], ferrofluidity [22, 23] and anisotropic superfluidity
[24], striped patterns [25], specificmesoscopic configurations trapped in triple potential wells [26], double- and
triple-periodic ground states in lattices populated by dipolar atoms [27], and the recent discovery of robust
quantumdroplets [28, 29].

Dipolar gases in optical lattices are also remarkably differentfrom their non-dipolar counterparts [10, 11].
Whereas in the absenceofDDI, interparticle interactions indeep lattices reduce to on-site nonlinearity, theDDI
result in inter-site interactions. The latter is true even for very strong lattices, inwhich inter-site tunneling vanishes.
As a result, dipolar lattice gases allow for the transport of excitations in the absenceofmass transfer. Recently, spin-
like transportwas studied in gases ofmagnetic atoms [4] andpolarmolecules [6], where the spinwas encoded,
respectively, in the electronic spin and in the rotational degree of freedom.Thedipole-induced spin exchange and
Ising interactions result in an effectiveXXZHamiltonian [30, 31]. It has been recently shown that in an imperfectly
filled lattice the dipole-induced spin exchangemay result in a peculiar disorder scenario [32].

In this paper, we discuss a set-up that permits for coding spin-like systems into a spatial degree of freedomof
a dipolar Bose–Einstein condensate(BEC). The condensate is prepared in a stack of layers of two-well potentials
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that emulate an effective spin-1/2 system(see figure 1). This set-up realizes a transverse Isingmodel with a
peculiar formof long-range interactions that results in an unconventional first-order ferromagnetic–
antiferromagnetic transition, as well as in phases with anomalous periodicities due tomagnetic frustration.
Since the parametersmay be easily changed in real-time themodel allows aswell for quenching through second-
order phase transitions, as we illustrate for the particular case of a transition froman effective paramagnet into a
ferromagnet.We show that the associated defect formation follows theKibble–Zurek(KZ) [33–35] scaling
expected from the universality class of themean-field one-dimensional transverse Isingmodel. Furthermore, we
show that random layerfilling results in an effective disorder in both the Ising-like interactions and the local
transverse field, allowing for the observation of Anderson-like localization of imbalance perturbations.

The paper is organized as follows. In section 2we introduce the set-up and derive the effective long-range
transverse Isingmodel. Section 3 discusses the corresponding ground-state phases, whereas section 4 comments
on the formation of KZ defects. Section 5 discusses the effective disorder resulting from random layerfilling and
the associatedAnderson-localization in the imbalance transport. Finally section 6 summarizes our conclusions.

2. Themodel

Weconsider in the following a stack of axisymmetric quasi-one-dimensional dipolar BECs (‘wires’), separated
along the z direction by a distanceΔ, with their axes oriented along x, as shown infigure 1. This configuration
may be readily created by loading the BEC into just one plane of a 2Doptical lattice created in the yz plane. The
lattice is assumed deep enough, to suppress both on-site dynamics along the y and z directions and tunneling
between adjacent condensates. An additional double-well potentialU(x), with inter-well spacingD, is placed
along the x axis, while the atomic dipolemoments are parallel to the xz plane, forming angle ηwith the z axis. The
system is described by a set of coupled one-dimensional Gross–Pitaevskii(GP) equations:

y y
¶
¶

= -
¶
¶

+ +( ) ( ) ( ) ( ) ( ) 


⎡
⎣⎢

⎤
⎦⎥t

x t
m x

U x x x ti ,
2

, , 1n n n

2 2

2

withm the particlemass, y ( )x t,n the axial wave function at site n, and

ò å d d yº ¢ - ¢ + - ¢ ¢
-¥

+¥

¢
¢- ¢ ¢( ) ( ) ( ) ∣ ( )∣ ( )

⎡
⎣⎢

⎤
⎦⎥x x V x x g x x x td , . 2n

n
n n D n n n1

2

The contact interactions are characterized by = g D
a

ml1
2 2

2 , with a the scattering length, and l the effective oscillator

length associated to the on-site confinement in the yz plane. ¢- ( )V xn n is theDDI between dipoles placed ¢ -n n
sites apart and separated by an axial distance x. The kernel ¢- ( )V xn n is the Fourier transformof
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and d the dipolemoment.

For a sufficiently tightU(x) potential, wemay employ a simplified two-mode scenario inwhich only the two
lowest eigenstates ofU(x) participate in the dynamics, ( ( ) ( ))R x L x 2 , whereR(x) (L(x)) denote thewave
functions at the right(left)well.Wemay then express y = +( ) ( ) ( ) ( ) ( )x t a t L x b t R x,n n n . The twowells are
coherently coupled by a hopping rate J8. Under these conditions, the coupledGP equation (1) reduce to

Figure 1. Sketch of the setup considered: a stack of two-well arrays of dipolar condensates formed an effective one-dimensional
transverse Isingmodel.

8
The realization of a coherent Josephson-like coupling between the sites demands a tight-enough axial potential such that quantumor

thermal phase fluctuations along the quasi-one-dimensional wires, and hence between the sites, can be neglected.Moreover, due to the
assumedweakly interacting nature of the system, quantum fluctuations of inter-site Bogoliubov excitations are not expected to affect the
qualitative nature of the phases or phase transitions discussed in this paper, but rather lead to slight displacements of the phase boundaries.
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left and right wells, andNn denotes the number of particles in the nthwire. Sincewe assume a vanishing inter-
site hopping,Nn is conserved, and + =∣ ∣ ∣ ∣a b 1n n

2 2 . In the following, we assume that the scattering length is
tuned bymeans of Feshbach resonances, so that = -˜ ( ) ˜ ( )U F F0 00 1 0 . In this way, the on-site (dipolar plus
contact) interactions cancel, allowing us to concentrate on the non-trivial dynamics arising from the inter-layer
DDI. Finally, although the exact formof ¢ -˜ ( )F n n0 and ¢ -˜ ( )F n n1 may be evaluated exactly, wemay further
simplify themodel by considering a point-like approximation that yields
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The exact evaluation of F0 and F1maymodify these values, especially for nearest-neighboring wires for which the
finite wave packet spreadingmay be significant compared to the inter-site spacing, but our results would remain
qualitatively unaffected.

3.Ground-state phases

Interestingly, the systemunder consideration is equivalent to a spin-1/2 transverse Isingmodel with peculiar
long-range Ising interactions given by theHamiltonian
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where-J plays the role of an effective transversalmagnetic field, ¢ - º ¢ - - ¢ -( ) [ ( ) ( )]V n n F n n F n n 2S 0 1

characterizes an effective Ising-like coupling, andwe have introduced the effective spin components
= +*S a b c.cn

x
n n and = -∣ ∣ ∣ ∣S b an

z
n n

2 2.
At this point, we assume that all layers are equally populated, ºN Nn (we relax this condition in section 5).

Wefix the hopping rate as the energy unit, i.e. J=1, and also setD=1. The strength of theDDI is characterized
by the parameter = DP Nd J2 3, which plays a key role in the discussion below. For the particular case of
dysprosium atomswith an inter-wire separation ofD = 1μm, D ~d 1 Hz2 3 , and hence for =N 103–104

atoms, D =Nd 12 3 –10 kHz. The corresponding value ofP depends on J, which is controlled by the barrier of
the two-well potentialU(x). For typical values ~J 100 Hz, ~P 100may be hence readily reached.

The ground-state phase diagramof the system (see footnote 8), presented infigure 2, is obtained numerically
from the imaginary-time evolution of equations (4) and(5). If η is such that ¢ - <( )V n n 0S , the Ising
interaction is ferromagnetic. For =P J 0 the ground-state of the system is given by a spin oriented along the
transversalmagnetic field, i.e., along x-axis, and hence a solutionwith zero imbalance =S 0n

z is favored. This
ground state corresponds to the paramagnetic(Pa) phase. For a sufficiently large >P Pcr (P J0.45cr  for
h = 0), the system experiences a second-order phase transition into a ferromagnetic(F) phase, characterized by
a full imbalance, either to theR or to the Lwell. At h p» 0.33cr , =( )V 1 0S and hence the nearest-
neighbor(NN) interaction changes the sign. As a result for h h> cr at a sufficiently largeP/J the system enters an
Ising anti-ferromagnetic(AF) phase, characterized by a staggered imbalance between neighboringwires. The
situation is obviously reversed for <P 0 (whichmay be achieved bymeans of a rotatingmagnetic field [36]),
and the Pa–AF transition occurs for h h< cr and Pa–F for h h> cr.

The situation is particularly noteworthy in the vicinity of hcr.Whereas for h< »( )P P 147cr cr , the F andAF
phases remain separated by a Pa phase, for h> ( )P Pcr cr there is afirst-order F–AFphase transition, see

3
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figure 2(b). The reason for this change is that, when <∣ ( )∣ ∣ ( )∣V V1 2S S at h h= cr, ( )V 2S remains negative, i.e.,
( )V 2S favors ferromagnetism between next-nearest-neighbors(NNN). This is both compatible withNéel

ordering andwith a fully ferromagnetic state. The only difference between these two choices is the orientation
betweenNN,which steeply changes when ( )V 1S changes its sign. This is remarkably different from the usual
situation inNN Isingmodels, with > =( )V n 1 0S , in which the change of the sign of ( )V 1S implies vanishing
interactions, and hence the Pa phase always separates the F andAFphases. It is also different from the standard
version of the long-range transverse Isingmodel induced by dipolar interactions, i.e.,

¢ - = ¢ -( ) ( )V n n V n nS 0
3. In that case, the change of theNNcoupling at =V 00 fromF toAF also implies

vanishing of all interactions, and hence the existence of an intermediate Pa phase.Here, when h> ( )P Pcr cr ,
( )V 1S is negligible, and ( )V 2S dominates. Such a dominating ferromagneticNNN coupling allows for a direct

first-order transition between F andAF as a function of η.
A similar competition at <P 0 results inmagnetic frustration. In the vicinity of hcr, when <∣ ( )∣ ∣ ( )∣V V1 2S S ,

one has >( )V 2 0S . Under these conditions, the system experiences frustration, as AFNNN interactions are now
incompatible with the small F or AFNNcoupling. As a result, in the vicinity of hcr, a new phase(AF-2) develops,
see figure 2(c), with an approximate five-site-periodicmodulation of the imbalance, see figure 2(d).

4. KZ scenario

As shown in section 3 varying P and/or η permits accessing various second-order phase transitions.We note that
both parametersmay bemodified in real time. In particular Pmay be readilymodified by altering the barrier
between the twowells, since the latter controls the value of J. This provides the possibility of quenching in real
time through the second-order phase transitions offigure 2.Quenching at a finite speed is expected to induce
defects due to theKZmechanism [33–35] .

We illustrate this possibility with the particular case of the Pa–F transition. Increasing P for h = 0 eventually
quenches from the fully balanced Pa phase into the F one. As a result, the systemdevelops F domains, i.e. regions
with total imbalance biased to theR or L sites, separated by a domainwall(kink). In our simulations of
equations (4) and(5), we consider a balanced inputwith a slight random imbalance and relative phase

Figure 2. (a)Ground-state phase diagram as a function of theDDI strength = DP Nd J2 3 and the angle h . (b)Vicinity of hcr for
>P 0, showing thefirst-order F–AF transition. (c)Vicinity of hcr for <P 0, showing the appearance of the AF-2 phase. (d)AF-2

phase for h h= cr and = -P 180; note the formation of anAF order with a periodicity of approximately fivewires.
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perturbation: e r e r= -( ) ( )a 0.5 exp in 1
1 2

2 and e r e r= + -( ) ( )b 0.5 exp in 1
1 2

2 , where r- < <1 11,2

are two sets of randomnumbers, and e 1 (10−6 in our calculations) is the strength of the randomness. This
small randomnessmimics slight imperfections that seed the domain-wall formation.We then impose a linear
ramp, g=( )P t t , with different ramp speeds γ. Typical numerical results for two values of γ are displayed in
figures 3(a) and(b). As expected, the number of kinks increases with the ramp speed γwhen crossing the
transition. From a large number of random realizations(up to 50 different sets of r1,2), we extract, for each value
of γ, statistics of the number of the domainwalls,ND. Figure 3(c)depicts ( )Nln D as a function of g( )ln , showing

that g~ND
1 2. The later follows the knownKZ scaling, g~ n n +( )N z

D
1 , where n = 1and z=1 are the critical

static and dynamical exponents for themean-field one-dimensional transverse Isingmodel [35].

5. Imbalance transport in the presence of randomfillings

The coupling between layers in equation (8) crucially depends on the number of particles in each layer. This
opens interesting possibilities for the study of excitation transport—in particular, localization due to random
interactions, rather than due to randomhopping(we recall thatmass transport betweenwires is suppressed).
We consider a randomized distribution of the number of particles in eachwire, e= +N N R1n n, where
- < <R1 1n are randomnumbers, and e Î [ ]0, 1 determines the strength of the randomness. Such random
distributionsmay be created by abruptly growing the lattice on top of a trapped BEC.Note that the random
population in eachwire translates into a random inter-wire interaction in equation (8) , whichmay significantly
affect the transport of imbalanced excitations.

We here consider an initially localized imbalance excitation on top of an otherwise perfectly balanced
system, i.e., = =a b 1 2n n for all n, except for =a 10 and =b 00 at n=0. In the following, we focus on
h = 0 andfix = <P P0.1 cr (note that, for >P Pcr, the balanced backgroundwould be unstable). To study
more accurately the effect of the disorder on the imbalance transport, we analyze a large number,K=500, of
random realizations. Figure 4 shows the average spatial profile of the imbalanced perturbation,

= å-
=( ) ∣ ( )∣( )S t K S tn

z
s
K

n
z s1

1 , where ( )Sz s is the imbalance distribution of the sth realization.When e = 0, the
system is homogeneous, and the initial perturbation propagates ballistically, as seen infigure 4(a). In contrast, at
e ¹ 0, the expansion from the input defect at t=0 is no longer ballistic, the initial imbalanced perturbation
localizing around the center, as shown in figures 4(b) and(c). The respective imbalance profile at t=200 is
displayed infigure 4(d). At sufficiently large ε, the imbalanced perturbation remains exponentially localized,
resemblingAnderson localization. As shown infigure 5, localization is best quantified bymonitoring themean
size of the imbalanced perturbation, = å-

=( ) ( )( )L t K L ts
K s1

1 , with

å
å

=( )
∣ ∣

∣ ∣
( )( )

( )

( )L t
n S

S
9s n n

z s

n n
z s

2

being thewidth of the imbalance distribution of the sth realization. The localization length reduces to fewwires
when e > 0.5.

Figure 3.Pattern formation in the imbalance distribution as a function of time for h = 0 and a linear ramp g=( )P t t with a ramp
speed g = -10 3 (a) and -10 2 (b); (c) x = Nln D, where ND is the number of domains, as a function of t gº ln , the results being best
fitted by x t= +4.25 0.5 , which implies that gµND

1 2, as expected from theKZ scaling.
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6. Conclusions

In summary, dipolar BECs in an array of double-well potentials offer a simple setupwhichmakes it possible to
employ themotional degrees of freedom for realizing an effectivemean-field transverse Isingmodel with
peculiar inter-layer interactions. The system gives rise to an anomalous first-order ferromagnetic–
antiferromagnetic transition, as well as to non-trivial phases induced by frustration. As the parameters can be
easilymodified in real time, the introduced setup allows aswell the study of KZdefect-formation. Furthermore,
randomoccupation in each layer results in random Ising interactions and randomeffective local transverse
fields, whichmay be employed to controllably studyAnderson-like localization of imbalanced perturbations.

Figure 4.Averaged imbalance distribution ( )S tj
z for an initial imbalance perturbation localized at the site n=0, with h = 0,P =

0.1, and a disorder strength(see text) e = 0 (a), 0.4(b), and 0.8(c). Figure (d) shows from top to bottom =( )S t 200n
z for e = 0, 0.4,

and 0.8.

Figure 5. For the same case offigure 4: (a)width ( )L t for e = 0 (black squares), 0.4(red circles) and 0.8(green triangles); (b)
=( )L t 200 as a function of the disorder strength e.
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