
Visual Exploration of
Semantic-Web-Based Knowledge

Structures

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

(abgekürzt Dr.-Ing.)

genehmigte Dissertation

von Herrn

M.Sc. Vitalis Wiens

2022

1. Referent Prof. Dr. Sören Auer, Leibniz Universität Hannover

2. Referent Prof. Dr. Dmitry Muromtsev, ITMO University (RU)

3. Referent Prof. Dr. Ziawasch Abedjan, Leibniz Universität Hannover

Tag der Promotion 10.05.2022

Zusammenfassung

Daten, Informationen, und Wissen wurden durch die informationstechnische Revolution,

in der Form des Internets, zu Gütern unserer modernen Gesellschaft. Jedoch, mit der

wachsenden Größe der angesammelten Daten entstehen neue Herausforderungen, wie z.B.

das Suchen und Navigieren in diesen großen Ansammlungen von Daten, Informationen,

und Wissen. In akademischen und industriellen Kontexten werden diese Herausforderungen

mit Semantic Web Technologien adressiert. Das Semantic Web ist eine Erweiterung des

Webs und stellt maschinenlesbare Repräsentationen von Wissen für verschiedene Domänen

dar. Außerdem, erlaubt das Semantic Web maschinellen Agenten Daten und Informationen

zu verstehen und ermöglichen zusätzlich die Inferenz von neuem Wissen.

Das Semantic Web ist für den Austausch von Informationen und deren Verarbeitung

konzipiert und konzentriert sich nicht auf die Präsentation von semantischen Daten für den

Menschen. Visualisierungen unterstützen die Erkundung, Navigation und das Verständnis

von Daten, indem sie die Fähigkeit des Menschen ausnutzen komplexe Daten durch visuelle

Darstellungen zu verstehen. Geeignete Visualisierungen sind jedoch stark abhängig von

den individuellen Anwendungsfällen und deren Nutzergruppen.

In dieser Arbeit untersuchen wir visuelle Explorationstechniken für Semantic Web

Daten, indem wir die folgenden Herausforderungen adressieren: i) wie kann man ver-

schiedene Benutzergruppen in die Ontologiemodellierung einbinden, ii) wie kann man das

Verständnis durch anpassbare visuelle Darstellungen erleichtern und iii) wie kann man

die Erstellung von Visualisierungen für verschiedene Anwendungsfälle erleichtern. Die

erzielten Ergebnisse zeigen auf, dass visuelle Modellierungstechniken verschiedene Be-

nutzergruppen bei der Ontologiemodellierung unterstützen. Anpassbare Visualisierungen

ermöglichen es den Benutzern, die Darstellung an ihre aktuellen Bedürfnisse anzupassen

und unterschiedliche Sichten auf die Daten zu erstellen. Zusätzlich ermöglichen anpassbare

Visualisierungspipelines die schnelle Erstellung von Visualisierungen für verschiedene

Anwendungsfälle, Datenquellen, und Benutzergruppen.

iii

Schlagwörter:

Semantic Web,

Anpassbare Visuelle Darstellungsmodelle,

Ontologievisualisierung,

Visuelle Modellierungstechniken,

Visualisierungspipelines

iv

Abstract

Humans have a curious nature and seek a better understanding of the world. Data, in-

formation, and knowledge became assets of our modern society through the information

technology revolution in the form of the internet. However, with the growing size of

accumulated data, new challenges emerge, such as searching and navigating in these large

collections of data, information, and knowledge. The current developments in academic

and industrial contexts target the corresponding challenges using Semantic Web techno-

logies. The Semantic Web is an extension of the Web and provides machine-readable

representations of knowledge for various domains. These machine-readable representations

allow intelligent machine agents to understand the meaning of the data and information;

and enable additional inference of new knowledge.

Generally, the Semantic Web is designed for information exchange and its processing

and does not focus on presenting such semantically enriched data to humans. Visualizations

support exploration, navigation, and understanding of data by exploiting humans’ ability

to comprehend complex data through visual representations. In the context of Semantic-

Web-Based knowledge structures, various visualization methods and tools are available,

and new ones are being developed every year. However, suitable visualizations are highly

dependent on individual use cases and targeted user groups.

In this thesis, we investigate visual exploration techniques for Semantic-Web-Based

knowledge structures by addressing the following challenges: i) how to engage various user

groups in modeling such semantic representations; ii) how to facilitate understanding using

customizable visual representations; and iii) how to ease the creation of visualizations

for various data sources and different use cases. The achieved results indicate that visual

modeling techniques facilitate the engagement of various user groups in ontology modeling.

Customizable visualizations enable users to adjust visualizations to the current needs and

provide different views on the data. Additionally, customizable visualization pipelines

enable rapid visualization generation for various use cases, data sources, and user groups.

v

Keywords:

Semantic Web,

Customizable Visual Representation Models,

Ontology Visualization,

Visual Modeling,

Visualization Pipelines

vi

Acknowledgments

Throughout the exciting academic journey, I met various people who supported and in-

spired me in all those years. I would like to thank Prof. Dr. Sören Auer for giving me an

opportunity to pursue my PhD degree at Fraunhofer, TIB, and Leibniz University of Han-

nover. Furthermore, I would like to thank Prof. Dr. Maria-Esther Vidal for her invaluable

scientific writing mantra: “What?, Why?, and How?” Especially, I would like to thank

Dr. Steffen Lohmann for his help, inspiration, advice, and fruitful scientific discussions.

Additionally, I would like to thank Dr. Markus Stocker for his supervision during my time

at the Leibniz University of Hannover.

Special thanks goes to Micheal Ankele, Debanjan Chaudhuri, Diego Collarana, Kheir

Eddine Farfar, Michael Galkin, Damien Graux, Max Herrmann, Julian Iseringhausen,

Yaser Jaradeh, Samaneh Jozashoori, Rostislav (Rosko) Nedelchev, Allard Oelen, Simon

Scerri, Marc Schultheis, Micheal Weinmann, Manuel Widdel, and Yun for their support

and encouragement.

vii

Contents

List of Figures xiii

List of Tables xix

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges and Problem Statement . 5

Challenge 1: Accessing and manipulating data from a user per-

spective . 6

Challenge 2: Mapping data to visual primitives and its presentation 6

Challenge 3: Varying requirements for visualizations 7

1.3 Research Questions . 7

1.4 Thesis Overview . 8

1.4.1 Contributions . 8

1.4.2 Publications . 10

1.5 Thesis Structure . 11

2 Background 13

2.1 Semantic Web Technologies . 13

2.1.1 Resource Description Framework 15

2.1.2 Extended Data Modeling with RDFS and OWL 18

2.1.3 Linked Open Data and SPARQL 21

2.1.4 Knowledge Graphs . 22

2.2 Graph Theory . 26

2.3 Visual Representations . 31

ix

3 Related Work 35
3.1 Visualization Methods and Tools . 36

3.2 Semantic Zooming for Ontology Graphs 39

3.3 Customizable Visual Representations . 42

3.4 Summary . 43

4 Semantic-Web-Based Knowledge Structures from a User Perspective 45
4.1 Device-Independent Visual Modeling 46

4.1.1 Requirements . 48

4.1.2 Device-Independence . 49

4.1.3 Visual Modeling . 51

Usage and Implementation Details 53

4.1.4 Preliminary Evaluation . 56

Study Design . 56

Results and Discussion . 58

4.1.5 Summary of the Approach . 59

4.2 A Comparative User Evaluation on Ontology Modeling Using Node-Link

Diagrams . 60

4.2.1 Pretest . 62

Concept Spaces for the User Study 62

Evaluating the Cognitive Complexity of the Concept Spaces . . . 63

4.2.2 Experimental Design . 64

Participants . 65

Setup . 65

Procedure . 66

4.2.3 Results and Discussion . 67

Performance Scores for Ontology Modeling 67

Cued Recall Scores . 69

User Satisfaction Scores . 69

4.2.4 Summary of the User Study . 70

4.3 Chapter Summary . 72

5 Customizable Graph-Based Visual Representations of Ontologies 73
5.1 Motivation and Requirements . 74

5.2 Methodology . 77

5.2.1 Methodology Discussion . 79

x

5.3 GizMO . 81

5.3.1 Preliminaries . 81

5.3.2 Visual Graph Mapping . 82

5.3.3 Technical Realization and Design Decisions 84

5.4 Applications . 87

5.5 Chapter Summary . 88

6 Customizable Chart Visualizations of Tabular Data in Knowledge Graphs 93
6.1 Motivation . 94

6.2 Exemplary Walk-through . 95

6.2.1 Data Acquisition and Transformation 96

6.2.2 Customizable Chart Visualizations 99

6.3 Approach . 101

6.3.1 Additional Semantics for Tabular Data Originating from Know-

ledge Graphs . 101

6.3.2 Visualization Suggestion . 104

6.4 Discussion of the Approach . 104

6.4.1 Limitations . 105

6.4.2 Implications and Advanced Use Cases 105

6.5 Chapter Summary . 106

7 Customizable Pipelines for Knowledge Graph Visualizations 109
7.1 Pipeline-Based Visualization Approach for the Semantic Web 110

7.1.1 Approach . 111

7.1.2 Refining the Data Access . 111

7.1.3 Refining the Mapping Process 113

7.1.4 Refining the Rendering Process 115

7.1.5 Discussion of the Approach . 116

7.2 Technical Realization and Example Results 117

7.2.1 Modules, Components, and Data Models 119

Data Connector Module . 119

Mapper Module . 120

Rendering Module . 122

7.2.2 Visualizing Ontologies . 122

7.2.3 Visualizing SPARQL Query Results 124

xi

7.2.4 Pipeline Configuration . 126

Exporting Pipelines . 127

7.3 Discussion and Chapter Summary . 128

8 Conclusion 131
8.1 Analysis of Research Questions . 131

8.2 Additional Use Cases . 136

8.3 Future Work . 140

Bibliography 143

A List of Publications 159

B Technical Aspects for a Pipeline-Based Approach in Semantic Web
Contexts 161

Curriculum Vitae 171

xii

List of Figures

1.1 The DIKW pyramid aligning the individual aspects within the Semantic

Web. 3

1.2 Overview: The lowest layer address different Semantic-Web-Based know-

ledge structures. The next layer indicates the challenges of creating visu-

alizations from such structures. The top layer shows the different visual

representation methods for different use cases. Semantic Web logos from

[19]. 5

2.1 The Semantic Web technology stack [23]. 15

2.2 An illustration of an example RDF triple as a node-link diagram: The

predicate reflects a directed link between the subject and the object node. 16

2.3 The realization of a container for faculty members using a blank node

(blue). 17

2.4 Modeling of the faculty members as a collection. Blank nodes are high-

lighted in blue. 17

2.5 A node-link diagram visualization depicting a small selection of facts

extracted from DBpedia about Barack and Michelle Obama. While the

blue color highlights both persons, the green and yellow colors indicate

the datatype properties and corresponding literal values. 24

2.6 Target detection task (blue circle): a) Target element has a different color,

making it easy to detect; b) Target element shares the same color with

distraction elements (blue squares), requiring more attention to locate the

target element. Image adapted from [56] 32

xiii

2.7 Preattentive processing: a) Masking effect requires additional attention

when elements share locally distinctive visual properties with other ele-

ments. b) Identifying the target object without a visual feature requires

additional attention (bottom image). Images adapted from [57]. 33

3.1 Different visualization methods and tools. À WebVOWL, image from [71];

Á OntoGraf (Protégé plugin), image from [72]; Â Radial tree layout,

image from [17]; Ã VOWL Specification 1.0, image from [73]; Ä Screen-

shot of TopBraid Composer Maestro Edition (IDE), image from [74]; Å

Chord diagram in the context of Drug-Drug-Interactions; Æ Gra.fo, image

from [75]; Ç OwlGred UML style graphical editor, image from [76]; È

Circular treemaps, image from [77] . 37

3.2 Possible mappings of RDF triples to nested and name-label-only visualiz-

ation. 38

3.3 Assignment of the global topological levels of detail: a) Input graph,

b) Minimum spanning tree organization, c) Path matrix for the largest

connected component of the input graph, indicating the computation for

the exploration costs. 40

3.4 Discrete level of details defined by expert interviews. 41

4.1 Overview of the user interface: 1) Canvas area for the visualization and

direct modeling; 2) Menu with controls; 3) Zooming slider with the pos-

sibility to locate and zoom to the center of the visualization; 4) Editing

elements displayed for a hovered class; 5) Ontology annotations; 6) Details

for a selected element (here, “Subclass of”). 7) Collapsible sidebar panel,

providing editing functionality. 8) Default OWL construct selections for

creation functionality. 54

4.2 Sketches for the conceptualization of a family. From left to right: sketches

of a representative participant from non-expert, intermediate, and expert

user, respectively. 57

4.3 Star plot showing the obtained user ratings for the different tools used in the

modeling process. A bar chart illustrates the average time required for the

modeling task for the corresponding tools, i.e., TurtleEditor, WebProtégé,

and WebVOWL Editor. 57

4.4 Classes and properties defined for each concept space, respectively. 63

xiv

4.5 Required modeling time as a box plot diagram. a) Modeling time for all

participants. b) Modeling time for different participant groups based on

experience. 68

4.6 Incorrectly highlighted concepts per participant (Pi) for the two tools. . . 69

4.7 ASQ: a) Scores for all participants. b) Scores for different participant groups. 70

4.8 CSUQ: a) Scores for all participants. b) Scores for different participant

groups. 70

5.1 Separation of concerns into notations and views. Notations define how

OWL constructs are depicted. Views provide spatial position assignment

and visibility status. 76

5.2 Illustration of the target property linking conceptualization. 78

5.3 Named individual for visualization of owl:Class. 86

5.4 Disambiguation for glyph-specific information using triple definitions

for linking distinct visual properties to rendering primitives. Additional

modifications for some objects (e.g., first name) allow for customizations

of glyph specific information. 86

5.5 Examples created with GizMO, realizing VOWL and UML notations. . . 90

5.6 Examples created with GizMO, realizing custom notations. 91

6.1 Processing Pipeline Overview: (1) A table for artificial results of Preci-

sion, Recall, F1-Score, and Runtime. (2) Processing pipeline. (3) Resulting

visual representation. 96

6.2 Widget for the tabular data transformation process eases the data input

process and appends additional semantics to cell values. 98

6.3 Corresponding Knowledge Graph representation illustrated as a node-

link diagram. Tabular data is organized in row nodes, which provide the

corresponding method. Each row node lists the related cell nodes with

additional semantics for units and metrics.

Note: Some nodes are collapsed to reduce visual clutter and information

overload. 98

6.4 Illustration of the original table and the reconstructed table from a Know-

ledge Graph. Runtime is sorted in descending order and highlighted by a

red box. Note: The ordering of the columns is not preserved. 99

6.5 Column chart visualization indicating the possible false first impression

through unrelated units and large differences in the data ranges. 99

xv

6.6 a) Information organization process creates sub-tables based on units;

Two visualizations presenting the information group of Precision, Recall,

and F1-Score: b) grouped by metric; and c) grouped by the method. . . . 100

6.7 Schematic overview of the approach. The additional semantics for units

and metrics enable analysis for the generation of customizable chart visu-

alizations. 101

6.8 Chart visualization using the comparison feature of ORKG: a) The indi-

vidual tables, selection options for leader-board generation, and a leader-

board visualization; b) Information organization for merged tables and

the resulting column chart. The value representation transformation is

indicated in red. 107

7.1 Schematic overview for the Data Access Module. The customizable Data

Access component specifies the data source and additional information

retrieval parameters. The resulting JSON model is processed in the parser

component resulting in a Resource-Relation model. 113

7.2 The Resource-Relationmodel is transformed into a Vertex-Edge

model, reflecting a basic graph structure. The Vertex-Edge model is

transformed into a Node-Link model, modifying the graph structure

using merge, split, and nesting functions. In this example, split operations

are applied to rdfs:Literal realizing the VOWL notation. The red

boxes highlight the applied split operation. 114

7.3 A schematic overview of the rendering module. The rendering com-

ponent creates customizable visual primitives for nodes and links from

the Node-Link model. The visual appearance and spatial position are

asserted in corresponding components. The interactions component cre-

ates basic user interactions and provides additional visual primitives for

advanced interactions (e.g., node-collapsing to mitigate cognitive load). . 116

7.4 A schematic overview for realizing different visualization pipelines indic-

ates the divergence for various components and convergence in corres-

ponding models. 118

7.5 An example pipeline using components for creating node-link diagrams. . 118

xvi

7.6 Arrows indicate the classification of triple statements into annotations, ax-

ioms, types, and domain-range pairs. Note: The Resource-Relation model

is a simple reorganization of the retrieved textual data into a JSON object.

The customizable parser component specifies how different elements are

classified. 120

7.7 A pipeline with branches representing two pipelines for the visualization

of the same example ontology. The upper branch shows the visualization

using the VOWL notation. The lower branch highlights modified com-

ponents in light green. Its visualization introduces auxiliary nodes and

removes merge and splitting operations. 123

7.8 A pipeline representing the visualization of SPARQL queries. The mod-

ified components in comparison to the first pipeline (i.e., native VOWL

representation in Figure 7.7) are highlighted in light green. Its visualization

introduces nesting functions for a UML-based representation. 125

7.9 Overview of the UI of the framework. Left side: Module selection for data

sources, vertex-edge mapper, and node-link mapper. Note: This version

uses a single vertex-edge mapper. Top: Pipeline configuration. Bottom:

Visualization preview for the configuration of components. 127

8.1 Schematic overview for different interactions and user groups. 139

B.1 Definition map for a Node-Link mapper for the creation of a nested

visualization. 164

xvii

List of Tables

2.1 Corresponding results of the SPARQL query of Listing 2.4 26

4.1 Subset of the VOWL specification for the visual representation of OWL. 48

4.2 Device-related input interactions and their classification for possible usage. 50

4.3 Interaction methods for creating elements. 51

4.4 Interaction methods for editing elements. 51

4.5 Modeling completion times and the varying order of concept spaces. . . 64

4.6 Order of tools and concept spaces presented to the participants. 67

4.7 Average time required to model an ontology for both tools. 68

5.1 OWL constructs and corresponding mappings currently supported by GizMO. 83

5.2 Subset of GizMO annotation properties. 84

7.1 Tabular representations of different components and their responsibilities. 111

xix

CHAPTER 1

Introduction

The need to explore and understand a rapidly changing world reflects George Miller’s [1]

characterization of the human species as informavores. Humans have a curious nature

and are hungry for information, seeking a better understanding of the world [2]. Libraries

have long pursued the vision of accumulated human knowledge by collecting books and

providing access to them. However, the information in such collections is challenging to

share because it requires a physical access. Additionally, the knowledge is buried in textual

descriptions, making searching, organizing, and understanding time-consuming efforts.

In the form of the internet, the information technology revolution simplified collecting

and exchanging data. Thus, we evolved towards an information society that hunts for and

gathers information. As a result, data and information became assets, and we frequently

hear the term data is the new oil. However, with the increasing size of accumulated

data, it became challenging to search, explore, and navigate these massive collections.

Thus, search engines and online encyclopedias such as Google and Wikipedia emerged to

facilitate searching and gathering of information. Nevertheless, searching and organizing

information in textual representations, e.g., in the form of articles, remain cumbersome.

The current developments in industrial and academic contexts address challenges in

knowledge management using Semantic Web technologies. These technologies provide

machine-readable representations of domain knowledge, enabling information retrieval

based on the semantics of elements (things, not strings [3]). Consequently, the vision of

accumulated human knowledge is nowadays pursued by the joint efforts of knowledge

engineers, scientists, technicians, and crowdsourced contributions. While Semantic Web

1

Chapter 1 Introduction

technologies focus on machine-interoperability of information and its processing, they

are not aiming towards presenting the underlying information to humans [4], e.g., in the

form of visualizations. However, visualizations support the human’s ability to understand

complex data through visual representations; a picture is worth a thousand words.

This thesis studies the visual exploration of Semantic-Web-Based knowledge structures.

As the visual exploration, we denote different visualization methods and interaction

techniques, addressing user-centered design for applications that facilitate understanding

of Semantic-Web-Based knowledge structures. We characterize Semantic-Web-Based

knowledge structures as structured and semantically enriched representations of knowledge

using Semantic Web technologies, enabling intelligent machine agents to understand the

meaning of information and infer new knowledge.

1.1 Motivation

The advances in digitization produce vast collections of data. Analyzing such collections

without machine support would require an enormous amount of human labor and produce

time-consuming endeavors. The developments in hardware and software engineering

realize powerful systems for addressing such information organization and analysis tasks.

However, to benefit most efficiently, the data has to be machine-actionable, i.e., systems

can access different datasets, perform information retrieval tasks, interlink data with other

datasets and also infer new knowledge. The FAIR principles [5] (Findability, Accessibil-

ity, Interoperability, and Reuse) address machine-actionability as using “the capacity of

computational systems to find, access, interoperate, and reuse data with none or minimal

human intervention” [6]. Thus, these principles provide guidelines for publishing data,

enabling manual and automatic discovery and reuse of datasets.

Before data becomes machine-actionable, systems require to understand its meaning,

i.e., its semantics. Semantic Web technologies provide machine-readable representations,

for example, in the form of the Resource Description Framework (RDF) [7], RDF Schema

(RDFS) [8], or the Web Ontology Language (OWL) [9]. These representations encode

meaning for information by realizing machine-readable descriptions with the capability

for intelligent machine agents to access and interlink datasets and infer new knowledge

using the semantics of the elements. Furthermore, various query languages, such as

SPARQL [10], Gremlin [11], GraphQL [12], or Cypher [13] enable information retrieval,

manipulation, and aggregation operations.

2

1.1 Motivation

Figure 1.1: The DIKW pyramid aligning the individual aspects within the Semantic Web.

Different groups target the transformation of mere data towards information and know-

ledge by providing structured and semantically enriched formats that are understood by

machines and humans alike. For example, DBpedia extracts structured information from

Wikipedia pages and provides a uniform dataset that can be queried using Semantic Web

technologies. Nevertheless, these transformations typically focus on machine-actionability,

overlooking humans’ involvement in designing such semantically rich structures.

Before we continue with the formalization of challenges in the visual exploration of

Semantic-Web-Based knowledge structures, let us consider: what are data, information, and

knowledge in Semantic Web contexts. Figure 1.1 shows the data, information, knowledge,

and wisdom (DIKW) pyramid [14]. The data builds the foundation of the pyramid, whereas

information extends data with schema, vocabularies, and ontologies. Knowledge is inferred

using reasoning and interlinking of information. Finally, wisdom is obtained by acting

upon knowledge. Thus, the Semantic Web represents data in machine-readable formats

that serve as foundation for information organization and knowledge extraction.

A fundamental aspect of the Semantic Web is creating and communicating conceptu-

alizations of information and data in various domains. Taxonomies, vocabularies, and

ontologies serve this purpose by providing a formal and machine-readable representation

of domain knowledge. The larger and more interlinked such vocabularies and ontologies

become, the more challenging it is for humans to inspect and validate them. The main

characteristic of Semantic Web data is its textual and structured representation format of

information. While machines can quickly access and process such large amounts of data

with varying formats, humans’ cognitive capabilities can quickly reach their limitations

due to information overload.

3

Chapter 1 Introduction

Various ontology modeling tools have been created to help knowledge engineers with

developing ontologies (e.g., Protégé1) by providing all OWL formalization features and

supporting their composition. However, these tools are challenging to learn for users

new to ontology modeling. Additionally, the modeling of ontologies is frequently done

collaboratively in joint efforts of knowledge engineers and domain experts. On the one

hand, domain experts, providing the conceptualization of domain knowledge, are typically

not familiar with semantic formalism and conceptual modeling techniques. They often

find it hard to follow logical notations in OWL representations. On the other hand,

knowledge engineers, providing the necessary know-how for ontology modeling and

logical notations in OWL, usually lack the domain’s expertise to create ontologies of

sufficient quality [15]. As Semantic Web receives growing attention in industrial and

academic contexts, user groups developing ontologies become more diverse, including

knowledge engineers, domain experts, and other user groups with various backgrounds.

Visualizations provide an abstraction of information that reinforces human cognition

and facilitate understanding of complex data through its visual representations. Thus,

visualizations offer a good starting point for exploration with an additional cognitive

support for the understanding of provided information [16]. In the context of Semantic-

Web-Based knowledge structures, various visualization methods and tools are available,

and new ones are being developed every year [17]. The applied methods range from

indented trees and chord diagrams to treemaps and Euler diagrams. Suitable visualizations,

however, are highly dependent on individual use cases and targeted user groups.

The challenge with most approaches is grounded in their design. On the one hand,

visualization methods are created with a particular definition for the representation model.

On the other hand, users perceive the provided visualization and build a mental model for

the interpretation of the content [18]. Ideally, the visual model corresponds to the user’s

mental model. However, these match typically only in some aspects and diverge from

user’s expectations and previous experiences with other visualizations.

Figure 1.2 illustrates an overview of Semantic-Web-Based knowledge structures, their

transformation to visualizations, and different visual representation methods. The data

structures serve as the foundation for creating visualizations. Visualization generation

addresses the process of creating visual representations for different use cases and user

groups with their varying requirements. Visualizations serve as the means to exploit

humans’ ability to understand complex data through its visual representations.

1https://protege.stanford.edu/

4

https://protege.stanford.edu/

1.2 Challenges and Problem Statement

Figure 1.2: Overview: The lowest layer address different Semantic-Web-Based knowledge struc-
tures. The next layer indicates the challenges of creating visualizations from such structures. The
top layer shows the different visual representation methods for different use cases. Semantic Web
logos from [19].

This thesis studies how to facilitate understanding of Semantic-Web-Based knowledge

structures through visual representations. In this thesis, we denote Semantic-Web-Based

knowledge structures as structured and semantically enriched representations of know-

ledge using Semantic Web technologies, enabling access to the data using ontology files,

SPARQL query results, and RESTful-API responses of Knowledge Graphs. We argue

that in order to facilitate understanding of Semantic-Web-Based knowledge structures,

customizable visual representations play a vital role in the successful realization of the

visual exploration and the engagement of diverse user groups in different use cases.

1.2 Challenges and Problem Statement

While Semantic Web data typically reflects graph structures, visualizing such structures as

node-link diagrams can quickly result in large and complex visual representations. More

suitable visualization methods are required to address the data at hand and enable an

effortless understanding of the underlying information. Visualizations have to be designed

in a user-centered way to facilitate understanding and interaction with such data. In

the following, we define challenges for the visual exploration of Semantic-Web-Based

knowledge structures as three sub-sequential challenges, addressing the data structures,

visual representations, and the generation process of visualizations for different use cases.

5

Chapter 1 Introduction

Challenge 1: Accessing and manipulating data from a user perspective

Versatile technologies are used to store and process data. However, this also implies differ-

ent serialization and information retrieval formats. The data has various representations

(even though using Semantic-Web-Based data structures such as RDF). The interfaces

connecting to such data sources use multiple technologies and languages (e.g., SPARQL,

RESTful-API, etc.). Therefore, the challenge lies in the interoperability of different data

sources, the information retrieval results, and their capabilities to manipulate data, i.e.,

create new entries or modify existing ones. To facilitate accessing and editing of Semantic

Web data, users require approaches that reduce the complexity of interactions with such

data and lower the entry barriers for user groups less familiar with the technical details.

Challenge 2: Mapping data to visual primitives and its presentation

Having established a connection to a data source and retrieved some of its underlying

information presents us with an additional challenge: The retrieved data has different

serialization formats (e.g., CSV or JSON). Furthermore, it is not necessarily optimized

for visual mappings. Thus, various data sources and information retrieval results require

parsing mechanisms to create data models that are used as foundations for visual map-

pings. These visual mappings need additional model transformations to create various

visualization methods, e.g., node-link diagrams, indented trees, and chart visualizations.

The presentation of information in the form of visualizations facilitates exploration and

sense-making. However, different user groups have various backgrounds and expectations

for a visual representation. The amount of visualization methods and tools in Semantic

Web contexts emphasizes the need for representing the underlying graph structures in

various ways for different use cases and user groups. Additionally, with the growing size

and complexity of the data we wish to visualize, its representation can become hard to

read and comprehend. Every rendering primitive (e.g., circle, rectangle, text, link, arrow,

and even color) represents information. An information overload is a natural consequence

when the amount of rendering primitives exceeds the cognitive and perceptive capacity

of the user. Additionally, visualizing large graphs in the form of node-link diagrams

results in decreased readability through visual clutter, crossing edges, and occlusion.

Therefore, visualizations have to handle humans’ limited cognitive capacity and mediate

the information load for a simpler understanding of the underlying data.

6

1.3 Research Questions

Challenge 3: Varying requirements for visualizations

The varying requirements of visualizations do depend on the individual use cases and the

targeted user groups. Thus, visualization methods and tools typically result in tailored-

suited applications that serve the current needs of a particular scenario. However, reusing

these created solutions becomes challenging when the targeted user groups and the use

cases with their underlying requirements change. Furthermore, “new visualization meth-

ods and tools are often developed from scratch, omitting opportunities to learn from

previous mistakes or to reuse advanced techniques provided by other researchers and

developers” [17, pp. 1-2].

1.3 Research Questions

The main research question of this thesis addresses how to facilitate the visual exploration of

Semantic-Web-Based knowledge structures. The previously presented challenges motivate

the three sub-sequential research questions that are in the focus of this thesis:

Research Question 1 (RQ1)

How can we ease the creation and editing process of Semantic-Web-Based know-

ledge structures from a user perspective?

Creating Semantic-Web-Based knowledge structures typically involves joint efforts of

knowledge engineers and domain experts. To engage different user groups and answer this

question, we investigate how to decrease the entry barriers for involvement in ontology

modeling from a user perspective. In particular, we define requirements for a device-

independent visual modeling approach and demonstrate its benefits using two user studies.

Research Question 2 (RQ2)

How can we improve understanding of Semantic-Web-Based knowledge structures

using interactive and user-centered visualizations?

Visualization methods are typically created with a particular definition for the repres-

entation model. However, users often require customizations to reflect their previous

experiences with other visualization methods and tools. This question addresses how to

create customizable visualization for Semantic-Web-Based knowledge structures. We

7

Chapter 1 Introduction

present a methodology for customizable ontology visualizations, defining visual represent-

ation as meta ontologies, facilitating their exchange and reuse. Furthermore, we present

customizable chart visualizations for tabular data originating from Knowledge Graphs.

Research Question 3 (RQ3)

How can we ease the creation of visual representations in Semantic Web contexts

for different use cases and diverse audiences?

Reusing existing solutions usually requires additional development effort to address the

use case and targeted user groups’ needs. This question addresses how to facilitate the

creation process of visual representations by building an open-source ecosystem that allows

for reusing existing components, contributing to the code base, and facilitating adoption to

the requirements at hand. We present a customizable pipeline-based approach for creating

visual representations in Semantic Web contexts. Our approach applies the separation of

concerns paradigm for the commonly used steps in the visualization generation process.

We address a unified visualization framework through divergence in components and

convergence in data models.

1.4 Thesis Overview

This section presents a high-level descriptive overview of achieved outcomes for the

conducted research. We highlight the main contributions of the thesis and list references to

published scientific articles completed during the research.

1.4.1 Contributions

Contributions for RQ1

Device-independent visual modeling in Semantic Web contexts.

Due to the increased attention of Semantic Web technologies in academic and industrial

contexts, different user groups are involved in the creation of Semantic-Web-Based know-

ledge structures. Visual modeling approaches allow for engaging domain experts who are

less familiar with semantic formalism and conceptual modeling techniques. Additionally,

knowledge workers often use more than one device for their daily tasks in a multitude of

8

1.4 Thesis Overview

interaction contexts, ranging from classical desktop settings to mobile scenarios in meet-

ings, workshops, and on business trips. We identified devices, interaction methods, and

requirements for a device-independent visual ontology modeling approach. Furthermore,

we present two studies indicating the benefits of the approach for various user groups.

Contributions for RQ2

• GizMO – Graph Visualization Meta Ontology, enabling the customizable

visual representations of ontologies using annotation ontologies.

• An approach for customizable chart visualizations of tabular data originating

from Knowledge Graphs.

We present a methodology for creating definitions for visual representations using meta

ontologies. We demonstrate its applicability by realizing a Graph Visualization Meta Onto-

logy (GizMO) for node-link diagram visualizations. Additionally, GizMO is accompanied

by two prototype implementations facilitating the creation of annotation ontologies. The

conceptualization of containers (i.e., the domain ontology and meta ontologies) allows

users to exchange visualizations directly within the framework. Furthermore, users can

create new visual notations, reuse existing ones, and share them with others.

Tables are frequently used in academic and industrial contexts to provide an organized

and compressed depiction of information. Thus, we present an approach for customizable

chart visualizations of tabular data originating from Knowledge Graphs. Our approach aug-

ments Knowledge Graph representations of tabular data with additional semantics, enabling

information organization and data transformations for selecting suitable visualizations.

Contributions for RQ3

• Refinement of commonly used steps in visualization generation using the

separation of concern paradigm.

• Pipeline-based visualization framework addressing various data sources in

Semantic Web contexts.

• Visual pipeline builder to facilitate initialization and configuration of source

code infrastructures.

9

Chapter 1 Introduction

Visualizations are often tailor-suited to fulfill the underlying requirements of use cases.

However, these solutions often become rigid and require modification with changing

requirements and user needs. We provide a conceptualization for a unified visualization

framework through divergence in components and convergence in data models. Our

approach refines the visualization process using the separation of concern paradigm and a

modular architecture. The open-source components and data models allow for reuse and

further adjustments to the requirements at hand. A visual pipeline builder serves as an

entry point to enable the swift creation of pre-configured source code infrastructures.

1.4.2 Publications

Different aspects of this thesis have already been published at conferences and workshops.

The following references serve as a foundation for presenting approaches, ideas, figures,

and tables for the later chapters. The list of all publications related or not related to this

theses is presented in Appendix A.

1. Vitalis Wiens, Steffen Lohmann, Sören Auer. WebVOWL Editor: Device-Independent

Visual Ontology Modeling. International Semantic Web Conference 2018 (P&D);

Best Demo Award q®Ú

2. Muhammad Rohan Ali Asmat, Vitalis Wiens, Steffen Lohmann. A Comparative

User Evaluation on Visual Ontology Modeling Using Node-Link Diagrams. Emerging

Topics in Semantic Technologies - ISWC 2018 Satellite Events, 1–12, IOS Press. q

®

3. Vitalis Wiens, Mikhail Galkin, Steffen Lohmann, Sören Auer. Demonstration of a

Customizable Representation Model for Graph-Based Visualizations of Ontologies–

GizMO. International Semantic Web Conference 2019 (Poster & Demos);

Best Demo Award. q®Ú

4. Vitalis Wiens, Steffen Lohmann, Sören Auer. GizMO–A Customizable Representa-

tion Model for Graph-Based Visualizations of Ontologies. Proceedings of the 10th

International Conference on Knowledge Capture 2019, 163–170, ACM. ®

5. Vitalis Wiens, Steffen Lohmann. Demonstration of a Customizable Knowledge

Graph Visualization Framework. ISWC 2020 (P&D). q®Ú

6. Vitalis Wiens, Markus Stocker, Sören Auer. Towards Customizable Chart Visualiza-

tions of Tabular Data Using Knowledge Graphs. The 22nd International Conference

on Asia-Pacific Digital Libraries (ICADL 2020). ®Ú

10

http://ceur-ws.org/Vol-2180/paper-75.pdf
http://editor.visualdataweb.org/
https://youtu.be/XWXhpEr9LPY
http://ceur-ws.org/Vol-2187/paper3.pdf
https://ebooks.iospress.nl/volumearticle/50521
http://ceur-ws.org/Vol-2456/paper59.pdf
https://gizmo-vis.github.io/gizmo/
https://youtu.be/l41OGLnQzns
https://dl.acm.org/doi/abs/10.1145/3360901.3364431
http://ceur-ws.org/Vol-2721/paper525.pdf
https://github.com/vitalis-wiens/donatello-pipelines
https://youtu.be/0bGKTkVTQbU
https://link.springer.com/chapter/10.1007/978-3-030-64452-9_6
https://youtu.be/mZ9B3ETyHU0

1.5 Thesis Structure

1.5 Thesis Structure

This thesis is divided into eight chapters which are outlined as follows:

• Chapter 1 covers the main challenges, research questions, the description of achieved

contributions, and results with a list of published articles.

• Chapter 2 introduces the conceptualizations of Semantic-Web-Based knowledge

structures, fundamental graph algorithms, and human factors in visualizations.

• Chapter 3 provides an overview of state-of-the-art approaches related to Semantic

Web technologies and visualizations related to the main research question.

• Chapter 4 introduces requirements for a device-independent visual modeling ap-

proach, reducing entry barriers for engagement in modeling Semantic-Web-Based

knowledge structures. Furthermore, we present two studies indicating the benefits of

the approach for various user groups.

• Chapter 5 presents a methodology for customizable visualizations of ontologies that

focuses on the utilization of OWL to define meta ontologies for visual representations

and facilitate the creation, sharing, and reuse of existing visual notations.

• Chapter 6 presents an approach for customizable chart visualizations for tabular

data originating from Knowledge Graphs. Additional semantics enable information

organizations and visualization suggestions.

• Chapter 7 describes an approach that refines the commonly used steps in the visualiz-

ation generation process. A pipeline-based architecture facilitates the creation of the

right components for the right task. Our approach addresses a unified visualization

framework through divergence in components and convergence in data models.

• Chapter 8 provides conclusion remarks of this thesis with an additional outlook on

future work. The research questions are revised based on the obtained results.

11

CHAPTER 2

Background

This chapter introduces the foundations and conceptualizations that serve as reference

points to the research objective addressed in this thesis. Section 2.1 presents the foundation

of Semantic Web technologies. Section 2.2 provides an overview of conceptualizations re-

lated to graph theory for the underlying graph structures prevalent in Semantic-Web-Based

knowledge representations. Section 2.3 discusses general aspects of visual representations.

2.1 Semantic Web Technologies

The Web presents an information management system that uses interlinked Hypertext

Markup Language (HTML) documents. Clients (e.g., web browsers) send requests using

the Hypertext Transfer Protocol (HTTP) to servers that host and provide access to those

documents. While this information management system provides some capabilities for

machine-readability, i.e., the structure of HTML documents, it does not enable intelligent

machine agents to understand the content and the meaning of the underlying information.

The Semantic Web is an extension of the Web [20]. It provides a well-defined meaning

and machine-readable representations for information. Therefore, the conceptualization of

Semantic-Web-Based knowledge structures implements machine-readable and machine-

actionable information representations that reflect network-like structures. Semantic Web

data describes information in the form of resources and their interrelations, reflecting

graph-based data structures. Additionally, the explicitly defined meaning for all elements

enables automatic reasoning and information processing.

13

Chapter 2 Background

As shown in Figure 2.1, the Semantic Web uses a technology stack that is organized in

multiple layers. The lowest layer presents the conceptualization for identifying resources

using Unique Resource Identifiers (URIs) and related character encoding. The Internation-

alized Resource Identifiers (IRIs) complement URIs by realizing the Universal Character

Set (Unicode/ISO10646) for identifying resources. For the sake of simplicity, throughout

this thesis, we will use URI as the term denoting the identification of resources. The next

layer in the stack is the Extensible Markup Language (XML) [21]. It provides a general

syntax for describing structured information. Other syntaxes, such as Turtle, N3, RDFa,

and JSON-LD, provide machine-readable formats for different use cases.

The Resource Description Framework (RDF) presents the technology stack’s core layer,

which we describe in Section 2.1.1 in more detail. RDF provides a formal definition of re-

sources using statements in the form of a triple pattern <subject predicate object>. Initially

designed to process meta information, RDF has been generalized to provide the formal

semantics for representing information on the Web using a standardized vocabulary [22].

The following layers in the technology stack address the extension of RDF. RDF Schema

(RDFS) provides semantics for hierarchical structures. The Web Ontology Language

(OWL) presents additional means to create formalizations of complex ontologies for

information processing [4]. Semantic Web Rules Language (SWRL) defines the formal

semantics for logical rules, such as causal relations. The standardized SPARQL Protocol

and RDF Query Language allows for creating semantic queries retrieving and manipulating

information stored in RDF data models and Knowledge Graphs.

The following two layers of the stack, i.e., Unifying Logic and Proof, address the realiz-

ation of machine reasoning and intelligent machine agents using formal semantics based

on Description Logic, which is based on First-Order Logic. However, no standardization

for these two layers exists yet.

Similarly, the top layers consisting of trust, cryptography, and user interface also do not

have standardizations. This thesis focuses on the user interface and application layer to

realize visualizations facilitating interaction and understanding of Semantic-Web-Based

knowledge structures.

14

2.1 Semantic Web Technologies

Figure 2.1: The Semantic Web technology stack [23].

2.1.1 Resource Description Framework

The Resource Description Framework (RDF) is a standard of the World Wide Web Con-

sortium (W3C1). RDF defines an abstract syntax and serialization formats such as Turtle

and JSON-LD for storing and exchanging RDF-based data. W3C provides additionally the

standardized RDF Schema (RDFS) vocabulary, which is an extension of the basic RDF

vocabulary for data modeling. Furthermore, W3C provides the SPARQL Query Language

standard for manipulating and retrieving RDF datasets.

RDF uses a graph-based data model for the semantically enriched representation of

information on the Web. A set of triples in the form of <subject predicate object> defines

an RDF graph. The subject and the object reflect nodes in a graph. The predicate connects

these nodes through a directed link. Figure 2.2 shows a node-link diagram representation

for an example statement: The Millennium Falcon is a spaceship. The subject of the

triple ex:Millennium_Falcon is a resource URI. The predicate rdf:type is a URI

1https://www.w3.org/standards/semanticweb/

15

https://www.w3.org/standards/semanticweb/

Chapter 2 Background

defining a semantic relation “is a”. The object ex:Spaceship is a resource URI. The

prefixes ex: and rdf: implement abbreviations of these URIs. The shortened version

of the URI ex:Millennium_Falcon translates to its full version by expanding the

prefix, i.e., http://example.org/Millennium_Falcon.

Figure 2.2: An illustration of an example RDF triple as a node-link diagram: The predicate reflects
a directed link between the subject and the object node.

The RDF graph data model supports three types of nodes, i.e., URIs, literals, and blank

nodes. The resource denoted by a URI is also called its referent [7]. URI is an extension of

Unique Resource Locator (URL), which often indicates locations of documents on the Web.

For example, the URI http://example.org/Millennium_Falcon provides us

with an identifier but does not reflect a document on the Web. Thus, not every URI denotes

a Web document. URIs typically have the following hierarchical structure [24]:

URI = scheme ":" hier-part ["?" query] ["#" fragment]

Literals represent values such as strings, numbers, and dates. Literals can contain

multiple elements, e.g., the lexical form and optional language tags or datatype URIs.

Typed literals, such as numbers and dates, refer to XML Schema [25] datatypes providing

operational semantics. For example, the typed literal "4.2"^^xsd:float extends the

lexical form of 4.2 with an additional float datatype. Similarly, language tags according to

BCP 47 [26] extend strings with semantics for corresponding languages, e.g., "Световой
меч"@ru and "Lichtschwert"@de are translations of the word “Lightsaber” in Rus-

sian and German, respectively. If present, the language tag or a datatype URI provides

explicit meaning for the lexical form. Otherwise, the lexical form is interpreted as a plain

string. Literals can only occur at the position of the object in a triple.

Blank nodes define resources without identifiers and are disjoint from URIs and literals.

While blank nodes do not have identifiers in the abstract syntax of RDF, using a concrete

syntax (e.g., Turtle, RDFa, etc.) introduces identifiers with only a local scope that are

merely artifacts of the serialization [27]. Blank nodes are often used to define enumerable

data structures such as lists, containers, and collections. For example, describing faculty

members can be modeled as a blank node with links to individual members (cf. Figure 2.3).

16

2.1 Semantic Web Technologies

Figure 2.3: The realization of a container for faculty members using a blank node (blue).

Figure 2.3 illustrates an example for modeling an unordered container using a blank

node. The type assertion for the blank node is rdf:Bag, a class of a container indicating

that its members are unordered [8]. The properties rdf:_1, rdf:_2, and rdf:_3 state

the membership of the resources belonging to the container. Sorted containers are realized

through the type assertion of the blank node to the class rdf:Seq. The type assertion

rdf:Alt (alternative) indicates that typically one of the members will be selected [8].

Collections reflect a list of items. Similar to implementations in various programming

languages, an item is defined as a blank node that points to a resource using the property

rdf:first. The property rdf:rest points to the next item in the collection. The

resource rdf:nil (not in list) is an instance of type rdf:List and reflects an empty

list. Figure 2.4 shows the example for faculty members modeled as a collection.

Figure 2.4: Modeling of the faculty members as a collection. Blank nodes are highlighted in blue.

The distinction between collections and containers is grounded in different use cases.

While containers provide no mechanisms to identify a certain amount of members, collec-

tions can define a closed set of members [8]. Thus, containers reflect ordered and unordered

composition of items with the additional option to add new elements. Collections reflect

ordered compositions of items and restrict the possibility of adding new elements.

17

Chapter 2 Background

The main building block of RDF are triples (i.e., <subject predicate object>), where:

• Subject denotes the element from which a directed connection is formed to the object

using the predicate. Only URIs or blank nodes can be placed at the subject position.

• Predicate denotes the element that forms the directed connection between subject

and object. Only URIs can be placed at the predicate position.

• Object denotes the target element for the connection. URIs, blank nodes, or literals

can be placed at the object position.

Formally, an RDF triple is defined as follows:

Definition 2.1: RDF Triple [28]

Let U, B, L be disjoint infinite sets of URIs, blank nodes, and literals, respectively.

A tuple (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) is called an RDF triple,

where s is called the subject, p the predicate, and o the object.

2.1.2 Extended Data Modeling with RDFS and OWL

The RDF vocabulary provides mechanisms to make statements about resources in the form

of RDF triples. However, this vocabulary supports basic descriptions, e.g., x has type y,

and does not provide the means to model groups of resources, such as classes. RDF

Schema (RDFS) extends the basic RDF vocabulary with data-modeling aspects [8].

RDFS provides the means to describe groups of resources, their relationships, and hier-

archical structures. Furthermore, RDFS defines characteristics of resources and properties,

such as the domain and range restrictions. RDFS uses an object-oriented conceptualization

for classes and properties as often used in programming languages such as Java. In contrast

to object-oriented systems, which define a class in terms of properties its instance may

have, RDFS defines properties in terms of classes for a resource to which they apply [8].

Hierarchical structures for classes are realized using the predicate rdfs:subClassOf.

The predicate rdfs:subPropertyOf addresses the hierarchy of properties. Property

resources define the additional restrictions, e.g., using rdfs:domain and rdfs:range

properties. These encode additional semantics. While the domain assigns a class to the

subject, the range assigns a class to the object. The RDFS vocabulary defines additional

complementary predicates, such as rdfs:label and rdfs:comment, to provide nat-

ural text annotations for resources. The example in Listing 2.1, expressed using the Turtle

(TTL) syntax, illustrates the use of RDFS for defining class and property hierarchies.

18

2.1 Semantic Web Technologies

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

2 @prefix ex: <http://www.example.org/> .

3
4 ex:Spaceship rdfs:subClassOf ex:Vehicle .

5 ex:Pilot rdfs:subClassOf ex:Person .

6 ex:Passenger rdfs:subClassOf ex:Person .

7
8 ex:isPiloting rdfs:domain ex:Pilot .

9 ex:isPiloting rdfs:range ex:Vehicle .

10 ex:isPiloting rdfs:subPropertyOf ex:operates .

Listing 2.1: RDFS example defining subclass axioms for Spaceship, Pilot, Passenger, and

defining domain, range, and hierarchical relation for the property isPiloting.

Using RDFS, we are able to express that every Spaceship is a Vehicle. Both

Pilot and Passenger are Persons. The property isPiloting is a specialized

action of operates. RDFS enables basic inference. For example, using the triple

<ex:Han_Solo ex:isPiloting ex:Millennium_Falcon> and the vocabu-

lary of Listing 2.1, a reasoner can infer by using the domain and range that Han Solo is a

Pilot, whereas Millennium Falcon is a Vehicle. Without an explicit assignment

of Millennium Falcon to Spaceship this information can not be entailed.

RDFS often accompanies the definition of more complex ontologies using the Web

Ontology Language (OWL). The term ontology is borrowed from philosophy addressing

the science of describing entities in the world and how they relate [29]. As defined by

Gruber [30, p. 908], “an ontology is an explicit specification of a conceptualization”.

Furthermore, “a conceptualization is an abstract, simplified view of the world that we wish

to represent for some purpose” [30, p. 908].

OWL extends RDF and RDFS vocabularies with additional logical constructs and formal

semantics. In the following, we describe a subset of new constructs and their semantics:

• Class level semantics:

– owl:equivalentClass states the equivalence of two or more classes.

– owl:unionOf states that a class definition is a union of multiple classes.

– owl:intersectonOf states that a class is an intersection of multiple classes.

– owl:disjointWith states the disjointedness of a class to other classes.

19

Chapter 2 Background

• Instance level semantics:

– owl:sameAs states the equivalence of two or more instances.

– owl:differentFrom states difference of two or more instances.

• Predicate level semantics:

– owl:objectProperty object value assertion for the object position.

– owl:datatypeProperty literal value assertion for the object position.

– owl:cardinality, owl:allValuesFrom, owl:someValuesFrom

define cardinality restrictions, universal and existential quantifiers, respectively.

1 @prefix owl:<http://www.w3.org/2002/07/owl#> .

2 @prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

3 @prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

4 @prefix ex: <http://www.example.org/> .

5
6 ex:Spaceship owl:disjointWith ex:Person .

7 ex:siblingOf rdf:type owl:ObjectProperty,

8 owl:SymmetricProperty .

9 ex:siblingOf rdfs:domain ex:Person .

10 ex:siblingOf rdfs:range ex:Person .

11 ex:Luke ex:siblingOf ex:Leia .

Listing 2.2: A small knowledge base. Note: Multiple type assertions are realized using a comma,

see lines 7 and 8. A parser will unroll these abbreviations and create corresponding triples.

The example in Listing 2.2 defines a small knowledge base in the Turtle syntax. The

OWL extensions enable logical formalizations and allow reasoners to deduce implicit

knowledge. While it is evident that a person can not be simultaneously a spaceship,

OWL explicitly encodes this information using the disjoint property. Given the triple

<ex:Luke ex:siblingOf ex:Leia> and the RDFS semantics, we can deduce that

Luke and Leia are of type Person. The domain and range restrictions on the property

ex:isSiblingOf enable this entailment. However, this small knowledge base only

defines the sibling relation from Luke to Leia. Generally, the sibling relation should

describe: if X is a sibling of Y , then Y is a sibling of X. Using the semantics of OWL,

we can encode this conceptualization by assigning an object property expression to the

ex:isSiblingOf property in the form of owl:SymmetricProperty [9]. Thus,

reasoners can entail the implicit knowledge that Leia is a sibling of Luke.

20

2.1 Semantic Web Technologies

2.1.3 Linked Open Data and SPARQL

Accessing structured and interlinked data plays a vital role in the success of Semantic-Web-

Based knowledge structures. A major conceptualization of the Semantic Web addresses

the interlinking of data so that humans and machines are able to explore the web of data

(“The Semantic Web isn’t just about putting data on the web” [31]). Linked Data addresses

the vision of the Semantic Web by a set of best practices that are used in real-world use

cases. The Linked Data principles have been defined by Sir Tim Berners-Lee as follows:

Definition 2.2: Linked Data Principles [31]

• Use URIs for identifying and naming things.

• Use HTTP URIs to allow for the lookup of things.

• URI lookups should provide useful information using the standards

(RDF*, SPARQL).

• Link to other URIs to enable humans and machines to explore more things.

These principles encourage people to provide open and interlinked datasets for humans

and machines alike. While Linked Data does not necessarily need to be open, openness

promotes the reuse and interlinking of data. Linked Open Data (LOD) denotes Linked

Data which is released under an open license. These principles and open license publishing

led to the emergence of the LOD Cloud, a network of open interlinked semantic datasets

containing 1,301 datasets with 16,283 links (as of May 2021) [32].

The sheer volume of data makes it cumbersome when serving the data as lots of files [31].

Thus, SPARQL query services provide reasonable mechanisms for information retrieval

tasks. Examples of large community-supported open knowledge bases are DBpedia [33] (a

Semantic Web representation of Wikipedia) and Wikidata [34] (a free and open knowledge

base that acts as central storage for the structured data of projects such as Wikipedia).

SPARQL is a W3C recommendation and is a recursive acronym for SPARQL Protocol

and RDF Query Language [10]. It allows for creating semantic queries retrieving and

manipulating information stored in RDF data models and Knowledge Graphs. A SPARQL

query is typically a basic graph pattern that is a set of triple patterns, similar to RDF triples.

However, in a triple pattern, each subject, predicate, and object can be a variable. The

triple patterns are matched against the target RDF dataset resulting in a subgraph where

the variables are replaced with RDF terms when they form a query solution. Formally, a

triple pattern and a basic graph pattern are defined as follows:

21

Chapter 2 Background

Definition 2.3: Triple Pattern, Basic Graph Pattern [35]

Let U,B,L be disjoint infinite sets of URIs, blank nodes, and literals, respectively.

Let V be a set of variables such that V ∩ (U ∪ B ∪ L) = ∅.

A triple pattern tpi ∈ (U ∪ V) × (U ∪ V) × (U ∪ L ∪ V).

A Basic Graph Pattern (BGP) B is the conjunction of triple patterns,

i.e., B = tp1 AND tp2 AND . . . AND tpn.

SPARQL defines four query types: SELECT, ASK, CONSTRUCT, and DESCRIBE.

• SELECT returns variables and their bindings that satisfy the basic graph pattern.

• ASK query returns a boolean value if the basic graph pattern has a solution.

• CONSTRUCT returns an RDF graph that is constructed based on the BGP.

• DESCRIBE returns an RDF graph containing RDF data about resources.

SPARQL provides functionalities such as aggregation, logical operations, filtering, and

optional patterns to create more complex queries. Listing 2.3 shows a simple query example

that returns all triples of the target RDF dataset. The SELECT clause defines variables for

the result, and the WHERE clause defines the generic triple pattern, matching all triples.

1 SELECT ?subject ?predicate ?object WHERE {

2 ?subject ?predicate ?object .

3 }

Listing 2.3: A simple SPARQL SELECT query to retrieve all triples of the target RDF dataset.

Semantic Web data is typically realized in a versatile technology stack addressing differ-

ent use cases. Knowledge Graphs use various technologies to store and retrieve information

such as SPARQL endpoints and RESTful API requests with different query languages such

as SPARQL, Cypher, and GraphQL. When designing visual representations, the returned

types of the different query formats need to be considered. The main characteristic of

the results is that these are transmitted in textual formats such as JSON, XML, or textual

representations of an RDF graph. Thus, parsing mechanisms are required for transforming

the results into visual primitives.

2.1.4 Knowledge Graphs

The term “Knowledge Graph” has existed in the literature since 1972 [36]. The modern

association of this term originates from the announcement of the Google Knowledge

22

2.1 Semantic Web Technologies

Graph [3]. Since then, the term is often used in relation to graph-based collections

of knowledge. Prominent examples for public Knowledge Graphs are DBpedia [33],

Wikidata [34], and YAGO [37]. Other companies such as Netflix, Amazon, Microsoft, and

Facebook have created their own Knowledge Graphs similar to the one of Google.

The definition of the term “Knowledge Graph” remains ambiguous. The work of

Ehrlinger and Wöss [38] argues that several definitions of Knowledge Graphs and their

features exist. However, a unified definition of Knowledge Graphs is yet missing. Typically,

Knowledge Graphs refer to large collections of semantically enriched, interlinked, and

structured information. Instead of defining a formal definition of Knowledge Graphs, the

work of Paulheim [39] presents a minimum set of characteristics:

Definition 2.4: Knowledge Graph [39]

• mainly describes real-world entities and their interrelations, organized in a graph

• defines a possible schema for classes and relations of entities

• allows for the interrelation of arbitrary entities with each other

• covers various domains

These characteristics address the structure and the content of Knowledge Graphs, i.e.,

facts about real-world entities structured in the form of a graph. The possible definitions of

a schema for classes and relations, e.g., in the form of ontologies or vocabularies, provide

the means to retrieve entities based on their semantics and also infer knowledge that is not

explicitly stated in the Knowledge Graph. Additionally, as Knowledge Graphs do not pose

any restriction on the information they hold, various knowledge domains are covered. Ex-

amples of different knowledge domains are Biomedical Knowledge Graphs [40], Enterprise

Knowledge Graphs [41], Scientific Knowledge Graphs [42], and many more.

Figure 2.5 shows a real-world example of entities and their interrelations. This figure

illustrates a small selection of facts extracted from DBpedia about Barack and Michelle

Obama in the form of a node-link diagram. While we keep the amount of information

selective for illustrative purposes, i.e., we depict only 11 triples, this example highlights

once more that with the growing size of the data we wish to visualize, an information

overload quickly materializes.

23

Chapter 2 Background

Figure 2.5: A node-link diagram visualization depicting a small selection of facts extracted from
DBpedia about Barack and Michelle Obama. While the blue color highlights both persons, the
green and yellow colors indicate the datatype properties and corresponding literal values.

The characteristics of Definition 2.4, however, also apply to the definition of ontologies.

The conceptualizations of ontologies can be categorized into two groups of statements,

i.e., TBox and ABox. The TBox describes the terminological aspects of the conceptualiza-

tion, i.e., the definition of a schema, classes, properties, and their hierarchical structures.

The ABox describes the assertion aspects of the conceptualization, i.e., the definition

of instances/individuals assigned to classes and their interrelations. Thus, the first two

characteristics are also addressed by ontologies. Similarly, the latter two characteristics

are covered by interrelations of entities, e.g., definitions of properties connecting entities

within an ontology or connecting entities outside the ontology using import statements

for conceptualizations of different domain knowledge. These characteristics define Know-

ledge Graphs by their content, i.e., mainly describing real-world entities using graph-based

knowledge representations. Other definitions for Knowledge Graphs address further tech-

nological capabilities of such systems and the underlying size of stored knowledge [38].

For example, information retrieval capability (e.g., using SPARQL) and inference and

derivation of new interrelations using reasoning.

As stated before, Knowledge Graphs contain large collections of semantically enriched

data stored in the form of a graph. In order to get a feeling of what large in this context

means, we list certain statistics about popular Knowledge Graphs. DBpedia’s dataset

“2016-10” contains 13 billion pieces of information (RDF triples) [43]. Wikidata contains

24

2.1 Semantic Web Technologies

more than 90 million items [44] and 12 billion RDF triples [45]. YAGO (Yet Another Great

Ontology) is another example large Knowledge Graph which contains 2 billion triples

about 64 Million entities [46]. When Google’s Knowledge Graph was announced in 2012,

it contained 500 million objects and more than 3.5 billion relationships between them [3].

A news article [47] reported that Google’s Knowledge Graph tripped its size within seven

months after it was announced, containing 570 million entities and 18 billion facts.

As human cognitive capacities are limited, we require mechanisms to extract pieces

of information and exploration techniques to navigate in these extensive collections of

information stored in Knowledge Graphs. In the following example, we address a natural

language question that we answer using a Knowledge Graph: "Who was born on the same

day as Nikola Tesla?". To answer this question, we use DBpedia as source Knowledge

Graph. As shown in Listing 2.4, a SPARQL query retrieves the answer, i.e., Otto Krause.

1 PREFIX dbo: <http://dbpedia.org/ontology/>

2 PREFIX dbr: <http://dbpedia.org/resource/>

3 PREFIX schema: <http://schema.org/>

4
5 SELECT DISTINCT ?person ?birthDate WHERE {

6 dbr:Nikola_Tesla dbo:birthDate ?birthDate .

7 ?person a schema:Person .

8 ?person dbo:birthDate ?birthDate

9 }

Listing 2.4: A SPARQL query to retrieve the persons who were born on the same day as Nikola

Tesla.

This example illustrates an application over Knowledge Graphs, i.e., Question Answer-

ing. Question Answering (QA) addresses information retrieval aspects combined with

Natural Language Processing (NLP) [48]. In order to obtain our results, we need to trans-

form our natural language question into a query (here SPARQL). While the NLP aspect of

QA automatically performs the transformations of questions into queries, in the following,

we provide the manual transformation of our inquiry into a SPARQL query. At first, we

extract the birth date of Nikola Tesla, i.e., line 6 in Listing 2.4. Line 7 builds a basic graph

pattern (BGP) that retrieves all resources of type schema:Person and assigns them to

the variable ?person. Next, the BGP is extended to match only resources that have a

connection to the variable ?birthDate using the property dbo:birthDate. Thus,

using this SPARQL query allows us to retrieve all persons who are born on a particular

date. The retrieved results are shown in Table 2.1.

25

Chapter 2 Background

Table 2.1: Corresponding results of the SPARQL query of Listing 2.4

person birthDate
http://dbpedia.org/resource/Nikola_Tesla 1856-07-10

http://dbpedia.org/resource/Otto_Krause 1856-07-10

This thesis refers to the term Semantic-Web-Based knowledge structures as the gen-

eral conceptualization of machine-readable representation of knowledge in the form of

semantically enriched graph-based data models. The particular implementation, the size of

the underlying knowledge, and the used technology stack play only a minor role in this

context. The main aspect we consider for Semantic-Web-Based knowledge structures is

that information is represented in graph-based data models that provide well-defined mean-

ings and machine-readable access using Semantic Web conceptualizations. The second

central aspect addresses the capabilities to retrieve portions of the information stored in

a Knowledge Graph and the integration of information across different ontologies (e.g.,

using owl:imports statements). The objective of visual explorations in the context of

this thesis is to facilitate the understanding of knowledge that is represented in the form of

graph-based data models. Thus, the data structure and its semantics are the foundation for

the generation of visual representations.

2.2 Graph Theory

The study of Semantic-Web-Based knowledge structures requires an analysis of the under-

lying data from the graph theory aspect, i.e., the graph-based data model used to represent

knowledge in a machine-readable manner. This section provides a brief overview of

selected definitions in this context. Graphs are used to model pairwise relations between

objects. Thus, graphs consist of nodes and links reflecting objects and their connections.

Other notations use vertices or points for nodes; and edges or lines for links. In this section,

nodes and links are the terms denoting objects and their relations, respectively.

A typical graph G(N, L) is a tuple, where N and L are finite sets. The elements of N are

the nodes of the graph, while set L reflects the links describing the interrelation of nodes.

The properties of nodes and links define characteristics for a graph. The work of Korte and

Vygen [49] provides an overview of definitions and characteristics related to graphs which

we summarize and adjust to our notation for the sake of simplicity in the following:

26

http://dbpedia.org/resource/Nikola_Tesla
http://dbpedia.org/resource/Otto_Krause

2.2 Graph Theory

Definition 2.5: Undirected Graph [49]

An undirected graph is a triple Gundirected = (N, L,Ψ),

where N and L are finite sets and Ψ : L→ {X ⊆ N : |X| = 2}.

The mapping for the links Ψ is restricted to |X| = 2, declaring that there exists a link (l ∈ L)

connecting only two nodes (n1, n2 ∈ N). The links in an undirected or bidirectional graph

describe the relation between two nodes, whereas the order of the nodes is not relevant,

i.e., l = (n1, n2) = l′ = (n2, n1).

Definition 2.6: Directed Graph [49]

A directed graph is a triple Gdirected = (N, L,Ψ),

where N and L are finite sets and Ψ : L→ {(n1, n2) ∈ N × N : n1 , n2}.

In contrast to undirected graphs, a link l = (n1, n2) defining the connection from n1 to n2,

does not imply the connection from n2 to n1 in a directed graph.

Definition 2.7: Parallel Links [49]

Two links l, l′ are called parallel when Ψ(l) = Ψ(l′).

Parallel links occur when two nodes n1, n2 ∈ N are connected using different links. For

example, in a directed graph, two links are parallel when their source and target nodes are

identical. Lines 8 and 9 in Listing 2.2 indicate that the predicates rdfs:domain and

rdfs:range are parallel in this example because the subjects and the objects of these

two triples are identical, i.e., ex:isSiblingOf and ex:Person.

Definition 2.8: Simple Graph and Multigraph [49]

A graph is called simple when it does not contain parallel links;

otherwise, it is called a multigraph.

A link in a simple graph is usually identified with its image Ψ(l) and the graph G is denoted

as G = (N(G), L(G)), where L(G) ⊆ {X ⊆ N(G) : |X| = 2}.

27

Chapter 2 Background

Definition 2.9: Self-Loops [49]

Links connecting identical nodes (l = (ni, ni)) are called self-loops.

An example for self-loops in RDF contexts is <ex:Person ex:knows ex:Person>.

The property ex:knows forms a relation between identical subject and object resources.

Definition 2.10: Adjacency Matrix [49]

Adjacency Matrix A is a |N | × |N | Matrix, where |N | is the number of nodes in the

graph. The entry A(i, j) reflects the number of connections between the nodes ni and

n j. The matrix is symmetric if the graph is bidirectional.

Nodes that are directly connected through a link are called adjacent or neighboring. Thus, a

graph structure can be represented in the form of an adjacency matrix A. In a simple graph,

an entry A(i, j) is zero when two nodes are not adjacent, and one when a link connects

the nodes ni and n j. In a multigraph, the entry A(i, j) often reflects the number of links

connecting the nodes ni and n j.

Definition 2.11: Orientation [49]

For a directed graph G, it is sometimes beneficial to consider the underlying undirected

graph G′, which has the same set of nodes and contains an undirected link {v, w} for

each link (v, w) in G. In this case, G is considered as an orientation of G′.

The benefit of bidirectional links allows for additional flexibility for graph traversal,

enabling navigation and exploration mechanisms that are not restricted by links’ directions.

Definition 2.12: Subgraph [49]

A subgraph of a graph G = (N(G), L(G)) is a graph H = (N(H), L(H)) with

N(H) ⊆ N(G) and L(H) ⊆ L(G). Thus, the graph G contains the subgraph H.

A subgraph H holds a subset of nodes and a subset of links of the original graph G. Sub-

graphs provide the means for visual exploration to reduce the information load. Additional

exploration mechanisms allow for dynamically visualizing subgraphs, enabling users to

collapse and expand nodes of a subgraph.

28

2.2 Graph Theory

Definition 2.13: Spanning Graph [49]

A subgraph H of G is called spanning when it contains all nodes of the graph G, i.e.,

N(H) = N(G). Thus, a spanning graph H differs only in the set of links.

Spanning Graphs provide the means to mediate relational information between the nodes

of a graph G. In a multigraph, these allow for reducing the amount of visualized relations

between node pairs. Visual explorations mechanisms allow for enabling users to collapse

and expand links.

Definition 2.14: Path [49]

A path is a graph P = ({n1, ..., nk+1}, {l1, ..., lk}) such that ni , n j for 1 ≤ i < j ≤ k + 1

and the sequence n1, l1, n2, ..., nk, lk, nk+1 is called a walk.

Paths describe the graph traversal using a walk from n1 to nk+1. Using additional weights

for the links allows for the formalization of traversal costs. These traversal costs can be

beneficial for identifying paths with minimal traversal costs.

Definition 2.15: Connected and Unconnected Graphs [49]

Let G be an undirected graph. G is called connected if there is a v-w-path for all

v, w ∈ N(G). Thus for all pairs of two nodes v, w there exists a path where a walk exists

from v to w; otherwise, the graph is called disconnected.

A directed graph is called connected if the underlying undirected graph is connected.

The connected components of a graph G are its maximal connected subgraphs. A link

connecting two connected components is also called a bridge.

Definition 2.16: Cyclic Graph [49]

A graph with a circuit is called a cyclic graph.

A circuit (cycle) is a graph ({n1, ..., nk}), ({l1, ..., kk}), where the sequence n1, l1, n2, ..., nk, lk, n1

and ni , n j for 1 ≤ i < j ≤ k, is a walk with an identical start and end node.

29

Chapter 2 Background

Definition 2.17: Labeled Graph [49]

A labeled graph G is a graph G(N, E,Σ,Λ), where Σ(N) maps the set of nodes to the

set of labels, and Λ(L) maps to the set of links to the corresponding set of labels.

Labeled graphs assign to the sets of nodes or edges corresponding sets of labels. Further

specifications of labeled graphs are node-labeled and link-labeled graphs, addressing the

existence of corresponding label sets.

The definitions and characteristics above allow us to describe the formal definition for

the RDF graph data model. An RDF graph is a directed graph that is defined by the triple

structure <subject predicate object>, where the predicate is a directed link describing

the interrelation of the subject to the object. RDF allows for the definition of arbitrary

triples linking subjects and objects through different predicates. This can result in parallel

links, which is a characteristic of a multigraph. For example, lines 8 and 9 in Listing 2.2

link identical subjects and objects using two distinct properties, i.e., rdfs:domain and

rdfs:range. Furthermore, the triple structure allows for the definition of circuits within

a graph, which is a characteristic of a cyclic graph. An RDF graph is a labeled graph,

where the sets of labels for nodes and links are created using the corresponding URIs. To

increase readability for humans, the labels in a visualization can be replaced with natural

text labels using the annotations of resources such as rdfs:label. However, such labels

are ambiguous (i.e., distinct resources can have the same natural text labels). Thus, the

underlying labels for the machine operations remain the URIs of resources. Blank nodes

receive a local scope label through the realization, which is an artifact of the serialization

(cf. Section 2.1.1). Literal values can be considered as resources that are not identified

with URI references [50]. Formally, an RDF Graph is defined as follows:

Definition 2.18: RDF Graph [51]

Let U, B, L be disjoint infinite sets of URIs, blank nodes, and literals, respectively.

An RDF Graph G is a four-tuple reflecting a directed labeled (cyclic) multigraph

G = (N ,L,Σ,Λ) where:

• N ⊂ (U ∪ B ∪ L) a finite set of RDF resources corresponding to nodes

• L ⊆ N ×N a finite set of links connecting the nodes.

• Σ is a set of uniquely identified labels for the set of nodes N

• Λ is a set of uniquely identified labels for the set of Links L

30

2.3 Visual Representations

2.3 Visual Representations

Visualizations reinforce human cognition and exploit humans’ ability to understand com-

plex data through visual representations. “The earliest seeds of visualization arose in

geometric diagrams, in tables of the positions of stars and other celestial bodies, and in

the making of maps to aid in navigation and exploration” [52, p. 3]. The advances in

hardware and software engineering provide the means to analyze and show data on displays

using various visualization methods. Visualizations, however, are highly dependent on the

individual use case and the targeted user groups. The work of Card et al. [53] provides a

definition of visualization as follows:

Definition 2.19: Visualization [53]

Visualization is the use of computer-supported, interactive, visual representations of

data to amplify cognition.

As stated in Definition 2.19, the main objective of visualizations is to amplify cognition

and facilitate the understanding of data. We can make a distinction for visualizations into

data visualization, scientific visualization, and information visualization. In this thesis, we

refer to visual representations as to the combination of these terms because the content of

ontologies and Knowledge Graphs can express different types of data, i.e., data, scientific

data, and abstract data. Data visualization refers to displaying data in a graphical fashion,

where it should help in viewing the structure of the data [54]. Scientific visualization refers

to visual representations of scientific data, which is often physically based. Card et al.

define information visualization as follows:

Definition 2.20: Information Visualization [53]

Information Visualization is the use of computer-supported, interactive, visual repres-

entations of abstract data to amplify cognition.

Visualizations provide an abstract representation of data that reinforces human cognition.

However, perception of the visualization and its underlying information plays a major role

in facilitating understanding. Cognitive science shows that humans’ capacity is limited

in the aspect of storing and processing information [55]. Thus, with the growing size and

complexity of Semantic-Web-Based knowledge structures, their graphical representations

tend to become difficult to read, which is induced by visual clutter, crossing edges, and

31

Chapter 2 Background

occlusion of the rendering primitives. Additionally, in graph visualizations, every rendering

primitive (e.g., circle, rectangle, label, link, arrow, and even color) represents information.

An information overload is a natural consequence when the amount of rendering primitives

exceeds the cognitive capacity of the user to comprehend visual representation.

In human cognitive psychology, preattentive processing addresses an initial organization

of the perceived visualization based on cognitive operations. Visual features such as color,

shape, size, orientation are believed to be rapid, automatic, and spatially parallel [56].

Figure 2.6 illustrates two examples for target detection tasks. While the target detection

task in Figure 2.6 a) requires minimal effort to detect the blue circle, in Figure 2.6 b)

more attention is required to identify the blue circle because it does not provide a unique

feature that distinguishes it from other objects in the image. In particular, the squares with

identical colors in correspondence with the target object introduce additional distraction,

and therefore the object detection task requires more attention.

a) b)

Figure 2.6: Target detection task (blue circle): a) Target element has a different color, making it
easy to detect; b) Target element shares the same color with distraction elements (blue squares),
requiring more attention to locate the target element. Image adapted from [56]

.

Similar effects can be observed when target objects are "masked" by other objects. This

masking effect depends on elements sharing locally distinctive visual properties with other

elements [57]. Figure 2.7 a) illustrates an example of such a masking effect. On a quick

glance, the nine groups of objects seem equivalent. However, there are two groups with

elements that are distinctive within the group. When directing attention to individual

groups separately, the distinctive elements become easily observable due to the local and

reduced context of the currently observed group.

32

2.3 Visual Representations

a) b)

Figure 2.7: Preattentive processing: a) Masking effect requires additional attention when elements
share locally distinctive visual properties with other elements. b) Identifying the target object
without a visual feature requires additional attention (bottom image). Images adapted from [57].

An additional example for target detection is illustrated in Figure 2.7 b). The upper

image of Figure 2.7 b) introduces a feature (vertical line) to the target object. In contrast, in

the lower image, the target detection task requires the identification of the element without

this feature. Identifying the target object, i.e., the circle without the vertical line, in the

lower images requires additional attention to locate the object with the absence of a feature.

A general objective of visualizations is to present data and information to humans in

such a way that a visual representation is informative and meaningful. When designed in a

user-centered manner, visualizations facilitate understanding of the underlying data. Addi-

tionally, visualizations should allow users to perform different types of tasks rapidly [56].

The term mental model is often occurring in literature and reflects the aspect of a users’

internal representation of the external world. Different domains use the term mental

models ubiquitous, but only a few provide explicit definitions [58]. Wilson and Rutherford

describe mental models as the representations formed by a user for a system and/or a

task that is based on previous experience and the current observation of the system [18].

In his work, Norman [59] considers four aspects for mental models: i) target system,

ii) conceptual model, iii) mental model, and iv) scientist’s conceptualization of the mental

model. The target system reflects the conceptualization of the system; the conceptual

model addresses the representation of the target system; the mental model is created by

interactions with the system; and the scientist’s conceptualization is a model of a mental

33

Chapter 2 Background

model. Additionally, Norman observed that mental models are incomplete, unstable, do

not have firm boundaries, and are unscientific. When designing visual representations for

Semantic-Web-Based knowledge structures, we have to consider mental models of users

as internal representations of a system addressing different aspects:

• Interaction Layer: Mental model of the system functionalities, e.g., interactions.

• Conceptual Layer: Visual representation for Semantic Web data, i.e., how does a

system encode information using visual mappings. Visual notations provide examples

of such mappings and formally define the depiction of data (e.g., UML notation).

• Perception Layer: Mental model of the perceived information, i.e., the mental

model for the interpretation of the content. Ideally, the visual representation model

corresponds to the user’s mental model. However, these match typically only in some

aspects and diverge from the user’s expectations and previous experiences with other

visualizations methods and tools.

In order to satisfy the varying demands of users and use cases, suitable visualizations

require customizable representation models. Since Semantic-Web-Based knowledge struc-

tures typically reflect large networks, we require additional mechanisms to handle cognitive

and information overload. The information-seeking mantra [60]: overview first, zoom

and filter, then details-on-demand presents guidance for the design of visualizations. It is

of interest to understand information on different abstraction levels. For example, on the

general broad overview level or boiled down to specific details. Presenting all details leads

to cognitive and information overload and does not support sense-making due to the aspect

that such overcrowded representations are hard to understand. Users do not know where to

start to create a mental model of the presented information. Thus, Shneiderman’s mantra

addresses it by first displaying reduced information in the form of an overview. The user

then chooses the relevant information to zoom in, and details are presented on demand.

In Semantic Web contexts, visualizations often depict the structure of Semantic Web

data, i.e., resources and their relations. However, more suitable visualization methods are

beneficial for displaying the underlying content, e.g., chart visualizations. For example,

visualizing the varying data of a temperature sensor over time using a node-link diagram

results in a non-informative representation. While the nodes and links reflect the structure of

the data, a line chart is more suitable to represent the content (i.e., the varying temperature

over time) in a meaningful way. In summary, visualizations have to present the information

on different abstraction layers with varying levels of details using suitable representations.

34

CHAPTER 3

Related Work

A fundamental aspect of the Semantic Web is creating and communicating conceptualiza-

tions of information and data in certain domains. Generally, Semantic Web data can be

created using a text editor. However, manually creating machine-readable conceptualiza-

tions is cumbersome and can be error-prone. Furthermore, it requires the knowledge of

different syntaxes prevalent in various serialization formats, such as Turtle [61] or Mancher-

OWL-Syntax [62]. Modeling Semantic-Web-Based knowledge structures is becoming

more and more prominent. Consequently, various ontology engineering tools have been

developed in the last years. To facilitate creating and editing of ontologies, widget-based

user interfaces are often used for ontology engineering (e.g., NeOn-ToolKit [63], TobBraid

Composer [64], Swoop [65], OWLGrEd [66], etc.). Similar features are provided by the

different tools, such as viewing the ontology structure in hierarchical trees, supporting

different serialization formats, and reasoning capabilities. Popular ontology engineering

tools are Protégé1 and its descendant WebProtégé2.

The advances in digitization create enormous amounts of data and provide new oppor-

tunities for business models. However, in order to reduce human labor and time-consuming

efforts for analysis and decision-making tasks, the data has to be machine-actionable.

Semantic Web technologies address such data representation formats, enabling information

retrieval based on the semantics of elements (things, not strings [3]). Thus, different groups

target the transformation of mere data towards information by providing structured and

semantically enriched formats that are understood by machines and humans alike.
1https://protege.stanford.edu/
2https://webprotege.stanford.edu/

35

https://protege.stanford.edu/
https://webprotege.stanford.edu/

Chapter 3 Related Work

The work of Vu et al. [67] uses a transformation process in the form of a mapping

language (D-REPR). Heterogeneous datasets, such as tables in CSV or JSON formats, with

different layouts, are described in a model that defines components for the transformation

into RDF. These components describe the dataset resource, its attributes, and how the data

alignment is realized. Other approaches, such as XLWrap [68], focus on the transformation

of spreadsheets into RDF. R2RML [69] addresses the mapping of relational databases

to RDF. However, relational databases can be seen as tables, and therefore, R2RML

techniques are also applied to transform tabular data into Semantic Web representations

such as RDF. Most approaches use template definitions and rules for specific datasets,

defining their data transformations. Due to the flexible nature of tables, the challenge of

transforming tables into Semantic-Web-Based knowledge representations typically results

in transformation models that are specifically tailored for individual use cases.

This chapter provides an overview of state-of-the-art approaches related to Semantic

Web technologies in the context of visualization methods and tools. The remainder of this

chapter is structured as follows: Section 3.1 summarizes visualization methods and tools

for Semantic-Web-Based knowledge structures. Section 3.2 reviews an approach from

previous work that is not part of this thesis (Semantic Zooming for Ontology Graphs [70]).

Section 3.3 provides an overview of customizable visualization methods in Semantic Web

contexts. Section 3.4 provides a summary and addresses the main research question.

3.1 Visualization Methods and Tools

Visualizations provide an abstract representation of data that reinforces human cognition.

Consequently, various visualization methods and tools exist, and new ones are being

developed. Figure 3.1 shows examples of existing visualization methods and tools.

Visualizations of ontologies can offer a good starting point for exploration and support

the sense-making of the provided information [16]. Several ontology editors feature graph

visualizations, and various visualization plugins3 have been developed for the popular

ontology editor Protégé. Nearly all of the available approaches are developed for desktop

environments. Typically, they are designed to be used by specialists with sufficient

knowledge in modeling and logical notations in OWL representations. However, due to the

increased attention in academic and industrial contexts, various user groups are nowadays

involved in ontology modeling.

3http://protegewiki.stanford.edu/wiki/Visualization

36

http://protegewiki.stanford.edu/wiki/Visualization

3.1 Visualization Methods and Tools

Figure 3.1: Different visualization methods and tools. À WebVOWL, image from [71]; Á OntoGraf
(Protégé plugin), image from [72]; Â Radial tree layout, image from [17]; Ã VOWL Specification
1.0, image from [73]; Ä Screenshot of TopBraid Composer Maestro Edition (IDE), image from [74];
Å Chord diagram in the context of Drug-Drug-Interactions; Æ Gra.fo, image from [75]; Ç OwlGred
UML style graphical editor, image from [76]; È Circular treemaps, image from [77]

Dudáš et al. [17] provide a comprehensive survey of ontology visualization methods

and tools. In this work, the authors identified that most approaches use two-dimensional

node-link diagram visualizations to represent the underlying information in ontologies.

Due to the aspect that Semantic-Web-Based knowledge representations reflect graph

structures, node-link diagrams provide a well-suited graphical depiction for the underlying

structure of the data. However, the various methods range from indented trees and chord

diagrams to treemaps and Euler diagrams. Many ontology visualization techniques have

been proposed [78–81]. Due to the aspect that different use cases, user groups, and tasks

require specific visualization methods to facilitate understanding and interaction with

Semantic-Web-Based knowledge structures, the majority of the Semantic Web community

has not accepted a visualization method as a de facto standard [17].

Visual notations formally define the depiction of different elements for a visualization

method. Examples of visual notations for ontologies are VOWL [82] and Graffoo [83],

but also UML is often used to represent ontologies [84] or different tool-specific notations.

37

Chapter 3 Related Work

Although UML has a standard visual notation, various styles exist, such as the visual

representation of ontologies with TopBraid Composer [85], a UML version of the VOWL

notation [86], or the UML mapping of the NeOn Toolkit [87]. Node-link diagram visualiza-

tions are categorized into name-label-only and nested visualizations [17]: Name-label-only

visualizations depict the elements of the ontology as individual labeled nodes and links.

Nested visualizations (e.g., UML) aggregate information (e.g., the data properties of a

class) and visualize it as a list of attributes inside the corresponding node. Figure 3.2

illustrates an example for nested and name-label-only visual representations.

Figure 3.2: Possible mappings of RDF triples to nested and name-label-only visualization.

A general aspect of visualization methods and tools is to engage different user groups

and facilitate ontology exploration and modeling tasks. Nowadays, knowledge workers

often use more than one device for their daily tasks in a multitude of interaction contexts,

ranging from classical desktop settings to mobile scenarios in meetings, workshops, and

on business trips. Thus, we observe a trend for the development of ontology engineering

tools towards web-based applications. Web-based applications reduce entrance barriers to

use a system due to the aspect that these are directly available, ready to use, and do not

require any installation process. Examples of web-based applications in Semantic Web

contexts are WebProtégé, TurtleEditor [88], OWLGrEd [66], and Gra.fo4.

We can distinguish visualization methods and tools into the visual representation of

the data structure and its underlying content. Approaches such as RelFinder [89] or the

Neo4j graph visualization [90] address the visualization of Knowledge Graphs based

on their structure (i.e., nodes and links). However, while node-link diagrams are well-

suited to represent the data structure of Knowledge Graphs, in some contexts, such as

the visualization of information encoded in tables, the structural representation will not

4https://gra.fo/

38

https://gra.fo/

3.2 Semantic Zooming for Ontology Graphs

facilitate the comprehension of information. Knowledge Graphs have different structures

and also contain additional information that does not serve the purpose of information

interpretation (e.g., URIs or class assertions). Elements addressing the cell values of tables

can be organized in such a way that their visual representation in the form of node-link

diagrams increases the information overload due to the distant position of related values.

An example for content-based visualization of Semantic-Web-Based knowledge structures

is the Wikidata Query Service5. Users specify SPARQL queries which serve as input for

different visualization methods such as Table, Tree, and Timeline for the resulting data.

Suitable visualizations are highly dependent on the individual use case, the user groups,

the data at hand, and the general intent of communicating insights using a visual represent-

ation. The challenge with most approaches is grounded in their design. On the one hand,

visualization methods are created with a particular definition for the representation model.

On the other hand, users perceive the provided visualization and build a mental model to

interpret the content [18]. Ideally, the visual representation model corresponds to the user’s

mental model. However, these match typically only in some aspects and diverge from the

user’s expectations and previous experiences with other visualization tools.

3.2 Semantic Zooming for Ontology Graphs

In a previous work [70], we introduced the concept of semantic zooming for ontology

graph visualizations. The conceptualization of semantic zooming is inspired by the

interaction mechanisms of Google Maps, where a user receives more detailed information

when zooming in on a location. In the zoomed-out state, the user views an abstract and

reduced representation of information. While this conceptualization is intuitive for 2D map

representations, it is not intuitive to apply it to graph visualizations. Due to the aspect that

graph data does not provide spatial arrangements its is not obvious how to design different

information zoom levels.

In this work, we analyzed the underlying graph structure and built connected components

for the graph. We compute a minimum spanning tree for each connected component, which

is based on its topological structure. Thus, each connected component provides a root node

from which a user can start exploration tasks. We construct the minimum spanning tree

by converting the directed multigraph of a connected component into a simple undirected

graph. Within this simple graph, we compute for each node a cost measurement. For a

5https://query.wikidata.org/

39

https://query.wikidata.org/

Chapter 3 Related Work

node ni, the minimal distance to a node n j is determined by the number of links required to

traverse from node ni to n j. The cost measurement is the sum of all distances from node ni

to any other node within the connected component. The node with the minimum costs is

selected as the root node of the minimum spanning tree of a connected component. When

identical minimal cost measurements exist, multiple nodes are selected as root nodes.

Using the assigned depth of nodes in the minimum spanning tree with minimal costs

allows us to define a hierarchy for the exploration of the nodes. Furthermore, the trans-

formation of parallel links into a simple undirected link allows us to reduce the visual

clutter when numerous connection between two nodes exists. We call this transformation

link-collapsing and its inverse link-expanding. Similarly, the hierarchy of the minimum

spanning tree allows us to reduce the number of visualized nodes in the graph using

node-collapsing. The node-collapsing operation hides the sub-tree attached to a particular

node. In contrast, the node-expanding operation shows all nodes on the next depth level in

the hierarchy connected to a specific node.

Figure 3.3: Assignment of the global topological levels of detail: a) Input graph, b) Minimum
spanning tree organization, c) Path matrix for the largest connected component of the input graph,
indicating the computation for the exploration costs.

The semantic zooming approach for ontology graph visualizations uses three different

information layers: i) Topological Layer, ii) Aggregation Layer, and iii) Visual Appearance

Layer. The simplification and abstraction of the visual representation are reflected in the

form of discrete levels of detail for each information layer, which allows the user to focus

on certain regions in the graph and explore its structure. The topological layer addresses

the exploration of nodes using their hierarchy which is computed using minimum spanning

trees for individual connected components of the graph. The aggregation layer addresses

the exploration of relations between nodes using link-collapse and link-expand operations.

Furthermore, we define self-reflexive properties (self-loops) and datatype properties and

their asserted literals as attributes of a node. Thus, the aggregation layer provides the

40

3.2 Semantic Zooming for Ontology Graphs

means to investigate the attributes of individual nodes. The Visual Appearance Layer

addresses how rendering primitives are displayed to the user depending on the geometric

zoom level in the graph. Similar to Google Maps’ geometric zoom levels, we provide more

details when zoomed into a graph and reduce the details when zoomed out. We observe

that the class names and additional symbols become too small to read on a zoomed-out

visualization of the graph. No further insight is obtained when the user can not clearly see

or read the provided rendering primitive. Instead, these small primitives introduce noise

and distraction to the visualization. Thus, excluding these unreadable rendering primitives

results in a much clearer visualization, which additionally boosts the performance, as fewer

primitives stress the rendering pipeline. We obtained the definitions of the discrete detail

levels for the Visual Appearance Layer layer from expert interviews with five participants

who had at least five years of experience in the ontology domain. Figure 3.4 shows the

defined visual representations for different geometric zoom levels.

Geometric

Zoom
0.25 0.5 1.0; 2.0

Classes

Links

Multi-links

Datatypes and

Self-Loops

Figure 3.4: Discrete level of details defined by expert interviews.

A user study was conducted in order to evaluate the benefits of ontology graph visual-

izations enhanced with semantic zooming. The user study included 12 participants. The

participants comprised computer science students of the University of Bonn and employees

of the Fraunhofer IAIS institute. The age of the participants was in the range of 23 and

63 years, with a median of 29 years. The user study results reveal that the application

41

Chapter 3 Related Work

of ontology graph visualizations enhanced with semantic zooming outperforms the one

without it. This is reflected in the higher ratings for evaluated metrics (i.e., Readability,

Visual Clarity, Information Clarity, Navigation Support, and Layout Stability).

With the growing size and complexity, the corresponding graph visualizations exhibit

visual clutter, information overload, and occlusion problems, making the underlying

structure of the ontologies challenging to comprehend. Our approach partitions and

organizes the information of an ontology into three information layers with discrete

levels of detail, which allow the user to control the amount of the presented information.

The results and conceptualizations of this work are used as foundations for later work

to mitigate cognitive and information overload for the visualization of Semantic-Web-

Based knowledge structures. In particular, we apply node-link collapsing and expanding

interactions for the visual exploration of such data structures.

3.3 Customizable Visual Representations

Visualizations are highly dependent on the individual use case and targeted user groups.

However, a visual representation model has to correspond to the user’s mental model in

order to provide a suitable visualization. Thus, only flexible and customizable visualization

approaches for ontologies can fulfill the demands of different use cases and user groups.

The number of visualization methods, tailor-suited tools, along with the requirements and

necessity for customization, indicate that a one-size-fits-all solution is challenging, if not

impossible, nor feasible, to realize.

Early work by Pietriga et al. [91] develops the concept of Fresnel Lenses, a presentation

vocabulary for RDF. Lenses, formats, and CSS classes are responsible for the visualization

of RDF data. The objective of the lenses is to select the content and apply custom orderings

of the data. The formats and the CSS classes define how the information is presented.

IsaViz [92] is a related approach that enables the definition of visual representations for

ontologies based on Graph Style Sheets (GSS) [93]. GSS are similar to CSS and use a

selector to which attributes are assigned. Cytoscape [94] is a visualization tool that applies

a similar approach in order to enable customizable visualizations of node-link diagrams.

GSS and CSS enable the definition of styles for rendering primitives. However, they

do not address the spatial positioning as required in graph-based visualization methods.

Furthermore, GSS and CSS do not operate on OWL constructs but apply styles to elements

in the DOM tree. Also, specific requirements, such as the distinction between name-label-

42

3.4 Summary

only and nested visualizations are not supported by these languages. Thus, GSS and CSS

lack the capabilities required for the comprehensive representation of graph-based ontology

visualizations and are not sufficient in this context.

The Web Annotation Data Model [95] defines a model for describing associations

between resources. In this model, annotations define a target and a body, where the body

contains additional data that should be associated with the target resource. It provides

a standard description method for annotations to be shared between systems. While

allowing for the definition of style information as annotations, it is designed for the general

annotation of resources and not for the visual representation of ontologies.

3.4 Summary

Different methods and tools exist for inspecting and creating Semantic-Web-Based know-

ledge structures. Some initiatives address the creation and population of Knowledge

Graphs from heterogeneous datasets [67, 96]. Others address the quality of the underlying

information, for example, by integrating new explicit knowledge using link prediction [97].

Semantic Web technologies are typically designed for machine-readable and machine-

actionable representation of knowledge. However, visualizing the underlying information

plays a major role in communicating the insights to people. Thus, different visualization

methods and tools have been created in the last years, and new ones are being developed.

This thesis studies how to facilitate understanding of Semantic-Web-Based knowledge

structures through visual representations. Research question 1 (RQ1) addresses how to

facilitate and engage various user groups with different backgrounds in ontology modeling

using a device-independent visual modeling approach. Visual modeling approaches reduce

the complexity of OWL formalizations to create machine-readable representations of

knowledge. While Semantic-Web-Based knowledge structures are often displayed as node-

link diagrams, their visual appearance and spatial layout may diverge from users’ mental

models. Thus, research question 2 (RQ2) addresses customizable visual representations

for realizing suitable visualizations for different use cases and diverse user groups. The

varying requirements of different use cases and user groups often result in tailor-suited

solutions which are not always extendable or reusable. Thus, research question 3 (RQ3)

addresses how to facilitate the creation of visual representations and enable their reuse for

different use cases and user groups.

43

CHAPTER 4

Semantic-Web-Based Knowledge
Structures from a User Perspective

A fundamental aspect of the Semantic Web is to create and communicate conceptualizations

of information and data in specific domains. In this chapter, we address the creation

and editing process of Semantic Web-Based knowledge structures from the ontology

development perspective. Ontology modeling typically involves ontology engineers and

domain experts with different backgrounds in Semantic Web technologies. On the one

hand, ontology engineers typically lack the expertise in a certain domain to provide

ontologies of sufficient quality [15]. On the other hand, domain experts are often not

familiar with conceptual modeling techniques and find it hard to follow logical notations in

OWL representation. Visualizations in the form of node-link diagrams are commonly used

to support ontology modeling and related tasks. These types of visualizations allow for

displaying the structure and the interrelations between elements of ontologies. Involving

domain experts more directly in ontology modeling requires user-centered and immediately

available approaches that are easy to use and independent of the device and interaction

context. This chapter addresses the following research question:

Research Question 1 (RQ1)

How can we ease the creation and editing process of Semantic-Web-Based know-

ledge structures from a user perspective?

45

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

The contributions of this chapter are the following:

• Requirements for a device-independent visual modeling approach.

• A preliminary evaluation, comparing our application, WebProtégé, and TurtleEditor.

• A comparative user evaluation on visual ontology modeling using node-link diagrams,

comparing our visual modeling application to Protégé.

This chapter is based on the following publications: [98, 99]1

The remainder of this chapter is structured as follows: Section 4.1 presents a device-

independent visual modeling approach. In Section 4.2, we present a comparative user

evaluation on visual ontology modeling using node-link diagrams. Finally, in Section 4.3,

we summarize the achieved results in relation to the research question RQ1.

4.1 Device-Independent Visual Modeling

Knowledge modeling is often done collaboratively in joint efforts of knowledge engineers

and domain experts. However, domain experts are typically not familiar with semantic

formalism and conceptual modeling techniques. Approaches that reduce the complexity of

creating and editing Semantic-Web-Based knowledge structures are necessary to facilitate

the joint efforts of ontology engineers and domain experts.

Visualizations of ontologies can offer a good starting point for exploration and support

understanding of the provided information [16]. In particular, node-link diagram visualiz-

ations are often used to depict the structure of ontologies [17, 82]. Numerous ontology

visualization techniques have been proposed in the last years [78–80]. The work of Dudáš

et al. [17] provides an overview of different visualization methods and tools for ontologies.

Several ontology editors feature graph visualizations, and various visualization plug-ins

have been developed for the popular ontology editor Protégé2. Nearly all of the available

approaches are developed for desktop environments, and only a few of them support direct

editing within the visual representation [78]. Furthermore, most ontology modeling tools

need to be downloaded and installed first, which increases the entry barriers for using the

software. Installation processes, as easy as they have become nowadays, often require

administrator privileges, which may not be accessible to all users, especially in enterprise

contexts. In contrast, web-based applications are immediately available and ready to use.

1[99] is a joint work with Rohan Asmat, a former colleague from Fraunhofer IAIS (Enterprise Information
Systems). I contributed to developing the study design and the presentation of the obtained results.

2http://protegewiki.stanford.edu/wiki/Visualization

46

http://protegewiki.stanford.edu/wiki/Visualization

4.1 Device-Independent Visual Modeling

While existing web-based ontology editors, such as WebProtégé [100] or TurtleEd-

itor [88], can principally be used with touch devices, they are mainly designed for the

classical WIMP (windows, icons, menus, pointer) interaction paradigm. We present an

approach that addresses the visual modeling of ontologies by defining interaction modes

for different devices. An approach related to ours is OntoSketch [101], which allows

the users to model ontologies on a tablet using pen and sketch interactions. However, it

is designed for a particular interaction scenario and type of device (i.e., sketching on a

tablet) but does not address different interaction contexts and devices. Similar to related

approaches, we provide built-in constraints to guide the users towards best practices in

ontology modeling. We are not aware of any other work that applies device-independent

interaction modes for visual modeling of ontologies.

Device-independence is becoming more and more important in ontology modeling

for different reasons: Diverse types of computing devices, such as tablets, smartphones,

convertibles, and touchscreens, are increasingly used in work environments. Nowadays,

knowledge workers often use more than one device for their daily tasks in a multitude

of interaction contexts, ranging from classical desktop settings to mobile scenarios in

meetings, workshops, and on business trips. Also, digital devices for creativity techniques,

such as interactive whiteboards, idea walls, and touch tables, are increasingly available

and used for idea generation and conceptual modeling. Therefore, we aim for an ontology

modeling approach that is immediately available, intuitive, easy to use, and independent

of a particular device and interaction context and exploits novel sensors and interaction

techniques. In numerous industrial engagements (e.g., [102]), we observed that visual

modeling is a top-requested feature by industrial users and a prerequisite for wide pen-

etration of Semantic Web technologies in general. Only by providing visual modeling

techniques as they are prevalent with other modeling techniques such as UML, BPMN, or

ARIS, Semantic Web technologies will be able to gain further industrial importance.

We present an approach based on the VOWL notation, a well-specified visual language

for the user-oriented representation of OWL ontologies. VOWL aims for an intuitive

and comprehensive representation that is also understandable to users less familiar with

ontologies [82]. The node-link diagram represents the ontology concepts as a graph

G(N, L). Using the terms of the ontology, the set of nodes N reflects its classes that are

connected via properties by the set of links L. Table 4.1 shows a selection of visual

elements in the VOWL specification3, indicating the visual mappings for nodes and links.

3The VOWL specification is available at: http://purl.org/vowl/spec/

47

http://purl.org/vowl/spec/

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

By implementing the approach with standard web technologies and taking touch interac-

tion into account, we achieve a high device-independence and remove the need for users

to install any software. Our implementation supports both mouse and touch operation,

providing a similar interaction behavior on different devices. Additionally, we integrate a

set of built-in functions avoiding common pitfalls and preventing invalidation of ontologies.

Table 4.1: Subset of the VOWL specification for the visual representation of OWL.

Ontology element
Graphical

representation
Description

owl:Class
Circle showing the class label

in the selected language.

owl:Thing

This representation is

multiplied in the

visualization according to the

splitting rules.

owl:ObjectProperty

Representation of an object

property, showing the

property label in a rectangle.

owl:DatatypeProperty

Representation of a datatype

property with multiplied

datatype nodes according to

the splitting rules.

rdfs:subClassOf

This representation is similar

to the UML notation for

generalizations.

4.1.1 Requirements

In the following, we summarize the main requirements we have identified and followed in

developing our approach for device-independent visual modeling of ontologies to foster a

more direct engagement of domain experts. The requirements were derived from sessions

with domain experts in the context of the research project GRACeFUL4, and in industry

workshops conducted with domain experts from the manufacturing and healthcare domains.

4https://www.graceful-project.eu

48

4.1 Device-Independent Visual Modeling

Easy to Understand and Learn — The first and most important requirement is that

the modeling approach is user-centered and designed to serve the skills and needs of

domain experts with limited knowledge of ontology engineering and the OWL modeling

language. This requirement is addressed using the VOWL notation, targeting ontology

representations in the form of node-link diagrams that are easy to understand [82]. Visual

editing fosters engagement and makes the approach easy to learn using built-in constraints

for modeling in compliance with the OWL specifications, best practices, and conventions.

Easy to Access and Use — Web-based ontology editors, such as WebProtégé [100] or

TurtleEditor [88], are immediately available as they do not need any software installation

and configuration. They can be used from anywhere, as long as a web browser is installed

on the operating device. The usability is further increased if the user can continue modeling

while being offline, i.e., when not permanently connected to the internet.

Independent of Device and Interaction Context — Available ontology modeling

approaches, including web-based ontology editors, are not yet fully device-independent.

They are still mainly designed for classical WIMP (windows, icons, menus, pointer)

interaction modes. Therefore, often neglecting other device and interaction contexts, such

as touch operation and varying display sizes. However, we consider the easy access and

operation of the modeling software to be a crucial aspect of lowering the entry barriers and

engaging more user groups in ontology modeling, independent of the operating device and

interaction context.

Guidance — We have identified guidance during the modeling and editing process

as an important requirement. A visual modeling approach based on node-link diagrams

allows for flexible editing with many degrees of freedom. Neglecting any restrictions

during the modeling process can quickly result in invalid ontologies since domain experts

are often little familiar with the OWL ontology language’s possibilities and constraints.

Thus, they need to be guided, for instance, with regard to the elements they can connect in

the visualization or the text they can enter. This way, guidance mechanisms can even help

to train unfamiliar users towards best practices in ontology engineering.

4.1.2 Device-Independence

The variety of available devices demands several types of input interactions for the task of

ontology modeling. In sessions with domain experts (cf. Section 4.1.1), we identified the

following devices and modes of operation to be most likely used in ontology modeling:

49

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

1. PC: keyboard, mouse, monitor

2. Laptop: keyboard, mouse, touch-pad, monitor

3. Touch-operated devices such as tablets, smartphones, and touch displays

A device-independent approach for ontology modeling has to cover all the above-defined

devices and enable different modes of operation that are shown in Table 4.2.

Table 4.2: Device-related input interactions and their classification for possible usage.

Input Device
Possible use for visual

modeling
Device-independent

Keyboard
Shortcuts & keyboard

modifiers to create and edit

elements

No, touch devices provide a display

keyboard, but typically they do not

have keyboard modifiers like “alt” or

”control”

Mouse
Point, click, and drag

interactions

Yes, touch interactions are similar

(click replaced by touch)

Touch
displays and
touch pads

Touch and drag interactions
Yes, similar to point, click, and drag

interactions

Integrated
cameras

Gesture detection

No, not all devices have integrated

cameras (e.g., PC) and would require

additional hardware

Integrated
microphone

Speech recognition for

creating elements and their

interrelations

No, not all devices have integrated

microphones (e.g., PC) and would

require additional hardware

Acceleration
sensors

Navigation inside the graph No, not available on all devices

Separate deployment methods can be realized for target devices. However, tailor-

suiting or even creating apps for tablets or smartphones includes additional development

effort, which is not always desirable or maintainable by the developers. Additionally, the

installation process implies entry barriers for using the software, as previously stated in

Section 4.1.1. Administrative rights may not be accessible to all users, particularly in

enterprise contexts. Requesting permission to install software can pose a hard constraint

on the usage of a software tool.

50

4.1 Device-Independent Visual Modeling

Web-based approaches neither require any installation process nor any administrative

privileges. Web-based applications can run directly in web browsers on different devices

with different interaction contexts. Therefore, any device-related entry barriers are reduced,

i.e., the software is easy to access and ready to use. However, web applications are not

sufficient to achieve full independence from the defined set of devices. Different modes of

operation imply additional restrictions. For example, a “mouse right-click” or keyboard

modifiers like “control” or “shift” are not available on touch devices. We address these

restrictions by defining minimal interaction methods with the visual modeling frame for

both touch and mouse-operated devices. The defined modes of operation are separated into

creation and editing actions and are listed in Table 4.3 and Table 4.4, respectively.

Table 4.3: Interaction methods for creating elements.

Creation Mouse Touch
Class Double click on free canvas Double tap on free canvas

Object property Hover, drag & drop arrow-head Select, drag & drop arrow-head

Datatype property Hover & click button (+) Select & tap button (+)

Table 4.4: Interaction methods for editing elements.

Editing Mouse Touch Alternative
Removal Hover & click button (x) Select & tap button (x) None

Class name Double click on class Double tap on class Input in sidebar

Property name Double click on property Double tap on property Input in sidebar

URI Input in sidebar

Class type Dropdown selection in sidebar

Property type Dropdown selection in sidebar

4.1.3 Visual Modeling

The reduction of device-related entry barriers addresses the usability of the approach. How-

ever, the complexity of an approach and its representation of the comprised information

play crucial aspects to engage different user groups in ontology modeling. Several works

address exploration, verification, and sense-making of information in ontologies by trans-

ferring the machine-readable textual representation into visual notations, such as node-link

diagrams [103, 104], adjacency matrices [105], or UML-like visual representations [66].

51

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

Visualizations provide an abstract representation of the comprised information of an

ontology, allowing for viewing its structure and the interrelations of different elements.

Thus, visualizations reduce the complexity of textual formalization of ontologies. Visual

modeling provides an abstract method for creating and editing domain knowledge concep-

tualizations using direct manipulations in the visual representation. However, most of the

approaches require an understanding of a relatively complex visual notation (e.g., UML).

We address the different backgrounds of domain experts and other user groups using the

VOWL notation that is easy to understand.

Visual modeling is realized by minimalistic device-independent modes of operation

for mouse and touch interactions. Regardless of the reduced complexity in ontology

modeling using direct interactions within the visualization, OWL specifications and logical

formalizations are hard to follow for the domain experts. Thus, we reduce possible OWL

constructors to basic elements for a better user experience during the ontology modeling

process. We define a top-down approach for ontology modeling to balance between a

simple conceptualization and a fully matured ontology. An optional refinement process

follows the creation of general elements.

The VOWL notation allows the visualization of the T-Box of an ontology. Its combina-

tions of visual elements (e.g., rdfs:Literal and owl:Thing) provide for a simplified

conceptual view of the T-Box. The T-Box of an ontology can be seen as a set of concep-

tualizations (classes) and their attributes. The attributes represent self-reflexive relations,

interrelations between the classes (object properties), and their corresponding datatype prop-

erties. Using this simplified abstraction, the basic constructors in our visual modeling ap-

proach are owl:Class, owl:ObjectProperty, and owl:DatatypeProperty.

Nodes in the VOWL notation represent ontology classes (owl:Class). Nodes are

created by performing a double click or double tap interaction on the empty space of

the canvas area, see Table 4.3. In the VOWL notation, class-attributes, e.g., self-loop

properties, object properties, and datatype properties, are assigned to one particular node.

The class-attributes are created and modified through visual modeling elements (buttons,

arrow-heads, and arrow-tails) directly within the visual representation.

To reduce visual clutter, these visual modeling elements are presented to the user when

an editing operation of a particular element is desired. For device-independence, we define

that the desire to do so arises when the user selects an element. Additionally, on point and

click devices, we show the visual modeling elements on mouse hovering to reduce the

interaction to first selecting an element.

52

4.1 Device-Independent Visual Modeling

The interrelations, in the form of links, between nodes correspond to object properties

in OWL. Links are created by dragging the arrow-head from a source to a target node,

defining the domain and range restrictions of a corresponding owl:ObjectProperty,

respectively (cf. Table 4.3). Self-loop properties are created by dragging the arrow-head

into the source node.

Datatype properties are created by pressing the (+) button of a particular node (cf.

Table 4.3). In the VOWL notation, datatype properties are always connected to a multiplied

visual datatype element. Thus, this action creates an owl:DatatypeProperty, where

the domain is the class of operation, and the range is rdfs:Literal. Additionally, our

approach supports a set of typed literals such as xsd:integer and xsd:boolean.

The editing of class and property names (rdfs:label) is realized directly in the

graphical representation of the corresponding element. In contrast, other specifications

(e.g., URI’s or different types for classes, datatypes, or properties) are realized using text

input or dropdown selection in a collapsible sidebar panel only, see Table 4.4. Additional

refinements for classes, datatype properties, and object properties are realized by a set of

checkboxes with respect to the type of an element.

Guidance and additional built-in constraints are described in the following section,

which addresses the implementation5 details of the approach.

Usage and Implementation Details

The proposed approach is implemented by extending the existing web-based framework

WebVOWL. Additional modifications are made to realize the different output and input

modalities of the defined set of devices. As output modality for the devices, we consider a

display and its corresponding size. Thus, the viewport-settings for rendering the web page

are defined as “initial-scale=1.0”,“maximum-scale=1.0” and “user-scalable=0”. These

settings prevent the user on a touch device to accidentally zoom on the web page, where

the actual intention is to zoom on the graphical representation area. Additionally, the

responsive design automatically optimizes the web page layout, depending on the display’s

size and orientation. For the input modality on touch devices, the double-tap operation is

replaced. Typically, the double-tap operation performs zooming on the web page.

In our implementation, the zooming operation can be performed using the multi-touch

operation (two-finger zooming) and alternatively using the slider (for a single touch device,

5The current implementation of WebVOWL with visual modeling functionality is available at:
http://editor.visualdataweb.org/

53

http://editor.visualdataweb.org/

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

Figure 4.1: Overview of the user interface: 1) Canvas area for the visualization and direct modeling;
2) Menu with controls; 3) Zooming slider with the possibility to locate and zoom to the center of
the visualization; 4) Editing elements displayed for a hovered class; 5) Ontology annotations; 6)
Details for a selected element (here, “Subclass of”). 7) Collapsible sidebar panel, providing editing
functionality. 8) Default OWL construct selections for creation functionality.

like a touchpad on a laptop). The slider is provided in the lower right corner of the

canvas area, see Figure 4.1 ®. Additionally, an automatic smooth zooming functionality is

implemented based on the approach of van Wijk [106]. This automatic zooming function

determines the center position of a bounding box for all visual elements. Based on the

display size, this function computes a target zooming factor. The target zooming factor

and the center position determine the parameters for a smooth zooming and transition

animation. This function is accessible by the target button, located at the top of the slider

control elements. Thus, zooming through a double-tap becomes redundant, allowing us to

use this operation for visual modeling, particularly for the creation of nodes representing

the classes of an ontology.

The creation of interrelations between the nodes is realized through a drag-able arrow-

head. The size of this particular visual element is chosen w.r.t to the occlusion of the finger.

Additionally, the in-accuracy of touch devices was considered in the implementation.

A connection is generated when the arrow-head is placed near a node. Restrictions on

datatype nodes prevent incorrect assignment of object properties to datatypes. Furthermore,

datatypes are characterized as leaf nodes without interlinking capabilities.

54

4.1 Device-Independent Visual Modeling

The basic constructors create the visual elements, a default URI, and an rdfs:label

for each element. The default URI is constructed from the ontology URI, the type,

and the instance id of the element (e.g. .../Class0, .../objectProperty0, or

.../datatypeProperty1, where classes and datatypes have a different instance

counter compared to object properties and datatype properties). The default label is set in

a similar fashion to “NewClass”, “newObjectProperty”, or “newDatatypeProperty”, based

on the corresponding type of the visual element.

The editing for the labels of classes and properties is supported using visual modeling

directly inside the graphical representation, see Table 4.4. This visual modeling interaction

focuses and selects the label, allowing a direct replacement of the whole text without the

need of first deleting the corresponding characters. Text input elements in the sidebar

provide an additional alternative to modify the labels. Furthermore, devices with speech

recognition can use it as textual input functionality.

The elements’ URI modification does not have a visual modeling functionality and

can only be edited in the sidebar. Additional characteristics for classes and properties

(e.g., symmetric, transitive, etc.) are provided in the sidebar on selecting an element. The

modification for a type of an element is realized using dropdown selection also in the

sidebar. Thus, the collapsible sidebar provides refinement capabilities intended to be used

by ontology engineers with the corresponding knowledge about the OWL specification.

The implementation of the current approach realizes basic guidance functionality. Two

aspects are considered here for guidance: The guidance towards best practices in ontology

development (creation and publication) and the guidance in the visual modeling itself.

While the latter is realized through the VOWL notation and built-in constraints, e.g., a self-

loop property excludes rdfs:subClassOf for type selection in the sidebar. Additional

pop-up messages guide the user through the modeling process. For example, a warning

is displayed when a delete operation will remove three or more visual elements. The

guidance towards best practices in ontology development is more challenging.

The current approach’s implementation provides a set of annotation properties for the

ontology itself, i.e., title, version, authors, and description. All annotations and labels are

currently defined in the English language (i.e., using the suffix @en for literal values). The

envisioned multilingual support should allow the creation in multiple languages and, as a

feature for future implementation, warn the user when not all elements have defined labels

or annotations in a set of languages for the modeled ontology. Additionally, we enforce a

naming convention. Classes start with a capital letter, while properties have a lower-case

55

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

starting letter. This naming convention is applied for a class or property name based on

the element type. An exception is made for owl:Thing and rdfs:subClassOf. The

URI is automatically set to the corresponding element, and the labels are set to “Thing”

and “Subclass of”, respectively. Furthermore, the editing functionality for the URI and the

label is disabled.

4.1.4 Preliminary Evaluation

A preliminary evaluation has been conducted for the implemented approach. In this study,

we compare our approach with two other web-based tools that also aim to lower the

entry barrier in ontology modeling and can potentially be used on different devices: i)
WebProtégé6, and ii) TurtleEditor7. Our preliminary evaluation consists of six participants

with different backgrounds in semantic technologies and ontology modeling. Participation

was voluntary and without any payment. The participants consist of a psychology student

of the University of Bonn and Fraunhofer IAIS institute employees. The participants’

age was in the range of 25 and 64 years, with a median of 35 years. In this study, a

classification into non-expert, intermediate, and expert users was performed based on the

answers addressing their experience with visual modeling and ontologies. Participants

with experience in visual modeling and ontologies were classified as expert users, whereas

having expertise in only one area leads to a classification as an intermediate user. A non-

expert user, in this classification, has neither experience in visual modeling nor ontology

development. All experiments have been performed on a Samsung Galaxy Tab 2

GT-P5110 tablet in order to establish a controlled environment.

Study Design

The first part of the study collects information about the participant’s gender, age, and

experience with visual modeling and ontologies, followed by task descriptions of the study.

The participants were asked to create a simple conceptualization of a family based on a

given set of concepts (Person, Father, Mother, Child, Son, and Daughter) and define how

these are related to each other. The process of conceptualization and thought organization

could be supported by pen and paper, which all participants used in order to draw sketches

similar to node-link diagrams, as shown in Figure 4.2.

6WebProtégé: https://webprotege.stanford.edu/
7TurtleEditor: http://editor.visualdataweb.org/turtle-editor.html

56

https://webprotege.stanford.edu/
http://editor.visualdataweb.org/turtle-editor.html

4.1 Device-Independent Visual Modeling

Figure 4.2: Sketches for the conceptualization of a family. From left to right: sketches of a
representative participant from non-expert, intermediate, and expert user, respectively.

Figure 4.3: Star plot showing the obtained user ratings for the different tools used in the modeling
process. A bar chart illustrates the average time required for the modeling task for the corresponding
tools, i.e., TurtleEditor, WebProtégé, and WebVOWL Editor.

Three consecutive experiments were performed after the conceptualization of a family

was defined. The task of modeling an ontology was addressed in each experiment using

different tools. Additionally, we recorded the required time for the ontology modeling

process for the individual tools, respectively. An assessment, where the participants had

to rate the different tools along various dimensions, was performed directly after each

experiment. The rating on each dimension used a scale ranging from one to five, where one

maps to very low and five maps to very high. After the rating, the participants were asked to

list positive and negative aspects and provide suggestions for improving the corresponding

tool in an open discussion.

57

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

Results and Discussion

The preliminary user study results indicate the additional benefits of the proposed approach

for device-independent visual ontology modeling. This is reflected in the higher average

scores, as shown in Figure 4.3, for Simplicity, Intuitiveness, Understanding, Ease of Use,

and Clarity. Additionally, the required time for the modeling task is on average reduced. In

order to consider the learning effect in the modeling task, we performed a counterbalancing

approach by alternating the order of tools for each participant. Nevertheless, these study

results can only be considered as preliminary with respect to the small group of users and

the evaluation on a single device, i.e., a tablet.

In this study, we observed that, when it comes to conceptualization, all users draw

sketches in the form of node-link diagrams to organize their thoughts. Thus, visual

modeling approaches in the form of node-link diagrams are suited for the development of

ontologies. After the participants performed the modeling task with WebVOWL Editor and

then continued with the next approach, an additional observation occurred. The participants

transferred the double-tap interactions to create a node or edit a label to the other approaches

that did not support this functionality. This emphasizes that the chosen interactions are

intuitive and easy to learn. Nevertheless, a short introduction to the interaction methods,

particularly how to create a node, was necessary. Some users negatively remarked on

the missing explanation. Their suggestion for further experiments was to provide an

introductory tutorial for the individual tools. A surprising observation in this study was

that one of the non-expert users, having no prior experience with visual modeling nor

ontologies, out-performed even the experts using WebProtégé. This emphasizes again how

important approaches are that not only consider the input and output modalities of the

different devices but also address different backgrounds of the participants using them.

This particular participant commented on this outstanding result as “Easy hierarchical

view and generation, which is missing in both other tools.”. Participants, who made an

error by creating “Mother” as a subclass of “Father”, tried to realign the tree visually or

searched and tried different interactions. This visual realignment of concepts is supported

by WebProtégé, but only on point and click devices. On a touchable device, the layout

of the web page is not optimized for the display size. Thus, trying to perform a dragging

operation on a concept within the hierarchical tree results in the translation of the web

page. Some of the participants negatively remarked on this non-optimization of the layout.

Additionally, one aspect raised by two participants was that a generation of multi-hierarchy

conceptualizations is not possible using this hierarchical tree approach.

58

4.1 Device-Independent Visual Modeling

The visual modeling using TurtleEditor was negatively remarked as not accurate enough

for touch devices. This is explained by the small visual modeling canvas and the occlusion

problems of the finger. The participants experienced several times that a link was not

generated even if they assumed that they dragged the link to the node of interest. Never-

theless, the means of visual modeling are positively remarked in both visual approaches

(TurtleEditor and WebVOWL with editing functionality).

The participants with prior experience in ontology modeling emphasized that this

approach could be useful in ontology development and could involve the domain experts

in the modeling process. Some participants characterized the force-directed layout in

WebVOWL, providing a dynamic reorganization of the visual elements as “fun to use”.

However, other participants found it distracting and paused the force-directed layout during

the modeling process. This observation emphasizes once more that different user groups

have divergent preferences to how they interact with the modeling environment.

4.1.5 Summary of the Approach

In this section, we presented an approach for device-independent visual modeling of

ontologies that lowers the entry barriers for domain experts to get more directly involved

in ontology modeling. Most of the available approaches are designed to be used by expert

users with sufficient training in modeling and logical notations in OWL representations.

Additionally, most ontology modeling tools need to be downloaded and installed first,

which increases the entry barriers for using the software. We identified requirements for

an approach that is immediately available, easy-to-use, and independent of the device

and interaction context. The most distinctive characteristic of our approach is the device-

independent mode of operation for visual modeling of ontologies. Different input and

output modalities are considered and brought into synergy for different devices and display

sizes. The results of a preliminary user study indicate the benefits of the presented approach.

Since ontologies are multilingual conceptualizations of domain knowledge, i.e., different

language tags are supported for literals to facilitate human-readable labels in different

languages, a device-independent approach should also be independent of the language

used in the modeling process. In our current implementation, we are limited to English.

The capacity of processing resources and the display size of touch devices like smart-

phones and tablets pose an additional limitation. With the growing size and complexity

of ontology graph visualizations, their represented information tends to become hard to

59

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

comprehend due to visual clutter and information overload. Due to the increased number

of elements, this presents a higher processing load for interactive visualization, i.e., the

transformations and animations of the graph. For small display sizes, the occlusion of

rendering elements increases visual clutter. The semantic zooming approach for onto-

logy graph visualizations [70] addresses these aspects and should also be considered for

device-independent visual modeling.

The preliminary study participants also suggested adding a hierarchical view of the

classes in the modeled ontology. In particular, this suggestion should be considered in

future work because the user study revealed that participants without prior knowledge

could out-perform those with experience in visual modeling and ontologies. Thus, a hybrid

solution can reduce the entry barrier for domain experts, providing visual modeling in

different graphical representations (i.e., hierarchical trees or node-link diagrams). However,

providing more different modeling variants could also over-complicate the approach’s

usage and increase the entry barriers. Furthermore, synchronization mechanisms are then

required to align the hierarchical view and the node-link diagram.

The proposed approach investigated the device-independent modes of operation based

on touch and point and click interactions. Different modes such as speech and gesture

recognition are also interesting further research topics. In the evaluation, we observed

that all participants drew sketches similar to a node-link diagram using pen and paper.

In summary, we hope that the approach will make the development of ontologies more

attractive and foster engagement, particularly also in industrial settings, and additionally

be useful to other researchers, ontology engineers, and domain experts.

4.2 A Comparative User Evaluation on Ontology

Modeling Using Node-Link Diagrams

The emergence of several ontology modeling tools is motivated by the growing attention

ontologies receive in scientific and industrial contexts. Thus, modeling of ontologies is

often done collaboratively in joint efforts of knowledge engineers and domain experts.

The available tools implement different ontology modeling paradigms such as text-based

editors, graphical user interfaces with hierarchical trees and form widgets, and visual

modeling approaches based on node-link diagrams. The different modeling paradigms

range from direct text input, UML-based graphs [85], widget and hierarchical based

GUIs [107], node-link diagrams [83, 103], to even hybrid solutions like TurtleEditor [88].

60

4.2 A Comparative User Evaluation on Ontology Modeling Using Node-Link Diagrams

This section presents an empirical user study comparing a visual ontology modeling

approach, based on node-link diagrams, with a modeling paradigm that uses hierarchical

trees and form widgets. In particular, the user study compares the two ontology modeling

tools: Protégé and WebVOWL Editor, each implementing one of the modeling paradigms.

The involved participants were given ontology modeling tasks and answered reflective

questions for the individual tools. The study involved 12 participants, including master

students, Ph.D. students, and postdocs with computer science backgrounds. We evaluate

the visual ontology modeling paradigm for node-link diagrams using WebVOWL Editor8.

WebVOWL Editor exploits the VOWL notation, which is a well-defined visual notation

for OWL ontologies. It is designed for the user-oriented representation of ontologies that

is easy to understand [82]. This visual ontology modeling tool allows us to conduct our

evaluation on different target groups, including non-expert users. The current implementa-

tion of WebVOWL Editor does not yet support all OWL constructs. However, it covers all

required ones for our comparative evaluation.

The study indicates that visual ontology modeling, based on node-link diagrams, is

comparatively easy to learn and is recommended especially for users with little experience

with ontology modeling and its formalizations. We observed no apparent performance

differences between the two modeling paradigms for more experienced users. Both

approaches seem to have their pros and cons depending on the ontology type and the

modeling context.

The diversity of different ontology modeling paradigms and tools also increased the

interest in their benefits and drawbacks. Several evaluations investigating users’ under-

standing of ontology representations and the effectiveness of different tools have been

conducted. García et al. [108] conducted an evaluation on visual modeling, investigating

the effectiveness and usability of the tool OWL-VisMod. The work of Katifori et al. [109]

conducted a comparative user study of four ontology visualization tools. Users had to

perform information retrieval tasks (e.g., finding the value of some property) with each

tool. Completion time and post-interviews determine the effectiveness of each tool. Ac-

cording to that, Protégé Entity Browser is the most effective, then Jambalaya, TGViz, and

OntoViz is the least effective. Fu et al. [110] compared the representation of ontologies

with indented lists and node-link diagrams. Participants were asked to evaluate and create

new mappings between ontologies using the two modeling paradigms. In this work, Fu

et al. report that indented lists are more suitable for evaluating the mappings. In contrast,

8Tool and GitHub repository can be found at https://w3id.org/webvowl/editor

61

https://w3id.org/webvowl/editor

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

node-link diagrams are better suited for creating new mappings and showing an overview

of the ontology. In a follow-up study, Fu et al. [111] used eye-tracking technology to

investigate the differences between indented lists and graphs in more detail.

However, most of the existing evaluations focus on information retrieval tasks and on

investigating how the comprised information of an ontology is communicated to the users.

In contrast to comparing different representations of ontologies, we aim to fill the research

gap by investigating the potential benefits and drawbacks of varying modeling paradigms

for ontology creation. A pretest defines concept spaces that are used as modeling tasks in

our evaluation. Participants had to model small ontologies using two ontology modeling

tools: Protégé and WebVOWL Editor. Modeling completion times were measured, and

additional questionnaires were used to determine the potential benefits and drawbacks of

the individual tools.

4.2.1 Pretest

In advance of the user evaluation, we conducted a pretest. It includes i) the definition of

concept spaces and ii) the identification of their individual difficulty levels, respectively.

The pretest results are used to design a comparative user evaluation for visual ontology

modeling using node-link diagrams and a hierarchical tree-based approach.

Concept Spaces for the User Study

Prerequisite to the pretest, we introduce five small concept spaces. These are defined

by having a small generalized set of domain knowledge to evaluate different ontology

modeling tools. The concept spaces define common, everyday knowledge, whereas each

includes thirteen concepts. These concepts are associated with classes, subclasses, object

properties, or datatype properties. Our defined set of domain knowledge consists of the

following concept spaces: University, Zoo, Media, Family Tree, and City Traffic. The

cognitive complexity of all concept spaces is balanced by:

1. Asking a person to define the concept spaces equal in hierarchical and graphical

representations while created using any ontology modeling tool or even realized on

paper. Repetitive iterations were performed on paper, defining the concepts for each

domain knowledge.

2. Evaluating the difficulty levels for our defined set of domain knowledge measured by

the time required for modeling a concept space.

62

4.2 A Comparative User Evaluation on Ontology Modeling Using Node-Link Diagrams

Figure 4.4: Classes and properties defined for each concept space, respectively.

The five concept spaces that were defined for the pretest and used in the study are shown

in Figure 4.4. The concepts indicated with * could be used zero or multiple times.

Evaluating the Cognitive Complexity of the Concept Spaces

We evaluated the difficulty level for each of the defined concept spaces by recording the

time required to perform the modeling task with Protégé. In total, four male participants

without any visual, physical, or color blind impairment were involved in this evaluation.

The participation in the pretest was voluntary, and the user’s age was restricted to the range

of 33 ± 6 years. This restriction assures that human motor performance is not affecting

the modeling completion time. All participants had a profound experience with ontology

modeling tools as they were affiliated with the field of Semantic Web, working as scientific

researchers employed at Fraunhofer IAIS.

Method: The participants had to model the individual concept spaces which were

presented to them in a tabular format (cf. Section 4.2.1 – Concept Spaces and Figure 4.4).

The University Space was used as a training example. Therefore it was created by all

participants in their first modeling task. The purpose of the training example was to make

them comfortable using Protégé and allow them to configure the tool to their needs. The

remaining modeling tasks were performed in alternating order, as shown in Table 4.5. This

alternation was applied to avoid carry-over effects during the modeling tasks over time.

The completion time for each modeling task was recorded in seconds and rounded off

to the next smaller integer. All participants performed the experiment using a standard

English (US) keyboard layout and an external mouse. The screen size was also kept the

same to 16"9 inches with a 1920 × 1080 pixels resolution.

63

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

Results: The completion times for the individual concept spaces are presented in

Table 4.5. These results indicate that the modeling tasks of the four concept spaces have,

on average, a similar completion time. The qualitative findings from the pretest are:

1. During the modeling, two participants have crossed out the concepts in the table.

2. In general, we have noticed that the participants modeled classes, subclass hierarchies,

and datatype properties in a similar fashion.

3. The participants varied in the way they have modeled object properties.

Table 4.5: Modeling completion times and the varying order of concept spaces.

Participant Modeling Completion Times Order of Concept Spaces

Family Tree City Traffic Media Zoo
A 237 302 349 362 Zoo, Traffic, Media, Family

B 330 428 429 403 City, Zoo, Family, Media

C 389 183 361 270 Family, Media, City, Zoo

D 343 416 503 332 Family, City, Media, Zoo

Sum 1367 1329 1642 1299

Mean 341.75 332.25 410.50 324.75

4.2.2 Experimental Design

The evaluation design is based on the results we obtained from the pretest. We selected

two concept spaces with the lowest mean difference between each other (i.e., Family Tree

Space and City Traffic Space having a difference of 7.5 seconds in modeling times). In

order to perform an empirical, comparative user study over visual modeling paradigm and

hierarchical trees, participants were presented with the following nine tasks T1–T9:

T1: The participants had to fill out a demographic questionnaire, stating their name, age,

profession, experience in ontology modeling, experience with Protégé and WebVOWL,

and any visual, physical, or color blind impairment.

T2: Using Protégé, the participants had to model an ontology for the Family Tree Space

or the City Traffic Space.

T3: Based on the modeled concept space in task T2, the participants had to fill out an

After-Scenario Questionnaire (ASQ)9 as a post-task.

9http://garyperlman.com/quest/quest.cgi?form=ASQ

64

4.2 A Comparative User Evaluation on Ontology Modeling Using Node-Link Diagrams

T4: As a cued recall process [112], the participants had to highlight the concepts in a

6 × 4 table, which they thought they modeled using Protégé.

T5: Based on the modeled concept space in task T2, the participants had to fill out a

Computer System Usability Questionnaire (CSUQ)10 as a post-study task

T6: Using WebVOWL Editor, the participants had to model an ontology for the Family

Tree Space or the City Traffic Space.

T7: Based on the modeled concept space in task T6, the participants had to fill out an

ASQ questionnaire as a post-task.

T8: As a cued recall process, the participants had to highlight the concepts in a 6 × 4

table, which they thought they modeled using WebVOWL Editor.

T9: Based on the modeled concept space in task T6, the participants had to fill out a

CSUQ questionnaire as a post-task.

Participants

Based on the demographic questionnaire, the 12 voluntary male participants were divided

into two groups of experienced and non-experienced users (PG1 and PG2). The first group

PG1 contained six participants with experience in ontology modeling. The second group

PG2 contained six participants without ontology modeling experience. The age of the

participants was in the range of 25–36 years. Additionally, we restrict participants’ age

to the range of 31 ± 6 years to ensure that the human motor performance does not vary

too much across the users. None of the participants had any visual or physical impairment.

However, one participant mentioned that he was color blind. The participants included

employees and students of Fraunhofer IAIS, University of Bonn, and RWTH Aachen with

background in computer science.

Setup

To provide a homogeneous evaluation setup, all experiments were performed on a Dell

Precision 3520 laptop with a standard English (US) keyboard layout and a screen size of

16"9 inches having a resolution of 1920 × 1080 pixels. An external mouse was used for

navigation. The experiments were performed using Protégé (5.2.0) running on Ubuntu

18.04 and WebVOWL Editor using Mozilla Firefox or Google Chrome web browser. The

study was conducted in the daily working environment of the participants.
10http://garyperlman.com/quest/quest.cgi?form=CSUQ

65

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

Procedure

The experiments were always supervised by the same person and performed using the setup

provided by the conductor of the evaluation. All participants were given approximately

ten minutes of training on both tools. The training sessions used Media Space and Zoo

Space. These were selected due to significantly larger mean differences, meaning different

difficulty levels. The remaining two concept spaces Family Tree Space and City Traffic

Space were used in the actual ontology modeling tasks of the user study. Our pretest results

indicate that these had significantly closer mean differences, meaning approximately the

same difficulty levels.

All participants started the user study by answering the demographic questionnaire.

We categorize the remaining eight tasks into two groups, TG1 and TG2 . Tasks T2–T5

are related to Protégé (TG1), whereas the tasks T6–T9 refer to WebVOWL Editor (TG2).

After finishing the demographic questionnaire, each participant was asked to perform

the tasks corresponding to one group first and then continue with the other group. The

completion time for the modeling task was recorded in seconds and rounded off to the next

smaller integer. As post-study questionnaires, we have chosen ASQ and CSUQ because

of their high global reliability degree [113]. The ASQ measures ease of task completion,

satisfaction with completion time, and support of information. The CSUQ contains 19

questions measuring effectiveness, efficiency, and satisfaction based on the ISO-9421-11

criteria [113]. Additionally, it measures discriminability based on the ISO/WD-9421-112

criteria [113]. Guidance, workload, and error management are measured w.r.t the Scapin

and Bastien criteria [114]. Both questionnaires were answered using a Likert scale of 1 to

7, where 1 refers to strong disagreement, and 7 refers to strong agreement.

The 12 participants were divided into two groups (U1 and U2). The first group contained

three experienced and four non-experienced participants. The second group contained

two non-experienced and three experienced participants. This in-balanced assignment is a

result of two invalid participations in the user group (U2). However, the concept spaces are

still counterbalanced, as illustrated in Table 4.6. The first user group (U1) was asked to

perform the Protégé specific tasks (TG1) first and then continue with WebVOWL Editor

specific tasks (TG2). The second user group (U2) performed the group tasks in inverse

order. The alternating task order was done to avoid increasing or decreasing performance

measurements over time. Table 4.6 shows the exact order of tool-specific tasks and the

order of the concept spaces. The duration of the experiments for each participant was

approximately 45–60 minutes.

66

4.2 A Comparative User Evaluation on Ontology Modeling Using Node-Link Diagrams

Table 4.6: Order of tools and concept spaces presented to the participants.
Participant Tool A Concept Tool B Concept

1 Protégé Family Tree WebVOWL Editor City Traffic
2 Protégé City Traffic WebVOWL Editor Family Tree
3 Protégé City Traffic WebVOWL Editor Family Tree
4 WebVOWL Editor Family Tree Protégé City Traffic
5 WebVOWL Editor City Traffic Protégé Family Tree
6 Protégé Family Tree WebVOWL Editor City Traffic
7 Protégé Family Tree WebVOWL Editor City Traffic
8 WebVOWL Editor City Traffic Protégé Family Tree
9 WebVOWL Editor City Traffic Protégé Family Tree

10 Protégé Family Tree WebVOWL Editor City Traffic
11 WebVOWL Editor Family Tree Protégé City Traffic
12 Protégé City Traffic WebVOWL Editor Family Tree

4.2.3 Results and Discussion

The results of our user study comprise of 1) performance scores for the ontology modeling

tasks, 2) scores for the participants recalling the concepts of the modeled ontology, and 3)

the scores for user satisfaction for the two ontology modeling tools. The study manual, the

definition of concept spaces, and the evaluation data are available on GitHub11.

Performance Scores for Ontology Modeling

The performance scores for tasks T2 and T6 were calculated based on the required time to

model an ontology (cf. Section 4.2.2). The completion times are illustrated in Table 4.7

and indicate that WebVOWL Editor performed better in comparison to Protégé. On

average, all 12 participants completed the ontology modeling task 18.7 seconds faster

using WebVOWL Editor. The experienced (PG1) and non-experienced (PG2) participants

performed respectively 26.2 and 11.4 seconds faster using WebVOWL Editor. The average

difference between the completion times for the individual tools Mavg = 1
12

∑12
i=1 T2(i) −

T6(i) was 23.4 seconds. Where T2(i) and T6(i) denote the time participant i required

to model an ontology for the individual task, respectively. The standard deviation of

differences was 80.54 seconds.

Figure 4.5 a) indicates that Protégé had less variance, whereas WebVOWL Editor had

more variance in results. For two participants, the experiment was repeated as their

11https://github.com/vitalis-wiens/VisualOntologyModelingEvaluationData

67

https://github.com/vitalis-wiens/VisualOntologyModelingEvaluationData

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

Table 4.7: Average time required to model an ontology for both tools.
Mean Scores Standard Deviation

Participant Type Protégé WebVOWL Editor Protégé WebVOWL Editor
All Participants (12) 386.5 367.8 89.84 149.06
Experienced (6) 364.5 338.3 105.00 136.76
Non-Experienced (6) 408.5 397.1 74.63 167.64

a) b)

Figure 4.5: Required modeling time as a box plot diagram. a) Modeling time for all participants. b)
Modeling time for different participant groups based on experience.

modeling task was interrupted. Thus the outliers that are shown in Figure 4.5 b) can

result from the experiment repetition. Additionally, Figure 4.5 b) indicates that experi-

enced participants had a higher variance with a broader spread of the central box while

using WebVOWL Editor and Protégé, that is 250 and 146 seconds. In contrast, for non-

experienced participants, the spread of the central box for WebVOWL Editor and Protégé

is 60 and 33 seconds, respectively. Therefore, we can infer that the broader spread for

experienced participants resulted from their diversified experience using the tools. For

the non-experienced participants, a much lower spread denotes that the performance of

participants was similar. While executing the modeling tasks, with WebVOWL Editor,

a lower central box for the non-experienced participants reveals that users without prior

experience tend to perform better using WebVOWL Editor than Protégé.

68

4.2 A Comparative User Evaluation on Ontology Modeling Using Node-Link Diagrams

Figure 4.6: Incorrectly highlighted concepts per participant (Pi) for the two tools.

Cued Recall Scores

The cued recall scores were measured by the number of correctly highlighted concepts

for tasks T4 and T8 (cf. Section 4.2.2). While measuring the correctness, is a and has

concepts were not considered. These were allowed to be used repetitively or not at all.

Figure 4.6 shows the number of incorrectly highlighted concepts for individual par-

ticipants. In total, the number of incorrectly highlighted concepts was eight for each

tool. With respect to highlighting concepts, seven participants were incorrect for task T4,

whereas five were incorrect for task T8. These results indicate that fewer participants were

incorrect with WebVOWL Editor than with Protégé.

User Satisfaction Scores

ASQ — Figure 4.7a) indicates that the participants were more satisfied with the ease of

completing the task and the time it takes to complete a task when using WebVOWL Editor.

The participants were equally satisfied in using the two tools for the support information

provided by the tool. Figure 4.7b) indicates that the experienced group (PG1) had a higher

score for ease of completing the task and time it takes to complete a task using WebVOWL

Editor. However, these results also indicate that the support information provided by the

tool for WebVOWL Editor requires improvement. The results for the non-experienced

group (PG2) show that WebVOWL Editor was perceived as requiring less time to complete

a task, and it provided better support information.

CSUQ — WebVOWL Editor scored better in 16 of 19 CSUQ questions. Protégé scored

better in questions related to the number of system capabilities, the information provided by

the system, and if they can effectively complete their work using the system. Protégé scored

5.4, 3.75, and 5.9, whereas WebVOWL Editor scored 4.9, 3.5, and 5.75, respectively.

Based on the different participant groups (PG1 and PG2), the scores show that PG2 still

69

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

a) b)

Figure 4.7: ASQ: a) Scores for all participants. b) Scores for different participant groups.

a) b)

Figure 4.8: CSUQ: a) Scores for all participants. b) Scores for different participant groups.

rated WebVOWL Editor better for effectively completing their work and the number of

system capabilities with a score of 5.3 and 5.5, whereas Protégé scored with 5.2 and 5.2.

Six questions for which the results had a significant difference between the two tools are

shown in Figure 4.8. The CSUQ results indicate that both participant groups PG1 and PG2

rated WebVOWL Editor better in terms of usability.

4.2.4 Summary of the User Study

This section compared a visual ontology modeling approach using WebVOWL Editor

with a hierarchical tree, GUI-based modeling using Protégé. Visual ontology modeling

approaches, particularly in the form of node-link diagrams, help non-expert users to get

70

4.2 A Comparative User Evaluation on Ontology Modeling Using Node-Link Diagrams

directly involved in ontology modeling without any prior experience. We introduced five

small concept spaces (cf. Section 4.2.1) and determined their cognitive complexity using a

pretest. The results of the pretest indicate similar difficulty levels for City Traffic Space and

Family Tree Space. Thus, these two were used in the ontology modeling tasks. Participants

had to perform ontology modeling tasks, reflective question answering tasks, and filled out

additional ASQ and CSUQ post-task questionnaires.

The results of the experiment (cf. Section 4.2.3) indicate that overall the participants

were more efficient, they had a better understanding of the model, and they were more

satisfied using WebVOWL Editor than Protégé. The mean performance measures for

both tools had a minor difference with WebVOWL Editor having a better performance.

The performance was much better for the non-expert user group (PG2), highlighting a

low learning curve with a good performance rate for novice users. The results were

not significant for the expert user group (PG1) and had high variance due to their prior

experience with both tools, as shown in Figure 4.5b). WebVOWL Editor scored better

in the following usability areas: ease of task completion, time taken for task completion,

ease of learning the system, simplicity of using the system, pleasantness of the interface,

likeability to the interface, and overall user satisfaction for the system.

The VOWL notation is designed for a user-oriented representation of OWL ontologies

for different user groups. WebVOWL Editor is designed for device-independent ontology

modeling and thus realizes minimalistic user interactions, allowing it to be used on touch

devices. Visual modeling paradigms that allow for better mental map preservation, the

VOWL notation, and the minimalistic user interactions are beneficial for the performance

of WebVOWL Editor. However, due to the small sample size, the results indicate only

a minor increase in performance. Thus we suggest a follow-up study with an increased

number of participants to at least twenty, as suggested by Nielsen [115]. It improves the

confidence interval and reduces the margin of error. We also propose controlling the prior

experience with modeling tools, thus, reducing the variance and improving the comparison

of results between the tools.

71

Chapter 4 Semantic-Web-Based Knowledge Structures from a User Perspective

4.3 Chapter Summary

In this chapter, we have presented a device-independent visual modeling approach for

ontology modeling. The approach is designed to reduce entry barriers for domain experts

and other user groups to get more directly involved with ontology modeling. Additionally,

we have presented a list of requirements for a device-independent visual modeling approach

that have been derived from sessions with domain experts in the context of the research

project GRACeFUL and industry workshops conducted from the manufacturing and

healthcare domains. We presented a preliminary user evaluation comparing the approach

against two other web-based applications.

Visual modeling approaches in Semantic Web contexts have three main challenges: i)
mapping the information contained in ontologies to graphical primitives facilitating the

understanding of the comprised information, ii) provide guidance during the modeling

process, and iii) map the visual representation back to an ontology. We address the

challenges as follows: i) We use the VOWL notation for mappings of ontology information

to visual primitives. ii) Build-in constraints guide the user during the modeling process.

iii) Using the well-specified VOWL notation, we map the visual representation back to

ontology elements enabling users to export the ontology as a file in the Turtle serialization.

A follow-up user evaluation compared visual modeling using node-link diagrams against

hierarchical trees and form widgets. Most of the existing evaluations focus on information

retrieval tasks and on investigating how the comprised information of an ontology is

communicated to the users. In contrast to comparing different representations of ontologies,

we investigated the potential benefits and drawbacks of varying modeling paradigms for

ontology creation. The study indicates that visual ontology modeling, based on node-link

diagrams, is comparatively easy to learn and is recommended especially for users with

little experience with ontology modeling and its formalizations.

The evaluation results provide empirical evidence to answer RQ1 that device-independent

visual modeling approaches facilitate the creation and editing processes of Semantic-Web-

Based knowledge structures. In particular, visual modeling approaches in the form of

node-link diagrams allow for engaging users that are less familiar with ontology modeling

and OWL formalizations. Furthermore, our visual modeling approach focuses on device

independence, facilitating many interaction contexts, ranging from classical desktop set-

tings to mobile scenarios in meetings, workshops, and on business trips. In the following

two chapters, we investigate how to increase further the understanding of the information

contained in Semantic-Web-Based knowledge structures using visual representations.

72

CHAPTER 5

Customizable Graph-Based Visual
Representations of Ontologies

Visualizations support human cognition by exploiting human’s ability to understand com-

plex data through visual representations. While various visualization methods and tools

exist, suitable visualizations are highly dependent on the use cases and the targeted user

groups. Users often require customizations to reflect their previous experiences with other

visualization methods and tools. We introduce a methodology for customizable visual

representations of ontologies. The methodology defines visual representation models using

the OWL annotation mechanisms. Annotation ontologies address different aspects of

the visualization using the separation of concerns paradigm. The use of owl:imports

statements links ontologies with visual definitions for their depiction. We showcase the

applicability of the methodology by introducing GizMO, a representation model for graph-

based ontology visualizations. Two applications show the utilization of GizMO and the

variety of achievable visualizations. The applications are designed to reduce the textual

crafting of annotation ontologies and showcase the interoperability of the methodology.

This chapter addresses the following research question:

Research Question 2 (RQ2)

How can we improve understanding of Semantic-Web-Based knowledge structures

using interactive and user-centered visualizations?

73

Chapter 5 Customizable Graph-Based Visual Representations of Ontologies

The contributions of this chapter are the following:

• Methodology for a customizable representation model for ontologies.

• Graph visualization meta ontology (GizMO) for node-link diagram visualizations.

This chapter is based on the following publication: [116]

The remainder of this chapter is structured as follows: Section 5.1 introduces the

motivation and requirements for customizable graph-based visualizations. Section 5.2

presents a methodology for a customizable representation model for visualizations of

ontologies. Section 5.3 showcases the conceptual realization of the methodology for node-

link diagrams in the form of a Graph Visualization Meta Ontology (GizMO). Section 5.4

presents two applications and demonstrates achievable visual representations using GizMO.

Section 5.5 summarizes the approach with an outlook on the research question RQ2.

5.1 Motivation and Requirements

The development, exploration, communication, and sense-making of ontologies can be

facilitated using visual representations [16]. However, a visual representation model

needs to reflect the user’s mental model to provide a suitable visualization. The challenge

with most approaches is grounded in their design. Visualization methods and tools are

typically created for a particular use case with a specific definition for the representation

model. Ideally, this visual representation model corresponds to the user’s mental model and

facilitates understanding the underlying information. With the increasing attention of the

Semantic Web in academic and industrial contexts, various user groups are involved in the

ontology modeling process. Thus, a single visual representation model will diverge from

expectations and previous experiences with other visualization tools for some user groups.

The number of visualization methods, tailor-suited tools, along with the requirements and

necessity for customization indicate that a one-size-fits-all solution is challenging, if not

impossible, nor feasible, to realize. In order to satisfy the varying demands of users and

use cases, suitable visualizations require customizable representation models.

Without any loss of generality for the methodology, this section focuses on domain onto-

logies and their visual representations as node-link diagrams. As illustrated in Figure 5.1,

the two main visual characteristics of different methods and tools are visual appearance

and spatial arrangement, i.e., the graphical notation used to draw the ontology graph and

the layout of nodes and edges. Thus, a customizable visual representation model needs

to address the following requirements: i) provide the customizable visual appearance of

74

5.1 Motivation and Requirements

rendering elements in order to coincide with the user’s mental model; ii) provide spatial

information and visibility status of rendering elements in order to coincide with the user’s

mental map; iii) provide the means to represent and share the definition of visualizations.

Visual Appearance – Visual notations formally define the visual appearance of ele-

ments for the depiction of ontology elements, such as owl:Class. Examples of visual

notations for ontologies are VOWL [82] and Graffoo [83]. Also, UML is often used to

represent ontologies [84]. Although UML has a standard visual notation, various styles

exist, such as the visual representation of ontologies with TopBraid Composer [85], a UML

version of the VOWL notation [86], or the UML mapping of the NeOn Toolkit [87].

Graph-based visualizations can be categorized into name-label-only and nested visu-

alizations [17]: Name-label-only visualizations depict the elements as individual labeled

nodes and links. Nested visualizations (e.g., UML) aggregate information and visualize a

list of attributes inside the corresponding node. Thus, to coincide with the user’s mental

model, a representation model has to provide a customizable notation that defines visual

characteristics and also encodes the depiction of aggregated elements.

Spatial Information – Spatial information is essentially necessary to preserve the

mental map of users [18]. The spatial arrangement of elements in different layouts (e.g.,

hierarchical trees or circular layouts) can facilitate the organization of information and

sense-making. The preservation of a user-defined layout is only obtainable when spatial

information is attached to the domain ontology. The spatial information has to correspond

to the used notation in order to reconstruct the visualization correctly. For example,

nested visualizations typically do not encode spatial information for aggregated elements.

Therefore, using spatial information of a nested visual notation in a different one can result

in an invalid spatial assignment of elements. Consequently, a visual representation model

has to provide spatial information that corresponds to the used notation and the domain

ontology for which it has been created.

Glyph Specific Information – A glyph is a collection of rendering primitives. For

example, a glyph could be a composition of a shape (e.g., circle) and a label text. Glyph

specific information has to address additional properties, such as the visibility status of a

glyph. With the growing size and complexity of an ontology, visualizations become harder

to read due to visual clutter and information overload. Various ontology visualization tools

address this by providing filtering mechanisms to reduce the information load for humans’

limited cognitive capacity [117]. Thus, balancing the cognitive load requires strategies for

determining parts of the ontology to be visualized or to be hidden.

75

Chapter 5 Customizable Graph-Based Visual Representations of Ontologies

Figure 5.1: Separation of concerns into notations and views. Notations define how OWL constructs
are depicted. Views provide spatial position assignment and visibility status.

Suitable ontology visualizations may require customization for individual glyphs. An

often requested feature is the modification of visual characteristics for some elements of

the domain ontology. These could be modifications of shapes and colors for highlighting or

grouping these elements in the visualization. Also, the replacement of selected shapes and

labels with icons or images is sometimes requested. The individual glyph modifications

address the aspect of preattentive processing capabilities of humans in order to facilitate

target detection tasks, providing an effortless information perception and organization.

Thus, a representation model needs to provide customizable visual definitions for elements

of the domain ontology.

Representation, Governance, and Management – Some of the available tools, such

as Cytoscape [94], already partially fulfill the described requirements. However, the

proposed solutions are typically restricted to a specific tool and visualization method. A

methodology that defines visual representations in the form of OWL annotation ontologies

can overcome such boundaries. Nevertheless, such a methodology has to ensure the

following criteria:

1) Reusability: The methodology should provide the means to recreate and modify

existing notations or even design new ones so that these can be shared and reused.

The methodology should provide the means to define spatial positions for elements

of the domain ontology. Additionally, it should provide the means to customize glyph

specific information (e.g., visibility status, shape, and color).

76

5.2 Methodology

2) Preserving the originality of the domain ontology: Our methodology uses annota-

tions to enrich elements with definitions for their visual depiction. However, directly

attaching visual descriptions to the domain ontology or its elements results in an

unwanted solution: the modification of OWL constructs and elements of the domain

ontology. Thus, the methodology should provide the means to bind meta information

to elements of the domain ontology without the need to modify them directly.

3) Separation of concerns: The separation of concerns plays an essential role in

fostering flexible visual representations. The methodology should provide the means

for the flexible exchange of specific visual properties. Our methodology addresses

different aspects of the visualization on two information layers that are represented

as annotation ontologies. These annotation ontologies enrich domain ontologies with

visual definitions for their depiction. Domain ontologies and their visual definitions

are combined using owl:imports statements.

5.2 Methodology

In Semantic Web contexts, numerous visual representation models have been developed.

However, these are typically restricted to the corresponding visualization method and

tool. We introduce a methodology that can overcome method and tool-specific boundaries

and enables customizations for ontology visualizations. Furthermore, we provide a more

detailed discussion for individual parts of the methodology.

Ontologies are not designed with the focus on presenting information to humans [4].

They are created and shared as file representations in various serializations (e.g., Turtle,

N3, etc.), supporting the semantics-aware exchange and processing of information. Visual-

ization tools parse the textual definition and depict the ontology accordingly to a specific

visualization method. Thus, any ontology visualization tool has a parsing mechanism and

is capable of interpreting ontologies.

Our methodology exploits the fact mentioned above and defines visual representations

as annotation ontologies. These annotation ontologies can be used with arbitrary domain

ontologies using owl:imports statements. Thus, a separation of concerns is realized

for the visual abstraction layer. The visual abstraction is divided into two information

layers. The first layer provides global visual descriptions for OWL constructs. Accordingly,

this layer is independent of the visualized domain ontology. Conceptual elements will be

depicted based on their type (rdf:type) assertion to OWL constructs.

77

Chapter 5 Customizable Graph-Based Visual Representations of Ontologies

Figure 5.2: Illustration of the target property linking conceptualization.

The second layer provides local visual descriptions for elements from the visualized

ontology. This layer is designed to describe additional information, such as spatial position

and visibility status. Accordingly, this layer is bound to a particular ontology, and its visual

descriptions are only valid locally for the individual conceptual elements of the visualized

ontology. In this chapter, the terms mental model, global layer, and notation refer to the

definition of visual properties for OWL constructs. The terms mental map, local layer, and

view correspond to visual properties for conceptual elements of the visualized ontology.

Inspired by the Web Annotation Data Model [95], the methodology uses targeting

properties to link representational definitions with OWL constructs and individual elements

from the visualized ontology. Visual properties of distinct elements are organized in

instances of type owl:NamedIndividual. All properties used in the methodology

are of type owl:AnnotationProperty. As shown in Figure 5.2, these instances link

visual descriptions to corresponding elements. Thus, this approach preserves the originality

of OWL constructs and the elements of the domain ontology.

Notations – Notations describe the visual depiction of OWL constructs on the global

layer. Named individuals provide the grouping of visual properties linked to the corres-

ponding OWL constructs using the targeting properties. Since visual notations are defined

as annotation ontologies, they can be easily exchanged by adjusting the import statements.

78

5.2 Methodology

While this work focuses on domain ontologies and their graph-based representations,

the methodology itself is not restricted to only those types of visualization methods.

Various visualization methods, such as treemaps and Euler diagrams, could be defined

when adequate notations are created and visualization frameworks provide support for

these types of visualization methods. Furthermore, conceptualization from upper-level

ontologies can be enriched with visual descriptions in the same fashion, using the targeting

link approach of the Web Annotation Data Model [95].

Views – Views are annotation ontologies that hold a set of named individuals targeting

conceptual elements of the visualized ontology. Views provide additional information,

such as the spatial position and visibility status of elements. However, the used notation is

essential to obtain valid assertions for the position of the elements. In our methodology,

we enforce views to provide the information for which notation they were created.

Furthermore, views provide optional modification of glyph specific information. A

glyph is a collection of rendering primitives (e.g., shape and label text) for OWL constructs.

Since views encode information about the used notations, modified glyphs are created by

applying the visual description of the corresponding OWL construct and then overwriting

visual properties in correspondence with the provided glyph modification. For example,

elements from the domain ontology can be visually highlighted and grouped by adjustments

of their visual attributes (e.g., colors, shapes, and sizes).

Containers – The design of the methodology enables the orchestration of notations and

views. Domain ontologies can be enriched with metadata using owl:imports statements

(if the annotation ontologies are exposed under a dereferenceable URI). Annotation ontolo-

gies for visual representations can be exchanged, shared, reused, and adjusted for users’

current needs. Within the combined model, the disambiguation between conceptual and

visual elements can be realized through different namespaces. The methodology’s conceptu-

alization encodes visual attributes in instances solely of type owl:NamedIndividual

and annotation properties.

5.2.1 Methodology Discussion

The methodology is an abstract conceptualization for the description of customizable

visual representations of ontologies. The central aspect of the methodology is its utiliz-

ation of OWL for definitions of visual representation models. Furthermore, it provides

conceptualizations for separation of concern in terms of annotation ontologies.

79

Chapter 5 Customizable Graph-Based Visual Representations of Ontologies

The organization of visual properties in owl:NamedIndividuals and their use of

linking properties provide the means to enrich any resource with a description for its

visualization. Thus, the full spectrum of resources, such as OWL constructs and conceptual

elements from ontologies, can be addressed.

The methodology provides no restrictions concerning which annotation properties are

grouped and instantiated in named individuals. This aspect is governed by an imple-

mentation of the methodology, such as GizMO. The expressivity is not restricted by the

methodology but by the implementation and the corresponding visualization framework.

The aspect of usability should be governed by such applications and solely be their

responsibility. We argue that the corresponding frameworks should address the variety in

technological stacks. Visualization frameworks have to interpret the representation models

and create the depictions in their specific programming languages. Since the methodology

has no restrictions, it could also describe user interactions, such as visual modifications on

mouse hovering or even descriptions for mouse click events. Nonetheless, the methodology

is only as viable as its realization and implementation in visualization frameworks.

The methodology’s constraints are its use of annotation properties for the assign-

ment of visual property values and owl:NamedIndividuals for the grouped assign-

ment. The identification of rdfs:domain restrictions can realize the disambiguation

between conceptual and visual annotation properties. Conceptual instances are of type

owl:NamedIndividual. However, these are additionally assigned to other OWL

constructs. Thus, due to multiple type assertions, these instances belong conceptually to

the element defined in the ontology. Listing 5.1 shows multiple type assertions for the

disambiguation between different instance types.

1 ex:Author_1 a owl:NamedIndividual, foaf:Person .

2 ex:Example_1 a owl:NamedIndividual .

Listing 5.1: Disambiguation between instances for visual definitions and instances of the domain

ontology.

Author_1 becomes an instance of the class Person. In contrast, Example_1 is an

instance that belongs to owl:Thing. We argue that instances of owl:Thing and their

asserted annotation properties provide a suitable disambiguation mechanism. Such abstract

information does not provide value for the conceptualization of ontologies. Thus, the

methodology offers full coverage and disambiguation conceptualizations. Usability and

expressivity are aspects that are addressed by corresponding implementations.

80

5.3 GizMO

5.3 GizMO

The graph visualization meta ontology (GizMO) is a representation model for the definition

of customizable graph-based ontology visualizations. Based on the methodology, GizMO

defines visual representations as OWL annotation ontologies. This section provides an

overview of design decisions, technical realization, and discusses coverage and limitations.

5.3.1 Preliminaries

GizMO builds on the following concepts:

OWL Constructs – The language constructs of RDF(S) and OWL

(e.g., owl:Class, owl:objectProperty, rdfs:subClassOf).

GizMO Core Ontology – Set of defined annotation properties, along with value re-

strictions. Besides visual properties (e.g., shape, color, and position), it defines further

annotation properties used by the representation model.

Annotation Object – Based on the methodology, annotation properties are grouped in

instances of type owl:NamedIndividual. These instances link visual definitions to

corresponding elements. This approach ensures the separation between elements of the

domain ontology and corresponding visualization definitions. Targeting properties prevent

unnecessary manipulations of elements. These named individuals are extended with an

additional annotation property that defines their annotation object type. The annotation

object types enable the disambiguation of the named individuals for different parts of the

representation model. The GizMO representation model uses five annotation object types:

• Glyph Annotation Object: Organizes the set of annotation properties that address

the visual appearance of OWL constructs.

• Visualization Annotation Object: Organizes the set of annotation properties for

the visual representation of conceptual elements from the domain ontology, including

their spatial position, visibility status, and optional modified glyph information.

• Triple Annotation Object: Identifies triples from the domain ontology and asserts

the visual annotations for the corresponding subject, predicate, and object element.

• Notation Annotation Object: Holds additional information for the notation, such

as a canvas background color.

• View Annotation Object: Holds additional information for the view, such as the

used notation and viewport configuration (e.g., zoom factor).

81

Chapter 5 Customizable Graph-Based Visual Representations of Ontologies

Notation – A notation defines the visual appearance of OWL constructs on the global

layer. It provides a notation annotation object and a set of glyph annotation objects that

provide the visual appearance definitions for different OWL constructs.

View – A view defines the spatial assertion of conceptual elements of the domain ontology

on the local layer. It provides a view annotation object, and two different sets of annotation

objects, i.e., triple annotation objects, and visualization annotation objects.

5.3.2 Visual Graph Mapping

Ontology visualization methods and tools apply a mapping that provides a formal definition

for the visual representation of OWL constructs. Graph-based visualizations, such as node-

link diagrams, represent the concepts of an ontology by a graph G(N, L), where classes

typically map to the set of nodes N and their interrelations are described by the set of

links L using the terms of the ontology. These nodes and links have a visual component

for the graphical depiction based on the mapping. However, even for two-dimensional

graph-based visualizations, these mappings provide deviations for nested and non-nested

representations in the final depiction of the ontology (cf. Figure 5.1, views A and B).

Furthermore, OWL provides constructs that can be mapped differently, e.g., a:ClassA

owl:equivalentClass b:ClassB. One representation could map a:ClassA and

b:ClassB to nodes in the graph, having owl:equivalentClass as a link between

the two nodes. Another representation could merge the two classes into one node. Thus

the OWL construct owl:equivalentClass does not have a single visual component

but instead has a mapping description for the involved elements.

Some visual notations provide for OWL constructs a visual component and a mapping

description. For example, rdfs:Literal is a resource that maps to a node with a visual

component. Thus, all datatype properties with this rdfs:range restriction will provide

a link to this single node. Depending on the domain ontology and its complexity, such a

simple mapping could result in an overcrowded and cluttered visualization. Correspond-

ingly, node splitting or glyph multiplications are performed by some notations, e.g., VOWL

performs glyph multiplications for literals, datatypes, and owl:Thing.

Ontology mappings can be categorized into three groups: i) visual-component-only

creates for an OWL construct a node or a link; ii) mapping-description-only defines how

axioms are handled (e.g., owl:equivalentClass); iii) combination of i) and ii). The

methodology does not employ definitions for the mapping of OWL constructs. This design

decision transfers the responsibility of the mapping to the corresponding notation and

82

5.3 GizMO

Table 5.1: OWL constructs and corresponding mappings currently supported by GizMO.
OWL Construct Mapping
Nodes
owl:Class Visual-component-only
owl:Thing Combination (glyph multiplication)
Links
owl:ObjectProperty Visual-component-only
owl:DatatypeProperty Visual-component-only
rdfs:subClassOf Combination (glyph multiplication)
Datatypes
rdfs:Literal Combination (glyph multiplication)
rdfs:Datatype Combination (glyph multiplication)
Other
rdfs:label Combination (label in domain node)
rdfs:domain Mapping-description-only
rdfs:range Mapping-description-only

maintains the flexibility of the methodology for various notations. The current conceptu-

alization of GizMO does not support such customizable mapping definitions. GizMO is

limited to a subset of OWL constructs and a fixed implicit mapping. Table 5.1 provides an

overview of support OWL constructs and their mappings.

While GizMO supports only a limited set of OWL constructs and corresponding map-

pings, its conceptualization provides five additional customizable visual elements that

mitigate the current constraints. Default elements for nodes and properties describe a

visual-component-only mapping for OWL constructs that are not supported by GizMO.

Unsupported datatypes are represented by a corresponding default element that defines

their visual component and enforces a glyph multiplication. Furthermore, GizMO provides

descriptions for collapse/expand mechanisms of multiple links between two nodes. The

visual representation of collapsed links is provided by one of the additional elements.

The mappings for nested visualizations (e.g., UML) are implicitly defined in GizMO and

are represented by a nested node description. The use of nested visual representations is

defined in the notation annotation object.

GizMO has been designed to showcase the applicability of the methodology. Regardless

of the set of supported OWL constructs and the implicit mappings, GizMO provides already

customizable visualizations of ontologies that can be used to recreate existing notations,

such as UML and VOWL.

83

Chapter 5 Customizable Graph-Based Visual Representations of Ontologies

5.3.3 Technical Realization and Design Decisions

The technical realization is conceived in correspondence with the methodology. An annota-

tion ontology, the GizMO core ontology1, defines annotation properties for the GizMO

representation model. This ontology provides value restrictions and comments, addressing

purpose and usage for each annotation property. Furthermore, it defines five annotation

object types (i.e., glyph, visualization, triple, notation, and view annotation object) for the

disambiguation of owl:NamedIndividuals. GizMO defines additionally rudiment-

ary interaction descriptions for hovering on glyphs. A subset of annotation properties

indicating their purpose is shown in Table 5.2.

Table 5.2: Subset of GizMO annotation properties.

GizMO property Description

Linking Properties

targetElement Linking visual properties to OWL constructs.

subjectElement,

predicateElement,

objectElement

Graph triple pattern definition.

subjectDescription,

predicateDescription,

objectDescription

Definition of visual properties for corresponding

rendering primitives in views.

Visual Properties

renderingType Specification of geometric shapes.

width, height, radius Specification of geometric shape characteristics.

bgColor, strokeElement,

strokeWidth

Specification of visual property characteristics.

position_x, position_y,

visible

Spatial information and visibility status.

link_strokeStyle,

link_arrowHead_renderingType

Specifications for the visual appearance of links.

Annotation Objects

annotationObjectDescription Description for its purpose.

isTypeOf Specification into glyph, visualization, triple,

notation, and view annotation object.

1https://github.com/gizmo-vis/gizmo/blob/master/coreOntology/gizmoCore.ttl

84

https://github.com/gizmo-vis/gizmo/blob/master/coreOntology/gizmoCore.ttl

5.3 GizMO

The methodology employs the separation of concerns paradigm for the representa-

tion model. Thus, visual depictions are combinations of the associated annotation on-

tologies (i.e., notations and views). The methodology creates these associations using

owl:imports statements. However, defining visual representations for ontologies re-

quires the authorship of the ontology. Authors of ontologies can explicitly import notations

and views into an ontology and publish it with the desired visualization. In contrast,

containers enable to associate the domain ontology with its visual representation if no

authorship is available using the import statements for each of the required ontologies (i.e.,

domain ontology, notation(s), and view(s)).

Our technical realization builds upon the assumption that any ontology visualization tool

has a parsing mechanism. Ontology parsers, such as the OWL-API, load an ontology and

its import statements into a combined model. However, in this combined model, identifying

elements from the domain ontology (also optional other imported domain ontologies) and

the visualization resources is necessary. Since definitions for visual depiction are grouped

in named individuals that use the annotation properties of the GizMO core ontology,

our implementation uses its namespace to distinguish between conceptual and visual

elements. Named individuals of different annotation ontologies are disambiguated by their

namespaces and annotation object types, e.g., the type glyph annotation object corresponds

to a named individual of a notation. Figures 5.3 and 5.4 show examples of instantiated

named individuals for notations and views.

Since OWL does not provide a conceptualization of an “annotation object” that groups

annotation properties, our realization of the GizMO core ontology uses a simplified

assertion of visual properties. In particular, we use XML Schema datatypes (xsd) for

assigning values to visual properties. Visual attributes are annotation properties that are

grouped in instances solely of the type owl:NamedIndividual. These instances

become automatic instances of owl:Thing, which are on a higher abstraction layer

compared to elements from the domain ontology. Thus, for the visualization of ontologies,

such a simplified assertion has a practical advantage: GizMO does not introduce a single

class. This has the benefit that our representation model will not conflict with other

visualization tools. For example, the class tree of Protégé will not be cluttered with

elements that correspond to the definitions for the visual representation.

85

Chapter 5 Customizable Graph-Based Visual Representations of Ontologies

Figure 5.3: Named individual for visualization of owl:Class.

Figure 5.4: Disambiguation for glyph-specific information using triple definitions for linking
distinct visual properties to rendering primitives. Additional modifications for some objects (e.g.,
first name) allow for customizations of glyph specific information.

Views – Views require more refined considerations of the linking property approach. Do-

main ontologies use OWL constructs, such as rdfs:subClassOf, rdfs:Literal,

etc., multiple times. As discussed in Section 5.3.2, these are typically represented as

multiple glyphs. Since multiple glyphs correspond to a single OWL construct, a bijective

mapping using only a single linking property is not possible (cf. Figure 5.4).

86

5.4 Applications

GizMO solves this challenge by using multiple linking properties in the triple annotation

object. Any ontology can be serialized in a triple format (e.g., N3), such that it consists

of a set of subject, predicate, and object triples. Since OWL uses URIs for resource

descriptions, a triple itself is unique. A triple annotation object provides three distinct

linking properties for subject, predicate, and object elements. Three additional linking

properties (e.g., gizmo:subjectDescription) point to visualization annotation

objects. These provide the assigned values for their spatial position, visibility status, and

optional glyph modification information. Thus, a unique assertion is ensured, even for

multiple uses of identical OWL constructs. Figure 5.4 shows the definition of two triple

annotation objects and their corresponding visualization annotation objects that define

positions and optional glyph modifications.

5.4 Applications

The utilization of the methodology, however, can only be achieved when tools and frame-

works are extended towards the interpretation of annotation ontologies that define visual

representation models. In the following, we briefly describe two applications2 that are

utilizing the GizMO representation model.

Both applications use the same rendering engine and partially implement the semantic

zooming approach for ontology graphs [70]. These applications use an implicit mapping

for a defined subset of OWL constructs and default elements for not mapped elements.

Furthermore, the collapse/expand mechanisms for datatypes, datatype properties, and

object properties are used to describe nested node visualizations. Whereas the semantic

zooming approach removes collapsed elements from the visualization, our frameworks

render the collapsed elements with their visual descriptions inside the corresponding node.

Notations specify the collapse/expand state globally in the notation annotation object.

Notation Editor – The notation editor3 is designed to remove the textual crafting of

notations. It enables users to visually create definitions for the representations of OWL

constructs in a WYSIWYG manner. Implemented as a proof of concept prototype, the

usability, richness of features, and user experience are not in focus. Created notations

are exported as annotations ontologies and can be shared, reused, and integrated using

owl:imports statements.

2Landing Page: https://gizmo-vis.github.io/gizmo/
3Notation Editor: https://gizmo-vis.github.io/gizmo/notationEditor/

87

https://gizmo-vis.github.io/gizmo/
https://gizmo-vis.github.io/gizmo/notationEditor/

Chapter 5 Customizable Graph-Based Visual Representations of Ontologies

Visualization Framework – The framework4 is designed for the visualization of on-

tologies with the GizMO representation model. Additionally, it provides the means to

create views and containers. Domain ontologies, containers, and notations can be loaded

independently. The framework has a data processing pipeline and a visualization pipeline.

The data processing pipeline reads an ontology and organizes the comprised information

into domain ontology, notations, and views (if available). When notations or views are

missing, the default notation is used, and the spatial arrangement is created automatically.

The visualization pipeline receives the processed data and creates customizable glyph

objects for the elements from the domain ontology. These glyph objects are initialized with

a default notation. Based on the loaded notation, these are overwritten with the definition

asserted in the glyph annotation objects. The visualization pipeline then continues with

view definitions. Based on the loaded view, the information for the position, visibility status,

and optional glyph modifications are updated in the corresponding glyphs. Additionally,

the view annotation object asserts the viewport configuration (e.g., zoom factor).

The current implementation employs only a force-directed layout algorithm. Other

layout algorithms pose an implementation effort and are not contributing to the general

aspect of this work. However, users can pause the force-directed layout process, manually

align the layout and save it as a view. The pause/play state of the force-directed layout is

saved in the view annotation object. We provide an overview of the framework’s usage

and features on the corresponding landing page2.

5.5 Chapter Summary

In this chapter, we have presented a methodology for customizable visual representations of

ontologies. The central aspect of the methodology is its utilization of OWL for definitions

of visual representation models. The methodology separates the visual abstraction into

two layers: The global layer reflects users’ mental model and addresses the customizable

visual representation of OWL constructs. The local layer addresses the mental map of

users and provides the means to customize the spatial arrangement, visibility status, and

optional glyph modifications.

The applicability of the methodology is demonstrated through GizMO, a representation

model for graph-based visualizations of ontologies. The GizMO core ontology defines

annotation properties for visual attributes (e.g., shapes, colors, positions, etc.). Annotation

4Visualization Framework: https://gizmo-vis.github.io/gizmo/visualizationFramework/

88

https://gizmo-vis.github.io/gizmo/visualizationFramework/

5.5 Chapter Summary

objects provide grouped instantiations of values linked to OWL constructs and elements of

the domain ontology. Different types of annotation objects target various aspects of the

visualization. These provide a conceptual separation between the global and local layers

for the visual representation.

Through the use case of GizMO, we show that the customizable visual mapping of OWL

constructs poses a particular challenge. GizMO implements a fixed implicit mapping for

OWL constructs in the context of a minimal viable product (MVP) prototype. However,

customizable visual representation models have to provide definitions for the mapping of

OWL constructs, e.g., the merging of nodes linked via the owl:equivalentClass

property or the multiplication of glyphs. Future work and refinement of GizMO will

address the customizable mapping of OWL constructs.

GizMO indicates additional requirements for the disambiguation of multiplied glyphs.

OWL constructs, such as rdfs:Literal, are used multiple times. Therefore, the

challenge of identifying corresponding glyphs in the visualization is introduced. GizMO

addresses this challenge through the use of triple annotation objects. These identify the

corresponding triples and assert for subject, predicate, and object elements from the domain

ontology the corresponding visualization annotation objects. Visualization annotations

objects define the spatial information, visibility status, and optional glyph modifications.

The visibility flag fosters the reduction of cognitive load by excluding elements from

the visualization. The optional glyph modifications enable the customization of visual

attributes (e.g., colors and shapes) for elements of the domain ontology.

The design decisions for the methodology and the technical realization of GizMO

are conceived to facilitate the customizable definitions for the visual representation of

ontologies. The success of the methodology and GizMO depends on the integration

into other frameworks and tools. GizMO is currently limited in its coverage of OWL

constructs and implicit mappings. Some visual representations cannot merely be described

by the visual appearance and spatial arrangement of glyphs. We describe the UML-

based notations using collapsing and expanding mechanisms, whereas other notations

may require additional behavioral descriptions (e.g., edge bundling). Regardless of its

limitations, Figure 5.5 illustrates the variety of already possible visualizations.

89

Chapter 5 Customizable Graph-Based Visual Representations of Ontologies

Figure 5.5: Examples created with GizMO, realizing VOWL and UML notations.

90

5.5 Chapter Summary

Figure 5.6: Examples created with GizMO, realizing custom notations.

The abstract nature of the methodology and the provided discussion in Subsection 5.2.1

indicate the induced responsibility for realizations, such as GizMO. On the one hand,

GizMO has been designed in a minimum viable product (MVP) context, and its limitations

are prevalent towards the customizable mappings. On the other hand, evaluating the

usability and richness of features will assess the implemented visualization frameworks

and not GizMO or the methodology.

91

Chapter 5 Customizable Graph-Based Visual Representations of Ontologies

Suitable visualizations highly depend on the use case and the targeted user group. The

methodology, its realization using GizMO, and corresponding prototype implementations

provide evidence to answer RQ2 that approaches with customization capabilities can

increase sense-making of Semantic-Web-Based knowledge structures. Customizations

allow users to adjust the visual representations to their current needs. Approaches, such as

GizMO, could foster communication between knowledge engineers, domain experts, and

other user groups, providing the flexible exchange of visual notations.

92

CHAPTER 6

Customizable Chart Visualizations of
Tabular Data in Knowledge Graphs

Knowledge Graph visualizations in the form of node-link diagrams facilitate understanding

of its structure, i.e., resources, their attributes, and interrelations. However, Knowledge

Graphs are not limited to schema or vocabulary data. Various works, such as the work of Vu

et al. [67], address the transformation of tabular data into Knowledge Graph representations.

Tables provide an organized and compressed depiction of information and are frequently

used in scientific and industrial contexts. The objective of visual representations is to

present information so that the user can quickly understand its content. However, node-

link diagram visualizations are typically not suitable to represent tabular data. With the

growing size of the table, its visualization as a node-link diagram becomes hard to read

and analyze due to information overload and cluttered representation. Chart visualizations

provide different views on the data, facilitating its understanding and analysis. However,

suitable chart visualizations also depend on the use case, the data, and target user groups.

Our approach realizes customizable chart visualizations using additional semantics. This

chapter continues to address the following research question:

Research Question 2 (RQ2)

How can we improve understanding of Semantic-Web-Based knowledge structures

using interactive and user-centered visualizations?

93

Chapter 6 Customizable Chart Visualizations of Tabular Data in Knowledge Graphs

The contributions of this chapter are the following:

• Additional semantics enabling information organization and customizable chart

visualization generation

• An approach towards customizable chart visualization for tabular data originating

from Knowledge Graphs.

This chapter is based on the following publication: [118]

The remainder of this chapter is structured as follows: Section 6.1 motivates the approach

by addressing scholarly communication in the form of scientific articles. Section 6.2

presents an example walk-through for a use case addressing tabular data from scientific

articles. Section 6.3 describes the approach and its additional semantics in more detail.

Section 6.4 discusses the approach and its capabilities for advanced use cases.

6.1 Motivation

Scholarly communication has not changed in its core during the last centuries. Research

articles are typically distributed as PDF documents. Therefore, rendering the extraction and

analysis of results a cumbersome, error-prone, and often manual effort. Additionally, the

amount of publications increases continuously every year [119]. As a consequence, search-

ing, understanding, and organizing information becomes a burden. Finding and reviewing

the literature is tying up cognitive capacity [42] and consumes time, which consequently re-

duces the time available for original research. The purpose of scientific articles is to inform

and share findings. As a means for scholarly communication, the information is presented

in documents using text, figures, and tables. While the descriptive text provides detailed

insights, figures and tables serve as visual, structured, and compressed representations of

information. However, this information is buried in PDF representations [120].

The current developments in scholarly communication make use of Semantic Web

technologies. These advancements transform scholarly communication from document-

based to knowledge-based information systems employing structured, interlinked, and

semantically rich Knowledge Graphs [42]. In contrast to other Digital Library applications

that organize primarily bibliographic metadata, the Open Research Knowledge Graph [121]

(ORKG1) targets to represent the content of research articles as a Knowledge Graph (e.g.,

research problem, materials, methods, and results).

1https://orkg.org

94

https://orkg.org

6.2 Exemplary Walk-through

Generally, the view on the information in scientific articles becomes static and frozen

following publication. Thus, further analysis of presented information continues to be a

manual effort for readers. Knowledge-based representations provide machine-readable

access to information, which serves as input for various applications, including those

addressing its presentation to humans. Therefore, it is beneficial to extract and transform

the information of scientific articles into structured and machine-readable representations.

However, due to the design for machine-interoperability and information processing, the

cognitive load for humans increases with the growing size and complexity of such data

structures. Visualizations serve the purpose of addressing specific information needs for

the data at hand. Following the information-seeking mantra (overview, zooming/filtering,

and details on demand) [60], we argue that a user-driven approach for the generation of

visualizations and their customization can further facilitate the sense-making of informa-

tion.

In this chapter, we focus on the results of scientific articles that are presented in the

form of tables. The objective of our approach is to provide customizable and meaningful

chart visualizations of tabular data originating from Knowledge Graphs. In particular, we

address the following challenges:

i) What minimal information structure is required in a Knowledge Graph to obtain

visual representations of tabular data.

ii) How to analyze this structured data for information organization and customizable

chart visualization generation.

Our approach employs a human-in-the-loop technique to transform tabular data into

Knowledge Graph representations with additional semantics. These additional semantics

serve as the foundation for obtaining views of the data that feed into various visualizations.

Using the additional semantics, our approach recreates tables from Knowledge Graphs and

enables the analysis of their content to create customizable chart visualizations.

6.2 Exemplary Walk-through

Our approach is motivated and aligned with the objectives of the Open Research Knowledge

Graph (ORKG) [121], i.e., the structured representation of contributions in scientific articles

and the facilitation of information perception and its sense-making. However, our approach

addresses the customizable visualization for tabular data that originates from Knowledge

Graphs. As a running example, we use an imaginary table summarizing the performance

95

Chapter 6 Customizable Chart Visualizations of Tabular Data in Knowledge Graphs

Figure 6.1: Processing Pipeline Overview: (1) A table for artificial results of Precision, Recall,
F1-Score, and Runtime. (2) Processing pipeline. (3) Resulting visual representation.

of different methods, which is common in Computer Science articles (see Figure 6.1).

The table is processed in a pipeline, ensuring that the data is enriched with additional

semantics for information extraction, information organization, and analysis. The data

transformation process applies a human-in-the-loop approach to ensure the correct assign-

ment of additional semantics. The table is reconstructed using the a-priory known data

structure, and its information is organized in groups. The content of information groups is

analyzed for the creation of chart visualizations.

6.2.1 Data Acquisition and Transformation

At first, the data acquisition phase transforms the table into a Knowledge Graph repres-

entation and ensures the correct assignment of additional semantics. These additional

semantics serve as additional context information for the reconstruction of tabular data.

Knowledge Graph structures typically reflect a triple-based representation < s p o >,

where the predicate p interlinks the subject s and the object o. The Knowledge Graph

representation of tabular data highly depends on the transformation model. In this work,

we focus on the extraction of information from Knowledge Graphs. However, we require a

transformation model for tabular data that fulfills a simple structure for the reconstruction

of tables and additional semantics to generate customizable chart visualizations.

A simple row-based transformation model identifies the subjects as row entries in the

first column. The headers of all other columns reflect the predicates, and the cell values

refer to the objects. The simple transformation process generates the following triples:

96

6.2 Exemplary Walk-through

1 Subject Predicate Object

2 --------------------------------------

3 ex:Method_A ex:hasPrecision "89%" .

4 ex:Method_A ex:hasRecall "73%" .

5 ex:Method_A ex:hasF1-Score "52%" .

6 ex:Method_A ex:hasRuntime "3000 ms" .

Listing 6.1: Simple transformation of tabular data into triples.

While this simple transformation process brings the tabular data into a machine-readable

format, the triples merely reassemble data points without any context. Furthermore,

Semantic Web technologies allow for creating data in various ways depending on the

granularity and structural representation. Thus, to retrieve information from a Knowledge

Graph, the user would have to know the underlying semantics for the predicates and objects.

Additionally, knowledge about the transformation model’s target structure is required to

identify the triples addressing the tabular data information.

We describe an approach that augments tabular data with additional semantics during

the data acquisition phase. The transformation model preserves the context and allows

for creating further analysis and visualizations from this structured data more efficiently.

Maintaining the context requires the augmentation of cell values with additional semantics.

Our transformation model builds upon the following heuristics:

i) The first column holds the cell entries for the subjects. In our example, these are the

methods. Thus, a row corresponds to a resource that is bound to the cell value of the

method. Related to this, our transformation model is also row-based.

ii) Other columns provide values for measurements of a metric. Thus, our transformation

model adds to the cell value two additional attributes: the metric and the unit. The

header values of the columns determine the metric, while a human-in-the-loop

approach assigns the units for the corresponding columns.

While, in general, the particular value is of interest, it is also necessary to incorporate

the context. The numerical value “89” is just a data point lacking any meaning. Adding a

metric and a unit to this value captures more context. The value “89” refers to Precision

and is given in percent. However, this information is not sufficient to make use of it because

it does not relate the metrics to a method. Thus, the method serves as an additional context

item. The incorporation of the context enables us to describe the cell value as: The value

“89” describes Precision, it has the unit percentage, and it refers to a method.

97

Chapter 6 Customizable Chart Visualizations of Tabular Data in Knowledge Graphs

Figure 6.2 shows a simple tabular input widget that eases the data entering process for

users and ensures the correct assignment of additional semantics for the table. Figure 6.3

shows the result of the transformation in the form of a node-link diagram, indicating an

overcrowded visual representation.

Figure 6.2: Widget for the tabular data transformation process eases the data input process and
appends additional semantics to cell values.

Figure 6.3: Corresponding Knowledge Graph representation illustrated as a node-link diagram.
Tabular data is organized in row nodes, which provide the corresponding method. Each row node
lists the related cell nodes with additional semantics for units and metrics.
Note: Some nodes are collapsed to reduce visual clutter and information overload.

98

6.2 Exemplary Walk-through

6.2.2 Customizable Chart Visualizations

The reconstruction of a table requires additional information about the transformation

model and its structural representation. This information is obtained from the data acquisi-

tion phase that creates the structured representation with additional semantics. However,

due to the unknown order of returned triples, the organization of rows and columns can

change. Nevertheless, we obtain a reconstructed table with sufficient context for our

example. Furthermore, the reconstructed table becomes interactive through corresponding

implementations, e.g., sorting the columns in ascending or descending order based on their

values. As illustrated in Figure 6.4, this straight forth and back transformations provide

already interactions with tabular data and another view on the information.

Figure 6.4: Illustration of the original table and the reconstructed table from a Knowledge Graph.
Runtime is sorted in descending order and highlighted by a red box. Note: The ordering of the
columns is not preserved.

The reconstructed table serves as input data for chart visualizations. However, the data

units are a crucial factor in creating meaningful chart visualizations. As illustrated in

Figure 6.5, a column chart visualization represents metrics F1-Score and Runtime. Due

to the significant differences in the data ranges, the chart visualization provides a false

impression. It shifts the attention focus to the visual elements that have a higher presence

in the chart. We argue that metrics with the same units provide reasonable candidates for

grouping information and avoid false interpretations when visualized in the same chart.

a) b)

Figure 6.5: Column chart visualization indicating the possible false first impression through unre-
lated units and large differences in the data ranges.

99

Chapter 6 Customizable Chart Visualizations of Tabular Data in Knowledge Graphs

The semantics of metrics enable additional rules for selecting suitable visualizations

from the space of possible chart types. As a negative example for the visualization of

Precision, we classify the pie chart and box-plot visualizations as not suitable because

they are typically used to represent (statistical) distribution values. Once the analysis step

has provided a set of candidate visual representations, the user has the option to select a

chart type. Furthermore, the user has the option to adjust the mappings for the x-axis and

the labels. These options allow organizing the information representation to the user’s

preference. Our implementation supports the following representation types currently:

table, line chart, bar chart, and column chart. As illustrated in Figure 6.6, two different

views can increase comprehension by providing the information representation grouped

based on the method or the metric.

Figure 6.6: a) Information organization process creates sub-tables based on units;
Two visualizations presenting the information group of Precision, Recall, and F1-Score: b) grouped
by metric; and c) grouped by the method.

100

6.3 Approach

Figure 6.7: Schematic overview of the approach. The additional semantics for units and metrics
enable analysis for the generation of customizable chart visualizations.

6.3 Approach

Our approach operates under the assumption that the used data structure converting tables

to Knowledge Graph representations is known. We use a simple row-based transformation

model to convert one-dimensional tabular data into Knowledge Graph representations to

satisfy this assumption (cf. Subsection 6.2.1). While this transformation model enables the

reconstruction of tables, our approach defines additional semantics and rules for guiding

the generation process of chart visualizations. Figure 6.7 provides a schematic overview of

our approach that augments the cell values with additional semantics.

6.3.1 Additional Semantics for Tabular Data Originating from
Knowledge Graphs

The row-based transformation model provides the structure required for the reconstruction

of tables. While tables provide an organized and compressed representation of information,

chart visualizations can additionally facilitate information comprehension. However,

suitable visualizations are highly dependent on the underlying data and the preferences of

users. The flexible structure of tables allows for incorporating different information (e.g.,

101

Chapter 6 Customizable Chart Visualizations of Tabular Data in Knowledge Graphs

columns addressing other metrics) within one table. Inadequate representations result from

information organization of unrelated metrics (cf. Figure 6.5). Visualizations facilitate the

comprehension of information. However, users have different expectations and previous

experiences [116]. Consequently, providing customizable chart visualizations can increase

sense-making through different views on the information.

The reconstructed table reflects the selection and organization of the corresponding data

entries from a Knowledge Graph. However, we argue that the context is viable for creating

suitable chart visualizations. In this section, we define the context of a cell value as follows:

Definition 6.1: Cell Value Context

Context(value(i,j))=(RowLabel(0,j), Unit(i), Metric(i))

Where i >= 1, is the column index and j the row index.

The RowLabel refers to the entries from the first column that are used as subjects in the

Knowledge Graph representation. A user provides the Unit. The Metric is obtained from

the column header values. Referring to the motivating example, our approach obtains the

context for the value 89 as: Context(89) = (Method_A, Percentage, Precision).

The semantics of Units provide the means to create information groups by clustering

columns, i.e., the extraction of sub-tables through the matching of compatible units. These

groups reflect information that relates (or co-relates) to a certain extend. The semantics of

Metrics provide the means to guide the selection of suitable chart visualization types. In

particular, it is the definition of compatible chart types for individual metrics.

Units: The additional semantics of Units provide the means to align the cell values to

a uniform representation for a particular unit. Cells can have various representations of

values, e.g., in the case of percentage, the value can be represented as 89%, 0.89, or .89

and possibly more scientific numerical representations, such as 0.089 × 103. Therefore,

sub-tables are analyzed based on their literal values (i.e., the string representation of an

entry originating from a Knowledge Graph). Units, such as percentage or milliseconds,

referring to numerical values, employ simple regular expression rules to transform the

strings to a numerical representation: The first rule clears unit symbols (e.g., % or ms)

from the string representation because the units are already assigned in the context of the

value. The second rule removes symbols, such as spaces and commas, that are used for

visual guiding (e.g., 1000000 can be represented as 1 000 000 or 1,000,000). The third

rule detects scientific representations and transforms them into numerical values.

102

6.3 Approach

Units specify a target value representation, e.g., percentage expects values in the 100-

base. Mismatching numerical representations are identified by analyzing the data range of

the columns in a sub-table. Observing the value 0.72 allows for two interpretations: The

value refers to 72% or 0.72% ⇐⇒ 7.2 0/00. The data range within one column provides

the context for the representation transformation. If the data range is [0.72, ..., 0.89] then

the analysis step can identify the representation as 1-base and transform it to 100-base. If

the range is [0.72, ..., 89] then the system identifies the representation as 100-base. While

this transformation rule is a simple heuristic, we argue that values addressing fractions of

percentage, such as 0.72%, are better depicted using the unit per-mil.

The semantics of Units additionally serve for alignment definitions between them.

For example, percentage and per-mil are quickly brought into correspondence using an

alignment factor of 10, or milliseconds are transformed to seconds using an alignment

factor of 1000. The semantics for unit alignment enable the approach to detect compatible

units and bring them into correspondence for clustering related information in sub-tables.

Metrics: The semantics of metrics provide additional criteria for building information

groups. As mentioned before, units provide reasonable candidates for clustering related

information into groups. However, identical units are used in different metrics. For

example, percentage can refer to performance measurements in information retrieval tasks

or statistical distributions. The definition of compatible metrics refines the grouping of

related information and determines which columns serve as input for chart visualizations.

The semantics of metrics provide additional value validation mechanisms. In particular,

individual metrics define a data range. For example, the metric Precision has a range of

[0, ..., 100], or Runtime cannot be expressed as negative values. Furthermore, chemical

substances that provide the pH-value have the range of [0, ..., 14]. These value range

restrictions define a validation mechanism for transformation models that populate Know-

ledge Graphs with tabular data. However, the value range restrictions for the myriad of

measurement factors need to be defined individually for each metric.

The semantics of metrics provide additional means for selecting suitable visualization

candidates from a larger space of possible chart types. Each metric defines compatible

chart visualization types. For example, Precision defines bar chart and column chart as

compatible types. Other chart types, such as pie charts or box plots, are categorized as

incompatible because they are designed for the visualization of statistical distributions. We

argue that pie charts are incompatible due to the aspect of Precision being a performance

metric, and the intention of the visualization is to bring the individual column entries into a

103

Chapter 6 Customizable Chart Visualizations of Tabular Data in Knowledge Graphs

representation that is easy to digest and compare. Pie charts illustrate fractions of a whole.

Therefore, combining the values for the different methods into one pie is not applicable.

Multiple pie charts are required for individual cell values. Related to this, comparing

and spotting small differences (e.g., 72% vs. 73%) becomes more challenging in such

visual representation. Box plots are incompatible because they are designed to convey

the distribution of an observed variable. While this visualization method is applicable for

the representation of Precision, we argue that the comparison of the values is of interest,

i.e., which method performs best and not their distribution. Furthermore, line charts are

incompatible because they are designed to describe the change of a variable over time.

6.3.2 Visualization Suggestion

The analysis of the additional semantics performs most of the heavy lifting. The organized

and subdivided tables serve as input data for the chart generation. The semantics of the

metrics provide a selection of suitable chart types. However, the dimensions of the table

also pose restrictions on the selection of suitable chart types. For example, radial charts

require at least three dimensions to span an area for a value. While this criterion is met

when the number of rows is adequate (e.g., visualizing Precision with methods as the axial

dimension), this representation becomes invalid if the axis mapping is flipped and the

dimensional criterion is not met (e.g., only Precision serves as the axial dimension). This

example indicates that the selection for axis mapping is also crucial for the visualization

suggestion. As shown in Figure 6.1, this refers to the feedback loop for the visualization

suggestion. Due to the aspect that our approach currently supports one-dimensional cell

values, the customizable mappings reflect the exchange of x-axis and label definitions.

6.4 Discussion of the Approach

Scientific articles often present results in the form of tables. Tables provide an organized

and compressed representation of information. However, chart visualizations can addition-

ally facilitate the comprehension of information. Our approach focuses on the visualization

of tabular data that originates from Knowledge Graph infrastructures. Additional semantics

guide the selection of related information and the creation of suitable chart visualizations.

104

6.4 Discussion of the Approach

6.4.1 Limitations

Our approach builds upon the semantics and the structure of tabular data representation in

a Knowledge Graph. Thus, it is currently limited to the chosen transformation model that

enables the analysis for the chart generation. Our transformation model requires the first

column of the table to serve as an anchor for the identification of subjects. Furthermore,

the approach addresses the one-dimensional representation of columns and rows.

In our approach, the first column of the table refers to unsorted entries. Entries are

placed arbitrarily on an axis without consequences on the perception of the information

in a chart. However, when dealing with order-dependent entries, such as time series or

physical distances, the position on the axis is significant for information comprehension.

Currently, our approach does not address order-dependent entries in the first column.

The current implementation of the approach manages the analysis of the additional

semantics using string comparison and ad-hoc rules. The objective of the approach is

to enable customizable visualization for tabular data. Thus, we focused on the minimal

requirements for the additional semantics. Despite its limitations, our approach brings

tables of scientific articles to “life” and enables different views on their information.

6.4.2 Implications and Advanced Use Cases

The approach has been described in the context of tabular data visualizations within a

single paper. However, tables are frequently used in scientific articles of various types.

Incorporating additional semantics enables new opportunities for analysis of information

across papers, too. The information distributed across several tables (in different articles)

can be organized for further analysis using the additional semantics.

In the following, we discuss a prototype for an advanced use case in the context of

ORKG. Our synthetic data consist of three articles, each reporting results in the form of

a table. The three tables are merged into a unified table using ORKG and the additional

semantics for units and metrics. The analysis of this unified table follows the same

information organization paradigms as described in Section 6.3.

Another application type is a leader-board visualization. Such visualizations, prevalent

in Papers With Code2 and comparable state-of-the-art visualizations, typically address one

metric across several contributions. Our prototype provides the user with the selection

of identified metrics inside tables. Furthermore, we provide a performance operator
2https://www.paperswithcode.com/

105

https://www.paperswithcode.com/

Chapter 6 Customizable Chart Visualizations of Tabular Data in Knowledge Graphs

selection that determines a single value for the selected metric across all tables. Currently,

the prototype implements min and max performance operators. For example, the min

operator obtains the best performance for the metric Runtime, while Precision requires the

max operator to get the best performing results. Figure 6.8 illustrates the combined user

interface for both applications. Additionally, we restrict the leader-board visualization to a

column chart. Trend-line (combined scatter plot and line chart) visualizations require a

time-dependent variable (e.g., publication date). Thus, an article’s publication date has to

serve as an additional context item for the generation of leader-board charts. While our use

case shows the comparison of an example dataset, it neglects the aspect that only related

things should be compared. An additional context item has to ensure that only compatible

tables are merged. As our examples address the performance metrics in NLP-related tasks,

the evaluation dataset has to serve as the context for identifying compatible tables.

6.5 Chapter Summary

In this chapter, we have presented an approach for customizable chart visualizations of

tabular data originating from Knowledge Graphs. A basic transformation model creates

Knowledge Graph representations of tabular data. A human-in-the-loop approach is

employed in the data acquisition phase in order to assign additional semantics to cell

values of the table for the structured and semantically enriched representation. The

additional semantics describe metrics and units for the numerical values of tabular data.

The semantics of units provide the means to create sub-tables of compatible units and

align the numerical values to a uniform representation (e.g., seconds and milliseconds).

The semantics of metrics provide the means to create sub-tables for different tables (e.g.,

merging information from various papers) and validation mechanisms for value range

restrictions (e.g., Precision is in the range of [0, ..., 100]). Additionally, these semantics

define suitable chart visualization methods that are compatible with a Metric. A prototype

implementation allows users to select a chart visualization from a set of suggested types and

customize the axis mappings, providing different perspectives on the information in tables.

The visualization suggestion considers the selected axis mapping additionally, ensuring

valid recommendations for chart visualization types (e.g., radial-charts require at least

three dimensions to span an area to show the information). Using the paper comparison

feature of ORKG [122], the approach realizes advanced use cases, such as the visualization

of information distributed among tables in multiple articles and leader-boards.

106

6.5
C

hapterSum
m

ary

a) b)

Figure 6.8: Chart visualization using the comparison feature of ORKG: a) The individual tables, selection options for leader-board generation, and a
leader-board visualization; b) Information organization for merged tables and the resulting column chart. The value representation transformation is
indicated in red.107

Chapter 6 Customizable Chart Visualizations of Tabular Data in Knowledge Graphs

The context plays an essential role in extracting tabular data from Knowledge Graphs

and creating visual representations. Our approach creates the context using the a-priory

known data structure and its additional semantics. Future work will address the extension

for the definition of additional semantics related to order-dependent entries for the first

column. The semantics of Metrics define the interplay among them and which chart

visualizations are suitable.

Suitable visualizations highly depend on the use case, the data, and the targeted user

group. The approach and its prototype implementation provide evidence to answer RQ2.

The understanding of the underlying data in Knowledge Graphs can be facilitated using

customizable chart visualization in order to provide different views on the data which serve

particular information needs for different user groups.

In summary, we argue that the approach introducing additional semantics and further

rules will foster the creation of suitable and custom visual representations for tabular data

using Knowledge Graphs. Furthermore, it facilitates comprehension through different

perspectives on the information in tables. In the following chapter, we investigate how to

overcome the limitations of the presented approaches in Chapters 5 and 6.

108

CHAPTER 7

Customizable Pipelines for
Knowledge Graph Visualizations

In Semantic Web contexts, various visualization methods and tools exist. These are

typically tailor-suited for specific use cases and tasks. Semantic-Web-Based knowledge

structures are realized in a versatile technology stack addressing different use cases. Onto-

logy files are encoded in different serialization formats such as Turtle and N3. Knowledge

Graphs use various technologies to store and retrieve information such as SPARQL end-

points, RESTful-APIs with different query languages such as SPARQL, Cypher, Gremlin,

and GraphQL. Thus, visual representations of Semantic-Web-Based knowledge structures

depend not only on the requirements for the visualization but also on the originating source

and how the data is accessed and transformed.

Existing solutions often require modifications to meet the demands of other use cases

and different user groups. The work of Dudáš et al. indicates that “new visualization

methods and tools are often developed from scratch, omitting opportunities to learn from

previous mistakes or to reuse advanced techniques provided by other researchers and

developers” [17, pp. 1-2].

This chapter addresses the following research question:

Research Question 3 (RQ3)

How can we ease the creation of visual representations in Semantic Web contexts

for different use cases and diverse audiences?

109

Chapter 7 Customizable Pipelines for Knowledge Graph Visualizations

The contributions of this chapter are the following:

• Refinement of the visualization generation process.

• Modular, pipeline-based visualization generation framework.

• Visual pipeline builder, providing source code infrastructure as React application.

This chapter is based on the following publication: [123]

The remainder of this chapter is structured as follows: Section 7.1 presents a pipeline-

based visualization approach for Semantic Web data. Section 7.2 discusses a prototype

realization of the approach. Finally, Section 7.3 summarizes the achieved results under the

aspect of the research question RQ3.

7.1 Pipeline-Based Visualization Approach for the

Semantic Web

Pipeline-based approaches are often used in applications addressing data visualization.

Components process a provided input and generate an output that is distributed to other

components as input. The pipeline is organized by connections between components dis-

tributing input and output data to corresponding elements. This conceptualization allows

for creating various visualizations by exchanging components for individual use cases and

data sources. Thus, the visualization pipeline approach is flexible and extendable. Accord-

ingly, our approach applies this conceptualization and creates customizable components

that are organized in a pipeline.

In this chapter, we propose an approach towards a unified visualization framework for

Semantic Web data. Our approach builds on the identification of commonly used steps in

the creation process of visualizations. Furthermore, the approach employs separation of

concerns paradigms for individual steps, increasing its flexibility. Our framework realizes

the approach and provides a modular and customizable visualization pipeline that serves

as a foundation for creating visual representations for different data sources, use cases,

and user groups in Semantic Web contexts. Customizable components serve as stand-

alone artifacts for different steps in the creation process of visualizations. The framework

provides the organization of various components in a pipeline, allowing for the creation

and selection of the right components for the right task, realizing a variety of use cases

and visual representations. We present the applicability of the approach using prototype

implementations for different components.

110

7.1 Pipeline-Based Visualization Approach for the Semantic Web

7.1.1 Approach

Most visualizations employ the following steps to create visual representations: i) access

the data; ii) map it to visual primitives (e.g., geometric shapes); iii) render the primit-

ives; and iv) optionally add animations and user interactions. Typically, these steps are

created within an application addressing a single use case and a single user group. To

address different use cases in the context of Semantic-Web-Based knowledge structures,

flexible, customizable, and extendable approaches are required. Our approach refines the

visualization generation steps using the separation of concern paradigm. The work of

Dudáš et al. [17] indicates that most methods and tools visualize the content of ontologies

using two-dimensional graph-based representations in the form of node-link diagrams.

Therefore, our approach focuses on the flexible and customizable realizations of visual

representations in the form of node-link diagrams. Individual steps are further separated

into smaller steps, targeting the flexible realization of different use cases in Semantic Web

contexts. The refined steps are accompanied by their corresponding components. Table 7.1

presents the individual steps and their responsibilities.

Table 7.1: Tabular representations of different components and their responsibilities.

Step Component Responsibility
1 Data Access Handler Specify data source and parameters for data retrieval in

the JSON format.

2 Parser Create the Resource-Relation Model.

3 Vertex-Edge Mapper Select data for visualization and create graph structure.

4 Node-Link Mapper Modify the graph structure for the visualization.

5 Rendering Create the visual primitives and orchestrate the other

components (6 – 8).

6 Visual Appearance Specify how of nodes and links are rendered.

7 Spatial Layout Specify how elements are organized in the layout.

8 Interactions Specify interactions for graph, nodes, and links.

7.1.2 Refining the Data Access

Visualizations typically start with accessing the data i), which is then mapped to visual

primitives ii). This observation poses the two following questions: a) What is the data, and

how is it accessed? b) How is it mapped to visual primitives?

111

Chapter 7 Customizable Pipelines for Knowledge Graph Visualizations

Semantic Web data comes from different sources and also in various formats. The data

sources range from ontology files to Knowledge Graphs that are accessed via SPARQL

queries, RESTful-API requests, or other query languages. Thus, individual use cases

require specialized mechanisms for accessing data from different sources. Our approach

addresses this challenge through the use of the separation of concern paradigm. Accessing

data from different sources has the following requirements: First, describe how the data

is accessed and fetch it. Second, provide the data in such a way that it can be mapped

to visual primitives. Accordingly, our approach refines data access i) into two custom-

izable components (i.e., the Data Access Handler and a Parser Component),

addressing each task individually.

Generally, Semantic Web data is accessed using internet technologies. Thus, the cus-

tomization of the Data Access Handler component targets the specification of data

sources, such as ontology URIs, SPARQL endpoints, or RESTful-APIs. Additionally, the

Data Access Handler specifies further parameters for accessing portions of the data

source, e.g., the SPARQL query or RESTful-API requests.

Recalling question a), the Data Access Handler describes how the data is ac-

cessed without addressing the aspect of what the data actually is. In Semantic Web

contexts, the main characteristic of data is its textual representation format. It is due to the

nature of how Semantic Web technologies encode knowledge representations, e.g., RDF

or OWL, with different serializations such as Turtle or N3. Furthermore, SPARQL and

RESTful-API results are typically transmitted using textual representations (e.g., XML or

JSON formats). Thus, the common factor for different data sources is that their retrieved

data is a structured textual representation of information.

The structured and machine-readable textual representation requires a parsing mechan-

ism in order to provide the data in a format that can be mapped to visual primitives. Due to

the diversity of different serializations and data structure formats, a unified parsing mechan-

ism cannot be realized. The retrieved textual data representation depends on its originating

data source that specifies the resulting format and how the data is organized. However,

most modern applications provide the means to request the results in the JavaScript Object

Notation (JSON) format. Thus, a form of unification is provided by restricting the output

of the Data Access Handler to a JSON format.

While having a unified representation of results, the content of the data, and in particular,

its structure are governed by the target data sources. Thus, mapping the content to visual

primitives requires the a-priory knowledge for the retrieved structure of the JSON results.

112

7.1 Pipeline-Based Visualization Approach for the Semantic Web

Furthermore, these results could hold additional information, not relevant for the visual

mapping. Mappings require to filter the data for relevant information for the visualization.

Our approach tackles this challenge using customizable parser components, which specify

how the JSON structure is transformed into a data model (i.e., Resource-Relation

Model). Figure 8.1 illustrates a schematic overview for the data access module.

Figure 7.1: Schematic overview for the Data Access Module. The customizable Data Access
component specifies the data source and additional information retrieval parameters. The resulting
JSON model is processed in the parser component resulting in a Resource-Relation model.

7.1.3 Refining the Mapping Process

Typically the mapping process ii) transforms the data into visual primitives in a single step.

Thus, the visual notation becomes static for the chosen visualization method. However,

the objective of our approach is to provide customizable and flexible mappings for a

variety of visualization methods. Generally, Semantic Web data reflects a graph structure

where resources are connected through relations. Axioms, annotations, constraints, and

restrictions are additionally used to define knowledge representations.

Various visual notations employ additional graph manipulations on the network-like

structures of Semantic Web data. For example, the VOWL notation [82] performs merge

operations on axioms, such as owl:equivalentClass, and splitting operations on rdfs:Literals.

Nested visualizations, such as UML-based representations, perform nesting operations

(e.g., on datatype properties) and visualize these inside the corresponding node.

Our approach uses a two-fold mapping to increase the overall flexibility for different use

cases and allow for adjustments using two customizable components. The first mapping

transforms the Resource-Relation model into a Vertex-Edge model. In partic-

ular, this component specifies how and if axioms, annotations, or relations are mapped

to vertices and edges. Thus, this mapping provides the means for selecting information

of interest for the visualization and creates a data model that is processed further. For

example, properties such as rdfs:comment, vs:term_status, or rdfs:isDefinedBy are often not

displayed as “first-class citizens”. Within a visualization, these can increase information

overload and provide overcrowded visual representations. However, use cases targeting

113

Chapter 7 Customizable Pipelines for Knowledge Graph Visualizations

particularly such information can be realized by customizing the corresponding mapper to

create vertices and edges for these elements. Furthermore, our component does not discard

information that is not used in the Vertex-Edge model. Vertices and edges are derived

from resources and relations. These provide a reference to the corresponding element in

the Resource-Relation model, allowing for access to this information in later steps.

The second component maps the Vertex-Edge model to a Node-Link model. In

particular, this component specifies merge, split, and nesting mappings. Thus, this map-

ping provides the means to alternate the resulting graph structure of the Vertex-Edge

model. Additionally, the mapper allows for creating auxiliary nodes and links that address

domain range restriction and relational axioms. Due to the aspect that properties (e.g.,

owl:DatatypeProperty or owl:ObjectProperty) are instances of classes [8], these can be

displayed as nodes with corresponding links provided as domain and range restrictions.

Figure 7.2 illustrates the mapping process for an example dataset. This example emphas-

izes that the direct transformation of Semantic Web data into a graph requires additional

graph manipulations to realize different visual notations.

Figure 7.2: The Resource-Relation model is transformed into a Vertex-Edge model,
reflecting a basic graph structure. The Vertex-Edge model is transformed into a Node-Link
model, modifying the graph structure using merge, split, and nesting functions. In this example,
split operations are applied to rdfs:Literal realizing the VOWL notation. The red boxes
highlight the applied split operation.

114

7.1 Pipeline-Based Visualization Approach for the Semantic Web

7.1.4 Refining the Rendering Process

The rendering process iii) typically creates a visual representation based on the notation,

a layout, and provides user interactions iv optionally). Therefore, visualizations become

dependent on the realization of the rendering process. However, the objective of our

approach is to provide customizable and flexible visual representations that facilitate

understanding and interaction with Semantic-Web-Based knowledge structures for different

use cases and targeted user groups. Our approach refines the rendering process and optional

user interactions into separated steps accompanied by customizable components.

Inspired by GizMO [116], our refinement for the rendering process focuses on node-link

diagrams. While GizMO focuses on a methodology for a definition of visual depictions

in the form of annotation ontologies, the technical realization used ad-hoc rules to realize

different visual notations, such as VOWL or UML, using various graph manipulation

operations. GizMO’s limitations with respect to ad-hoc graph manipulations are overcome

by transforming the responsibility to the customizable mapper components.

In the context of node-link diagram visualizations, the two main visual characteristics of

different methods and tools are visual appearance and spatial arrangement of nodes and

links. Our customizable components address these aspects individually. The rendering

component creates customizable visual primitives for nodes and links. The visual appear-

ance component describes how these visual primitives are rendered. The spatial layout

component asserts their position. Additionally, the interaction component specifies user

interactions iv) for the graph, nodes, and links (e.g., drag, hover, and click interactions).

The customizable Node-Link model provides the sets of elements as input for the

rendering component. Based on the semantic types of nodes and links, their visual

appearance is configurable. Various spatial layout algorithms such as hierarchical trees or

force-directed layouts assert the position of elements in the graph.

While GizMO addressed limited user interactions (e.g., mouse hovering) in the context

of visual appearance modifications, general interactions such as mouse-click remained non-

customizable. We tackle this challenge by creating a customizable interactions component

that addresses in the context of node-link diagrams three interaction types: graph, node,

and link interactions. Graph interactions specify interactions for the canvas area where

visual primitives are rendered. This allows for reusing general interactions such as zooming

and panning. Node interactions describe drag, hover, click, and double-click interactions.

These interactions are generally bound to all nodes. However, the flexible nature of

our components allows for additional modifications using the semantic types of nodes.

115

Chapter 7 Customizable Pipelines for Knowledge Graph Visualizations

Furthermore, additional control elements can be attached to rendered primitives. Link

interactions provide the same customizable definitions of interactions. Figure 7.3 illustrates

a schematic overview for the individual components of the rendering module.

Figure 7.3: A schematic overview of the rendering module. The rendering component creates
customizable visual primitives for nodes and links from the Node-Link model. The visual
appearance and spatial position are asserted in corresponding components. The interactions
component creates basic user interactions and provides additional visual primitives for advanced
interactions (e.g., node-collapsing to mitigate cognitive load).

7.1.5 Discussion of the Approach

In Semantic Web contexts, various visualization methods and tools exist. However, these

are typically tailor-suited for specific use cases and tasks, omitting the opportunity to

reuse existing solutions in other use cases. Addressing different visualization use cases

in Semantic Web contexts requires flexible, customizable, reusable, and extendable ap-

proaches. Our approach refines the individual steps for the visualization generation process,

increasing its flexibility for different use cases. Customizable and reusable stand-alone

116

7.2 Technical Realization and Example Results

components provide the means to access the data from different sources, create and manipu-

late graph structures for node-link diagram visualizations. Furthermore, visual appearance,

spatial layout, and user interactions are customizable in corresponding components.

The objective of visual representations is to facilitate understanding and interaction with

information and data. However, the requirements vary from use case to use case and are also

depending on the data at hand. Chart visualizations and other representation methods (e.g.,

indented trees, chord diagrams, treemaps, and Euler diagrams) facilitate the understanding

of Semantic-Web-Based knowledge structures. The limitations of the approach are directed

towards the implementation of different visualization methods. While our approach

focuses on the flexible realization of node-link diagrams in Semantic Web contexts, its

conceptualization as visualization pipelines allows for creating other visual representations.

Our components are derived through the separation of concern paradigm. Furthermore,

their conceptualization as stand-alone artifacts (i.e., each component takes inputs, processes

them, and provides one output) allows for their reuse in other visualizations. As our

approach targets a unified visualization framework approach, we address this through

the divergence of customizable components and convergence in data models. Figure 7.4

provides a schematic overview of unification through divergence conceptualization. The

data models, provided as input and output for various components, serve as convergence

points within the visualization pipeline. Therefore, we argue that the data models further

contribute to the reusability of components in visualization pipelines. Additionally, new

data models and components can be created for other visualization methods and use cases.

7.2 Technical Realization and Example Results

In order to evaluate the applicability of the approach, we provide basic implementations for

individual components. All data models and the components for the data access module

and the mapper module are implemented in plain JavaScript. The rendering components

use D3.js additionally for creating interactions and visual primitives as SVG elements. In

this section, we describe the technical aspects of individual components and data models.

An overview is illustrated in Figure 7.5. Additionally, we showcase the configurations of

components for different data sources, namely ontology URIs and SPARQL queries for

the DBpedia endpoint. To access various data sources on the Web, we implement a simple

proxy that allows us to reduce Cross-Origin Resource Sharing (CORS) restrictions.

117

Chapter 7 Customizable Pipelines for Knowledge Graph Visualizations

Figure 7.4: A schematic overview for realizing different visualization pipelines indicates the
divergence for various components and convergence in corresponding models.

Figure 7.5: An example pipeline using components for creating node-link diagrams.

118

7.2 Technical Realization and Example Results

7.2.1 Modules, Components, and Data Models

In the following, we describe design decisions and technical details for individual compon-

ents and data models. We define modules as conceptual combinations of components in our

terminology, reflecting the typical steps in the visualization generation process (i–iv). The

definitions for the data models are described alongside the description of the components.

Data Connector Module

This module realizes access to different data sources. It consists of two components,

i.e., the Data Access Handler and the Parser Component. The output of the

Parser Component is a Resource-Relation model that serves as a foundation

for further processing in the pipeline.

Data Access Handler: The Data Access Handler accounts for retrieving data

from various sources such as ontology URIs, SPARQL queries, and RESTful-API requests.

This component specifies the origin of the data and optional parameters for SPARQL

queries and RESTful-API requests. Furthermore, this component specifies that its output

is provided in the JSON format. While we do not strictly enforce the JSON format, we

argue that its availability in most programming languages serves as a reasonable choice.

Parser Component: The Parser Component transforms the retrieved JSON data

into the Resource-Relation model. While the JSON format serves in our approach

as a unified representation for data, its structure is a-priory not known. Thus, parser com-

ponents have to specify how the content of the data is accessed and how it is transformed.

Resource-Relation Model: The Resource-Relation model reflects the organiza-

tion of different elements. Semantic-Web-Based knowledge structures are described using

resources, relations, annotations, axioms, type assertions, etc. Accordingly, resources

define type assertions, annotations, and axioms. Relations extend resources by providing

domain and range restrictions, forming the connection between resources.

The Resource-Relation model provides the reorganization of the structured tex-

tual representation into a representation format for further processing. Resources and

relations provide the information in the same fashion as the textual representation, i.e., a

string-based value assertion, reflecting individual concepts, their axioms, and their rela-

tions. Thus, this model reflects the network-like structures of Semantic Web data with

additional grouping and classification of triples. Other use cases such as the mappings of

SPAQL query results require a-priory knowledge about the structure and how it is mapped

119

Chapter 7 Customizable Pipelines for Knowledge Graph Visualizations

to the Resource-Relation model. However, the separation of concern paradigm

allows for adjusting the Parser Component for different data sources and structures.

Figure 7.6 illustrates the reorganization and classification of an example definition of an

owl:DatatypeProperty into a relation.

Figure 7.6: Arrows indicate the classification of triple statements into annotations, axioms, types,
and domain-range pairs. Note: The Resource-Relation model is a simple reorganization of the
retrieved textual data into a JSON object. The customizable parser component specifies how
different elements are classified.

Mapper Module

This module consists of two components, i.e., the Vertex-Edge mapper and the

Node-Link mapper. Each mapper provides a corresponding data model. In the fol-

lowing, we describe the mappers and the corresponding data models.

Vertex-Edge Mapper: The Vertex-Edge mapper is responsible for the transforma-

tion of the Resource-Relation model into a graph structure using vertices and edges.

These mappings define the path specifications for the corresponding data, e.g., the dis-

play name is assigned using the path annotations.rdfs:label. Additionally, the

Vertex-Edge mapper creates edges between vertices for resource axioms. These edges

have the type axiomEdge, and their identifier is derived from the source and target iden-

tifier (i.e., sourceId$$axiom$$targetId). This design decision reflects the triple

structure and accounts for multiple usages of axiom constructs such as rdfs:subClassOf.

Relational axioms, such as rdfs:subPropertyOf, are not mapped in this component. Es-

sentially, relations (or properties) are also “resources”. However, we argue that their

incorporation results in a larger graph structure that requires what we call “auxiliary”

vertices and edges. Furthermore, these kind of axioms are subject to T-Box definitions and

do not appear in A-Box definitions. We argue that manipulating the graph structure by

introducing “auxiliary” elements is a task for another mapper component. Therefore, the

120

7.2 Technical Realization and Example Results

Vertex-Edge Mapper creates a basic graph structure reflecting resources, i.e., their

direct relations and axioms.

Vertex-Edge Model: The Vertex-Edge model is designed to reflect a basic graph

structure using vertices and edges. Vertices are derived from resources and provide the type,

name, and identifier attributes. Edges are derived from relations and provide alongside

the type, name, and identifier attributes additionally source and target attributes for the

connection between vertices. Vertices and edges provide references to corresponding

resources and relations, respectively.

Node-Link Mapper: The Node-Link mapper modifies the basic graph structure of

the Vertex-Edge model using merge, split, and nesting functions. Additionally, the

mapper allows for creating auxiliary nodes and links that address domain range restriction

and relational axioms. Similar to the Vertex-Edge mapper, these mappings define the

path specifications for the corresponding data using a definition map. The definition map

specifies the criteria when manipulation operations are performed on the graph.

The VOWL notation [82] provides an example of the necessity for merge and split oper-

ations. For example, owl:equivalentClass axioms result in a merged node for participating

elements. Literals are separated into individual nodes for each link. This mapper performs

merge and split operations based on the link types. A link consists of a source node and a

target node, forming their interrelation. Merge operations extend the source node with a

reference to the target node. The target node is then removed from the graph structure, and

its links are assigned to the source node. Split operations create a clone of the target node.

Corresponding links are modified to use the cloned element as the new target element. The

UML notation provides an example of nesting functions. For example, the links of type

owl:DatatypeProperty and their ranges are assigned to the node and then removed from

the graph, allowing for the creation of nested visual representations. Auxiliary nodes allow

us to represent “resources” such as owl:ObjectProperty and owl:DatatypeProperty. The

direct link between two nodes is removed and replaced with the auxiliary node, which

provides a domain and a range link, respectively. Furthermore, the auxiliary nodes allow

us to represent relational axioms such as rdfs:subPropertyOf as links between them. Our

framework defines criteria for different graph manipulation operations (i.e., merge, split,

nesting, and introduction of auxiliary nodes). Other mappings that are not described

through our manipulations are subject to the mapper implementations.

Node-Link Model: The Node-Link model consists of nodes and links. Nodes have

an id, a type, and a name. Links have a source and a target node to form the connections.

121

Chapter 7 Customizable Pipelines for Knowledge Graph Visualizations

Rendering Module

The rendering module performs all visualization-related tasks.

Rendering Component: This component coordinates other visualization components

and receives the node-link model as input. Its primary task is to create customizable

visual primitives for nodes and links. Their visual appearance and spatial position are

assigned in corresponding components. Visual primitives are created with references to

their corresponding nodes and links. This enables access to information that is provided

by other data models. Optional interactions such as zoom, pan, and drag operations are

defined in the interactions component.

Visual Appearance Component: As similar as in GizMO, the visual appearance

component provides customization for the definition of visual primitives. Configuration

objects define, for example, the geometric shape (e.g., circle, rectangle, and ellipse) and

its CSS attributes such as background color and stroke styles. While creating the visual

primitives, the rendering component retrieves corresponding configuration objects for

nodes and links that are based on their type. Thus, nodes and links with different types are

rendered accordingly.

Spatial Layout Component: The different implementations of layout algorithms (e.g.,

force-directed layout or tree-layout for node-link diagrams) are subject to this component.

This component receives as input the visual primitives for nodes and links and assigns their

spatial position in the graph.

Interactions Component: The interactions component implements the user interac-

tions. User interactions are categorized into three groups: graph (e.g., zooming and

panning), node, and link interactions. Drag, hover, and click interactions are configurable

individually for nodes and links. Additionally, the type of nodes and links allows for the

configuration of different interactions based on their type.

7.2.2 Visualizing Ontologies

Our first use case addresses the visualization of ontologies. The Data Access Handler

component uses a system call on the proxy side and processes the ontology using the

OWL2VOWL converter1. Our design decision is based on the fact that OWL2VOWL

uses the OWL-API and exports ontologies in a JSON format. Furthermore, the OWL-

API supports various serialization formats and the loading of imported ontologies that
1https://github.com/VisualDataWeb/OWL2VOWL

122

https://github.com/VisualDataWeb/OWL2VOWL

7.2 Technical Realization and Example Results

are described using the owl:imports statements. OWL2VOWL additionally handles the

assignment of missing domain range restrictions for properties to owl:Thing. However,

this is merely a technical design decision. Other tools such as Apache Jena can be used

to process the ontology data. Our design decision allows for reusing the array of existing

applications to create a Data Access Handler for ontologies that only requires its

URI specification. In this use case, the parser component is designed to process the VOWL

JSON format and convert it into the Resource-Relation model.

The Vertex-Edge mapper transforms the Resource-Relation model and cre-

ates vertices and edges. Vertices and edges have a display name that is derived from the

annotation rdfs:label. The types are assigned using the semantic types of resources and

relations (e.g., owl:Class, owl:DatatypeProperty, etc.). Edges between vertices are created

using the relations and the axioms of resources.

Figure 7.7: A pipeline with branches representing two pipelines for the visualization of the same
example ontology. The upper branch shows the visualization using the VOWL notation. The lower
branch highlights modified components in light green. Its visualization introduces auxiliary nodes
and removes merge and splitting operations.

123

Chapter 7 Customizable Pipelines for Knowledge Graph Visualizations

The Node-Linkmapper manipulates the graph structure of the Vertex-Edgemodel.

These manipulations are subject to the targeted visual notations. In this example, we

perform the same merge split operations as described in the VOWL notation, e.g., merge

owl:equivalentClass axioms and split rdfs:Literals. The visual appearance component

defines the configurations for different types according to the VOWL notation. Figure 7.7

illustrates the pipeline and the resulting visualization. Alongside the VOWL representation,

we only modify the Node-Link mapper and its visual appearance definitions to showcase

the visualization of ontologies with auxiliary nodes for domain range restrictions.

7.2.3 Visualizing SPARQL Query Results

We describe the visualization of the SPARQL query results retrieved from DBpedia as our

second use case. The Data Access Handler component specifies the URL, graph,

query, and a suffix. The suffix specifies the parameters for the HTTP request retrieving

the result as JSON. However, we do enforce one condition for the queries. We create only

“simple” queries as “?subject ?predicate ?object” triple pattern in the select clause. This

reflects the underlying data structure within the endpoint and eases up the implementation

of the parser component.

The parser component transforms the results into the Resource-Relation model.

Subjects are mapped to resources, known predicates, such as rdfs:label, are assigned to

annotations, and the corresponding object is omitted as a resource. The omitted value is

assigned as the value of the annotation. Predicates that can not be assigned to axioms, type

assertions, or annotations are treated as relations between two resources.

This use case reuses the already implemented components for the Vertex-Edge

mapper, the Node-Link mapper, and the rendering components. The Vertex-Edge

mapper is customized to retrieve the display name for links using the resource URI. The

Node-Linkmapper is customized to perform nesting operations on owl:DatatypeProperty

links. A link-type validation assigns owl:DatatypeProperty as the type for links targeting

a literal. Furthermore, the display names of links are adjusted to show the suffix of its

corresponding URI. These adjustments in the Node-Link Mapper account for the

missing type and label assertions of predicates for the retrieved SPARQL results. The

Visual Appearance component is customized to display nested attributes. Figure 7.8

shows the visualization of a simple SPARQL query for DBpedia. The implementation and

the discussed examples are available on GitHub.2

2https://anonymousninjaturtle.github.io/PipelineVisualizations/

124

https://anonymousninjaturtle.github.io/PipelineVisualizations/

7.2 Technical Realization and Example Results

Figure 7.8: A pipeline representing the visualization of SPARQL queries. The modified components
in comparison to the first pipeline (i.e., native VOWL representation in Figure 7.7) are highlighted
in light green. Its visualization introduces nesting functions for a UML-based representation.

125

Chapter 7 Customizable Pipelines for Knowledge Graph Visualizations

7.2.4 Pipeline Configuration

We realize the visualization generation process using a customizable pipeline-based ap-

proach. Our approach uses the separation of concern paradigm to refine the visualization

generation process. The refined steps are accompanied by data models and customizable

components grouped in modules for the flexible realization of different visualizations for

various use cases and user groups. The individual modules, components, and data models

are conceptualized as stand-alone artifacts allowing for their modification and extensions

for specific use cases and corresponding visualization tasks. However, the orchestration of

individual components is required for customizing and arranging them in such a way that

they fulfill the requirements of a specific use case. On top of the individual artifacts, we

provide a customizable visualization pipeline configuration application. This prototype

application serves as a WYSIWYG pipeline builder allowing users to configure and select

components for different use cases.

In this application, the pipeline can access four example data sources, demonstrating

its flexibility in handling different data sources such as ontology files, SPARQL queries

for DBpedia and WikiData, and RESTful-API calls to the Open Research Knowledge

Graph. The node-link mappers demonstrate different graph manipulations. The rendering

module creates node-link diagram visualizations that are adjustable w.r.t. their visual

appearance that is based on GizMO [116]. The rendering module implements basic user

interactions such as zooming, dragging and panning. A force-directed layout is used to

create the spatial assignment of nodes and links in the graph visualization. Figure 7.9 gives

an overview of the UI of the framework.

The limitations of the current prototype implementation are twofold. First, the UI for

creating pipelines is fixed with respect to the arrangement of the components, i.e., data

source selection, Vertex-Edge mapper, Node-Link mapper, and rendering module.

Second, our prototype implementation addresses only the visual representations in the form

of node-link diagrams. Thus, the data models and the pipeline composition are tailor-suited

for such visualization types. Furthermore, the components use a top-down communication

where their results feed into the next component in the pipeline. We envision the bottom-up

communications to enable the creation of applications that allow through means of visual

editing also to modify the content provided by data source. For example, changes in the

graph propagate backward through the pipeline and create updates for the data source, e.g.,

SPARQL query updates, RESTful-API calls for creating new entries, or integration with

version control systems such as git.

126

7.2 Technical Realization and Example Results

Figure 7.9: Overview of the UI of the framework. Left side: Module selection for data sources,
vertex-edge mapper, and node-link mapper. Note: This version uses a single vertex-edge mapper.
Top: Pipeline configuration. Bottom: Visualization preview for the configuration of components.

Exporting Pipelines

The main objective of this application is to provide the configured pipeline to the user,

allowing them to extend and modify the components to the individual targeted use case.

Our approach exports the created pipeline as a zip file creating source code for a fully

functional React core application that serves as an entry point for development. Separation

of concerns for individual components and the pipeline organization allow developers to

adjust and customize individual components to their needs and the requirements of the

underlying use case. The implementation of our components uses class inheritance. Thus,

new components can be derived from existing ones that serve as examples. We demonstrate

the application in a video on Youtube3, showcasing how easily we can create pipelines and

export those as React applications. These React applications serve as a basic source code

infrastructure for developers.

3https://youtu.be/0bGKTkVTQbU

127

https://youtu.be/0bGKTkVTQbU

Chapter 7 Customizable Pipelines for Knowledge Graph Visualizations

7.3 Discussion and Chapter Summary

This chapter presented a pipeline-based approach for the visualization of Semantic Web

data. Our approach applies the separation of concerns paradigm for the commonly used

steps in the visualization generation process. We argue that this refinement and a modular

pipeline architecture increase the flexibility and foster the creation and reuse of various

visual representations. The objective of our approach is to facilitate the creation of visual

representations and provide a unified visualization framework for creating visualizations

in Semantic Web contexts.

As described in Section 7.1.5, our approach uses divergence in components and con-

vergence in data models. The pipeline-based approach allows for creating the right

components for the right task. While we address the customizable visual representation in

the form of node-link diagrams, the approach itself is not limited to this specific visualiza-

tion method. We argue that the pipeline-based approach forms the foundation to create

various visual representations for different use cases and targeted user groups.

Alongside the approach, we introduce three data models that serve as convergence points

within the pipeline. The Resource-Relation model provides the reorganization of

the input data model into types, annotations, and axioms. Relations additionally provide

domains and ranges that reflect the connection between resources. The corresponding

implementation of the parser component is accountable for the coverage of the input

data model. The Vertex-Edge model reflects a simple graph structure. This model

results from transforming the Resource-Relation model using the customizable

Vertex-Edge mapper component that selects the relevant information for the visu-

alization. We introduce the Node-Link model as the means to manipulate the graph

structure for the resulting visualization. These manipulations are defined in the customiz-

able Node-Link mapper component. While our data models are created with the purpose

of providing convergence points in the pipeline and enable the customizable visualization

of node-link diagrams, components for other use cases with other data models can be

created for the pipeline.

We provide our implementation in JavaScript. This fosters the creation of new compon-

ents using class inheritance and also reduces the from-scratch implementation. Different

use cases and visualization methods provide their own implementations and customiz-

ation for the visualization pipeline. Due to the separation of concern paradigm and the

stand-alone artifact conceptualization of components, new use cases and visualizations can

directly reuse existing components of other pipelines. However, the reuse is dependent on

128

7.3 Discussion and Chapter Summary

the availability of their implementations. Our current implementation targets to showcase

the applicability of the approach for a predefined set of use cases. We argue that the

creation of different components for different use cases is a community effort.

The prototype implementation of individual components provides a basic infrastructure

to design the data flow that results in a node-link model. This model serves as input for

the rendering module that takes additional input from components responsible for visual

appearance, spatial layout, and optional interactions within the visualization. The modules

and components can be orchestrated and configured in a WYSIWYG application. This

application allows exporting the configured pipeline that serves as an entrance point for

further development.

The approach and its prototype implementation results provide evidence to answer RQ3.

Visualization pipelines are flexible and extendable, allowing for facilitating the process

of creating visual representations for different use cases and various user groups. Our

approach is flexible and extendable through modularization and componentization and

allows for creating visual representations for different data sources using the customizable

components. Our approach refines the commonly used steps in the visualization generation

process using the separation of concern paradigm. The pipeline-based approach allows for

creating the right components for the right task. Our approach targets a unified visualization

framework for Semantic Web data, which we address through divergence of customizable

components and convergence in data models. A visual pipeline builder allows to configure

a pipeline in a WYSIWYG manner and export it as source code for React applications. The

source code for individual components is published under the MIT license. Developers can

quickly initialize the source code infrastructure using the visual pipeline builder, adjust

and customize components to current use case and user needs, and create pull requests to

increase the reusability of the newly created components.

129

CHAPTER 8

Conclusion

In this thesis, we investigated the challenges of visual exploration of Semantic-Web-

Based knowledge structures. After describing the challenges and the research problem

in Chapter 1, the following two chapters provide the necessary background concepts (cf.

Chapter 2) and an overview of related work (cf. Chapter 3). The four following chapters

(cf. Chapter 4, 5, 6, and 7) present the main contributions and proposed solutions for the

challenges in the visual exploration of Semantic-Web-Based knowledge structures. In

this chapter, we review the stated research questions and examine the achieved results.

Additional use cases and opportunities for future work are described in Sections 8.2 and 8.3.

8.1 Analysis of Research Questions

We study the main research problem by separating it into three more specific research

questions that are individually examined. Research question RQ1 examines how to

facilitate the creation and modification of Semantic-Web-Based knowledge structures

from a user perspective. Knowledge modeling is often done in collaborative efforts, thus,

requiring approaches to serve the needs of different user groups with various backgrounds.

Research question RQ2 examines how to facilitate understanding of Semantic-Web-Based

knowledge structures. Visualizations exploit humans’ cognitive ability to understand

complex data through visual representations. However, visual representations are highly

dependent on the individual use case and targeted user groups. Research question RQ3
examines how to ease the creation of visual representations for specific use cases.

131

Chapter 8 Conclusion

Research Question 1 (RQ1)

How can we ease the creation and editing process of Semantic-Web-Based know-

ledge structures from a user perspective?

In Chapter 4, we answer this question by showing that web-based visual modeling

approaches are capable of reducing entrance barriers in the creation and editing processes

of Semantic-Web-Based knowledge structures. We present requirements for a device-

independent visual modeling approach for ontology development. Device independence is

becoming more and more important in ontology modeling for different reasons: Diverse

types of computing devices, such as tablets, smartphones, convertibles, and touchscreens,

are increasingly used in work environments. Nowadays, knowledge workers often use more

than one device for their daily tasks in a multitude of interaction contexts, ranging from

classical desktop settings to mobile scenarios in meetings, workshops, and on business

trips. Additionally, visual modeling approaches allow for engaging domain experts who

are less familiar with semantic formalism and conceptual modeling techniques.

A preliminary user study compared the device-independent approach with two other web-

based applications (i.e., WebProtégé and TurtleEditor). The results indicate the additional

benefits of the proposed approach, which are reflected in better average scores and faster

modeling times (cf. Section 4.1.4). However, this study is considered only preliminary due

to the small group of participants. A follow-up user study compared the proposed visual

ontology modeling approach, based on node-link diagrams, with a modeling paradigm

that uses hierarchical trees and form widgets. In particular, the follow-up study compared

two ontology modeling tools: Protégé and WebVOWL Editor, each implementing one of

the modeling paradigms. The study indicates that visual ontology modeling, based on

node-link diagrams, is comparatively easy to learn and is recommended especially for

users with little experience with ontology modeling and its formalizations. We argue that

due to the growing attention Semantic Web receives in academic and industrial contexts,

the modeling of structured and machine-readable knowledge shifts towards collaborative

efforts of knowledge engineers and domain experts. Involving domain experts more directly

in ontology modeling requires immediately available approaches that are easy to use and

independent of the device and interaction context. The evaluation results provide empirical

evidence to answer RQ1 that device-independent visual modeling approaches facilitate the

creation and editing processes of Semantic-Web-Based knowledge structures.

132

8.1 Analysis of Research Questions

Our approach for device-independent visual modeling of ontologies has the following

limitations. It has been designed to reduce entry barriers for users new to ontology modeling

who are less familiar with OWL formalizations. Thus, it supports only a subset of OWL

constructs that allows for creating small ontologies, including classes, object and datatype

properties, class hierarchies using rdfs:subClassOf, and some logical constraints

such as owl:disjointWith. We argue that creating ontologies of sufficient quality

requires joint efforts of domain experts and knowledge engineers. The visual modeling

approach allows domain experts to draft the ontology, and knowledge engineers create

further refinements using ontology modeling tools that provide full OWL formalization

features. Thus, our approach provides only the first steps in the modeling of ontologies by

engaging different user groups with different backgrounds.

Engaging various user groups in the ontology development process using a device-

independent visual modeling approach induces a follow-up research question:

Research Question 2 (RQ2)

How can we improve understanding of Semantic-Web-Based knowledge structures

using interactive and user-centered visualizations?

Visualizations serve the purpose of addressing specific information needs for the data

at hand and human’s ability to understand complex data through visual representations.

While various visualization methods and tools exist, suitable visualizations are highly

dependent on the use cases and the targeted user groups.

In Chapter 5, we present a methodology and its realization (GizMO) for customizable

visualization of ontologies. A customizable visual representation model needs to address

the following requirements: i) provide the customizable visual appearance of rendering

elements in order to coincide with the user’s mental model; ii) provide spatial information

and visibility status of rendering elements in order to coincide with the user’s mental

map; iii) provide the means to represent and share the definition of visualizations. Our

methodology solves these requirements by providing visual definitions in the form of

annotation ontologies. Inspired by the Web Annotation Data Model [95], the methodology

uses targeting properties to link representational definitions with OWL constructs and

individual elements from the visualized ontology. We showcase the applicability of the

methodology by providing two applications capable of interpreting the GizMO repres-

entation model. The first application targets the creation and editing of visual notations

in a WYSIWYG manner. The second application targets the customizable visualization

133

Chapter 8 Conclusion

of ontologies allowing for exchanging visual notations on the fly, creating views, and

exporting containers for sharing. The central aspect of the methodology is its utilization of

OWL for definitions of visual representation models. The methodology separates the visual

abstraction into two layers: The global layer reflects users’ mental model and addresses

the customizable visual representation of OWL constructs. The local layer addresses the

mental map of users and provides the means to customize the spatial arrangement, visibility

status, and optional glyph modifications. The methodology facilitates the sense-making of

ontologies through its customizable visual representations.

The design decisions for the methodology and the technical realization of GizMO are

conceived to facilitate the customizable definitions for the visual representation of ontolo-

gies. The success of the methodology and GizMO depends on the integration into other

frameworks and tools. GizMO is currently limited in its coverage of OWL constructs and

implicit mappings. Some visual representations cannot merely be described by the visual

appearance and spatial arrangement of glyphs. For example, nested visualizations such

as UML or graph manipulations using node multiplications such as VOWL. Regardless

of its limitations, GizMO provides the means to create customizable visual represents for

node-link diagrams in the form of annotation ontologies. These annotation ontologies

defining visual depiction of ontologies can be reused, adjusted, and shared.

While Chapter 5 addresses the customizable visualization of the underlying structure of

Semantic-Web-Based knowledge representations, in Chapter 6, we present an approach

towards customizable chart visualizations of tabular data originating from Knowledge

Graph. While Knowledge Graphs are often visualized in the form of node-link diagrams

to facilitate understanding of its structure, they are not limited to schema or vocabulary

data. Chart visualizations provide different views on the data, facilitating its understanding

and analysis. However, suitable chart visualizations also depend on the use case and the

data at hand. In this approach, we use additional semantics for creating customizable

chart representations. A data acquisition process uses a human-in-the-loop approach for

transforming tabular data into Knowledge Graph representations and assigns additional

semantics to cell values (i.e., metrics and units).

These additional semantics allow us to reconstruct and organize tables in information

groups, i.e., sub-tables based on metrics and units. The semantics of metrics select

suitable visualization from a large space of all chart types. The semantics of units perform

information organization and align the numerical value representations. Customizations

are enabled through chart type selection and axis mappings. Using the paper comparison

134

8.1 Analysis of Research Questions

feature of ORKG [122], the approach realizes advanced use cases, such as the visualization

of information distributed among tables in multiple articles and leader-boards.

Our approach builds upon the semantics and the structure of the tabular data representa-

tion in a knowledge graph. Thus, it is currently limited to the chosen transformation model.

Furthermore, the approach addresses the one-dimensional representation of columns and

rows. In our approach, the first column of the table refers to unsorted entries. However,

when dealing with order-dependent entries, such as time series or physical distances, the

position on the axis (sorting) is significant for information comprehension. Currently, our

approach does not address order-dependent entries in the first column.

The current implementation of the approach manages the analysis of the additional

semantics using string comparison and ad-hoc rules. The objective of the approach is

to enable customizable visualization for tabular data. Thus, we focused on the minimal

requirements for the semantics, which we applied to an example table addressing the

performance measurements such as Precision, Recall, and Runtime. Regardless of the

limitations of our approach, it brings tables of scientific articles to “life” and enables

different views on their information.

Suitable visualizations highly depend on the use case, the data, and the targeted user

groups. The two approaches and their implementations provide evidence to answer

RQ2. Approaches with customization capabilities can increase the sense-making of

Semantic-Web-Based knowledge structures. Customizations allow users to adjust the

visual representations to their current needs.

While having introduced customizable approaches for the visual representations, their

implementations target node-link diagrams and chart visualizations. To support different

data sources and visualization methods, the following research question emerges:

Research Question 3 (RQ3)

How can we ease the creation of visual representations in Semantic Web contexts

for different use cases and diverse audiences?

In Chapter 7, we address the creation of customizable visualization pipelines in Semantic

Web contexts. Pipeline-based approaches are often used in applications addressing data

visualization. They are flexible and extendable, allowing for the realization of various

visualization methods and versatile data sources. The pipeline-based approach allows for

creating the right components for the right task.

135

Chapter 8 Conclusion

While we focus on the customizable visual representation in the form of node-link

diagrams, the approach itself is not limited to this visualization method. Our approach

targets a unified visualization framework for Semantic Web data. However, a one-size-

fits-all solution is challenging, if not impossible, nor feasible, to realize. We address this

challenge through the divergence of customizable components and convergence in data

models. We identified and refined the commonly used steps in the creation process of

visual representations using the separation of concern paradigm. The individual refined

steps are accompanied by their respective customizable components. Using the proto-

type implementation, we showcase achievable pipeline configurations and their visual

representation results for different data sources (i.e., ontology files, SPARQL query results

for DBpedia and Wikidata, and RESTful API calls for the Open Research Knowledge

Graph). The use cases for Wikidata and ORKG are addressed in the visual pipeline builder

that allows for creating and customizing pipeline configurations in a WYSIWYG manner.

Additionally, the pipeline builder allows for exporting the configured pipelines as React

source code, enabling further modifications and customizations. Using class inheritance,

new components reuse the existing code base for specific use cases. The approach and

its prototype implementation results provide evidence to answer RQ3. This project is de-

signed as an open-source community-driven approach, reducing from scratch development

and reusing advanced techniques provided by other researchers and developers.

Regarding the main challenge of the visual exploration of Semantic-Web-Based know-

ledge structures, we are able to summarize that customizable and flexible approaches are

required for users’ needs to facilitate the creation, communication, and understanding of

domain knowledge in Semantic Web contexts. Furthermore, pipeline-based approaches

facilitate the generation process of visual representations by allowing developers to modify

or create new components, therefore reducing from scratch development.

8.2 Additional Use Cases

The obtained findings from this thesis have already partially been applied in the graph

visualizations of the Open Research Knowledge Graph (ORKG). While the graph visu-

alization implementation builds upon GizMO, customizable visual representations are

not yet available for the users. This particular visual representation thrives through its

exploration and animation features, which are closely coupled with the implementation.

Through the separation of concern and a pipeline-based conceptualization, we showed that

136

8.2 Additional Use Cases

our pipeline-based approach is also able to address the ORKG use case.

Chapter 6 introduced an approach towards customizable chart visualizations of tabular

data originating from Knowledge Graphs. The “Self-Visualization-Service” of ORKG

partially incorporates the findings of the proposed approach. The "Paper and Contribution"

comparison feature provides the input table for the chart generation. A human-in-the-

loop approach selects the columns of interest and provides a corresponding data type. A

user interface allows users to select a single column for the x-axis and multiple columns

for the y-axis. Currently, the “Self-Visualization-Service” supports a small set of chart

visualization methods. Its implementations focused on the persistent integration of created

visualizations with the ORKG backend infrastructure.

The European project “Semantically Coordinated Semiconductor Supply Chains” (SC3)1

aims to facilitate the development of ontologies in the semiconductor domain and related

supply chain domains. Ontology development tools such as Protégé are typically designed

for experts, supporting full OWL formalizations. However, they are challenging to learn

for users new to ontology modeling. Furthermore, in industrial contexts, administrative

privileges for installing new software on a system pose as hard restrictions, increasing the

entrance barrier for users to get engaged in ontology modeling.

This project highlights the need for a user-centered approach that can facilitate com-

munication between different stakeholders and provide a collaborative environment for

the creation of standardized ontologies in the semiconductor domain. In this project, we

will combine the results from all three research questions under one umbrella, i.e., visual

modeling, customizable visual representations (GizMO), and a pipeline-based architecture

for flexible adoption to users’ needs. Furthermore, in this project, we introduce a hybrid

approach combining three modes of operation in order to address various user groups

involved in ontology modeling.

As the most crucial requirement for the approach, we identified that it has to serve the

users’ needs from various audiences with diverse backgrounds and in different contexts.

Web-based approaches reduce entrance barriers and engage different user groups more

directly because such applications are ready-to-use without requiring the installation of

additional software. We define two general user groups involved in ontology modeling:

a) non-experts (e.g., domain experts that are new to ontology modeling) and b) knowledge

engineers who are familiar with OWL notation and its formalizations. We argue that

fulfilling the requirements for these two extreme groups will also address the intermediate

1SC3: https://cordis.europa.eu/project/id/101007312

137

https://cordis.europa.eu/project/id/101007312

Chapter 8 Conclusion

users. We define the requirements for non-expert users as follows: The approach should

be i) easy-to-learn and easy-to-use, ii) provide means to reduce or completely remove the

modeling complexity of OWL, iii) provide guidance and suggestions for best practices

during the modeling. We define the requirements for expert users as follows: The approach

should iv) support all modeling features of Protégé.

Visual modeling paradigms in the form of node-link diagrams can address the require-

ments i) and ii). However, they have to provide additional customizations for the visual

representation to facilitate understanding. The requirement iii) can be addressed using

auto-complete functionalities to align the created nodes and links with existing terms of

ontologies, reducing the manual labor of transforming a high-level conceptualization to

OWL elements. Furthermore, guidance towards best practices, such as naming conventions,

are addressed by using the auto-complete functionalities. To support all OWL modeling

features iv), we envision the use and extension of the OWL-API, which is the backbone

of Protégé. Additionally, to engage diverse groups in the modeling process, we envision

three modes of operation for modeling: 1) Textual-Modeling: Expert users may find it

faster to create complex OWL axioms such as owl:Restriction using textual input

fields (e.g., using the Turtle syntax). 2) Widget-Based-Modeling: For intermediate users

who are familiar with Protégé, the learning curve will be minimal since they are already

familiar with the usage of the widget-based system. 3) Visual-Modeling: High-level visual

modeling, hiding the modeling complexity for novel users.

We define additional requirements for the realization of a collaborative ontology de-

velopment framework. The approach should v) foster communication between various

stakeholders. It has to allow for creating and sharing different views on the data (i.e.,

visual appearance and spatial layouts), allowing for communication on all abstraction

levels involving domain experts and knowledge engineers alike, accompanying Shneider-

man’s visual information seeking mantra “overview first, zoom and filter, then details-on-

demand” [60]. Figure 8.1 illustrates different user cases for various user groups.

138

8.2 Additional Use Cases

Figure 8.1: Schematic overview for different interactions and user groups.

A fundamental aspect of the Semantic Web is to develop a common understanding and

the machine-readable conceptualization of the information and data in certain domains.

Thus, the created ontologies and their conceptualizations thrive from discussions and

joint agreement upon their definitions and their usage. Thus, we propose a two-fold

solution approach. First, similarly as used in version control systems such as git, editing

of concepts results in suggestions with “commit” messages. The curating authorities can

integrate the changes in the same fashion as “pull or merge” requests with “cherry-picking”,

increasing the trust in the created ontology through human validation. Second, Blockchain

technologies enable us to create the versioning and history of changes. Thus, integrating

Blockchain technologies with ontology development will foster trust and validation of

ontologies and enable long-term support for downward compatible systems using old

versions of an ontology.

Through the use of a modular conceptualization and standalone component architecture,

the obtained results (i.e., software products) are reusable for other related projects. For

example, the NFDI consortium (Deutsche Forschungsgemeinschaft – DFG) addresses the

development and provenance of ontologies in different domains. While the data storage,

provenance, user roles, and access rights may be realized using different technologies, the

user interface requirements, providing an entry point for the ontology data, remain similar.

Thus, our customizable user-centered approach is applicable across different projects too.

Although requirements are a-priory not known or can change over time, the pipeline-based

approach already provides a conceptualization and foundation for further development.

139

Chapter 8 Conclusion

8.3 Future Work

In this thesis, we addressed the challenges in the visual exploration of Semantic-Web-Based

knowledge structures to facilitate the interaction with and understanding of Semantic Web

data. We proposed customizable and user-centered applications to address different use

cases, data sources, and targeted user groups. This section addresses future work for the

individual approaches presented in this thesis.

In Chapter 4, we presented an approach for device-independent visual modeling by

considering the different input/output modalities and brought them into synergy for dif-

ferent devices and display sizes. As this approach is designed to engage user groups less

familiar with ontology modeling techniques, it provides only a subset of OWL constructs.

Future work will address the extension towards all OWL constructs and additional guidance

for domain experts for visual modeling.

In the preliminary user study, we observed that sketches (using pen and paper) are

used to organize the thoughts about the conceptualization. Thus, additional future work

investigates how to transform sketches (on paper or a device) to facilitate the initial drafting

of an ontology. First steps into this direction have been made by OntoSketch [101], where

the users can model ontologies on a tablet using touch-pen interactions. Most touch devices

have a camera and internet access, thus by means of computer vision, sketches on paper can

be analyzed and transformed towards a simple ontology model. However, the assignment

to individual OWL constructs remains a human-in-the-loop approach due to the aspect that

users employ different visual notations for sketching (e.g., circles for classes, arrows for

links, and rectangles for datatypes).

Our approach focuses on the synergy between touch and pointer (mouse) operations.

However, modern devices have additional input modalities, such as acceleration sensors or

cameras, which provide opportunities for further interactions with Semantic-Web-Based

knowledge structures and their creation and editing. Thus, future work will investigate

different input modalities for various device types.

In Chapter 5, we introduced a methodology for the definition of customizable visual

representations of ontologies using annotation ontologies. We realized the methodology in

the form of a Graph Visualization Meta Ontology (GizMO) for customizable node-link

diagram visualizations of ontologies. While GizMO uses ad-hoc rules to provide nested

node visualizations, we presented how to overcome its limitations in Chapter 7, where the

graph data model of an ontology is processed in three individual mappers. These mappers

140

8.3 Future Work

provide the selection of elements for the visualization and create a simplified graph structure

(i.e., Vertex-Edge model) which is modified in the Node-Link mapper, realizing

graph manipulation operations for various visual notations.

Future work will address the realization of different visualization methods (e.g., Euler-

diagrams, chord diagrams, and treemaps) using the proposed methodology. Future work

will investigate additional transformations between different visualization methods. Dif-

ferent views on the data can support the sense-making of the underlying information

and conceptualization presented in ontologies. Thus, enabling transformations between

visualization methods will provide further customizations and engage more users.

In Chapter 6, we examined minimal requirements for customizable chart visualizations

of tabular data originating from Knowledge Graphs. While node-link diagrams are often

used to display the structure of Semantic-Web-Based knowledge structures, with growing

size and complexity, these can quickly result in overcrowded visual representations. Chart

visualizations can provide a more suitable visual representation of tabular data originating

from Knowledge Graphs. Our approach employs a human-in-the-loop technique to trans-

form tabular data into Knowledge Graph representations with additional semantics. These

additional semantics serve as the foundation for obtaining views of the Knowledge Graph

that feed into various data visualization. Using the additional semantics, our approach

recreates tables from Knowledge Graphs and enables the analysis of their content for the

creation of customizable chart visualizations.

Future work will address the extension for the definition of additional semantics related

to order-dependent entries for the first column. The semantics of Metrics define the

interplay among them and which chart visualizations are suitable. Thus, future work will

address the many definitions of metrics. Additionally, we plan to investigate the alignment

to existing vocabularies related to units [124] and the RDF Data Cube Vocabulary [125]

in order to increase the flexibility and robustness of the approach. Furthermore, we argue

that pattern matching and sub-graph identification will enable the realization of semi-

automated generation for context items that guide the information organization and the

analysis, enabling the chart visualization of non-tabular data from Knowledge Graphs. A

preliminary assumption of the approach is its a-priory known data transformation model,

which allows for retrieving information related to the visual representation. Thus, future

work will additionally investigate how to obtain views on data that is not organized in

a table, enabling us to apply the customizable chart visualization approach to different

Knowledge Graphs with different structures.

141

Chapter 8 Conclusion

In Chapter 7, we present an approach that refines the commonly used steps in the

visualization generation process. Our approach uses a customizable pipeline-based real-

ization and a modular architecture to increase the flexibility in creating various visual

representations. While our approaches focus on the realization of customizable pipelines

for node-link diagram visualizations, the general pipeline-based architecture allows for

creating different mappers and models using class inheritance conceptualizations. Thus,

future work will address the extension of our refined approach towards other visualization

methods accompanied by corresponding data models and mappers.

Furthermore, we plan to extend components to enable bottom-up communication

between them. Currently, components use a top-down communication where their results

feed into the next component in the pipeline. We envision the bottom-up communications

to enable the creation of applications that allow through means of visual editing also to

modify the data source. For example, changes in the graph propagate backward through the

pipeline and create updates for the data source, e.g., SPARQL query updates, RESTful-API

calls for creating new data, or integration with version control systems such as git.

Closing Remarks

In conclusion, we hope that the proposed solutions for the individual research questions

will foster the engagement of different user groups in Semantic Web contexts and are

useful to developers, researchers, ontology engineers, and domain experts.

“If you want to find the secrets of the universe, think in terms of energy, frequency, and

vibration.” – Nikola Tesla

142

Bibliography

[1] G. A. Miller, Informavores. The study of information: Interdisciplinary messages,

1983 (cit. on p. 1).

[2] J. M. Carroll,

HCI models, theories, and frameworks: Toward a multidisciplinary science,

Elsevier, 2003 (cit. on p. 1).

[3] A. Singhal, Introducing the Knowledge Graph: Things, not Strings,

Official Google Blog 5 (2012),

URL: https://blog.google/products/search/introducing-

knowledge-graph-things-not/ (cit. on pp. 1, 23, 25, 35).

[4] F. van Harmelen and D. McGuinness, OWL Web Ontology Language Overview,

W3C Recommendation, W3C, 2004, URL:

http://www.w3.org/TR/2004/REC-owl-features-20040210/

(cit. on pp. 2, 14, 77).

[5] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton,

A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne et al.,

The FAIR Guiding Principles for scientific data management and stewardship,

Scientific data 3.1 (2016) 1 (cit. on p. 2).

[6] FAIR Principles,

URL: https://www.go-fair.org/fair-principles/ (cit. on p. 2).

[7] RDF 1.1 Concepts and Abstract Syntax,

URL: https://www.w3.org/TR/rdf11-concepts/ (cit. on pp. 2, 16).

[8] RDF Schema 1.1, URL: https://www.w3.org/TR/rdf-schema/

(cit. on pp. 2, 17, 18, 114).

143

https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
https://www.go-fair.org/fair-principles/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf-schema/

Bibliography

[9] OWL 2 Web Ontology Language Structural Specification and Functional-Style

Syntax (Second Edition), URL: https://www.w3.org/TR/owl2-

syntax/#Symmetric%5C_Object%5C_Properties (cit. on pp. 2, 20).

[10] S. Harris, A. Seaborne and E. Prud’hommeaux, SPARQL 1.1 query language,

W3C recommendation (2013), URL:

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

(cit. on pp. 2, 21).

[11] The Gremlin Graph Traversal Machine and Language,

https://tinkerpop.apache.org/gremlin.html,

Online accessed on 2021-06-29 (cit. on p. 2).

[12] GraphQL, Online accessed on 2021-06-21, URL: https://graphql.org/

(cit. on p. 2).

[13] Cypher Query Language, Online accessed on 2021-06-21,

URL: https://neo4j.com/developer/cypher/ (cit. on p. 2).

[14] J. Hey, The data, information, knowledge, wisdom chain: the metaphorical link,

Intergovernmental Oceanographic Commission 26 (2004) 1 (cit. on p. 3).

[15] V. Dimitrova, R. Denaux, G. Hart, C. Dolbear, I. Holt and A. G. Cohn,

“Involving Domain Experts in Authoring OWL Ontologies”,

The Semantic Web - ISWC 2008, 7th International Semantic Web Conference,

ISWC 2008, Karlsruhe, Germany, October 26-30, 2008. Proceedings, 2008 1

(cit. on pp. 4, 45).

[16] C. Chen,

Visualizing the Semantic Web: XML-Based Internet and Information Visualization,

Springer, 2002 (cit. on pp. 4, 36, 46, 74).

[17] M. Dudáš, S. Lohmann, V. Svátek and D. Pavlov,

Ontology visualization methods and tools: a survey of the state of the art,

Knowledge Eng. Review 33 (2018) (cit. on pp. 4, 7, 37, 38, 46, 75, 109, 111).

[18] J. R. Wilson and A. Rutherford,

Mental models: Theory and application in human factors,

Human Factors 31.6 (1989) 617 (cit. on pp. 4, 33, 39, 75).

[19] W3C Semantic Web Logos and Policies,

https://www.w3.org/2007/10/sw-logos.html (cit. on p. 5).

144

https://www.w3.org/TR/owl2-syntax/#Symmetric%5C_Object%5C_Properties
https://www.w3.org/TR/owl2-syntax/#Symmetric%5C_Object%5C_Properties
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://tinkerpop.apache.org/gremlin.html
https://graphql.org/
https://neo4j.com/developer/cypher/
https://www.w3.org/2007/10/sw-logos.html

[20] T. Berners-Lee, J. Hendler and O. Lassila, The semantic web,

Scientific american 284.5 (2001) 28 (cit. on p. 13).

[21] W3C: Extensible Markup Language (XML) 1.0,

URL: http://www.w3.org/TR/REC-xml (cit. on p. 14).

[22] B. McBride, “The resource description framework (RDF) and its vocabulary

description language RDFS”, Handbook on ontologies, Springer, 2004 51

(cit. on p. 14).

[23] W. Abramowicz, S. Auer and T. Heath, Linked data in business, 2016

(cit. on p. 15).

[24] T. Berners-Lee, R. Fielding and L. Masinter,

Uniform Resource Identifier (URI): Generic Syntax (RFC 3986),

http://www.ietf.org/rfc/rfc3986.txt, 2005 (cit. on p. 16).

[25] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures,

URL: https://www.w3.org/TR/xmlschema11-1/ (cit. on p. 16).

[26] A. Phillips and M. Davis, Tags for identifying languages, tech. rep., 2009,

URL: http://tools.ietf.org/html/bcp47 (cit. on p. 16).

[27] RDF 1.1 Concepts and Abstract Syntax, URL: https:

//www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

(cit. on p. 16).

[28] M. Arenas, C. Gutiérrez and J. Pérez, “Foundations of RDF Databases”,

Reasoning Web. Semantic Technologies for Information Systems, 5th International

Summer School, Brixen-Bressanone, Italy, Tutorial Lectures, 2009 158

(cit. on p. 18).

[29] M. K. Smith, C. Welty and D. L. McGuinness,

OWL Web Ontology Language Guide, W3C Recommendation,

World Wide Web Consortium (W3C), 2004,

URL: http://www.w3.org/TR/owl-guide/ (cit. on p. 19).

[30] T. R. Gruber,

Toward principles for the design of ontologies used for knowledge sharing?,

Int. J. Hum.-Comput. Stud. 43.5-6 (1995) 907 (cit. on p. 19).

145

http://www.w3.org/TR/REC-xml
http://www.ietf.org/rfc/rfc3986.txt
https://www.w3.org/TR/xmlschema11-1/
http://tools.ietf.org/html/bcp47
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/owl-guide/

Bibliography

[31] T. Berners-Lee, Linked Data - Design Issues,

URL: https://www.w3.org/DesignIssues/LinkedData.html

(cit. on p. 21).

[32] A. Abele, J. P. McCrae, P. Buitelaar, A. Jentzsch, R. Cyganiak, V. Andryushechkin,

J. Debattista and J. Nasir, Linking Open Data cloud diagram 2021,

"Online accessed on 2021-06-30", URL: http://lod-cloud.net/

(cit. on p. 21).

[33] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,

S. Hellmann, M. Morsey, P. van Kleef, S. Auer and C. Bizer,

DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia,

Semantic Web 6.2 (2015) 167 (cit. on pp. 21, 23).

[34] D. Vrandecic and M. Krötzsch, Wikidata: a free collaborative knowledgebase,

Commun. ACM 57.10 (2014) 78 (cit. on pp. 21, 23).

[35] J. Pérez, M. Arenas and C. Gutiérrez, Semantics and complexity of SPARQL,

ACM Trans. Database Syst. 34.3 (2009) 16:1 (cit. on p. 22).

[36] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez,

J. E. L. Gayo, S. Kirrane, S. Neumaier, A. Polleres et al., Knowledge graphs,

arXiv preprint arXiv:2003.02320 (2020) (cit. on p. 22).

[37] F. Mahdisoltani, J. Biega and F. M. Suchanek,

“YAGO3: A Knowledge Base from Multilingual Wikipedias”,

CIDR 2015, Seventh Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, USA, January 4-7, 2015, Online Proceedings, 2015 (cit. on p. 23).

[38] L. Ehrlinger and W. Wöß, Towards a Definition of Knowledge Graphs.,

SEMANTiCS (Posters, Demos, SuCCESS) 48 (2016) (cit. on pp. 23, 24).

[39] H. Paulheim,

Knowledge graph refinement: A survey of approaches and evaluation methods,

Semantic web 8.3 (2017) 489 (cit. on p. 23).

[40] S. K. Mohamed, A. Nounu and V. Nováček,

Biological applications of knowledge graph embedding models,

Briefings in Bioinformatics 22.2 (2020) 1679, ISSN: 1477-4054,

URL: https://doi.org/10.1093/bib/bbaa012 (cit. on p. 23).

146

https://www.w3.org/DesignIssues/LinkedData.html
http://lod-cloud.net/
http://dx.doi.org/10.1093/bib/bbaa012
https://doi.org/10.1093/bib/bbaa012

[41] M. Galkin, S. Auer and S. Scerri,

“Enterprise knowledge graphs: a backbone of linked enterprise data”,

2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI),

IEEE, 2016 497 (cit. on p. 23).

[42] S. Auer, V. Kovtun, M. Prinz, A. Kasprzik, M. Stocker and M. E. Vidal,

“Towards a knowledge graph for science”, Proceedings of the 8th International

Conference on Web Intelligence, Mining and Semantics, 2018 1

(cit. on pp. 23, 94).

[43] S. Preator, New DBpedia Release – 2016-10, 2017, URL: https:

//www.dbpedia.org/blog/new-dbpedia-release-2016-10/

(cit. on p. 24).

[44] Wikidata:Statistics, Online accessed on 2021-06-30,

URL: https://www.wikidata.org/wiki/Wikidata:Statistics

(cit. on p. 25).

[45] Wikidata Query Service – Number of triples extraction, https://query.

wikidata.org/#SELECT(count(*)as?num)WHERE{?s?p?o},

Number of triples extracted using SPARQL Query. Online accessed on 2021-06-30.

(cit. on p. 25).

[46] T. P. Tanon, G. Weikum and F. Suchanek,

“Yago 4: A reason-able knowledge base”, European Semantic Web Conference,

Springer, 2020 583 (cit. on p. 25).

[47] C. Newton, Google’s Knowledge Graph tripled in size in seven months, 2012,

Online accessed on 2021-05-19,

URL: https://www.cnet.com/news/googles-knowledge-graph-

tripled-in-size-in-seven-months/ (cit. on p. 25).

[48] A. M. N. Allam and M. H. Haggag, The question answering systems: A survey,

International Journal of Research and Reviews in Information Sciences (IJRRIS)

2.3 (2012) (cit. on p. 25).

[49] B. H. Korte and J. Vygen, Combinatorial optimization, vol. 1, Springer, 2011

(cit. on pp. 26–30).

[50] RDF Semantics, URL: https://www.w3.org/TR/rdf-mt/ (cit. on p. 30).

[51] J. Hayes and C. Gutierrez, “Bipartite graphs as intermediate model for RDF”,

International Semantic Web Conference, Springer, 2004 47 (cit. on p. 30).

147

https://www.dbpedia.org/blog/new-dbpedia-release-2016-10/
https://www.dbpedia.org/blog/new-dbpedia-release-2016-10/
https://www.wikidata.org/wiki/Wikidata:Statistics
https://query.wikidata.org/#SELECT (count(*) as ?num) WHERE{?s ?p ?o}
https://query.wikidata.org/#SELECT (count(*) as ?num) WHERE{?s ?p ?o}
https://www.cnet.com/news/googles-knowledge-graph-tripled-in-size-in-seven-months/
https://www.cnet.com/news/googles-knowledge-graph-tripled-in-size-in-seven-months/
https://www.w3.org/TR/rdf-mt/

Bibliography

[52] M. Friendly, “A brief history of data visualization”,

Handbook of data visualization, Springer, 2008 15 (cit. on p. 31).

[53] S. K. Card, J. D. Mackinlay and B. Shneiderman, Using vision to think,

Readings in information visualization: using vision to think (1999) 579

(cit. on p. 31).

[54] C.-h. Chen, W. K. Härdle and A. Unwin, Handbook of data visualization,

Springer Science & Business Media, 2007 (cit. on p. 31).

[55] N. Cowan, “The Magical Mystery Four: How Is WorkingMemory Capacity

Limited, and Why?”, vol. 19, 1, 2010 51 (cit. on p. 31).

[56] C. G. Healey, K. S. Booth and J. T. Enns,

High-Speed Visual Estimation Using Preattentive Processing,

ACM Trans. Comput.-Hum. Interact. 3.2 (1996) 107 (cit. on pp. 32, 33).

[57] A. Treisman, Preattentive processing in vision,

Computer vision, graphics, and image processing 31.2 (1985) 156

(cit. on pp. 32, 33).

[58] W. B. Rouse and N. M. Morris, On looking into the black box: Prospects and

limits in the search for mental models., Psychological bulletin 100.3 (1986) 349

(cit. on p. 33).

[59] D. A. Norman, Some observations on mental models,

Mental models 7.112 (1983) 7 (cit. on p. 33).

[60] B. Shneiderman, “The Eyes Have It: A Task by Data Type Taxonomy for

Information Visualizations”, Proceedings of the 1996 IEEE Symposium on Visual

Languages, Boulder, Colorado, USA, September 3-6, 1996, 1996 336

(cit. on pp. 34, 95, 138).

[61] RDF 1.1 Turtle,

URL: https://www.w3.org/TR/2014/REC-turtle-20140225/

(cit. on p. 35).

[62] M. Horridge, N. Drummond, J. Goodwin, A. L. Rector, R. Stevens and H. Wang,

“The Manchester OWL syntax.”, OWLed, vol. 216, 2006 (cit. on p. 35).

[63] NeonToolkit,

URL: http://neon-toolkit.org/wiki/Main_Page.html

(cit. on p. 35).

148

https://www.w3.org/TR/2014/REC-turtle-20140225/
http://neon-toolkit.org/wiki/Main_Page.html

[64] TopQuadrant, TopBraid Composer(TM),

https://www.topquadrant.com/tools/modeling-topbraid-

composer-standard-edition/ (cit. on p. 35).

[65] A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau and J. Hendler,

Swoop: A web ontology editing browser, Journal of Web Semantics 4.2 (2006) 144

(cit. on p. 35).

[66] R. Liepins, K. Cerans and A. Sprogis,

Visualizing and Editing Ontology Fragments with OWLGrEd.,

I-SEMANTICS (Posters & Demos) 932 (2012) 22 (cit. on pp. 35, 38, 51).

[67] B. Vu, J. Pujara and C. A. Knoblock, “D-REPR: A Language for Describing and

Mapping Diversely-Structured Data Sources to RDF”,

Proceedings of the 10th International Conference on Knowledge Capture, 2019

189 (cit. on pp. 36, 43, 93).

[68] A. Langegger and W. Wöß,

“XLWrap–querying and integrating arbitrary spreadsheets with SPARQL”,

International Semantic Web Conference, Springer, 2009 359 (cit. on p. 36).

[69] S. Das, S. Sundara and R. Cyganiak, R2RML: RDB to RDF Mapping Language,

https://www.w3.org/TR/r2rml/, 2012 (cit. on p. 36).

[70] V. Wiens, S. Lohmann and S. Auer,

“Semantic Zooming for Ontology Graph Visualizations”,

Proceedings of the Knowledge Capture Conference, K-CAP 2017, ACM, 2017 4:1

(cit. on pp. 36, 39, 60, 87).

[71] V. Link, S. Lohmann, E. Marbach, S. Negru and V. Wiens,

WebVOWL: Web-based Visualization of Ontologies,

Online accessed on 2021-07-01,

URL: http://vowl.visualdataweb.org/webvowl.html

(cit. on p. 37).

[72] S. Falconer, OntoGraf, Online accessed on 2021-07-01,

URL: https://protegewiki.stanford.edu/wiki/OntoGraf

(cit. on p. 37).

149

https://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
https://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
https://www.w3.org/TR/r2rml/
http://vowl.visualdataweb.org/webvowl.html
https://protegewiki.stanford.edu/wiki/OntoGraf

Bibliography

[73] S. Negru and S. Lohmann,

VOWL: Visual Notation for OWL Ontologies (Specification of Version 1.0),

Online accessed on 2021-07-01,

URL: http://vowl.visualdataweb.org/v1/ (cit. on p. 37).

[74] G. Pal, K. Atkinson and G. Li, “Managing Heterogeneous Data on a Big Data

Platform: A Multi-criteria Decision Making Model for Data-Intensive Science”,

2020 IEEE International Conference on Big Data and Smart Computing

(BigComp), 2020 229 (cit. on p. 37).

[75] J. Sequeda, Gra.fo, a visual, collaborative, real-time ontology and knowledge

graph schema editor, Online accessed on 2021-07-01,

URL: http://www.juansequeda.com/blog/2018/10/19/gra-fo-

a-visual-collaborative-real-time-ontology-and-

knowledge-graph-schema-editor/ (cit. on p. 37).

[76] R. Liepins, K. Cerans and A. Sprogis,

Visualizing and Editing Ontology Fragments with OWLGrEd.,

I-SEMANTICS (Posters & Demos) 932 (2012) 22 (cit. on p. 37).

[77] H. Zhao and L. Lu,

“Variational circular treemaps for interactive visualization of hierarchical data”,

2015 IEEE Pacific Visualization Symposium (PacificVis), 2015 81 (cit. on p. 37).

[78] M. Dudáš, O. Zamazal and V. Svátek,

“Roadmapping and Navigating in the Ontology Visualization Landscape”,

Knowledge Engineering and Knowledge Management,

ed. by K. Janowicz, S. Schlobach, P. Lambrix and E. Hyvönen, vol. 8876, LNAI,

Springer, 2014 137 (cit. on pp. 37, 46).

[79] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis and E. Giannopoulou,

Ontology visualization methods – A survey, ACM Computer Surveys 39.4 (2007)

(cit. on pp. 37, 46).

[80] M. Lanzenberger, J. Sampson and M. Rester, “Visualization in Ontology Tools”,

Proceedings of the International Conference on Complex, Intelligent and Software

Intensive Systems (CISIS ’09), IEEE, 2009 705 (cit. on pp. 37, 46).

150

http://vowl.visualdataweb.org/v1/
http://www.juansequeda.com/blog/2018/10/19/gra-fo-a-visual-collaborative-real-time-ontology-and-knowledge-graph-schema-editor/
http://www.juansequeda.com/blog/2018/10/19/gra-fo-a-visual-collaborative-real-time-ontology-and-knowledge-graph-schema-editor/
http://www.juansequeda.com/blog/2018/10/19/gra-fo-a-visual-collaborative-real-time-ontology-and-knowledge-graph-schema-editor/

[81] A. Anikin, D. Litovkin, M. Kultsova, E. Sarkisova and T. Petrova,

“Ontology Visualization: Approaches and Software Tools for Visual

Representation of Large Ontologies in Learning”, Proceedings of the 2nd

Conference on Creativity in Intelligent Technologies and Data Science, 2017 133

(cit. on p. 37).

[82] S. Lohmann, S. Negru, F. Haag and T. Ertl, Visualizing Ontologies with VOWL,

Semantic Web 7.4 (2016) 399 (cit. on pp. 37, 46, 47, 49, 61, 75, 113, 121).

[83] R. Falco, A. Gangemi, S. Peroni, D. M. Shotton and F. Vitali,

“Modelling OWL Ontologies with Graffoo”,

The Semantic Web: ESWC 2014 Satellite Events - ESWC 2014 Satellite Events,

Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers, 2014 320

(cit. on pp. 37, 60, 75).

[84] S. Cranefield and M. K. Purvis, “UML as an Ontology Modelling Language”,

Intelligent Information Integration, vol. 23, CEUR Workshop Proceedings,

CEUR-WS.org, 1999, URL: http://ceur-ws.org/Vol-23/

(cit. on pp. 37, 75).

[85] H. Knublauch,

Graphical Ontology Editing with TopBraid Composer’s Diagram Tab,

https://www.topquadrant.com/2012/06/29/graphical-

ontology-editing-with-topbraid-composers-diagram-tab/

(cit. on pp. 38, 60, 75).

[86] S. Negru, F. Haag and S. Lohmann, “Towards a unified visual notation for OWL

ontologies: insights from a comparative user study”,

I-SEMANTICS 2013 - 9th International Conference on Semantic Systems, ISEM

’13, Graz, Austria, September 4-6, 2013, 2013 73 (cit. on pp. 38, 75).

[87] P. Haase, S. Brockmans, R. Palma, J. Euzenat and M. d’Aquin,

The NeOn UML Profile for Networked Ontologies, http://neon-

project.org/deliverables/WP1/NeOn_2007_D1.1.2.pdf

(cit. on pp. 38, 75).

[88] N. Petersen, A. Similea, C. Lange and S. Lohmann,

TurtleEditor: A Web-Based RDF Editor to Support Distributed Ontology

Development on Repository Hosting Platforms,

Int. J. Sem. Comp. 11.3 (2017) 311 (cit. on pp. 38, 47, 49, 60).

151

http://ceur-ws.org/Vol-23/
https://www.topquadrant.com/2012/06/29/graphical-ontology-editing-with-topbraid-composers-diagram-tab/
https://www.topquadrant.com/2012/06/29/graphical-ontology-editing-with-topbraid-composers-diagram-tab/
http://neon-project.org/deliverables/WP1/NeOn_2007_D1.1.2.pdf
http://neon-project.org/deliverables/WP1/NeOn_2007_D1.1.2.pdf

Bibliography

[89] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann and T. Stegemann,

“RelFinder: Revealing relationships in RDF knowledge bases”,

International Conference on Semantic and Digital Media Technologies,

Springer, 2009 182 (cit. on p. 38).

[90] Neo4j, Neo4j Graph Visualization,

https://neo4j.com/developer/graph-visualization/,

accessed March 2020 (cit. on p. 38).

[91] E. Pietriga, C. Bizer, D. R. Karger and R. Lee,

“Fresnel: A Browser-Independent Presentation Vocabulary for RDF”,

5th International Semantic Web Conference, ISWC 2006, vol. 4273, LNCS,

Springer, 2006 158 (cit. on p. 42).

[92] E. Pietriga, IsaViz: A visual authoring tool for RDF,

http://www.w3.org/2001/11/IsaViz, 2003 (cit. on p. 42).

[93] E. Pietriga, “Semantic Web Data Visualization with Graph Style Sheets”,

Proceedings of the 2006 ACM Symposium on Software Visualization, SoftVis ’06,

Brighton, United Kingdom: ACM, 2006 177, ISBN: 1-59593-464-2,

URL: http://doi.acm.org/10.1145/1148493.1148532

(cit. on p. 42).

[94] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,

B. Schwikowski and T. Ideker, Cytoscape: a software environment for integrated

models of biomolecular interaction networks, Genome research 13.11 (2003) 2498

(cit. on pp. 42, 76).

[95] B. Young, R. Sanderson and P. Ciccarese, Web Annotation Data Model,

W3C Recommendation, Online accessed on 2021-05-19: W3C, 2017

(cit. on pp. 43, 78, 79, 133).

[96] E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana and M.-E. Vidal,

“SDM-RDFizer: An RML interpreter for the efficient creation of rdf knowledge

graphs”, Proceedings of the 29th ACM International Conference on Information &

Knowledge Management, 2020 3039 (cit. on p. 43).

[97] H. Xiao, M. Huang and X. Zhu, From one point to a manifold: Knowledge graph

embedding for precise link prediction, arXiv preprint arXiv:1512.04792 (2015)

(cit. on p. 43).

152

https://neo4j.com/developer/graph-visualization/
http://www.w3.org/2001/11/IsaViz
http://doi.acm.org/10.1145/1148493.1148532

[98] V. Wiens, S. Lohmann and S. Auer,

“WebVOWL Editor: Device-Independent Visual Ontology Modeling.”,

International Semantic Web Conference (P&D/Industry/BlueSky), 2018

(cit. on p. 46).

[99] M. R. A. Asmat, V. Wiens and S. Lohmann, “A Comparative User Evaluation on

Visual Ontology Modeling Using Node-Link Diagrams.”,

ISWC (Best Workshop Papers), 2018 1 (cit. on p. 46).

[100] T. Tudorache, WebProtégé, https://webprotege.stanford.edu/, 2013

(cit. on pp. 47, 49).

[101] M. Brade, F. Schneider, A. Salmen and R. Groh, “OntoSketch: Towards Digital

Sketching As a Tool for Creating and Extending Ontologies for Non-Experts”,

Proceedings of the 13th International Conference on Knowledge Management and

Knowledge Technologies, i-Know ’13, ACM, 2013 9:1 (cit. on pp. 47, 140).

[102] N. Petersen, L. Halilaj, I. Grangel-González, S. Lohmann, C. Lange and S. Auer,

“Realizing an RDF-Based Information Model for a Manufacturing Company - A

Case Study”, ISWC, 2017,

URL: https://doi.org/10.1007/978-3-319-68204-4_31

(cit. on p. 47).

[103] S. Falconer, OntoGraf,

http://protegewiki.stanford.edu/wiki/OntoGraf, 2010

(cit. on pp. 51, 60).

[104] M. Horridge, OWLViz,

http://protegewiki.stanford.edu/wiki/OWLViz, 2010

(cit. on p. 51).

[105] B. Bach, E. Pietriga, I. Liccardi and G. Legostaev,

“OntoTrix: A hybrid visualization for populated ontologies”,

Proceedings of the 20th International Conference on World Wide Web (WWW ’11),

Companion Volume, ACM, 2011 177 (cit. on p. 51).

[106] J. J. van Wijk and W. A. A. Nuij, “Smooth and efficient zooming and panning”,

9th IEEE Symposium on Information Visualization (InfoVis 2003), 20-21 October

2003, Seattle, WA, USA, 2003 15 (cit. on p. 54).

[107] Stanford, Protégé, https://protege.stanford.edu/ (cit. on p. 60).

153

https://webprotege.stanford.edu/
https://doi.org/10.1007/978-3-319-68204-4_31
http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OWLViz
https://protege.stanford.edu/

Bibliography

[108] J. F. G. Navarro, F. J. Garcı´ a-Peñalvo, R. Therón and P. O. de Pablos,

Usability Evaluation of a Visual Modelling Tool for OWL Ontologies,

J. UCS 17.9 (2011) 1299 (cit. on p. 61).

[109] A. Katifori, E. Torou, C. Halatsis, G. Lepouras and C. Vassilakis,

“A Comparative Study of Four Ontology Visualization Techniques in Protege:

Experiment Setup and Preliminary Results”, 10th International Conference on

Information Visualisation, IV 2006, 5-7 July 2006, London, UK, 2006 417

(cit. on p. 61).

[110] B. Fu, N. F. Noy and M. D. Storey, “Indented Tree or Graph? A Usability Study of

Ontology Visualization Techniques in the Context of Class Mapping Evaluation”,

The Semantic Web - ISWC 2013 - 12th International Semantic Web Conference,

Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part I, 2013 117

(cit. on p. 61).

[111] B. Fu, N. F. Noy and M. D. Storey, Eye tracking the user experience - An

evaluation of ontology visualization techniques, Semantic Web 8.1 (2017) 23

(cit. on p. 62).

[112] MEMORY RECALL/RETRIEVAL,

http://www.human-memory.net/processes_recall.html,

Online accessed on 2018-07-17 (cit. on p. 65).

[113] A. Assila, K. M. de Oliveira and H. Ezzedine,

Standardized usability questionnaires: Features and quality focus,

electronic Journal of Computer Science and Information Technology 6.1 (2016)

(cit. on p. 66).

[114] D. L. Scapin and J. M. C. Bastien,

Ergonomic criteria for evaluating the ergonomic quality of interactive systems,

Behaviour & IT 16.4-5 (1997) 220 (cit. on p. 66).

[115] Quantitative Studies: How Many Users to Test?,

https://www.nngroup.com/articles/quantitative-studies-

how-many-users/, Online accessed on 2018-07-17 (cit. on p. 71).

[116] V. Wiens, S. Lohmann and S. Auer, “GizMO–A Customizable Representation

Model for Graph-Based Visualizations of Ontologies”,

Proceedings of the 10th International Conference on Knowledge Capture, 2019

163 (cit. on pp. 74, 102, 115, 126, 165).

154

http://www.human-memory.net/processes_recall.html
https://www.nngroup.com/articles/quantitative-studies-how-many-users/
https://www.nngroup.com/articles/quantitative-studies-how-many-users/

[117] N. Cowan, The magical number 4 in short-term memory: A reconsideration of

mental storage capacity, Behavioral and Brain Sciences 24 (2000) 87

(cit. on p. 75).

[118] V. Wiens, M. Stocker and S. Auer, “Towards Customizable Chart Visualizations of

Tabular Data Using Knowledge Graphs”,

International Conference on Asian Digital Libraries, Springer, Cham, 2020 71

(cit. on p. 94).

[119] R. Johnson, A. Watkinson and M. Mabe, The STM report,

An overview of scientific and scholarly publishing. 5th edition October (2018)

(cit. on p. 94).

[120] B. Mons, Which gene did you mean?, BMC Bioinform. 6 (2005) 142

(cit. on p. 94).

[121] M. Y. Jaradeh, A. Oelen, K. E. Farfar, M. Prinz, J. D’Souza, G. Kismihók,

M. Stocker and S. Auer, “Open Research Knowledge Graph: Next Generation

Infrastructure for Semantic Scholarly Knowledge”,

Proceedings of the 10th International Conference on Knowledge Capture,

K-CAP ’19,

Marina Del Rey, CA, USA: Association for Computing Machinery, 2019 243,

ISBN: 9781450370080,

URL: https://doi.org/10.1145/3360901.3364435

(cit. on pp. 94, 95).

[122] A. Oelen, M. Y. Jaradeh, K. E. Farfar, M. Stocker and S. Auer,

“Comparing Research Contributions in a Scholarly Knowledge Graph”,

Proceedings of the Third International Workshop on Capturing Scientific

Knowledge co-located with the 10th International Conference on Knowledge

Capture (K-CAP 2019), Marina del Rey, California , November 19th, 2019,

vol. 2526, CEUR Workshop Proceedings, CEUR-WS.org, 2019 21

(cit. on pp. 106, 135).

[123] V. Wiens and S. Lohmann,

“Demonstration of a Customizable Knowledge Graph Visualization Framework.”,

Proceedings of the ISWC 2020 Demos and Industry Tracks: From Novel Ideas to

Industrial Practice co-located with 19th International Semantic Web Conference

(ISWC 2020), 2020 (cit. on p. 110).

155

https://doi.org/10.1145/3360901.3364435

Bibliography

[124] H. Rijgersberg, M. van Assem and J. Top,

Ontology of units of measure and related concepts, Semantic Web 4.1 (2013) 3

(cit. on p. 141).

[125] R. Cyganiak and D. Reynolds, The RDF Data Cube Vocabulary,

https://www.w3.org/TR/vocab-data-cube/, 2014 (cit. on p. 141).

156

https://www.w3.org/TR/vocab-data-cube/

Appendix

157

APPENDIX A

List of Publications

Conference Papers

1. Vitalis Wiens. Volumetric Segmentation of Complex Bone Structures From Medical

Imaging Data Using Reeb Graphs, Central European Seminar on Computer Graphics

for Students 2013, 3rd place in best paper awards; q

2. Vitalis Wiens, Lara Schlaffke, Tobias Schmidt-Wilcke, Thomas Schultz.

Visualizing Uncertainty in HARDI Tractography Using Superquadric Streamtubes

EuroVis (Short Papers) 2014; q

3. Amin Abbasloo, Vitalis Wiens, Max Hermann, and Thomas Schultz.

Visualizing Tensor Normal Distributions at Multiple Levels of Detail,

IEEE Transactions on Visualization and Computer Graphics, 2015; ®Ú

4. Shekoufeh Gorgi Zadeh, Maximilian WM Wintergerst, Vitalis Wiens, Sarah Thiele,

Frank G Holz, Robert P Finger, and Thomas Schultz.

CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence

Tomography, Deep Learning in Medical Image Analysis and Multimodal Learning

for Clinical Decision Support, 2017; ®

5. Vitalis Wiens, Steffen Lohmann, and Sören Auer. Semantic Zooming for Ontology

Graph Visualizations, International Conference on Knowledge Capture, 2017; ®

6. Vitalis Wiens, Steffen Lohmann, Sören Auer. GizMO–A Customizable Representa-

tion Model for Graph-Based Visualizations of Ontologies. Proceedings of the 10th

International Conference on Knowledge Capture 2019, 163–170, ACM. ®

159

https://old.cescg.org/CESCG-2013/papers/Wiens-Volumetric_Segmentation_of_Complex_Bone_Structures_from_Medical_Imaging_Data_Using_Reeb_Graphs.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.650.9186&rep=rep1&type=pdf
https://ieeexplore.ieee.org/abstract/document/7192624/
https://youtu.be/K9XLK4PhjZ0
https://link.springer.com/chapter/10.1007/978-3-319-67558-9_8
https://dl.acm.org/doi/abs/10.1145/3148011.3148015
https://dl.acm.org/doi/abs/10.1145/3360901.3364431

Appendix A List of Publications

7. Maximilian WM Wintergerst, Shekoufeh Gorgi Zadeh, Vitalis Wiens, Sarah Thiele,

Steffen Schmitz-Valckenberg, Frank G Holz, Robert P Finger, and Thomas Schultz.

Replication and Refinement of an Algorithm for Automated Drusen Segmentation on

Optical Coherence Tomography, Scientific Reports, 2020; ®

8. Vitalis Wiens, Markus Stocker, Sören Auer. Towards Customizable Chart Visualiza-

tions of Tabular Data Using Knowledge Graphs. The 22nd International Conference

on Asia-Pacific Digital Libraries (ICADL 2020). ®Ú

Workshops and Demos

1. Vitalis Wiens, Steffen Lohmann, Sören Auer. WebVOWL Editor: Device-Independent

Visual Ontology Modeling. International Semantic Web Conference 2018 (P&D);

Best Demo Award q®Ú

2. Amin Abbasloo, Vitalis Wiens, Tobias Schmidt-Wilcke, Pia C Sundgren, Reinhard

Klein, and Thomas Schultz.

Interactive Formation of Statistical Hypotheses in Diffusion Tensor Imaging, Euro-

graphics Workshop on Visual Computing for Biology and Medicine, 2019; ®

3. Vitalis Wiens, Mikhail Galkin, Steffen Lohmann, Sören Auer. Demonstration of a

Customizable Representation Model for Graph-Based Visualizations of Ontologies–

GizMO. International Semantic Web Conference 2019 (Poster & Demos);

Best Demo Award. q®Ú

4. Vitalis Wiens, Steffen Lohmann. Demonstration of a Customizable Knowledge

Graph Visualization Framework. ISWC 2020 (P&D). q®Ú

160

https://www.nature.com/articles/s41598-020-63924-6
https://link.springer.com/chapter/10.1007/978-3-030-64452-9_6
https://youtu.be/mZ9B3ETyHU0
http://ceur-ws.org/Vol-2180/paper-75.pdf
http://editor.visualdataweb.org/
https://youtu.be/XWXhpEr9LPY
https://doi.org/10.2312/vcbm.20191229
http://ceur-ws.org/Vol-2456/paper59.pdf
https://gizmo-vis.github.io/gizmo/
https://youtu.be/l41OGLnQzns
http://ceur-ws.org/Vol-2721/paper525.pdf
https://github.com/vitalis-wiens/donatello-pipelines
https://youtu.be/0bGKTkVTQbU

APPENDIX B

Technical Aspects for a
Pipeline-Based Approach in
Semantic Web Contexts

We provide our pipeline-based approach as an open-source project with an MIT license1.

In this appendix, we describe the technical aspects of the approach in more detail. Addi-

tionally, we provide examples for the configuration of example use cases.

Data Access Module

The data access module uses two customizable components, i.e., data access and parser

components. When creating visualizations, we typically start with defining a data source

for the data we wish to explore and comprehend. Since Semantic Web data is typically is

distributed on the Web and can be accessed via URLs, SPARQL endpoints, or RESTful-

APIs, the data access component specifies an endpoint URL that provides an entry point

for obtaining the dataset.

Using the Object-Oriented-Programming conceptualization, this component is derived

from a base component and overwrites its __run__() function which executes the

corresponding code of the component. The result is consumed by other components as

1https://github.com/vitalis-wiens/donatello-pipelines

161

https://github.com/vitalis-wiens/donatello-pipelines

Appendix B Technical Aspects for a Pipeline-Based Approach in Semantic Web Contexts

a parameter which value is obtained by calling the getResult() function of the data

access component. Our conceptualizations expect the output to be provided in a JSON

format. This requirement can be addressed in derived components of the data access

component by providing additional request parameters to obtain the results in a JSON

format, which most modern APIs support. In summary, the data access component executes

code that obtains a JSON object and provides access to it via the getResult() function.

The foundation of the pipeline-based approach is the Resource-Relation model.

After obtaining the JSON object from the data access component, we need to parse and map

it to the Resource-Relation model. Since the JSON object’s structure is a-priory not

known, our parser component implements the transformation rules. These transformation

rules have to be tailor-suited to a particular structure, i.e., the parser component overwrites

the __run()__ function to create the Resource-Relation model.

A general aspect of the Resource-Relation model is its textual reorganization of

the input data into resources and relations with additional classifications of semantic ele-

ments into type assertions, annotations, and axioms. The Resource-Relation model

provides two functions for integrating items into the model, i.e., addResource(item)

and addRelation(item). The item is either an instance of the class Resource

or Relation. These classes provide additional functionality to store the URI, semantic

types, and domain-range pairs for relations. Due to the aspect that the order of the triples

can be arbitrary when obtaining results, the implementation of this model provides ad-

ditional maps, whereas the keys are the resource/relation identifiers, i.e., URIs. These

maps allow us to merge new incoming data to already defined resources or relations.

Details about resources and relations are provided in Section 7.2. Our WYSIWIG pipeline

configuration application provides examples of how to map results from VOWL-JSON,

DBpedia SPARQL query results, Wikidata SPARQL query results, and RESTful API

requests to the Open Research Knowledge Graph. In summary: The parser component

creates a Resource-Relation model which contains resources and relations. The

adjusted logic in the __run()__ function has to call corresponding code to create re-

sources/relations and integrate them into the model, e.g., addResource(item).

Mapper Module

The Resource-Relation model is a simple reorganization of the textual representa-

tion of the obtained results. Similar as defined in RDF, the assignment into types, annota-

162

tions, and axioms uses URIs or literal values without fully reflecting a graph structure. In

order to create a visual representation, the Resource-Relation model requires further

processing. Our approach uses two mapping steps in the mapper module to maintain its

flexibility for different visual notations.

The first mapping generates a basic graph structure based on the Resource-Relation

model. In particular, we create vertices and edges for resources and relations. Vertices

and edges are created from the textual descriptions of resources and relations, respectively.

However, the textual interlinking of elements using their URIs is now replaced by inter-

linking to corresponding vertices. In order to increase the flexibility and the selection of

relevant information for the visualization, the Vertex-Edge mapper provides a defini-

tion map. This map defines value paths for resources and relations to look up particular

values and assign them to vertices and edges. Furthermore, this mapper creates axiom

edges for resources. While in its current implementation, this mapper does not provide

additional axiom mappings for relational axioms, all items always have a reference to an

element that is responsible for their creation. Thus, regardless of its current limitation,

the information stored in resources and relations can be accessed in later steps in the

visualization generation.

The second mapping transforms the Vertex-Edge model to a Node-Link model,

which is used as input for the rendering module, responsible for the final visual representa-

tion. In order to keep the flexibility of the mapping and allow for the creation of various

notations, the Node-Link mapper performs various graph manipulation operations (e.g.,

node splitting, node merging, and aggregations for nested representations such as UML).

Similar to the Vertex-Edge mapper, this mapper uses a definition map to control the

graph manipulations. The general aspect of node-link diagrams is that it consists of nodes

and links. Nodes have a display name. Links have a display name and connect nodes.

Thus, the main objective of the Node-Link mapper is to create nodes and links for the

visualizations. Figure B.1 shows an example for the definition map that aggregates corres-

ponding nodes and links addressing owl:datatypeProperty types for the realization

of UML-based visualizations. The node mapper and link mapper objects define paths for

accessing values from vertices and edges, respectively.

163

Appendix B Technical Aspects for a Pipeline-Based Approach in Semantic Web Contexts

Figure B.1: Definition map for a Node-Link mapper for the creation of a nested visualization.

Rendering Module

The rendering module provides four components. Their orchestration is responsible for

the final interactive visual representation. In the following, we provide an overview of

individual components, their conceptualizations, and their interplay.

Rendering Component

The rendering component implements the graph visualization and initializes other compon-

ents. Since the graph consists of nodes and links, this component provides customizable

node and link elements. Their visual appearance is defined using the descriptions provided

by the rendering configuration objects. When nodes and links are created for the graph

visualization, they receive a rendering configuration object. The particular configuration

object is applied in the rendering function of an element by calling the drawTools

component. The drawTools component receives an SVG group element to which the

configured rendering elements are appended.

Since we use the separation of concern paradigm, other aspects of the final render-

ing are implemented in other components, which increases the flexibility and extens-

164

ibility of the overall approach. The visual appearance of the graph is handled by the

renderingHandler component. The spatial layout of elements is handled by the

layoutHandler component. Interactions for graph, nodes, and links are implemented

and configured in the interactionHandler component.

Visual Appearance

The visual appearance is defined by the renderingHandler component. The basic

rendering handler provides a rendering configuration object which holds visual appearance

configurations for nodes and links. Additionally this handler implements two functions, i.e.,

getNodeConfigFromType and getNodeConfigFromType. In our Node-Link

model, nodes and links have a type that reflects their semantic type, e.g., owl:Class

or owl:ObjectProperty. Thus, when creating a rendering primitive, its visual ap-

pearance configuration is fetched from the renderingHandler using the get function.

The drawTools component creates rendering primitives based on these configurations.

New visual appearance configurations can be created by creating new handlers that are

derived from the basic rendering handler. New derived components have to overwrite the

renderingConfigObject of the constructor.

The definition of the configuration objects for the visual appearance is inspired by

GizMO [116]. However, we reorganize and group different aspects of the visual ap-

pearance definitions. A configuration object for nodes has three attributes, i.e., style,

fontStyle, and options. The style configures the shape and the visual appearance

of the rendering primitive. The fontStyle asserts the visual appearance of a label.

The options object provides additional configurations, for example, to allow a label to

dynamically adjust the shape size, i.e., overwritesShapeSize. An example for the

configuration owl:Class OWL construct is provided in Listing B.1.

A configuration object for links has two attributes, i.e., style, and options. The

style object has multiple attributes that control the visual appearance of links. The

link object defines the general representation of a link, i.e., the line style (e.g., solid or

dashed), line width, and line color. The arrowHead and arrowTail define the style

of arrow-heads and tails, respectively. These have a renderingType (e.g., triangle or

diamond) and additional rendering styles for colors and strokes. The propertyNode

shares the definitions with nodes, having style, fontStyle, and options attributes.

The link attribute options object defines the rendering type of a link, i.e., a straight

165

Appendix B Technical Aspects for a Pipeline-Based Approach in Semantic Web Contexts

line or a curve. Additionally, it specifies if arrow-head, arrow-tail, and property node

should be rendered. An example for the configuration owl:DatatypeProperty OWL

construct is provided in Listing B.2.

1 "owl:Class": {

2 style: {

3 renderingType: "circle",

4 bgColor: "#aaccff",

5 strokeElement: true,

6 strokeWidth: "1px",

7 strokeStyle: "solid",

8 strokeColor: "#000",

9 radius: 50,

10 width: 100,

11 height: 50

12 },

13 fontStyle: {

14 fontFamily: "Helvetica,Arial,sans-serif",

15 fontColor: "#000",

16 fontSize: "12px"

17 },

18 options: {

19 drawDisplayName: true,

20 drawNestedAttributes: false,

21 cropLongText: false,

22 addTitleForDisplayName: true,

23 overwritesShapeSize: false,

24 overwriteOffset: 0,

25 fontPositionH: "center",

26 fontPositionV: "center"

27 }

28 }

Listing B.1: Example for node configuration defining visual appearance of owl:Class.

166

1 "owl:datatypeProperty": {

2 style: {

3 link: { lineStyle: "solid", lineWidth: "2px",

4 lineColor: "#000000"

5 },

6 arrowHead: { renderingType: "triangle",

7 scaleFactor: 1, strokeWidth: "2px",

8 strokeStyle: "solid", strokeColor: "#000000",

9 fillColor: "#000000"

10 },

11 propertyNode: {

12 style: { renderingType: "rect",

13 bgColor: "#99CC66", roundedCorner: "0,0",

14 fontSizeOverWritesShapeSize: "true",

15 overWriteOffset: "5", strokeElement: "false",

16 radius: 50, width: 100, height: 25

17 },

18 fontStyle: { fontFamily: "Helvetica,Arial,sans-serif",

19 fontColor: "#000000", fontSize: "12px"

20 },

21 options: {drawDisplayName: true,

22 cropLongText: true, addTitleForDisplayName: true,

23 overwritesShapeSize: false,overwriteOffset: 0,

24 fontPositionH: "center", fontPositionV: "center"

25 }

26 }

27 },

28 options: {

29 drawPropertyNode: true,

30 drawArrowHead: true, drawArrowTail: false,

31 link_renderingType: "line" // line or curve

32 }

33 }

Listing B.2: Example for link configuration defining visual appearance of owl:DatatypeProperty.

167

Appendix B Technical Aspects for a Pipeline-Based Approach in Semantic Web Contexts

Spatial Layout

The spatial layout component asserts the positions or rendering elements in the graph. Our

current implementation provides a single layout algorithm using D3.js force layout. The

constructor of this component receives the graph as a parameter to obtain the rendering

elements, i.e., nodes and links. The implementation of this component is tailor-suited

to the requirements of the library and its parameters. Furthermore, our implementations

provide functions that assert configuration parameters and allow the rendering component

to control the behavior of the force layout. Additionally, the interactions component has

a reference to the layout handler to provide control mechanisms based on interactions

with graph, nodes, or links. For example, the drag interaction of a node calls the function

resumeForce() of our force layout component to enable dynamic rearrangement of

other rendering elements in the graph.

The implementation of other layout algorithms has to comply with the chosen library

specifications. Furthermore, when creating new layout handlers, we have to ensure that

these provide functions that can be called from other components. In particular, we have

to enable user interactions within the graph or GUI features that invoke functions of the

newly created layout handler.

Interactions

User interactions with the graph, the nodes, and the links are provided in the interactions

handler. Following the separation of concern paradigm, the interaction handler has three

components for interactions with the graph, nodes, and links. The interactions handler

is instantiated in the rendering component. The individual interaction components are

initialized in this component. Furthermore, we provide additional checks if these have

been initialized by a derived component. If no specific interaction components are defined

in a derived component, the default fallback interactions are instantiated and applied to the

graph, nodes, and links, respectively.

Graph Interactions: The graph interactions specify interactions with the canvas area.

The basic interactions include drag and pan interactions using the mouse. Additionally,

mouse wheel zoom events are applied. These zoom events also implement smooth anima-

tion transformation for these types of interactions.

168

Node Interactions: Node interactions are injected into the rendering primitives that

are provided by the rendering component. The basic interactions include drag, hover, click

and double-click interactions. The node interactions are injected on the root rendering

primitive of an element. Our current conceptualization requires the rendering primitives

to be rendered first. The injected events will then exist on the rendered DOM elements.

However, our conceptualization allows for flexible extensions of interactions decoupled

from the implementation of nodes rendering logic. While the events are registered to

particular instances of nodes, the executing functions are implemented in the interactions

handler for the nodes. These functions have access to the rendering component and the data

of the particular node. Thus, shifting the responsibility of interactions implementations and

the resulting behavior to this component. When nodes are instantiated, they also receive

references to the graph and the layout handler. Using these references, node interactions

can invoke function calls on the graph or the layout handler, e.g., requesting node collapse

or expand operations in the graph or resume a force layout algorithm to create dynamic

layouts when a node is dragged in the canvas area.

The ORKG node interactions implementation showcases an example where we use

node hover interactions to render additional buttons into a node. In our conceptualizations

rendering primitives have an SVG root group to which new elements can be appended.

However, we argue that the logic of the new interactions has to remain in the particular

interactions handler, making it reusable for other use-cases. Nevertheless, the provided

implementation of the rendering component and the layout handler have to comply with

the newly created interaction. Thus, we suggest creating rendering modules that cover the

implementation of all components for individual use cases. This will ensure that rendering

modules can be switched out effortlessly and provide additional examples and reusable

components for other use cases.

Link Interactions: Similar to node interactions, this component provides the imple-

mentation for link interactions. However, we make here a distinction between the rendered

line that connects two nodes and the propertyNode. The propertyNode is a render-

ing primitive that renders the label of a link. It is derived from nodes. Thus, we can apply

a similar implementation of its interactions as in the node interactions component. The

injection of events into the DOM elements is two-fold. For example, we can inject drag

and click events for the propertyNode.

169

Appendix B Technical Aspects for a Pipeline-Based Approach in Semantic Web Contexts

Summary

The rendering module handles different aspects of interactive visual representations using

the separation of concern paradigm. Our WYSIWYG pipeline builder prototype provides

various examples for different use cases and interactions. Our general suggestion to create

complete rendering modules for individual use cases ensures that the final visualization is

implemented as intended by developers. While a visual representation may be completely

tailor-suited to a particular use case, through the separation of concern paradigm, individual

components for visual appearance, spatial layouts, and interactions can be modified and

adapted to other use cases. Furthermore, these can be used as building blocks and code

examples for the creation of other visual representations.

170

Curriculum Vitae

Personal Details

Name Vitalis Wiens

Date of Birth 02.09.1986

Email vitalis.wiens@gmail.com

Education

1998–2007 Abitur, Konrad-Adenauer-Gymnasium Meckenheim, Germany

2007–2010 Bachelor Studium in Elektrotechnik, Rheinisch-Westfälische Technische

Hochschule Aachen, Aachen, Germany.

2010–2011 Bachelor Studium in Informatik, Rheinisch-Westfälische Technische

Hochschule Aachen, Aachen, Germany.

2011–2015 BSc in Informatik Rheinische Friedrich-Wilhelms-Universität, Bonn,

Germany.

2015–2017 MSc in Informatik Rheinische Friedrich-Wilhelms-Universität, Bonn,

Germany.

2017–2019 Doktorand, Stipendium TIB & Wissenschaftlicher Mitarbeiter bei

FraunhoferIAIS (Enterprise Infromation Systems, St. Augustin, Ger-

many).

2019–2021 Doktorand, Wissenschaftlicher Mitarbeiter bei LUH (L3S,TIB), Han-

nover, Germany.

2021–jetzt Research Engineer bei metaphacts, Walldorf, Germany.

171

Curriculum Vitae
Vitalis Wiens vitalis.wiens@gmail.com

github.com/vitalis-wiens

Experience
Research Assistant
L3S & TIB Joint Lab, Front End Developer (JavaScript/React)
Knowledge Graph visualization − Supervisor: Prof. Dr. Sören Auer & Dr. Markus Stocker
▢ Improved user experience by layout customizations and graph animations
▢ Improved network load by caching and reusing information

2019−2021

Fraunhofer IAIS (Enterprise Information Systems), Full Stack Developer (Java/JavaScript/Docker)
Sensor data visualization as graphs and visual data modeling − Supervisor: Dr. Steffen Lohmann
▢ Successfully deployed industry project with a car manufacturer by restructuring

information flow using CAN bus synchronization methods and adjusting backend
processing for visualization generation

▢ Improved user experience in an EU project by visual data modeling extension

Student Assistant

2017−2019

Fraunhofer IAIS (Enterprise Information Systems), Front End Developer (JavaScript)
Ontology visualization and interaction − Supervisor: Dr. Steffen Lohmann
▢ Improved user interface by introducing collapsible sidebar, processing progress bar, and a

scrollable navigation menu (optimized for mobile devices)
▢ Improved graph searching by dictionary lookups, halo visualization, and location function

2016−2017

Institute of Computer Graphics (University of Bonn), Developer (C/C++/Qt/OpenGL/Python)
Diffusion tensor imaging to visualize brain structures − Supervisor: Prof. Dr. Thomas Schultz

▢ Extended DTI framework for fiber visualizations with superquadric streamtubes
▢ Improved dataset processing time by implementing multithreaded processing

Industry project for hair simulation − Supervisor: Prof. Dr. Andreas Weber

▢ Designed approach for creating intersection free geometry structures of fibers

Bone segmentation tasks of μCT scans of rodent skulls − Supervisor: Dr. Max Hermann

▢ Designed batch processing tool for parameter tuning in bone segmentation tasks using Qt
and SQLite, which improved evaluation experiment reproducibility

2011−2016

Institute of Human-Machine Interaction (RWTH Aachen), Developer (C++/Qt)
Export of 3D models from Autodesk 3ds Max − Supervisor: Prof. Dr. Christian Schlette

▢ Increased runtime performance by 80% by optimizing code and introducing
multithreaded processing

2010−2011

Institute of Operating Systems (RWTH Aachen), Tutor
Support teaching of computer science courses − Supervisor: Dr. Stefan Lankes

▢ Transformed x86 assembler script to NASM and designed exercise for students
▢ Supervised students in a C++ object-oriented programming lab course

2009−2010

172

Education
PhD Candidate Computer Science, Leibniz University Hannover, Germany
▢ Advisor: Prof. Dr. Sören Auer
▢ Thesis topic: “Visual Exploration of Semantic-Web-Based Knowledge Structures”
▢ Fields of interest: Scientific Visualization, Semantic Web
▢ Research Projects:

⬡ Open Research Knowledge Graph
Representing the content of scientific articles as a Knowledge Graph
Contribution: Facilitate understanding of the Knowledge Graph by developing
novel exploration methods and customizable visual representations

⬡ Donatello
Tool for creating customizable Knowledge Graph visualization pipelines
Contribution: Provide an easily configurable and extendable codebase for
creating interactive visualizations of different Semantic Web data sources

⬡ GizMO
Customizable visualizations for ontologies using node-link diagrams
Contribution: Describe the visual appearance and spatial layouts for node-link
diagrams as OWL ontologies, allowing to attach visual appearance and spatial
positioning to ontologies without modifying them

2017−Present

M.Sc. Computer Science, University of Bonn, Germany
▢ Advisor: Prof. Dr. Sören Auer & Dr. Steffen Lohmann
▢ Focus: Computer Graphics, Scientific Visualization
▢ Thesis: “Ontology Graph Visualizations Enhanced with Semantic Zooming”
▢ GPA: 3.75 / 4

2015−2017

B.Sc. Computer Science, University of Bonn / RWTH Aachen University, Germany
▢ Advisor: Prof. Dr. Thomas Schultz
▢ Focus: Computer Graphics, Scientific Visualization
▢ Thesis: “Superquadric Streamtubes for Fiber Visualization in Diffusion Imaging”
▢ GPA: 3.1 / 4

2010−2015

B.Sc. Electrical Engineering, RWTH Aachen University, Germany
▢ Focus: Technical Computer Science

2007−2010

Skills
▢ Proficient with

⬡ JavaScript (ES6) ⬡ React / Redux ⬡ C++ ⬡ CSS3 ⬡ HTML5 ⬡ D3.js
⬡ Qt4 ⬡ Git ⬡ Linux ⬡ LaTeX ⬡ Semantic Web (RDF, OWL, Knowledge Graphs)

▢ Skilled with
⬡ Java ⬡ Python 3 ⬡ SPARQL ⬡ Docker ⬡ VTK ⬡ Blender

▢ Familiar with
⬡ OpenGL ⬡ SQL ⬡ Assembler (x86) ⬡ Matlab ⬡ OpenCV

▢ Natural Languages
⬡ German (Native) ⬡ English (Proficient) ⬡ Russian (Intermediate)

173

Curriculum Vitae

Teaching Experience
▢ Supervised 11710 “Knowledge Engineering and Semantic Web” at LUH as tutor 2020

▢ Supervised MA-INF 4312 “Semantic Data Web Technologies” at University of Bonn as tutor 2019, 2018

▢ Co-supervised master thesis for a device-independent ontology editor at University of Bonn 2017

▢ Supported BA-INF 122 “Scientific Visualization” at University of Bonn with coding exercises 2016, 2015

▢ Supervised 61.61.06119 “Fundamentals of Computer Engineering 4 ” at RWTH as tutor 2009

Academic Activities
▢ Co-organizing Visualization and Interaction for Ontologies and Linked Data Workshop (Voila) 2021

▢ PC member at International Conference on Business Information Systems (BIS21) 2021

▢ Co-organized Visualization and Interaction for Ontologies and Linked Data Workshop (Voila) 2020

▢ PC member at International Conference on Knowledge Capture (K-CAP) 2019, 2017

▢ Co-organized Computer Science Conference for University of Bonn Students (CSCUBS) 2019

▢ Reviewer for Workshop on Ontology Design and Patterns (WOP) 2019

▢ PC member at The Joint Ontology Workshops (JOWO) 2019

▢ Reviewer for Extended Semantic Web Conference (ESWC) 2019, 2018

▢ Reviewer for Semantics 2018

▢ Reviewer for International Conference on Semantic Computing (ICSC) 2018

▢ Reviewer for International Semantic Web Conference (ISWC) 2017

Awards
▢ Best Demo Award at International Semantic Web Conference, Poster and Demos, 2019 − GizMO

▢ Best Demo Award at International Semantic Web Conference, P&D, 2018 − WebVOWL Editor

▢ 3rd Best Paper Award at Central European Seminar on Computer Graphics for Students 2013

174

	List of Figures
	List of Tables
	Introduction
	Motivation
	Challenges and Problem Statement
	Challenge 1: Accessing and manipulating data from a user perspective
	Challenge 2: Mapping data to visual primitives and its presentation
	Challenge 3: Varying requirements for visualizations

	Research Questions
	Thesis Overview
	Contributions
	Publications

	Thesis Structure

	Background
	Semantic Web Technologies
	Resource Description Framework
	Extended Data Modeling with RDFS and OWL
	Linked Open Data and SPARQL
	Knowledge Graphs

	Graph Theory
	Visual Representations

	Related Work
	Visualization Methods and Tools
	Semantic Zooming for Ontology Graphs
	Customizable Visual Representations
	Summary

	Semantic-Web-Based Knowledge Structures from a User Perspective
	Device-Independent Visual Modeling
	Requirements
	Device-Independence
	Visual Modeling
	Usage and Implementation Details

	Preliminary Evaluation
	Study Design
	Results and Discussion

	Summary of the Approach

	A Comparative User Evaluation on Ontology Modeling Using Node-Link Diagrams
	Pretest
	Concept Spaces for the User Study
	Evaluating the Cognitive Complexity of the Concept Spaces

	Experimental Design
	Participants
	Setup
	Procedure

	Results and Discussion
	Performance Scores for Ontology Modeling
	Cued Recall Scores
	User Satisfaction Scores

	Summary of the User Study

	Chapter Summary

	Customizable Graph-Based Visual Representations of Ontologies
	Motivation and Requirements
	Methodology
	Methodology Discussion

	GizMO
	Preliminaries
	Visual Graph Mapping
	Technical Realization and Design Decisions

	Applications
	Chapter Summary

	Customizable Chart Visualizations of Tabular Data in Knowledge Graphs
	Motivation
	Exemplary Walk-through
	Data Acquisition and Transformation
	Customizable Chart Visualizations

	Approach
	Additional Semantics for Tabular Data Originating from Knowledge Graphs
	Visualization Suggestion

	Discussion of the Approach
	Limitations
	Implications and Advanced Use Cases

	Chapter Summary

	Customizable Pipelines for Knowledge Graph Visualizations
	Pipeline-Based Visualization Approach for the Semantic Web
	Approach
	Refining the Data Access
	Refining the Mapping Process
	Refining the Rendering Process
	Discussion of the Approach

	Technical Realization and Example Results
	Modules, Components, and Data Models
	Data Connector Module
	Mapper Module
	Rendering Module

	Visualizing Ontologies
	Visualizing SPARQL Query Results
	Pipeline Configuration
	Exporting Pipelines

	Discussion and Chapter Summary

	Conclusion
	Analysis of Research Questions
	Additional Use Cases
	Future Work

	Bibliography
	List of Publications
	Technical Aspects for a Pipeline-Based Approach in Semantic Web Contexts
	Curriculum Vitae

