
1.  Introduction
Various types of magmatism can occur at different stages of convergence in active continental margins—
both in magmatic front and back-arc regions of the continental arcs—changing from tholeiitic, calc-alka-
line to high-K calc-alkalic magmatism related to subduction of the oceanic slab to alkaline, ultrapotassic, 
and adakitic magmatism during continental collision and then orogenic collapse. It has been suggested that 
magma outpourings in continental arcs comprise combined contributions from the mantle wedge, oceanic 

Abstract  Magmatic activity that accompanied the collision between Arabia and Eurasia at ∼27 Ma, 
provides unique opportunities for understanding the triggers and magma reservoirs for collisional 
magmatism and its different styles in magmatic fronts and back-arcs. We present new ages and 
geochemical-isotopic results for magmatic rocks that formed during the collision between Arabia and 
Eurasia in NE Iran, which was a back-arc region to the main magmatic arcs of Iran. Our new zircon U-Pb 
ages indicate that collisional magmatism began at ∼24 Ma in the NE Iran back-arc, although magmatism 
in this area started in the Late Cretaceous time and continued until the Pleistocene. The collisional 
igneous rocks are characteristically bimodal, and basaltic-andesitic and dacitic-rhyolitic components 
show significant isotopic differences; εNd(t) = +4.4 to +7.4 and εHf(t) = +5.4 to +9.5 for mafic rocks 
and εNd(t) = +0.2 to +8.4 and εHf(t) = +3.4 to +12.3 for silicic rocks. The isotopic values and modeling 
suggest that fractional crystallization and assimilation-fractional crystallization played important roles 
in the genesis of felsic rocks in the NE Iran collisional zone. Trace element and isotopic modeling further 
emphasize that the main triggers of the magmatism in NE Iran comprise a depleted to the enriched 
mantle and the Cadomian continental crust of Iran. Our results also emphasize the temporal magmatic 
variations in the NE Iran back-arc from Late Cretaceous to Pleistocene.

Plain Language Summary  Collisional and postcollisional magmatism are common in most 
continental arcs, occurring after the closure of oceanic basins and thus during and after the collision 
between the continental blocks. The best examples of these types of magmatism are reported along the 
Alpine-Himalayan orogenic belt including the Zagros orogen of Iran, which is the result of a collision 
between Arabia and Eurasia at ∼27 Ma. Subduction-related Late Cretaceous to Late Oligocene and 
collision-related Late Oligocene to Pleistocene magmatic rocks are abundant in the Iran magmatic front 
(the Urumieh-Dokhtar magmatic belt) and back-arcs and their occurrences are related to the subduction 
of Neotethyan oceanic lithosphere beneath central Iran. Collisional magmatism differs in several respects 
from subduction-related magmatism and can be mainly controlled by a pre-existing depleted mantle 
as well as an enriched refertilized mantle which can record traces of metasomatism by the previous 
subduction of altered oceanic crust and overlying sediments. Continental crust, which could become 
thicker during the collision, also plays an important role in the magma genesis. All these parameters were 
involved during the generation of collisional magmas in the NE Iran back-arc and have been modeled 
using geochemical and isotopic data.
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significant contamination by the 
Cadomian continental crust of Iran

•	 �Major- and trace-element data show 
that the Quchan adakite-like rocks 
have undergone extreme amphibole 
fractionation in crustal hot zones
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slab and continental crust (Miller et al., 1994; Straub et al., 2010). The relative importance of these contri-
butions is assumed to vary during the lifespan of the continental arcs and can also change after subduction 
ceases and magmatism is transferred to collisional and postcollisional regimes. In collisional regimes, active 
subduction has ceased but pre-existing subduction can leave a metasomatized, young sub-continental litho-
spheric mantle, such as the E-MORB-like mantle that may have been the source of postcollisional magmas 
in Central Anatolia (Reid et al., 2017). The metasomatized mantle in both subduction- and collision-related 
settings can be melted to produce a series of magmatic rocks with high concentrations of incompatible 
elements along with depletion in Nb-Ta, such as shoshonites and/or ultrapotassic rocks (Li et al., 2002; 
Liu et al., 2014; Tian et al., 2017) and even magmatic rocks without depletion in Nb-Ta such as the igne-
ous rocks from the Argentinian back-arc region (in contrast to the Chilean volcanic front) of the southern 
Andean magmatic system (e.g., Jacques et al., 2013, 2014). Furthermore, the role of the continental crust 
will increase in arc magmatism in collisional settings with a thickened lithosphere. The role of refertilized 
lithospheric mantle, and especially continental crust, is expected to increase from the magmatic front to 
the back-arcs and/or rear-arcs, as observed in central to South America (e.g., Aragon et al., 2013; Sadofsky 
et al., 2007) and/or Tibet (e.g., Alexander et al., 2019).

There are several ambiguities regarding magmatism in collisional settings such as: (a) What is the relative 
importance of each compositional reservoir, including mantle and crust, on collisional magmatism (e.g., 
Chung et al., 2005; Huang et al., 2019; Seghedi et al., 2019)? (b) Do geochemical and isotopic signatures of 
continental crust overprint the mantle-derived magmas (e.g., Davidson, 1996; Jahn et al., 1999)? Answering 
these questions is crucial for understanding the role of continental collision in defining the geochemical 
and isotopic characteristics of erupting magmas. Collision-related igneous rocks can have variable geo-
chemical signatures, ranging from adakitic (high Sr/Y, La/Yb rocks) to shoshonitic and ultrapotassic and 
rarely, to Oceanic Island Basalt (OIB)-type alkaline rocks (e.g., Chung et al., 2005). The continental collision 
can also produce bimodal magmatic suites, in which silicic rocks are usually accompanied by basaltic rocks 
(e.g., Gómez-Tuena et al., 2018; Kelemen & Behn, 2016; Maunder et al., 2016; Mayen et al., 2017).

Recent advances in numerical modeling support the generation of silicic magmas by assimilation and 
fractional crystallization (AFC) accompanying crustal melting during the intrusion of basaltic melts from 
the upper mantle, particularly in regions with thickened continental crust (Annen et  al.,  2006a; Meade 
et al., 2014; Patchett, 1980). The AFC processes are considered to be the main mechanisms for the formation 
of silicic magmas with adakitic (high Sr/Y and La/Yb) signatures (Stern & Kilian, 1996; J.-F. Xu et al., 2002; 
W.-C. Xu et  al.,  2015). Assimilation and fractional crystallization processes occur at deep crustal levels 
(∼20–30 km deep)– mostly associated with large intrusions of intermediate to felsic composition in the low-
er crust; in “deep crustal hot zones” (Annen et al., 2006a; Wan et al., 2018) and/or in mafic zones (Walker 
et al., 2015), where differentiating mantle-derived magmas interact with pre-existing crust, in MASH (com-
bined Mixing, Assimilation, Storage, and Homogenization) zones.

The close association of the similarly aged basaltic-intermediate and felsic rocks—such as the magmatic 
calc-alkaline to adakitic rocks recorded from south Quchan in NE Iran—can be used to investigate the 
role of FC and AFC processes in the formation of felsic and/or adakitic rocks in a collisional setting. The 
basaltic lavas can be further used to unravel the mantle source of the magmatic precursors. NE Iran is a 
back-arc magmatic belt that contains Late Cretaceous to Cenozoic magmatic rocks. Silicic magmatic rocks 
from south Quchan (Figure 1a) occupy an area of ∼2,000–3,000 km2 in NE Iran. These rocks are suggest-
ed to show a long-lived magmatic activity from Oligocene to Pleistocene (K-Ar ages; Bauman et al., 1983; 
Shabanian et al., 2012) and are associated with Late Oligocene (24–23 Ma) basaltic-andesitic magmatism 
in the region. Mafic-intermediate volcanic rocks have been geochemically classified as high-Mg andesites 
to basalts as well as high-Nb hawaiites and mugearites (Ahmadi et al., 2017), whereas silicic rocks display 
adakitic signatures (Shabanian et al., 2012). Both basaltic-andesitic and felsic magmatism have occurred in 
a subduction-related context from Oligocene to Pleistocene time but after the collision between Iran and 
Arabia that commenced at ∼27 Ma (McQuarrie & van Hinsbergen, 2013). Therefore, these rocks present a 
“collisional” perspective, and we prefer to use the term “collision-related” (vs. “postcollisional”) for describ-
ing these rocks, as the collision between Arabia and Iran is still ongoing and these rocks do not occur in a 
“relaxation” period after the main collisional event ceased.
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Figure 1.  (a) Simplified geological map of Iran emphasizing Ediacaran-Early Cambrian (Cadomian) magmatic rocks, Mesozoic ophiolites and Cenozoic 
magmatic rocks from the back-arc and magmatic front. (b) Geological map of the Sabzevar-Torbat-e-Heydarieh region, north of the Dorouneh Fault, showing 
the distribution of ophiolites and Mesozoic-Cenozoic to Pleistocene back-arc rocks. Zircon U-Pb data on ophiolites and magmatic rocks are from Kazemi 
et al. (2019), Moghadam, Corfu, et al. (2014), Moghadam, Li, Li, et al. (2020), Moghadam, Li, et al. (2015), Moghadam et al. (2016), and Sepidbar et al. (2018). 
Ar-Ar data are from Ahmadi et al. (2017) and Moghadam, Li, Li, et al. (2020).
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In this study, we present the first systematic geochemical, isotopic and geochronological (zircon U-Pb) 
study of Late Oligocene (∼24 Ma) collision-related bimodal magmatism (silicic and mafic rocks) from NE 
Iran back-arc (south Quchan). The primary goals of this paper are (a) to characterize– based on their geo-
chemical and isotopic signatures– the sources and origin of collision-related mafic magmatic rocks from NE 
Iran; (b) to understand the role and relationship between fractional crystallization (FC), AFC and recharge, 
evacuation, and fractional crystallization (REFC) in the genesis of felsic and/or adakitic rocks via their maf-
ic precursors; and (c) to establish in a broader sense the relationships between magmatism, crustal growth 
and the role of MASH zones in generating silicic and adakitic rocks within continental arcs. This study has 
the potential to bring about a step-change in assessing the causes of the geochemical-isotopic variations in 
collisional magmatism of NE Iran, which can be tapped from the lithospheric mantle and the Late Neopro-
terozoic-Early Paleozoic continental crust of Iran.

2.  Geological Setting
The backbone of the Arabia-Eurasia collision zone, the Zagros orogen, was built through Neotethyan sub-
duction, magmatism and collision between several continental blocks including Iran and Anatolia (Berbe-
rian & King, 1981). These continental blocks have an Ediacaran-Early Paleozoic (Cadomian) crust and have 
been rifted from Gondwana in Late Paleozoic time and accreted to Eurasia during Triassic-Jurassic time 
(Stampfli & Borel, 2002). The Cadomian magmatic rocks exposed in several segments of Iran (Figure 1a) 
have ages of 620–500 Ma (Moghadam et al., 2021). The rifting of Gondwana in the Late Paleozoic (Permian) 
caused the opening of the Neotethyan ocean in western parts of the Iranian blocks and the consumption of 
Paleotethys in the northeastern parts (Berberian & King, 1981). The collision between the Iranian continen-
tal blocks and Eurasia during Triassic time led to the closure of the Paleotethyan ocean. The subduction of 
the Paleotethyan oceanic lithosphere beneath Eurasia (Turan platform) and then collision between the Ira-
nian continental blocks and Eurasia are marked by the presence of a Late Paleozoic suture zone (Late Pale-
ozoic ophiolites through Mashhad to Fariman), Carboniferous-Permian arc magmatism and Late Triassic 
collisional I- and S-type granites in NE Iran (Alavi, 1991; Mirnejad et al., 2013; Zanchetta et al., 2013). There 
was a passive margin along western Iran from Late Triassic to Early Cretaceous time, with accommodation 
of Jurassic continental and Early Cretaceous marine sediments leading to collapse of this margin (Azizi & 
Stern, 2020; Azizi et al., 2018), and then subduction initiation in Late Cretaceous. The subduction initiation 
along western Iran (Main Zagros Thrust, Figure 1) led to the opening of several back-arc basins such as the 
Late Cretaceous Sabzevar-Torbat-e-Heydarieh basin.

Igneous activity in Iran has been continuous from Late Cretaceous (∼110  Ma) up to the Pleistocene as 
a result of the subduction of the Neotethyan oceanic crust beneath Iran from Late Cretaceous to Oligo-
cene and then through the collision between Arabia and Iran from ∼27  Ma onward (McQuarrie & van 
Hinsbergen, 2013). The subduction was accompanied by the development of a continental (Andean-type) 
magmatic arc, parallel to but ∼150–200 km from the Zagros suture zone (Main Zagros Thrust), known as 
the Urumieh-Dokhtar Magmatic Belt (UDMB) (Figure 1a). The UDMB thus outlines the magmatic front 
(MF) of the Neotethyan subduction. Magmatic rocks are also abundant in northwestern to northeastern 
parts of the UDMB and are considered as the products of a back-arc (BA) magmatism. Previous geochron-
ological data suggest the UDMB experienced magmatic flare-ups in the Eocene (∼54 Ma until 37 Ma, sub-
duction-related magmatism) and the Miocene (20–5 Ma, collision-related magmatism) (Chiu et al., 2013; 
Verdel et al., 2007). However, recent data show that the high magmatic fluxes did not occur at the same time 
in the magmatic front and back-arcs. The UDMB (the magmatic front) magmatism seems to be subdivided 
into two distinct episodes: ∼80–70 Ma and ∼50 Ma present, with protracted magmatic activity lasting from 
40 Ma to the present (Sepidbar et al., 2019), while the back-arc magmatic flare-ups occurred at 110–80 and 
75–35 Ma in the NE Iran back-arc and 55–35 Ma in the NW Iran back-arc (Moghadam, Li, Li, et al., 2020).

Collisional and postcollisional igneous rocks occur widely along the entire length of the collision zone (e.g., 
Allen et al., 2013; Kheirkhah et al., 2013, 2015; Neill et al., 2013). The initiation of postcollisional mag-
matism in Iran and Anatolia is suggested to occur diachronously, at 15–11 Ma (Lin et al., 2020). The last 
magmatic expressions in the Iranian plateau seem to be OIB-type (HIMU-like) basaltic edifices (e.g., Allen 
et al., 2011; Kheirkhah et al., 2015), although other lithologies including ultrapotassic rocks and adakites 
have been also reported (e.g., Pang et al., 2015, 2016).
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Below we subdivide the Cenozoic Iran arc into the magmatic front and the NE Iran back-arc and discuss 
these sub-provinces separately.

2.1.  Magmatic Front

The UDMB is a 50–80 km wide volcano-plutonic belt that defines the magmatic front and trends NW-SE for 
>1,000 km across Iran between 28° and 39°N (Figure 1). The UDMB evolved for ∼80 m.yr. from when sub-
duction began underneath the Iranian Plateau in Late Cretaceous time, continuing as a mature arc in Paleo-
gene with a magmatic flare-up during the Eocene (Verdel et al., 2011), before swapping magmatic style into 
collisional high magmatic fluxes following the collision with Arabia during Late Oligocene (∼27 Ma). The 
UDMB arc started with the eruption of low-K tholeiitic and calc-alkaline magmas. A magmatic lull occurred 
during the Early Paleocene time, accompanying the uplift of the Zagros forearc ophiolites (Moghadam & 
Stern, 2011). The uplift is evidenced by the presence of lower Paleocene conglomerates, rich in ophiolitic 
fragments, which cover the ophiolites and are also present in the UDMB. The magmatism restarted in the 
Middle-Upper Paleocene with the eruption of pyroclastic rocks and lavas. Middle to Late Paleocene igneous 
rocks have calc-alkaline characteristics and most of them show mantle-like juvenile isotopic signatures 
(Moghadam, Li, Li, et al., 2020). Eocene igneous rocks are abundant and dominantly high-K calc-alkaline. 
Late Miocene to Pleistocene UDMB igneous rocks have adakitic and ultrapotassic geochemical signatures 
(Pang et al., 2015, 2016). Miocene adakitic lavas are mainly present in the UDMB and are interpreted as 
products of melting of the eclogitic parts of a thickened lower continental crust in a postcollisional setting 
(e.g., Deng et al., 2018; Wan et al., 2018).

2.2.  Back-Arc Magmatism in NE Iran

Back-arc igneous activity occurred along an NW-NE arcuate belt >1,200 km long (Figure 1a) during the 
latest Cretaceous to Pleistocene, with the eruption of marine to subaerial magmatic rocks, including thick 
sequences of marine pyroclastic rocks (Ballato et al., 2011; Verdel et al., 2011). Magmatism in the NE Iran 
back-arc started in the latest Cretaceous and continued through the Paleogene-Neogene to the Pleistocene. 
The Late Cretaceous to Neogene magmatic rocks are distributed north and south of the Sabzevar-Tor-
bat-e-Heydarieh ophiolitic belt, but also intrude the ophiolites to the north and south (Figure  1b). The 
Sabzevar-Torbat-e-Heydarieh ophiolites are considered as fragments of a Late Cretaceous back-arc oceanic 
basin associated with subduction initiation along what is now the Zagros orogen. Late Cretaceous igneous 
rocks with zircon U-Pb ages of 104–92 Ma are abundant in the NE Iran back-arc (Figure 1b) (Alaminia 
et al., 2013; Kazemi et al., 2019). The Late Cretaceous sequence is largely marine, comprising low to high-K 
calc-alkaline rhyolitic to dacitic-andesitic lavas, felsic tuffs and radiolarites. Subaerial lavas including alter-
nating basalts-andesites and dacites are also common. These are overlain by both Middle Paleocene-Eocene 
terrigenous sediments (Oryan basin; Figure 1b) and Mid-Late Paleocene-Eocene acidic to intermediate py-
roclastic rocks with intercalated basaltic to andesitic lavas. In the NE back-arc, Late Cretaceous intrusions 
(104–76 Ma) were emplaced into thick sequences of Cretaceous terrigenous sediments as well as pyroclastic 
and volcanic rocks (Mazhari et al., 2019).

A thick pile of magmatic rocks in the NE Iran back-arc occurred after the emplacement and exhumation 
of the Sabzevar-Torbat-e-Heydarieh ophiolites in the Latest Cretaceous-Middle Paleocene time. The post-
ophiolite subduction-related magmatism started in the Mid-Late Paleocene with the eruption of pyroclastic 
rocks and interlayered lavas and continued to the Early Eocene with the outpouring of basaltic to andesitic 
melts. Intermediate to felsic plutonic rocks with Latest Cretaceous-Paleocene (66–58 Ma) ages also occur in 
NE Iran back-arc (Figure 1b). Latest Cretaceous-Paleocene plutonic rocks have low-K tholeiitic to calc-alka-
line geochemical signatures, and their radiogenic bulk rock Nd and zircon Hf isotope characteristics suggest 
derivation from a depleted mantle (Moghadam, Li, Li, et al., 2020). Eocene volcanic and plutonic rocks 
(47–40 Ma) are mostly high-K calc-alkaline, but adakitic rocks are also common. These rocks show traces of 
AFC processes within the middle-upper crust (Moghadam, Li, Li, et al., 2020).

Collisional magmatism in the NE Iran back-arc began at 27 Ma and continued to the Late Miocene (∼10 Ma) 
and even to the Pleistocene (Kheirkhah et al., 2015). Most of the collision-related mafic to felsic volcanic rocks 
in the back-arc region of NE Iran occur south of Quchan and also in W-NW Sabzevar (Rostami-Hossouri 
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et al., 2020) (Figure 1a). Pleistocene subaerial andesites also occur north Torbat-e-Heydarieh. The felsic rocks 
in south Quchan appear both as volcanic domes 1–4 km wide and as lava flows with K-Ar ages of 19.5 ± 0.5 to 
2.3 ± 0.1 (Ghasemi et al., 2010). The felsic rocks are accompanied by andesitic to basaltic lava flows. The volcanic 
domes are intruded into Eocene, but occasionally Miocene, volcano-sedimentary sequences including sand-
stones, marls, tuffites and shales (Figure 2). Lava flows rest on Miocene red shales and marls. There are xenoliths 
of sedimentary hosts within the felsic rocks, which suggest assimilation of the crustal rocks and contamination 
of the magma. Volcanic rocks are also covered by Pliocene-Pleistocene un-sorted conglomerates. Geochemical-
ly the felsic rocks have adakitic signatures and were generated during local tectonic activity in NE Iran-Kopet 
Dagh (Bauman et al., 1983; Shabanian et al., 2012). Mafic rocks were suggested to include high-Mg andesites to 
basaltic as well as high-Nb hawaiites and mugearites and show 40Ar-39Ar ages of 23.1 ± 0.3 and 22.9 ± 0.5 Ma 
(Ahmadi et al., 2017). Dacitic lava flows yielded ages of 24.1 ± 0.4 and 23.2 ± 0.5 Ma (Ahmadi et al., 2017).

3.  Analytical Procedures
This paper deals with the Late Oligocene volcanic (both mafic and felsic) rocks from south Quchan. We 
also compare our results with compiled data on the Late Cretaceous-Pleistocene magmatic rocks of NE Iran 
(Moghadam, Li, Li, et al., 2020). We have used six main analytical procedures: (a) JEOL wavelength-disper-
sive electron probe X-ray micro-analyzer (JXA 8800R) to determine the composition of minerals at Institute 
of Geology and Geophysics (IGG-CAS), China; (b) X-Ray Fluorescence (XRF) and Inductively Coupled 
Plasma-Mass Spectrometry (ICP-MS) for whole-rock major- and trace-element analyses at Institute of Ge-
osciences, Kiel University, Germany; (c) Cathodoluminescence imaging of zircons at IGG-CAS; (d) Sec-
ondary-ion microprobe (SIMS) analysis for U-Pb zircon ages at IGG-CAS; (e) Multi-Collector Inductively 
Coupled Plasma-Mass Spectrometry (MC-ICP-MS) to analyze zircon Lu-Hf isotopes at IGG-CAS; (f) The 
Sr-Nd-Hf-Pb whole-rock isotope composition of the bulk rocks were analyzed using a MC-ICP-MS at Uni-
versity of Bonn/Köln. We have studied >70 samples petrographically; 26 were used for whole-rock chemical 
analysis, 4 for SIMS U-Pb zircon ages and zircon Lu-Hf analysis and 21 for Sr-Nd-Pb-Hf isotopes. We have 
selected fresh samples for whole-rock geochemistry. We sampled different geographic locations to cover all 
rock units from all parts of the studied area. Analytical details are described in Supporting Information S1.

4.  Results
4.1.  Sample Descriptions

Our Late Oligocene samples from NE Iran include basalts, olivine basalts, andesites and dacites-rhyolites 
(Figure 2). Olivine basalts contain clinopyroxene phenocrysts and large crystals of olivine (∼2–3 mm), with 
interstitial plagioclase laths (Figures S1a and S1b), whereas basalts comprise clinopyroxene and plagioclase 
with fine-grained olivine in the groundmass. The groundmass of the investigated samples is dominated by 
clinopyroxene + plagioclase lath + Fe-Ti oxides + glass ± olivine. Olivine in the basaltic rocks is fresh in most 
cases and contains inclusions of alumina-rich spinel. Andesitic rocks contain more plagioclase and clino-
pyroxene microphenocrysts than basalts, without olivine. Iron-titanium oxides occur in small amounts (<2 
vol.%) in andesites. These mafic rocks show holocrystalline to intergranular texture. Some andesites contain 
plagioclase + sanidine microlites and clinopyroxene microphenocrysts and show trachytic textures. Amphi-
bole is absent in olivine basalts but occurs as rare needles in the groundmass of andesites and rarely in basalts.

Most felsic rocks have dacite and rhyolitic composition. Dacites contain plagioclase and sanidine phe-
nocrysts with rounded quartz. Modal abundances of quartz and sanidine phenocrysts are higher in the rhy-
olites than in the dacites. Plagioclases are zoned and show sieve texture in the cores (Figures S1c and S1d). 
Zoned amphiboles with resorbed rims are also present in dacites (Figures S1e and S1f). The groundmass of 
dacites contains glass, plagioclase microlites, sanidine and quartz. Dacites and rhyolites show hyaloporphy-
ritic and microlitic to cryptocrystalline textures.

4.2.  Mineral Geochemistry

We have analyzed olivine, pyroxene, plagioclase, amphibole and oxides from Late Oligocene basalts and dac-
ites. Olivine phenocrysts in basalts have forsterite contents of 69.7%–85%. Olivine shows zonation; the cores 
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of olivine crystals have higher forsterite content (Fo ∼85%) than their rims (Fo ∼69.7%). Their NiO content 
varies from 0.04 to 0.15 wt%. Clinopyroxene in basalts is diopside (Figure 3a). The cores of the plagioclase 
phenocrysts in basalts have compositions from bytownite to labradorite (An = 50.7–81.5) (Figure 3b), ex-
cept for some grains which show andesine (An = 47.1–48.4) composition toward the rims. Some plagioclase 
from sample MB12-1 also shows more sodic compositions toward the rims (An = 17.6–26.1) with high K2O 

Figure 2.  Simplified geological map of Quchan (Mashkan) showing the location of samples selected for geochemistry (modified after the geological 1/100,000 
map of Mashkan, Geological Survey of Iran [Gamshidi et al., 2000]).
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Figure 3.
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content (Figure 3b). Plagioclase from dacites has oligoclase to labradorite composition (An = 29–56.3) and 
displays oscillatory zoning. The anorthite content is variable within each compositional band (Figures 3f 
and S2). Most amphibole phenocrysts in dacites have a pargasite composition whereas amphibole in basalts 
shows an edenitic signature (Figure 3c).

Amphiboles also show oscillatory zonation and Al2O3 content varies in different bands (Figure S2). There 
seem to be two different amphiboles in dacites; one group has high-Mg cores, while the second type shows 
low-Mg cores; both show oscillatory zoning toward the rim (Figure S2). Oxide micro-phenocrysts in basalts 
are compositionally similar to titanohematite. Spinel in basalts occurs as inclusions in olivine phenocrysts 
and has high Al contents (Cr#; 0.21–0.23). In a TiO2 versus Al2O3 diagram, the spinels have similarities to 
spinel from mid-oceanic ridge basalts (MORB) (Figure 3e).

4.3.  Zircon U-Pb Ages

We have dated four samples from dacitic domes and lavas from the NE Iran back-arc. Sample CG12-2 is 
from a dacitic dome. Zircons from this sample are medium-to coarse-grained (∼80–100 μm) and show oscil-
latory zoning. Seventeen analyses from this sample show an intercept age of 23.7 ± 0.4 Ma (Figure 4). Two 
inherited cores give ages of 98 and 224 Ma. These inherited cores show the assimilation of older rocks by the 
Quchan Oligocene magmas. The common-lead content of the zircons is f206 < 2.4%.

Figure 4.  U-Pb inverse-Concordia diagrams (207Pb/206Pb vs. 238U/206Pb) for zircons from Quchan dacites and rhyolites.

Figure 3.  (a) En-Wo-Fs classification diagram (Morimoto, 1988) for clinopyroxenes in Quchan basalts. (b) Triangular plot for classification of the Quchan 
feldspars (Deer et al., 1992). (c) Mg/Mg + Fe+2 versus Si cation binary plot (Leake, Woolley, Arps, et al., 1997) for the classification of Quchan amphiboles. (d) 
Triangular TiO2-FeO-Fe2O3 plot for the classification of Quchan Fe-Ti oxides (Deer et al., 1992). (e) TiO2 versus Al2O3 diagram (Kamenetsky et al., 2001) for 
discrimination of spinels from Quchan basalts. (f) Compositional profiles for anorthite content in plagioclase (upper panel) and Al2O3 in amphibole (lower 
panel) from Quchan dacites.
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Sample ZO12-1 is taken from a dacitic lava flow. Zircons from this sample are coarse-grained (∼100–150 μm). 
Most zircons show oscillatory zonation, although some of them are weakly zoned. Fifteen analyses were 
obtained from this sample. Common-lead content is low in most grains; with f206 < 1.5%. Some grains have 
a higher common lead with f206 = 2.6–5.4. Zircons from this sample show an intercept age of 23.7 ± 0.3 Ma 
(Figure 4).

Sample KN12-4 is from a dacitic dome. Zircons from this sample are medium-to coarse-grained (∼80–
130 μm) with oscillatory zoning, although some zircons have only weak oscillatory zonation. Seventeen 
analyses from magmatic zircons show an intercept age of 23.8 ± 0.2 Ma (Figure 4). The common-lead con-
tent of magmatic zircons from this sample is f206 < 2.8.

Sample SM12-2 is taken from a dacitic dome. Fifteen analyzed magmatic zircons with oscillatory zonation 
show an intercept age of 24.5 ± 0.3 Ma, which is interpreted to be the crystallization age of this sample. The 
zircons have a common lead with f206 < 5.4.

The new ages obtained in this study range from ∼25 to 24 Ma (Late Oligocene), which is in accordance with 
the reported 40Ar-39Ar ages (23–24 Ma; Ahmadi et al., 2017) for mafic and felsic rocks. However, some felsic 
volcanic rocks/domes seem to have younger K-Ar ages of 19.5 ± 0.5 to 2.3 ± 0.1 (Ghasemi et al., 2010).

4.4.  Bulk Rock Geochemistry

The Oligocene magmatic rocks from Quchan have mafic and felsic compositions and are represented by 
basaltic to andesitic rocks (SiO2 = 47.9–61.2 wt%) and dacites to rhyolites (SiO2 = 65.4–70.9 wt%) (Table 1). 
In plots of total alkalis (K2O + Na2O) versus silica (SiO2) (TAS diagram– Figure 6a), these rocks range across 
fields from trachy-basalts and trachy-basaltic andesite to andesite, dacite and rhyolite.

Mafic lavas contain 5–7.1 wt% MgO, <102 ppm Ni, <26 ppm Sc, and <169 ppm Cr (Table 2), indicating that 
these lavas do not represent primary magma compositions, but have instead undergone significant crystal 
fractionation. Felsic rocks have 0.4–2.2 wt% MgO, with low <30 ppm Cr and <10 ppm Ni. Mineral fraction-
ation trends can be seen in plots of SiO2, P2O5, Sc, Ni, V, Nb, Sr, and Y versus MgO for Quchan mafic and 
felsic magmatic rocks (Figure 5). In these plots, with decreasing MgO content the abundances of all these 

Sample DA 12-1 CG 12-4 MB 12-1 MB 12-2 SB 12-1 SB 12-2 AG 12-3 AQ 12-4 AD 12-1 BS 12-1 KN 12-4 KN 12-7 CG 12-1

Rock type Basalt Basalt Basalt Basalt Andesite Andesite Andesite Dacite Dacite Dacite Dacite Dacite Dacite

GPS (N) N36,48,34 N36,37,43 N36,49,21 N36,49,21 N36,43,17 N36,43,17 N36,40,36 N36,53,12 N36,51,17 N36,51,59 N36,46,58 N36,46,58 N36,37,43

GPS (E) E58,08,46 E58,26,44 E58,07,19 E58,07,19 E58,25,53 E58,25,53 E58,22,19 E58,18,11 E58,06,07 E58,17,36 E58,10,10 E58,10,10 E58,26,44

SiO2 53.41 49.10 48.21 47.91 58.01 58.18 61.15 66.17 66.23 68.02 66.92 67.55 65.37

Al2O3 16.87 15.51 17.19 17.16 17.52 17.51 16.60 16.20 16.18 15.84 15.96 15.95 15.91

Fe2O3 7.00 12.98 8.92 8.86 5.92 5.84 5.23 3.24 2.62 2.62 2.83 2.88 2.30

MnO 0.11 0.37 0.14 0.14 0.08 0.09 0.06 0.05 0.02 0.05 0.04 0.06 0.02

MgO 5.18 5.04 7.11 6.78 4.17 3.87 3.67 1.55 1.25 0.61 1.46 1.36 2.16

CaO 5.96 5.93 7.98 8.71 6.93 6.90 3.22 4.02 4.43 4.15 4.11 4.05 7.00

Na2O 5.20 4.23 4.44 4.21 3.71 3.68 5.12 3.76 6.33 4.12 4.00 4.05 3.38

K2O 1.62 1.33 1.32 1.34 1.15 1.17 1.18 1.80 0.42 1.83 1.74 1.76 0.16

TiO2 1.09 2.80 1.54 1.54 0.70 0.71 0.77 0.37 0.51 0.33 0.34 0.34 0.39

P2O5 0.49 0.34 0.45 0.45 0.25 0.25 0.22 0.15 0.23 0.11 0.10 0.10 0.13

SO3 0.16 0.18 0.15 0.15 0.13 0.13 0.11 0.12 0.13 0.10 0.09 0.08 0.08

L.O.I. 2.18 1.02 1.81 2.21 0.30 0.42 2.36 1.56 1.02 0.70 0.87 0.76 3.20

Total 99.48 99.14 99.48 99.70 99.04 98.90 99.81 99.14 99.51 98.63 98.61 99.08 100.20

Table 1 
X-Ray Fluorescence Bulk-Rock Analyses of the Quchan (NE Iran Back-Arc) Volcanic Rocks
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elements decrease from mafic rocks toward felsic rocks, except for SiO2 which increases. Dacite sample 
AD12-1 has a high Nb content (26.3 ppm), similar to basalts. These trends could reflect fractionation of 
ferromagnesian minerals such as olivine, pyroxene and amphibole as well as apatite and Fe-Ti oxides. The 
high Nb content in sample AD12-1 could be related to higher levels of contamination with continental crust 
(see next section).

The Quchan volcanic rocks are mostly calc-alkaline (Figure 6b). They have both low and high Sr/Y and 
La(n)/Yb(n) ratios (19.4–71.9 and 3.8–20.2, respectively). Most felsic volcanic rocks have adakitic signatures 
in plots of Sr/Y versus Y and La(n)/Yb(n) versus Yb(n) (Figures 6c and 6d), except for samples AD12-1, AG12-1, 
AG12-4, and CG12-1. The basalts are similar to normal arc-related rocks.

We have normalized the rare earth- and trace-elements data from Quchan rocks to chondrite and N-MORB. 
In the N-MORB-normalized diagram, we have followed the order of trace-element incompatibility in 
MORBs and oceanic basalts proposed by (Sun & McDonough, 1989). In an N-MORB-normalized diagram, 
dacites and rhyolites are enriched in LREE (La(n)/Yb(n) ∼ 8.6–36.3) (Figure 7a), with negative anomalies in 
Nb, Ta, and Ti (e.g., Nb(n)/La(n) ∼ 0.4–1.1) and positive anomalies in Sr, Ba, Th, and U (e.g., Th(n)/La(n) ∼ 5.1–
9.9) (Figure 7b). Dacites and rhyolites have no significant Eu anomaly while also displaying a spoon-shaped 
MREE-HREE pattern (Figure 7b). Andesites and basalts are also enriched in LREE compared to HREE 
with La(n)/Yb(n) ∼ 6.7–24.5 (Figure 7c). These rocks are also depleted in Nb-Ta (e.g., Nb(n)/La(n) ∼ 0.6–1.1) 
and enriched in Rb, Th, U, and Sr (e.g., Th(n)/La(n) ∼ 2.5–10.8) (Figure 7d). However, some dacites (adakitic 
samples SM12-3 and ZO12-3) and basalts (sample MB12-2) do not show depletion in Nb-Ta. The contents 
of incompatible elements including large ion lithophile elements (LILEs) and high field strength elements 
(HFSEs) are high in Quchan back-arc volcanic rocks, compared to N-MORBs., whereas heavy rare earth 
elements (HREEs) show depletion.

4.5.  Radiogenic Isotopes

We analyzed Late Oligocene volcanic rocks for Sr-Nd-Pb-Hf isotopes (Table 3) and dacite-rhyolite zircons 
for Lu-Hf isotopes. Basalts and andesites show small spreads in initial 87Sr/86Sr(t) (0.704–0.705) and εNd(t) 
values (+4.4 to +7.4). Dacites and rhyolites have initial 87Sr/86Sr(t) and εNd(t) values of 0.704–0.705 and 
+0.2 to +8.4, respectively. In a Sr-Nd isotope correlation diagram (Figure 8a), most Quchan data show a 

CK 12-3 CK 12-4 ZO 12-1 ZO 12-3 AG 12-4 SM 12-1 SM 12-2 SM 12-4 SM 12-3 MR 12-1 MR 12-3 MR 12-4 AG 12-1

Dacite Dacite Dacite Dacite Dacite Dacite Dacite Dacite Dacte Rhyolite Rhyolite Rhyolite Rhyolite

N36,48,42 N36,48,12 N36,41,46 N36,41,46 N36,40,06 N36,47,09 N36,47,09 N36,47,30 N36,47,09 N36,45,54 N36,45,54 N36,45,54 N36,40,36

E58,31,16 E58,31,46 E58,14,23 E58,14,23 E58,29,29 E58,24,30 E58,24,30 E58,26,47 E58,24,30 E58,13,51 E58,13,51 E58,13,51 E58,22,19

69.39 67.49 69.03 68.99 69.65 68.76 69.59 67.66 66.93 70.95 70.84 70.89 70.54

16.15 15.97 16.10 16.20 16.40 16.25 16.41 15.91 15.75 15.91 15.88 15.86 15.24

2.16 2.88 2.10 2.06 1.92 1.92 2.00 2.78 1.87 1.80 1.88 1.83 1.84

0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.02 0.04 0.04 0.04 0.01

0.75 1.34 0.86 0.87 0.88 1.05 0.91 1.06 1.90 0.56 0.54 0.65 0.36

3.80 4.19 3.86 3.83 3.99 4.47 4.03 4.16 6.38 3.20 3.17 3.32 3.80

4.37 4.25 4.37 4.37 4.51 4.34 4.44 4.10 3.89 4.43 4.42 4.48 4.08

1.58 1.76 1.72 1.67 1.37 1.48 1.45 1.81 0.42 1.95 2.00 1.97 1.68

0.28 0.37 0.27 0.27 0.25 0.25 0.25 0.35 0.37 0.23 0.24 0.24 0.22

0.09 0.11 0.10 0.10 0.09 0.09 0.09 0.11 0.13 0.08 0.09 0.09 0.07

0.10 0.11 0.15 0.10 0.07 0.11 0.09 0.13 0.10 0.09 0.08 0.13 0.08

0.51 0.76 0.47 0.45 1.07 0.77 0.27 1.02 0.45 0.33 0.35 0.39 1.56

99.37 99.44 99.21 99.09 100.38 99.69 99.71 99.27 98.35 99.70 99.66 100.04 99.58
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good negative correlation, although two non-adakitic samples (dacite sample CG12-1 and rhyolite sample 
AG12-1) have higher 87Sr/86Sr(t) at a given 143Nd/144Nd and could reflect late-stage processes, e.g., altera-
tion and/or assimilation of altered host rocks such as tuffites or marls and/or biotite-rich Cadomian par-
agneisses which are abundant in NE Iran. Assimilation of the biotite-rich Cadomian rocks could explain 

Figure 5.  SiO2, P2O5, Sc, Ni, V, Nb, Sr, and Y versus MgO content of the Quchan magmatic rocks. With decreasing MgO, the content of all elements—except 
SiO2—show decreasing which could show fractionation of ferromagnesian minerals such as olivine, pyroxene, amphibole, apatite and Fe-Ti oxides.
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the radiogenic Sr-isotope compositions of some Quchan felsic rocks, but biotite does not have high U/Pb 
and thus cannot explain the lack of disturbance in the Pb isotopic composition of these rocks. However, 
sample CG12-1 has higher CaO and LOI contents compared to other dacites, whereas sample AG12-1 has 
higher LOI relative to other rhyolites, which would be consistent with their high 87Sr/86Sr(t) being related 
to alteration. Sample AD12-1 has higher 87Sr/86Sr(t) and lower εNd(t) than other dacites and rhyolites and 

Standard and duplicates Duplicates

Sample ID (μg/g) JA-1 Literatur JA-1 CK 12-3 CK 12-3 CK 12-3 CK 12-3 KN 12-4 KN 12-4 KN 12-4 KN 12-4

Li 10.500 8.706 14.756 14.673 14.730 14.725 16.183 16.290 16.152 16.219

Sc 28.400 19.212 2.394 2.427 2.418 2.425 3.115 3.134 3.153 3.165

V 105.000 111.568 33.265 33.880 33.889 33.885 51.606 52.668 52.945 53.130

Cr 7.300 3.982 9.126 9.333 9.318 9.412 13.423 13.548 13.760 13.811

Co 11.800 9.697 3.507 3.451 3.506 3.450 5.715 5.770 5.751 5.848

Ni 1.800 0.877 5.140 5.206 5.286 5.169 9.800 9.901 9.892 9.952

Cu 42.200 41.783 21.731 21.782 21.881 21.834 31.121 31.144 31.342 31.218

Zn 90.600 88.274 26.884 27.182 27.307 26.915 35.885 36.051 36.174 36.047

Ga 17.300 17.097 15.675 15.719 15.729 15.576 15.767 15.918 15.869 15.942

Rb 11.800 7.443 6.602 6.622 6.572 6.557 12.832 12.570 12.551 12.551

Sr 266.000 243.578 366.301 369.255 378.699 371.628 393.033 391.128 397.223 396.842

Y 30.600 34.549 7.413 7.375 7.413 7.343 9.298 9.279 9.229 9.184

Zr 88.300 82.118 102.635 102.586 102.438 101.795 116.079 116.808 116.808 116.371

Nb 1.700 1.248 6.647 6.652 6.678 6.591 11.150 11.185 11.175 11.125

Cs 0.640 0.605 0.644 0.648 0.651 0.650 0.752 0.749 0.755 0.757

Ba 291.853 402.042 406.342 407.429 410.097 379.189 377.148 386.720 384.048

La 5.100 4.400 9.676 9.680 9.656 9.700 13.731 13.678 13.692 13.731

Ce 13.500 11.669 17.290 17.276 17.325 17.290 26.505 26.272 26.398 26.379

Pr 1.980 1.948 1.982 1.972 1.980 1.974 2.698 2.686 2.681 2.688

Nd 11.000 10.367 7.368 7.323 7.294 7.328 9.849 9.883 9.825 9.800

Sm 3.520 3.327 1.453 1.463 1.438 1.429 1.894 1.883 1.894 1.893

Eu 1.170 1.125 0.485 0.483 0.479 0.480 0.635 0.637 0.632 0.631

Gd 4.360 4.139 1.367 1.365 1.377 1.368 1.781 1.768 1.785 1.767

Tb 0.770 0.716 0.193 0.193 0.191 0.191 0.244 0.246 0.247 0.245

Dy 4.530 4.780 1.081 1.077 1.080 1.080 1.366 1.369 1.374 1.378

Ho 0.940 1.021 0.213 0.216 0.214 0.213 0.269 0.269 0.269 0.268

Er 3.010 2.884 0.599 0.596 0.598 0.599 0.745 0.746 0.742 0.742

Tm 0.480 0.442 0.098 0.098 0.098 0.098 0.119 0.119 0.118 0.118

Yb 2.920 2.954 0.651 0.646 0.644 0.647 0.779 0.775 0.779 0.779

Lu 0.470 0.460 0.106 0.106 0.105 0.105 0.126 0.127 0.125 0.125

Hf 2.410 2.443 2.556 2.561 2.539 2.536 2.796 2.809 2.817 2.801

Ta 0.100 0.094 0.447 0.451 0.447 0.447 0.839 0.842 0.840 0.833

W 3.900 0.441 0.298 0.291 0.290 0.291 0.260 0.258 0.253 0.253

Pb 5.800 5.678 8.105 8.125 8.027 8.073 7.923 7.898 7.836 7.836

Th 0.820 0.690 2.804 2.804 2.766 2.779 5.184 5.180 5.126 5.107

U 0.340 0.358 0.826 0.823 0.816 0.820 1.481 1.476 1.464 1.454

Table 2 
Trace-Element ICPMS Data for Quchan (NE Iran Back-Arc) Volcanic Rocks
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plots toward the Ediacaran-Early Cambrian (Cadomian) crust of Iran. All these non-adakitic samples 
(CG12-1, AG12-1, and AD12-1) have low Rb (2.1–10.8 ppm) and high Rb/Sr (0.006–0.03) compared to oth-
er felsic samples. Rhyolite sample AG12-1 has higher εNd(t) and εHf(t) than mafic rocks. Most Quchan 

Table 2 
Continued

Samples Basalt Basalt Basalt Basalt Andesite Andesite Andesite Dacite Dacite Dacite Dacite Dacite

Sample ID (μg/g) CG 12-4
DA 
12-1

MB 
12-1 MB 12-2 AG 12-3 SB 12-1 SB 12-2 AD 12-1 AG 12-4 AQ 12-4 BS 12-1 CG 12-1

Li 10.865 30.684 20.802 18.549 33.591 13.253 16.550 11.315 17.914 9.162 9.880 9.731

Sc 4.685 17.701 25.116 25.617 10.406 16.908 17.300 5.669 3.112 5.271 3.819 9.934

V 73.350 136.394 187.499 185.298 95.129 131.340 136.234 64.225 39.355 52.124 41.672 85.400

Cr 19.392 71.359 168.633 116.752 29.395 46.817 72.495 2.773 22.991 13.102 12.453 29.888

Co 1.926 24.261 35.089 32.974 16.288 19.644 19.357 4.018 2.793 6.051 4.672 4.629

Ni 12.504 70.973 102.854 85.660 25.857 44.259 45.133 2.094 9.780 6.597 6.154 16.580

Cu 6.748 20.915 44.168 49.326 28.692 13.886 12.132 5.462 2.561 20.304 20.517 11.547

Zn 6.833 64.402 71.348 72.578 25.722 58.198 58.109 110.974 25.571 57.603 39.639 12.138

Ga 13.241 18.296 16.269 16.067 15.405 17.720 17.900 17.307 13.578 18.036 16.727 14.833

Rb 7.350 39.956 18.229 18.958 22.306 24.207 24.189 2.130 17.006 20.741 16.895 3.401

Sr 712.556 613.607 658.782 800.925 407.422 574.273 576.492 362.514 224.654 456.922 455.564 475.453

Y 15.272 27.352 29.703 29.556 19.058 18.879 19.245 18.672 11.300 10.843 8.640 14.755

Zr 116.435 230.123 202.040 204.766 151.012 150.082 152.726 231.861 108.981 145.202 115.872 110.667

Nb 7.892 26.676 19.749 25.599 11.399 12.293 12.286 26.288 4.642 15.564 10.394 7.335

Cs 0.184 4.294 0.979 0.533 0.666 0.329 0.371 0.180 0.968 0.638 0.384 0.592

Ba 113.813 424.873 272.661 298.188 194.782 250.488 256.210 268.828 216.015 502.842 471.324 75.683

La 7.424 43.275 24.558 24.678 16.180 24.031 24.178 35.975 10.793 25.699 18.304 9.218

Ce 17.529 75.014 48.346 48.574 30.629 40.974 41.199 59.834 17.555 41.441 29.607 19.828

Pr 2.253 7.903 5.751 5.763 3.553 4.429 4.499 6.726 2.105 4.306 3.191 2.486

Nd 9.536 28.318 22.859 23.018 13.866 16.442 16.626 22.887 7.709 14.890 11.394 10.103

Sm 2.195 5.024 4.774 4.806 2.911 3.138 3.199 3.814 1.567 2.501 2.018 2.194

Eu 0.633 1.598 1.632 1.644 0.935 1.030 1.043 1.078 0.474 0.788 0.664 0.671

Gd 2.222 4.964 4.955 4.975 2.991 3.159 3.220 3.515 1.601 2.294 1.841 2.215

Tb 0.341 0.695 0.738 0.742 0.452 0.456 0.467 0.478 0.243 0.299 0.243 0.336

Dy 2.079 4.035 4.414 4.441 2.725 2.702 2.767 2.686 1.484 1.624 1.331 2.049

Ho 0.431 0.798 0.880 0.883 0.554 0.548 0.561 0.528 0.310 0.312 0.257 0.418

Er 1.237 2.191 2.402 2.404 1.551 1.533 1.577 1.466 0.904 0.858 0.693 1.191

Tm 0.200 0.330 0.354 0.356 0.241 0.238 0.242 0.228 0.151 0.133 0.110 0.192

Yb 1.343 2.156 2.315 2.319 1.612 1.587 1.606 1.546 1.052 0.864 0.699 1.310

Lu 0.219 0.337 0.359 0.353 0.256 0.251 0.254 0.247 0.178 0.139 0.113 0.213

Hf 2.757 4.380 3.806 3.852 3.148 3.108 3.129 4.726 2.658 3.292 2.803 2.604

Ta 0.582 0.954 0.700 1.375 0.712 0.723 0.735 1.543 0.342 0.935 0.542 0.525

W 0.253 0.538 0.256 0.289 0.218 0.333 0.462 0.336 0.282 0.420 0.261 0.254

Pb 3.746 4.397 3.020 3.012 4.748 5.406 5.651 17.414 6.046 9.760 8.597 2.849

Th 3.833 8.411 2.977 2.964 3.378 5.825 5.809 12.266 4.088 7.006 5.145 4.392

U 0.893 1.671 0.766 0.773 1.017 1.313 1.286 2.802 0.875 1.812 1.418 0.977

Note. Reference for the analytical procedure: Garbe-Schönberg (1993).
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rocks plot in a trend defined by Paleocene-Eocene to Pleistocene magmatic rocks of NE Iran (Figure 8a). 
This trend runs between a depleted mantle (DM), similar to the mantle source of arc tholeiites and the 
Cadomian continental crust of Iran.

Dacite Dacite Dacite Dacite Dacite Dacite Dacite Dacite Dacite Dacite Rhyolite Rhyolite Rhyolite Rhyolite

CK 12-3 CK 12-4 KN 12-4 KN 12-7 SM 12-1 SM 12-2 SM 12-3 SM 12-4 ZO 12-1 ZO 12-3 AG 12-1 MR 12-1 MR 12-3 MR 12-4

14.756 13.813 16.183 19.423 15.826 10.754 8.101 13.412 16.338 13.501 31.066 16.375 12.533 9.730

2.394 4.724 3.115 4.976 3.058 3.234 2.117 4.893 2.467 2.227 9.536 1.844 1.774 1.829

33.265 47.239 51.606 50.449 26.160 28.311 30.031 43.365 33.427 23.661 91.337 21.208 20.665 21.576

9.126 25.146 13.423 18.634 11.011 8.722 4.190 14.316 8.926 10.068 27.948 4.498 4.400 5.904

3.507 6.131 5.715 6.003 3.189 3.084 2.657 5.328 3.352 3.070 11.126 1.582 2.228 1.955

5.140 13.406 9.800 9.389 4.024 3.452 3.229 6.639 3.889 4.560 19.820 0.975 3.103 1.416

21.731 23.927 31.121 23.440 21.060 14.430 16.186 21.920 19.946 20.419 39.621 12.132 11.239 9.619

26.884 36.350 35.885 37.089 30.173 29.365 28.347 39.476 35.250 32.718 43.305 25.512 29.861 27.047

15.675 17.120 15.767 16.974 16.234 16.760 15.976 17.163 16.175 15.947 14.975 16.646 16.459 16.307

6.602 14.524 12.832 26.862 7.802 15.554 4.828 16.611 9.585 5.132 10.752 20.596 18.534 13.609

366.301 443.763 393.033 493.920 410.314 492.916 340.411 450.218 359.503 276.290 338.049 405.535 364.768 373.154

7.413 8.377 9.298 9.281 6.422 6.846 6.639 10.091 7.294 6.954 15.519 6.786 6.852 6.730

102.635 102.262 116.079 116.928 84.473 80.840 89.718 121.312 101.749 101.628 122.088 117.698 93.363 94.950

6.647 7.704 11.150 11.309 6.511 3.208 7.034 10.698 6.608 6.536 7.068 7.341 5.497 7.481

0.644 0.917 0.752 1.228 0.376 0.945 0.800 1.018 0.735 0.520 1.058 0.692 0.770 0.762

402.042 453.569 379.189 430.883 349.163 350.444 298.343 490.809 348.172 318.180 201.888 479.210 484.191 481.493

9.676 12.916 13.731 18.749 10.627 11.584 6.989 18.376 9.108 6.189 12.150 16.312 15.392 13.144

17.290 23.189 26.505 29.635 16.919 17.975 14.279 30.963 15.719 13.045 22.325 25.079 23.795 20.931

1.982 2.427 2.698 3.330 2.013 2.169 1.501 3.226 1.802 1.356 2.639 2.905 2.828 2.473

7.368 8.965 9.849 11.786 7.389 7.825 5.763 11.504 6.729 5.314 10.481 10.101 9.931 8.918

1.453 1.723 1.894 2.110 1.444 1.493 1.246 2.119 1.401 1.183 2.266 1.756 1.783 1.676

0.485 0.568 0.635 0.683 0.496 0.506 0.432 0.683 0.487 0.433 0.711 0.591 0.583 0.555

1.367 1.629 1.781 1.932 1.336 1.387 1.197 1.989 1.318 1.180 2.363 1.522 1.567 1.504

0.193 0.223 0.244 0.258 0.183 0.189 0.170 0.269 0.188 0.171 0.357 0.197 0.203 0.200

1.081 1.252 1.366 1.420 0.989 1.038 0.957 1.507 1.056 0.982 2.184 1.045 1.055 1.044

0.213 0.246 0.269 0.275 0.190 0.198 0.190 0.295 0.208 0.196 0.452 0.200 0.198 0.195

0.599 0.682 0.745 0.754 0.519 0.541 0.515 0.802 0.578 0.549 1.281 0.546 0.534 0.521

0.098 0.108 0.119 0.119 0.083 0.087 0.085 0.126 0.095 0.092 0.201 0.089 0.084 0.085

0.651 0.723 0.779 0.781 0.534 0.561 0.548 0.817 0.628 0.596 1.369 0.573 0.540 0.537

0.106 0.118 0.126 0.125 0.084 0.089 0.089 0.131 0.101 0.098 0.220 0.093 0.086 0.086

2.556 2.571 2.796 2.815 2.296 2.156 2.328 2.979 2.580 2.550 2.846 2.870 2.449 2.468

0.447 0.528 0.839 0.855 0.415 0.178 0.459 0.748 0.367 0.444 0.475 0.515 0.228 0.473

0.298 0.227 0.260 0.276 0.183 0.086 0.203 0.291 0.189 0.170 0.308 0.158 0.112 0.192

8.105 9.394 7.923 9.959 8.828 9.382 8.543 10.545 9.601 7.788 7.893 9.775 9.593 9.150

2.804 3.714 5.184 5.940 2.743 3.078 2.293 5.391 2.681 2.141 3.331 4.000 3.811 3.537

0.826 1.111 1.481 1.544 1.020 1.179 0.890 1.666 1.009 0.924 1.018 1.257 1.119 1.125
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The εHf(t) values for basalts and andesites vary between +5.4 and +9.5. These samples fall both along and 
below the mantle array in a plot of εHf(t) versus εNd(t) (Figure 8b). The εHf(t) values for felsic rocks range 
from +3.4 to +12.3. They plot parallel to, but mostly below, the mantle array, in a trend between the depleted 
mantle and the Cadomian continental crust of Iran. Initial 206Pb/204Pb(t) and 208Pb/204Pb(t) ratios for basalts 
and andesites vary from 18.42 to 18.59 and 38.49 to 38.82, respectively. The 207Pb/204Pb(t) ratios of these 
rocks (15.56–15.60) are similar to those of the Paleocene-Eocene magmatic rocks from NE Iran (Figures 8c 
and 8d). The initial 206Pb/204Pb(t) and 208Pb/204Pb(t) ratios for dacites and rhyolites vary from 18.27 to 18.71 
and 38.27 to 38.40, respectively. The 207Pb/204Pb(t) ratio in these felsic samples ranges from 15.53 to 15.64 and 
are similar to the 207Pb/204Pb(t) of Quchan basalts and andesites.

In the thorogenic-Pb isotope plot (Figure 8c), the Quchan igneous rocks fall in a narrow linear array, 
well above the Northern Hemisphere Reference Line (NHRL) of (Hart, 1984), with ∆8/4 of 75–56 (Fig-
ure S3). The samples define a trend between the depleted mantle and Cadomian crust (=CC) reservoirs 
(Figures 8c and S3). On the uranogenic Pb diagram (Figure 8d), the investigated samples plot above the 
NHRL (∆7/4 to 6–12, Figure S3) and overlap with the Paleocene-Eocene igneous rocks of NE Iran. High 
uranogenic-Pb isotope ratios of Quchan rocks may show the involvement of an enriched mantle. This 
enriched mantle could be the result of contamination and/or re-fertilization of a depleted mantle source 
with marine sediments through the subduction of the Neotethyan oceanic lithosphere beneath Iran, cre-
ating a metasomatized lithospheric mantle. This type of enriched lithospheric mantle has also been sug-
gested for the formation of high-K rocks from the Mediterranean region (e.g., Conticelli et al., 2009; Cv-
etkovic et al., 2013). A metasomatized enriched mantle with radiogenic Pb (∆8/4 > 45) is also suggested 
as the source of postcollisional (Pleistocene-Holocene) volcanism in Central Anatolia (Reid et al., 2017). 
Sample AD12-1 has higher thorogenic and uranogneic Pb isotope ratios whereas sample AG12-4 has 
lower values of thorogenic and uranogneic Pb. Both samples are non-adakitic dacites with low Sr/Y and 

Sample Rock type 206Pb/204Pb (% 1s.e.) 207Pb/204Pb (% 1s.e.) 208Pb/204Pb (% 1s.e.) 143Nd/144Nd 2sd
εNd  

(t = 0) 87Sr/86Sr 2sd 176Hf/177Hf 2sd
εHf  

(t = 0) Pb Th U

MB 12-1 Basalt 18.479 0.003 15.561 0.003 38.573 0.004 0.512861 0.000007 4.35 0.704364 0.000011 0.283038 0.000005 8.95 3.02 2.98 0.77

MB 12-2 Basalt 18.485 0.002 15.561 0.003 38.580 0.003 0.512854 0.000007 4.22 0.705028 0.000011 0.283044 0.000006 9.16 3.01 2.96 0.77

DA 12-1 Basalt 18.682 0.005 15.596 0.006 38.978 0.006 0.512902 0.000007 5.30 0.704859 0.000009 0.282928 0.000003 5.06 4.40 8.41 1.67

SB 12-2 Andesite 18.513 0.006 15.578 0.007 38.675 0.007 0.513005 0.000008 7.32 0.703977 0.000010 0.283043 0.000004 9.11 5.65 5.81 1.29

AG 12-3 Andesite 18.534 0.002 15.607 0.003 38.679 0.003 4.75 3.38 1.02

SB 12-1 Andesite 18.523 0.002 15.577 0.002 38.695 0.003 5.41 5.82 1.31

AG 12-4 Dacite 18.302 0.002 15.534 0.003 38.325 0.003 0.512894 0.000011 5.00 0.704257 0.000013 0.283121 0.000009 11.89 6.05 4.09 0.87

CG 12-1 Dacite 18.446 0.002 15.562 0.003 38.566 0.003 0.512876 0.000009 4.64 0.705075 0.000010 2.85 4.39 0.98

KN 12-7 Dacite 18.573 0.002 15.606 0.002 38.758 0.003 0.512640 0.000014 0.20 0.704444 0.000011 0.282911 0.000006 4.46 9.96 5.94 1.54

SM 12-2 Dacite 18.523 0.002 15.592 0.002 38.678 0.003 0.512781 0.000018 2.95 0.703990 0.000013 0.283067 0.000006 9.98 9.38 3.08 1.18

AQ 12-4 Dacite 18.598 0.005 15.615 0.006 38.831 0.006 0.512820 0.000008 3.70 0.704474 0.000009 0.282890 0.000004 3.73 9.76 7.01 1.81

CK 12-4 Dacite 18.523 0.002 15.595 0.002 38.678 0.002 0.512842 0.000008 4.14 0.704263 0.000010 0.282997 0.000006 7.49 9.39 3.71 1.11

SM 12-1 Dacite 18.523 0.002 15.593 0.003 38.678 0.003 0.512947 0.000009 6.19 0.704080 0.000010 0.283071 0.000004 10.11 8.83 2.74 1.02

SM 12-4 Dacite 18.559 0.003 15.609 0.003 38.742 0.003 10.54 5.39 1.67

ZO 12-1 Dacite 18.534 0.002 15.594 0.003 38.690 0.003 0.512955 0.000008 6.34 0.704136 0.000010 0.283060 0.000004 9.74 9.60 2.68 1.01

AD 12-1 Dacite 18.748 0.002 15.642 0.002 39.055 0.003 0.512630 0.000007 −0.16 0.705470 0.000011 0.282870 0.000004 3.00 17.41 12.27 2.80

BS 12-1 Dacite 18.554 0.003 15.604 0.003 38.750 0.004 0.512833 0.000010 3.97 0.704315 0.000010 0.282944 0.000003 5.62 8.60 5.14 1.42

MR 12-1 Rhyolite 18.534 0.002 15.591 0.002 38.688 0.003 0.512789 0.000009 2.94 0.704189 0.000013 0.283045 0.000008 9.21 9.77 4.00 1.26

MR 12-3 Rhyolite 18.545 0.003 15.595 0.004 38.707 0.004 0.512967 0.000009 6.58 0.704175 0.000013 0.283053 0.000005 9.49 9.59 3.81 1.12

MR 12-4 Rhyolite 18.543 0.004 15.594 0.004 38.702 0.004 0.512990 0.000010 7.03 0.704340 0.000008 0.283050 0.000004 9.38 9.15 3.54 1.12

AG 12-1 Rhyolite 18.524 0.002 15.602 0.003 38.670 0.003 0.513056 0.000009 8.31 0.704773 0.000008 0.283099 0.000006 11.10 7.89 3.33 1.02

JA-1 Standard 0.513188 0.000021 10.89 0.703526 0.000012 0.283267 0.000005 17.04

Table 3 
Bulk-Rock Sr-Nd-Pb-Hf Isotope Analyses of the Quchan (NE Iran Back-Arc) Volcanic Rocks
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La(n)/Yb(n). The radiogenic Pb isotopes of some felsic rocks can also show assimilation of Cadomian con-
tinental crust during magma ascent.

Zircons from dacites and rhyolites display εHf(t) from +13.7 to −6.5. The highly variable εHf(t) values for 
these rocks again could attest to contamination with the Cadomian continental crust.

5.  Discussion
The composition of magmas erupted in subduction-related continental arcs can reflect an interplay be-
tween the mantle source composition and processes occurring during melt generation and ascent to the arc 
surface. These processes may take place in the mantle (e.g., mixing of sediment/slab melts and fluids into a 
depleted mantle) or crust (e.g., MASH or assimilation-fractional crystallization which can incorporate low-
er- or upper continental crust during magma ascent and storage). Heterogeneities within the mantle and/or 
lower-crustal reservoirs can result in geochemical variations in magma composition (e.g., Rapp et al., 2008; 
Stracke, 2012; Willbold & Stracke, 2006, 2010). In addition to source heterogeneities, continental middle to 
the upper crust, especially in the case of collisional systems, can contribute to final magma compositions. 
Below, we first explore the characteristics of the mantle source in the Quchan area using basaltic rocks, 
and then we use the basaltic rocks to understand the origin and evolution of Quchan felsic and/or adakitic 
rocks. To unravel the genesis of the felsic/adakitic rocks, we first focus on the geochemical signatures of 
these rocks as well as the composition of their amphiboles and then use the FC, AFC, and REFC models 
to show the evolution of the major- and trace-elements from basaltic rocks into intermediate and then into 
felsic/adakitic rocks. Finally, we will use the Sr, Nd, and Pb isotopes to see if the isotopic signatures of the 
Quchan rocks are solely controlled by a depleted mantle and its interaction with crustal components via 
assimilation, or whether an enriched mantle source is required.

Lu Hf Nd Sm Rb Sr 206/204i 207/204i 208/204i 87Rb/86Sr 87Sr/86Sri 147Sm/144Nd 143Nd/144Nd
εNd 

(t = 24) 176Lu/177Hf 176Hf/177Hfi
εHf 

(t = 24) ∆ 7/4 ∆ 8/4 ∆ Hf

0.36 3.81 22.86 4.77 18.23 658.78 18.417 15.558 38.493 0.080 0.704336 0.126 0.512840 4.58 0.013522 0.283032 9.28 7.07 60.02 0.07

0.35 3.85 23.02 4.81 18.96 800.93 18.422 15.558 38.500 0.068 0.705004 0.126 0.512834 4.44 0.013132 0.283038 9.50 6.98 60.08 0.48

0.34 4.38 28.32 5.02 39.96 613.61 18.587 15.592 38.821 0.188 0.704792 0.107 0.512884 5.44 0.011024 0.282923 5.43 8.59 72.19 −4.98

0.25 3.13 16.63 3.20 24.19 576.49 18.457 15.576 38.591 0.121 0.703934 0.116 0.512986 7.42 0.011658 0.283037 9.47 8.38 64.93 −3.72

0.26 3.15 13.87 2.91 22.31 407.42 18.481 15.604 38.621 11.02 65.09

0.25 3.11 16.44 3.14 24.21 574.27 18.463 15.574 38.607 8.20 65.81

0.18 2.66 7.71 1.57 17.01 224.65 18.266 15.532 38.271 0.219 0.704180 0.122 0.512874 5.24 0.009624 0.283117 12.28 6.13 56.02 2.15

0.21 2.60 10.10 2.19 3.40 475.45 18.362 15.558 38.441 0.021 0.705068 0.131 0.512854 4.85 7.68 61.45

0.12 2.81 11.79 2.11 26.86 493.92 18.534 15.604 38.709 0.157 0.704388 0.108 0.512622 0.32 0.006358 0.282908 4.90 10.37 67.45 1.65

0.09 2.16 7.82 1.49 15.55 492.92 18.492 15.591 38.652 0.091 0.703957 0.115 0.512762 3.04 0.005927 0.283065 10.44 9.55 66.81 3.38

0.14 3.29 14.89 2.50 20.74 456.92 18.552 15.613 38.773 0.131 0.704428 0.101 0.512803 3.85 0.006073 0.282888 4.18 11.09 71.63 −4.02

0.12 2.57 8.97 1.72 14.52 443.76 18.493 15.594 38.646 0.095 0.704230 0.116 0.512823 4.24 0.006563 0.282994 7.94 9.82 66.04 −0.80

0.08 2.30 7.39 1.44 7.80 410.31 18.495 15.592 38.653 0.055 0.704060 0.118 0.512928 6.28 0.005266 0.283068 10.58 9.57 66.56 −1.02

0.13 2.98 11.50 2.12 16.61 450.22 18.520 15.608 38.700 10.91 68.20

0.10 2.58 6.73 1.40 9.59 359.50 18.508 15.593 38.667 0.077 0.704108 0.125 0.512934 6.41 0.005617 0.283058 10.20 9.59 66.42 −1.58

0.25 4.73 22.89 3.81 2.13 362.51 18.708 15.640 38.997 0.017 0.705464 0.100 0.512614 0.15 0.007493 0.282866 3.43 12.16 75.20 0.42

0.11 2.80 11.39 2.02 16.89 455.56 18.514 15.602 38.702 0.107 0.704277 0.107 0.512816 4.10 0.005794 0.282941 6.08 10.42 69.17 −2.46

0.09 2.87 10.10 1.76 20.60 405.53 18.503 15.590 38.655 0.147 0.704137 0.105 0.512772 3.24 0.004650 0.283043 9.68 9.33 65.81 2.35

0.09 2.45 9.93 1.78 18.53 364.77 18.516 15.594 38.675 0.147 0.704123 0.108 0.512950 6.71 0.005025 0.283051 9.96 9.59 66.20 −2.23

0.09 2.47 8.92 1.68 13.61 373.15 18.512 15.593 38.670 0.105 0.704302 0.113 0.512972 7.14 0.005013 0.283048 9.84 9.49 66.19 −2.95

0.22 2.85 10.48 2.27 10.75 338.05 18.492 15.601 38.636 0.092 0.704740 0.130 0.513035 8.36 0.011060 0.283094 11.47 10.54 65.16 −3.04
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5.1.  Source Characteristics

Postcollisional Oligocene magmas in NE Iran could come from the melting of a metasomatized mantle, 
with traces of the previous subduction, from Late Cretaceous to Oligocene, before the continental colli-
sion occurred. Therefore, several complex processes, including the interaction of subducting sediments/
sediment melts with a depleted mantle, could enrich the mantle wedge or the sub-continental lithospheric 
mantle.

The Quchan volcanic rocks isotopically plot in a trend between the depleted mantle and the Cadomian 
continental crust (Figure 8) and their isotopic and trace-element signatures rule out a depleted MORB-type 
mantle as a unique source for the genesis of these rocks. The presence of spinels with high TiO2 and Al2O3 
in near primitive basaltic rocks (Figure 3e) could also eliminate a depleted mantle as the source of Quchan 
mafic rocks. Although crustal processes such as AFC could lead to the generation of felsic rocks, these 
processes are inadequate to cause the range of trace elements and isotopic compositions observed in basalts 
(see Section 5.3.4). Instead, we suggest some aspects of the wide range in trace elements and Sr, Nd, Hf 
and Pb isotopic composition of the Quchan volcanic rocks can be inherited from heterogeneity within the 
mantle. Both source heterogeneities and contamination with the Cadomian continental crust of Iran could 
generate such trace element and isotopic variations.

Most volcanic rocks from Quchan are fractionated silicic rocks and the primary mantle-derived basaltic 
rocks needed to unravel the mantle composition are rare. However, some basalt samples with high Mg# 
(57%–59%) and with εNd(t) = 5.4–4.4; εHf(t) = 9.5–5.4 have high Nb/U (∼9–26) and low Zr/Nb (∼9–15), 
which suggests that these samples could allow the extrapolation of the composition of the primary man-

Figure 6.  Na2O + K2O and K2O versus SiO2 discrimination diagrams (a and b) for the classification of Quchan volcanic 
rocks (modified after Lebas et al. [1986]). La(n)/Yb(n) versus Yb(n) (c) and Sr/Y versus Y diagrams for discriminating 
Quchan volcanic rocks (compositional domains for adakite and normal arc rocks are according to Castillo [2012] 
and Defant and Drummond [1990]). Geochemical data for Late Cretaceous to Pleistocene magmatic rocks are from 
Moghadam, Li, Li, et al. (2020).
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tle melts. As such, we have applied a simple mixing model and subsequent partial melting considering a 
Depleted Mantle (DM) that was metasomatized by bulk mixing with altered oceanic crust and terrigenous 
sediments (Figure 9). Our model is not a unique solution to explain the genesis of all basaltic rocks, but 
this model is geologically reasonable for a region that has been experienced long-time subduction from Late 
Cretaceous to Late Oligocene. For modeling, we have used three basaltic samples with MgO ∼5–7 wt%, that 
is, samples MB12-1, MB12-2, and DA12-1. In order to examine the source mantle composition and process-
es, we used the PRIMACALC2 spreadsheet, which allows an estimation of a primary melt in equilibrium 
with the upper mantle (Kimura & Ariskin, 2014).

Figure 7.  Chondrite- and N-MORB-normalized REE and trace-element patterns of NE Iran BA igneous rocks from different magmatic episodes. 
Normalization data are from Sun and McDonough (1989). Geochemical data for Late Cretaceous to Pleistocene magmatic rocks are from Moghadam, Li, Li, 
et al. (2020). The Palaeocene-Eocene geochemical data are heterogenous, and describing these heterogeneities is beyond the scope of this paper, but these data 
support the case for complex magmatic plumbing systems that evolve in continental arcs.
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Data for the altered oceanic crust and terrigenous sediments, DM, mantle modal mineralogy and bulk Kd, 
come from (Iveson et al., 2018; Jacques et al., 2014; Kimura et al., 2009; Nandedkar et al., 2016; Saginor 
et al., 2013; Workman & Hart, 2005; Zhang et al., 2019). The bulk partition coefficients assume mantle min-
eralogy of 45% olivine, 19% clinopyroxene, 23% orthopyroxene, 10% amphibole and 3% garnet. Subsequent-
ly, we assumed aggregated fractional melting of the mixed source (DM + altered oceanic crust and trench 
sediments) with variable degrees of melting. All modeling parameters are presented in Table  S6. Since 
both the degree of melting and ratio of DM to altered oceanic crust and trench sediments are unknown, 
we applied an iterative method whereby both unknowns have been changed until the composition of the 
modeled melt resembled the selected Quchan basalts. Our model (modeled melt (1) in Figure 9) indicates 
that a 90:6:4 mixture of DM and terrigenous trench sediment and altered oceanic crust, with 5% aggregated 
fractional melting, will closely match the trace-element abundances of our target basalts (Figure 9). Higher 
proportions of altered oceanic crust and trench sediments or different melting percentages give patterns 
that do not match our samples. However, the modeled melt has slightly lower Sr (±Nb) than the target sam-
ples, but also anomalies in Pb, U, and Rb. The modeled melt has a positive anomaly in Pb compared to our 
basalts. The Pb content in the subduction-related magmas is very dependent on the amount and the com-
position of subducting sediments. The target basalts instead have a peak in Sr and sample MB12-2 does not 
show depletion in Nb-Ta, which is different from the modeled Nb-Ta depleted melt. We thus emphasize that 
two basaltic samples with Nb-Ta depletion could come from melting of a metasomatized mantle (i.e., a mix-
ture of DM and terrigenous trench sediment + altered oceanic crust), similar to the modeled melt. Sample 
MB12-2 without Nb-Ta depletion is alike to the enriched MORBs and could come from partial melting of an 
enriched mantle. Similar mantle sources have been considered for the formation of postcollisional magmas 

Figure 8.  (a) 143Nd/144Nd versus 87Sr/86Sr plot for Quchan volcanic rocks compared with the depleted mantle (DM) (Zindler & Hart, 1986). (b) εHf(t) versus 
εNd(t) for Quchan volcanic rocks. Mantle array after (Vervoort & Blichert-Toft, 1999) is defined as εHf = 1.4 × εNd + 2.8. (c) 208Pb/204Pb versus 206Pb/204Pb and 
(d) 207Pb/204Pb versus 206Pb/204Pb diagrams for Quchan lavas. The Northern Hemisphere Reference Line (NHRL) is from Hart (1984). Data on Pacific MORBs 
and Pacific arc tholeiites are from EarthChem (https://www.earthchem.org). The composition of Cadomian continental crust (CC) comes from Moghadam, Li, 
Griffin, et al. (2020). Geochemical data for Late Cretaceous to Pleistocene magmatic rocks are from Moghadam, Li, Li, et al. (2020). All data including those for 
MORBs and arc tholeiites have been corrected for 24 Ma radiogenic growth.
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in Central Anatolia (Reid et al., 2017) and Quaternary basaltic lavas from the Argentinean back-arc region 
of the southern Andean subduction system (e.g., Jacques et al., 2013, 2014). This basalt sample MB12-2 
has radiogenic Pb isotopic composition– with ∆7/4 = 6.98 and ∆8/4 = 60.08 (Figure S3)—consistent with 
formation in a subduction-related setting.

It is possible that the altered oceanic crust and trench sediments and/or the “ambient mantle” composition 
we selected for our model are different from those that prevailed in the magmatic source of Quchan rocks. 
Unlike recent subduction systems, it is hard to evaluate the compositions of the source mantle and sub-
ducted materials for an ancient subduction system like the Cenozoic arcs of Iran. For further testing of our 
model, we have used the average composition of Eastern Mediterranean Sea sediments (Klaver et al., 2015), 
to mix with a depleted mantle. Our new model (modeled melt (2)) support that an 89:11 mixture of DM and 
Eastern Mediterranean Sea sediments– with 6% aggregated fractional melting– again closely match with the 
trace-element composition of our target basalts, excluding positive anomalies in Pb, Rb, Ba, Th, and U and 
less negative anomalies in Nb-Ta than our target samples. The positive anomalies in the above-mentioned 
elements could be related to the nature of the presumed subducting sediments (the Eastern Mediterranean 
Sea sediments) which have marl and mudstone composition.

5.2.  Petrogenesis of Adakites

5.2.1.  Amphibole as a Precursor

Experimental studies emphasize the role of amphibole fractionation during the crystallization and geo-
chemical evolution of subduction-related, H2O-rich magmas (e.g., Carmichael, 2002; Grove et al., 2002, 200
3, 2006, 2012). These studies attest to the importance of amphibole crystallization and its effect on the HREE 
to MREE patterns and probably it is a key for producing adakitic signatures in some magmatic rocks from 
continental arcs (e.g., Davidson et al., 2007; Hidalgo et al., 2011). Extreme amphibole fractionation could be 
considered as a mechanism for the formation of spoon-like HREE to MREE patterns in Quchan felsic sam-
ples and also can reconcile some elemental ratios such as La/Nb, Nb/U, Dy(n)/Yb(n), La(n)/Sm(n), and Dy/Dy* 
which are keys for recognizing the adakitic signature (see next section). We believe the composition of am-
phibole phenocrysts from Quchan felsic rocks can give a representative indicator of the magmatic processes 

Figure 9.  Sample/primary-mantle normalized diagram for the primary Quchan melts (basaltic samples including 
MB12-1, MB12-2 and AD12-1) in equilibrium with mantle– calculated using PRIMACALC2 (Kimura & Ariskin, 2014). 
Modeled melts (melts [1 and 2]) assumes 5% and 6% aggregated fractional melting of the mixed (90% DM + 6% 
subducted sediments + 4% altered oceanic crust, AOC and/or 89% DM + 11% Eastern Mediterranean Sea sediments) 
mantle sources. For compression, we also show the modeled melt after 1% aggregated fractional melting of the mixed 
mantle (1). Data and parameters for these calculations are provided in Table S6. Data on Argentinian back-arc average 
basalt is from Jacques et al. (2013, 2014).
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during the formation of adakitic-like geochemical signatures. For this purpose, the mineral formulae for 
amphiboles were re-calculated following the spreadsheet supplied by (Ridolfi et al., 2010), and re-interpret-
ed by (Hidalgo et al., 2011). In this spreadsheet, the Fe+3/Fe+2 ratio is re-calculated by charge balance after 
correcting the tetrahedral (Si, Al, and Ti) plus octahedral (Al, Ti, Cr, Fe, Mn, and Mg) cations to 13 (Leake, 
Woolley, Birch, et al., 1997). This calculation shows that amphiboles from Quchan felsic rocks mostly have 
Tschermakitic pargasite composition, with ∼0.02–0.4 apfu Na cation (atoms per formula unit = apfu) in site 
A, but with 1.5–1.8 Ca and 0.2–0.5 Na cations in site B and 0.08–0.2 Ti in Site C, and were in equilibrium 
with calc-alkaline melts. Site A also contains a noticeable amount of K (0.04–0.2).

In a plot of Al(T) (total Al  =  [6]Al  +  [4]Al) versus [4]Al, considering the Al# content (=[6]Al/[6]Al  +  [4]Al) 
(Figure S4), all amphiboles from Quchan felsic rocks follow a common compositional trend. The Al(T) of 
these amphiboles ranges between 1.6 to 2.2, with Al# between 0.12 and 0.28. Our data show that these 
amphiboles have higher Al# content than amphiboles from shallow volcanic rocks (with Al#  =  0) and 
even some analyzed spots from amphiboles (toward the cores of grains) have an Al# content comparable 
to high-P crustal and/or mantle-derived (experimental) amphiboles (with Al# = 0.21) (Hidalgo et al., 2011; 
Ridolfi et al., 2010). Thermobarometric calculations record pressures of 4–6 Kbar and temperatures ranging 
from 834 to 900°C. Oxygen fugacity can be calculated from the amphibole composition (Ridolfi et al., 2010) 
using the amphibole magnesium index (Mg*): ∆NNO = 1.644 Mg* – 4.01 (where Mg* = Mg + Si/47 – [6]

Al/9 – 1.3[6]Ti + Fe+3/3.7 + Fe+2/5.2 – BCa/20 – ANa/2.8 + A[t]/9.5). The calculated values range from log-
fO2 = −13.7 to −10.5, and ∆NNO = −0.6 to +1.8. For comparison, the ∆NNO for calc-alkaline magmas is 
suggested to be in the range of −1 to +3 (Carmichael, 1991; Hidalgo et al., 2011; Ridolfi et al., 2010).

The relationships between temperature (834–900°C) and H2Omelt (7–9.5; inferred from amphibole compo-
sition) indicates maximum stability for the formation and fractionation of Quchan amphiboles in the mid-
dle-lower crust (e.g., Müntener et al., 2001). Finally, these P, PH2O, and T estimates on amphiboles from dif-
ferent Quchan rocks could suggest that differentiation of the Quchan melts occurred at ca 14–20 km depth 
(assuming an average crust density of 2,700 kg/m3 [e.g., Lucci et al., 2020; Rossetti et al., 2017] in the middle 
crust), although amphiboles with high Al# (Al# >0.2) may suggest greater depths. Therefore, our data are 
consistent with the observation that parts of amphiboles (or amphibole cores) crystallized earlier, in the 
deeper crust– and probably in deep crustal hot zones. Crystallization of H2O-rich magmas similar to the 
parental melts of Quchan lavas (with H2Omelt = 7 to 9.5) in the middle to lower crust (at >∼7 km) will lead 
to amphibole appearing as the first mineral on the liquidus of basaltic to andesitic melts (Carmichael, 2002; 
Moore & Carmichael, 1998; Rooney et al., 2011). However, amphibole fractionation in the lower-middle 
crust is supposed to follow the earlier crystallization of olivine and pyroxene in the upper mantle-lower 
crust (e.g., Hidalgo et al., 2011; Rooney et al., 2011), which is also consistent with our fractional-crystalliza-
tion modeling (see below).

5.2.2.  Geochemical Evaluation of Quchan Adakites

Several models have been suggested for the origin of adakites including melting of the eclogitic parts of 
subducting oceanic crust and/or eclogitic segments of the lower continental crust (e.g., Castillo, 2006; Chi-
aradia et al., 2009; Kay & Kay, 2002; Kolb et al., 2013; Rapp & Watson, 1995). Garnet and/or amphibole 
fractionation along with AFC processes at the base of the thickened continental crust has been also con-
sidered as a candidate for the genesis of adakites (e.g., Chiaradia, 2009; Hidalgo & Rooney, 2014; Hidalgo 
et al., 2011). AFC and/or MASH processes have been suggested as the main trigger for the formation of both 
silicic and adakitic magmas in the lower continental crust, in deep crustal hot zones, where mantle-derived 
magmas are being modified (Annen et al., 2006a).

Our new geochemical data show that the Late Oligocene Quchan felsic volcanic rocks show both normal 
arc (±mafic volcanic rocks) and adakitic compositions. Fractionated Quchan felsic rocks show shallow-
er slopes in plots of Th/Yb, Ba/Yb, and La/Yb versus Nb/Yb (Figures 10a, 10b, and 10e), which can re-
flect enrichment in Nb and depletion in Yb and Y because of crystal fractionation. The Quchan adakitic 
rocks have higher Nb/Yb and Th/Yb than basalts and andesites, but some non-adakitic samples (AD12-1, 
AG12-1, AG12-4, and CG12-1) have similar ratios to basalts and andesites. The Quchan Oligocene adakites 
have Nb/Yb, La/Yb, Th/Yb, and Ba/Yb similar to highly fractionated Eocene adakitic-like dacitic-rhyolitic 
domes (barren adakites) from NW Sabzevar and are geochemically distinct from Eocene, fertile (Cu-Au-
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Figure 10.  Trace-element ratios including (a) Th/Yb versus Nb/Yb, (b) Ba/Yb versus Nb/Yb, (c) La/Yb versus SiO2, (d) La/Nb versus Nb/U, (e) La/Yb versus 
Nb/Yb, (f) Sm/Hf versus Zr/Hf, (g) Dy(n)/Yb(n) versus La(n)/Sm(n), and (h) Dy/Dy* versus Dy/Yb for Quchan volcanic rocks. Most plots show good correlation 
and some attest to amphibole fractionation. Geochemical data for Late Cretaceous to Pleistocene magmatic rocks are from Moghadam, Li, Li, et al. (2020). For 
clarity, the domains of Eocene highly fractionated barren silicic rocks with adakitic signatures and fertile (Cu-Au-bearing) adakitic andesites, monzonites and 
monzo-diorites are shown.
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bearing) adakites (andesites, monzonites and monzo-diorites) from S-SW Neyshabour (Moghadam, Li, Li, 
et al., 2020) (Figure 1b). Quchan felsic rocks (both adakitic and non-adakitic) have negative Ti anomalies 
but positive anomalies in Sr and Zr-Hf (Figure 7), which probably reflects the assimilation of crustal rocks 
and amphibole-dominated fractional crystallization.

To test the role of amphibole versus garnet fractionation (and/or garnet as residue) in the formation of 
the Quchan Oligocene adakites we used a series of plots, for example, La/Yb versus SiO2 (Figure 10c), La/
Nb versus Nb/U (Figure 10d), Dy(n)/Yb(n) versus La(n)/Sm(n) (Figure 10g) and Dy/Dy* versus Dy/Yb (Fig-
ure 10h). Amphiboles should have high Nb/U ratios and therefore a decreasing Nb/U along with increasing 
La/Nb can be considered as an indication of amphibole fractionation. Also, trends observed in Dy/Dy* 
versus Dy/Yb and Dy(n)/Yb(n) versus La(n)/Sm(n) can be considered as reflecting amphibole fractionation 
(Davidson et al., 2013). Garnet fractionation would increase La/Yb and Dy(n)/Yb(n) in plots of Dy(n)/Yb(n) 
versus La(n)/Sm(n) and La/Yb versus SiO2, which is not the case for Quchan adakites but instead can be seen 
in fertile adakites from S-SW Neyshabour. There is also a fractionation trend extending from mafic rocks 
toward dacites-rhyolites in plots of Zr/Hf versus Sm/Hf (Figure 10f), which can show fractionation of clino-
pyroxene and amphibole. Since amphibole and pyroxene have higher Kd for Hf than for Zr, contributions of 
trace minerals such as zircon, allanite and xenotime with Kd(Hf)/Kd(Zr) < 1 (Bea et al., 2006) are necessary 
to explain the fractionation of the Zr/Hf ratio.

There are few geochemical-isotopic data for the Quchan adakites, but available data suggest they were 
produced by partial melting of the lower continental crust of NE Iran, which has been thickened enough 
(40–50 km) to generate such melts and/or facilitate high-pressure differentiation of basaltic melts in the 
deep crust (e.g., Shabanian et  al.,  2012). However, high-pressure fractionation trends involving garnet 
cannot be reconciled with our geochemical data, especially the N-MORB-normalized spoon-shaped MREE-
HREE patterns for dacites and rhyolites (Figure 7). Instead, we propose that the elemental ratios discussed 
above suggest that the adakitic signatures of the felsic adakitic rocks (except non-adakitic samples AD12-1, 
AG12-1, AG12-4, and CG12-1) could have originated from crustal assimilation and extreme fractionation of 
amphibole ± clinopyroxene ± plagioclase and accessory minerals from a mafic melt similar to the Quchan 
basaltic melts and/or modeled melt obtained from Section 5.1. In addition, the elemental patterns such as 
La/Yb versus SiO2 and/or Dy(n)/Yb(n) versus La(n)/Sm(n) could reflect variable fractionating assemblages, 
changes in pressure of fractionation and/or the input of new pulses of magma into a pre-existing chamber.

5.3.  FC-AFC-REFC Processes and Silicic Magmatism

Our elemental ratios and isotopic data as well as results obtained for amphibole chemistry indicate that 
crystal fractionation (amphibole dominant) and assimilation of continental crust (AFC) by the Quchan 
basaltic melts could play an important role in the genesis of silicic magmas (both adakites and non-adakitic 
rocks) in Quchan. Field, petrography, and isotopic data show evidence for assimilation of crustal host rocks 
including Cadomian biotite-rich paragneisses. The evidence includes xenoliths in felsic rocks, rounded 
quartz grains in dacites and rhyolites and variable bulk-rock Sr-isotope compositions as well as zircon εHf(t) 
values. Major- and trace-element data could also attest to assimilation, which we discuss below. We suggest 
that the Oligocene Quchan collisional volcanic rocks might represent melts that were extracted from a 
metasomatized mantle reservoir (see Section 5.1) and evolved via fractional crystallization and assimila-
tion-fractional crystallization in a magmatic plumbing system developed in the Cadomian crust of NE Iran. 
In order to assess this hypothesis, we tested models invoking Rayleigh FC (e.g., Lucci et al., 2016, 2020; 
Moghadam et al., 2016; Wanless et al., 2010; White et al., 2009), coupled with AFC (e.g., DePaolo, 1981; 
Moghadam, Li, Griffin, et al., 2020) and REFC in mafic magmatic reservoirs (Lee et al., 2014). The complete 
workflow of the FC-AFC-REFC models including, (a) the possible magmatic parental melts and assimilated 
crustal rocks, (b) calculation of trace-element partition coefficients, and (c) presentation of the FC-AFC-
REFC equations is explained in Supporting Information S1. All the parameters and results obtained from 
FC-AFC-REFC modeling are presented in Tables 4 and 5 and Tables S4 and S5.

5.3.1.  Fractional Crystallization (FC)

Major elements mass-balance modeling has been used to simulate the role of FC and AFC processes in the 
formation of Quchan intermediate and felsic (both adakites and non-adakitic-) rocks from basaltic pre-
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cursors. The quality of the calculated models is evaluated through the 
minimization of the sum of the squared residual (Σr2) of the Parental 
Melt versus Daughter Liquid  +  Fractionating Mineral Assemblage rela-
tionship. Major element mass-balance models are considered acceptable 
when Σr2 <1.0. The calculated models show that basaltic samples such as 
CG12-4 (SiO2 49.1 wt%) and DA12-1 (SiO2 53.4 wt%) reflect ca 30%–45% 
FC of an average basaltic parental melt (MB-av; average composition of 
samples MB12-1 and MB12-2 with MgO values of 7.1 and 6.8 wt%, re-
spectively), with crystallizing assemblages of hornblende + plagioclase 
together with Cr-spinel and olivine (Hbl14–59 + Pl18–67 ± Spl0–28 ± Ol0–17; 
hereafter percentages are given for the total crystallized assemblage; see 
Tables 4 and 5). However, the resulted crystallizing assemblage fails (Σr2 
∼3.6–16.2), mainly due to the large r2 for Na, to directly reproduce the dif-
ferentiation trend from the basaltic source to the Quchan andesites (see 
representative models 4, 9, and 10 and replicated models 31–33 using pla-
gioclases with different Na2O contents, in Table S4), and to some dacites 
and rhyolites (see representative models 34 to 41, in Table S4).

Considering the generally comparable mineralogical assemblages and 
textures of andesites and felsic rocks, we also explored a possible direct 
genetic connection between andesites (SB-av; average composition of 
SB12-1 and SB12-2) and Quchan dacites and rhyolites (SiO2 > 60 wt%). 
This exercise led us to test new major-element mass-balance models for an 
average andesitic source (SB-av). The calculated trends (Table S4) clearly 
show that all Quchan SiO2-rich melts could be produced by 45%–55% FC 
of andesite (SB-av) with a fractionating assemblage of hornblende, plagi-
oclase and ilmenite (Hbl50-53 + Pl44-47 + Ilm2-3) (models 11–26, Table S4). 
Quartz is considered as a fractionating phase for andesite sample AG12-3 
(model 27 in Table S4). No acceptable solution (Σr2 ca 2.2–3.1; models 
28, 29, and 30 in Table S4) is found for low-K dacites (samples AD12-1, 
CG12-1, and SM12-3), where the large r2 values for Al, Mg, Ca, Na and 
K suggest that postmagmatic albitization or other alteration has affected 
these samples. This assumption is also consistent with the high 87Sr/86Sr 
of these rocks.

Harker-like geochemical diagrams for major-element mass-balance mod-
els are presented in Figure 11, where three representative FC trends are 
shown: (a) Bas1 (Hbl59 + Pl13 + Spl28) dominated by hornblende (model 2 
in Table S4); (b) Bas2 (Hbl14–18 + Pl67 ± Spl0–1 ± Ol14–17) dominated by pla-
gioclase (models 5 and 8 in Table S4); and (c) And (Hbl52 + Pl46 + Ilm2) 
with comparable roles of hornblende and plagioclase (models 11–26 in 
Table S4).

5.3.2.  Assimilation-Fractional Crystallization (AFC)

The failure of fractionation of basalts to yield andesites, dacites, and rhyolites strongly suggest the possible 
contribution of crustal materials through AFC; mass-addition, mainly during the genesis of fractionated 
melts (e.g., McBirney et al., 1987; Moghadam, Li, Griffin, et al., 2020). To test this hypothesis, we applied 
AFC models based on the interaction between Quchan collisional mafic melts (i.e., basalts and andesites) 
and the Cadomian felsic crust that outcrops in NE Iran and hosted the Quchan plumbing system. Maximum 
mass-addition (assimilation) trends calculated through the lever-rule method are reported in Table 5 and 
Figures 11 and 12. In agreement with the method proposed by Moghadam, Li, Griffin, et al. (2020), if a pure 
crystal-fractionation (FC) trend corresponds to the null-assimilation value, then the compositional space 
between the FC- and the maximum mass-addition (assimilation) trends correspond to the possible compo-
sitions of residual liquids produced by AFC-processes.

Rock

Magmatic parental melts Cadomian assimilant

MB-ava SB-avb BJ-09-6c

SiO2 (wt%) 48.06 58.10 67.00

TiO2 1.54 0.70 0.48

Al2O3 17.18 17.52 16.69

FeOTot 8.00 5.29 4.36

MnO 0.14 0.09 0.07

MgO 6.94 4.02 0.95

CaO 8.34 6.91 4.22

Na2O 4.33 3.69 3.60

K2O 1.33 1.16 1.41

P2O5 0.45 0.25 0.16

Total 96.31 97.73 98.93

Trace elements for FC-AFC models

Sr (ppm) 729.85 575.38 280.00

y 29.63 19.06 13.00

Dy 4.43 2.73 2.42

Yb 2.32 1.60 1.25

Major elements normalized to 100% on a volatile- and P2O5-free basis

SiO2 (wt%) 50.14 59.60 67.83

TiO2 1.60 0.72 0.48

Al2O3 17.92 17.97 16.90

FeOTot 8.34 5.43 4.41

MnO 0.15 0.09 0.07

MgO 7.24 4.12 0.96

CaO 8.70 7.09 4.27

Na2O 4.51 3.79 3.64

K2O 1.39 1.19 1.43
aMean composition calculated from MB12-1 and MB12-2 samples. bMean 
composition calculated from SB12-1 and SB12-2 samples. cCadomian 
assimilant composition from Moghadam et al. (2020).

Table 4 
Bulk Compositions Used in the FC-AFC Models
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Results obtained from AFC modeling suggest that the Quchan andesites could represent basaltic melts that 
have undergone ca 50% coupled assimilation and fractional crystallization processes. On the other hand, 
the direct effect of assimilation of the Cadomian felsic rocks appears to be limited in the genesis of dacites 
and rhyolites from the andesitic melts.

Based on these results, we further investigated the evolution of Quchan melts through FC-AFC modeling 
applied to representative trace- (Sr and Y) and rare-earth (Dy and Yb) elements (results are in Table S5 
for FC and AFC models). Solutions for these FC-AFC models are consistent with those for major-element 
models, supporting the scenario of Quchan magmatism controlled by FC coupled with assimilation pro-
cesses. Rayleigh FC models calculated for the Bas1 assemblage generally fail to produce andesites and felsic 
melts (Figure 11), whereas a combination of fractional crystallization (FC ∼ 40–60%) and assimilation up to 
ca 30% (proportion of assimilant to fractionates r = 0.3) of Cadomian felsic crust seems capable of generat-
ing andesites from Quchan basalts. Dacites and rhyolites (including adakites) are then the residual liquids 
after 50%–70% FC of an andesitic parental melt (Figure 12). Higher rates of assimilation (>30%) of Cado-
mian felsic crustal rocks are still recognizable. However, at this stage, we cannot rule out the inheritance of 

Rock Magma Cadomian assimilant

AFC parameters C0 CL CA

aa Composition MB-av 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 BJ-09-6

SiO2 (wt%) 50.14 51.91 53.68 55.45 57.22 58.99 60.75 62.52 64.29 66.06 67.83

TiO2 17.92 17.82 17.71 17.61 17.51 17.41 17.31 17.20 17.10 17.00 16.90

Al2O3 8.34 7.95 7.56 7.16 6.77 6.38 5.99 5.59 5.20 4.81 4.41

FeOTot 0.15 0.14 0.13 0.12 0.12 0.11 0.10 0.09 0.08 0.07 0.07

MnO 7.24 6.62 5.99 5.36 4.73 4.10 3.47 2.85 2.22 1.59 0.96

MgO 8.70 8.26 7.82 7.37 6.93 6.49 6.04 5.60 5.16 4.72 4.27

CaO 4.51 4.43 4.34 4.25 4.17 4.08 3.99 3.91 3.82 3.73 3.64

Na2O 1.39 1.39 1.40 1.40 1.41 1.41 1.41 1.42 1.42 1.42 1.43

K2O 1.60 1.49 1.38 1.27 1.15 1.04 0.93 0.82 0.71 0.59 0.48

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Rock Magma Cadomian assimilant

AFC parameters C0 CL CA

aa Composition SB-av 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 BJ-09-6

SiO2 (wt%) 59.60 60.42 61.25 62.07 62.89 63.72 64.54 65.36 66.19 67.01 67.83

TiO2 17.97 17.86 17.76 17.65 17.54 17.43 17.33 17.22 17.11 17.00 16.90

Al2O3 5.43 5.32 5.22 5.12 5.02 4.92 4.82 4.72 4.62 4.52 4.41

FeOTot 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07

MnO 4.12 3.81 3.49 3.18 2.86 2.54 2.23 1.91 1.59 1.28 0.96

MgO 7.09 6.81 6.53 6.25 5.96 5.68 5.40 5.12 4.84 4.55 4.27

CaO 3.79 3.77 3.76 3.74 3.73 3.72 3.70 3.69 3.67 3.66 3.64

Na2O 1.19 1.22 1.24 1.26 1.29 1.31 1.33 1.36 1.38 1.40 1.43

K2O 0.72 0.70 0.67 0.65 0.63 0.60 0.58 0.55 0.53 0.51 0.48

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Note. C0 stands for the initial concentration of an element in the parental liquid, CA is the concentration of element in assimilant, CL is the concentration of 
element in the generated liquid.
aProportion of assimilated rock.

Table 5 
Major-Element AFC Model for MB-av and SB-av to the Cadomian Crust
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this signature from the previous AFC processes which were responsible for the genesis of andesites, which 
can suggest there is no prerequisite for high-degree assimilation of Cadomian rocks.

5.3.3.  Recharge, Evacuation, and Fractional Crystallization (REFC)

The wide compositional range of the Oligocene lavas in NE Iran, and the fact that some samples do not fol-
low the AFC trends (Figure 12), together with the complex FC-AFC processes involving different fraction-
ating assemblages and various degrees of crustal assimilation, suggests a magmatic build-up in deep “hot 
zones” and the persistence of an extensive magmatic feeding system maintained by a continuous recharge 
and evacuation of mafic magmas at the time of collisional magmatism. This idea can be also supported by 
the complex zoning of plagioclase and amphibole phenocrysts. A closed magmatic system without a mag-
matic recharge, in which the evolution of melts is driven only by FC-processes, will produce progressively 
smaller volumes of more residual liquids (e.g., Albarède, 1996; Lee et al., 2014) with up to 50% of melt 
cooling and crystallization, <2500 years as a result of the interaction with cold host rocks (Hawkesworth 
et al., 2000). In contrast, a continuous magmatic recharge in deep crust reservoirs will decrease both cooling 
and crystallization rates, and thus will sustain the mass of the residual liquids and can trigger a repeated 

Figure 11.  Fractional crystallization (FC) and assimilation-fractional crystallization (AFC) major element modeling of Quchan volcanic rocks. Major elements 
have been recalculated to 100% anhydrous, in the system SiO2-TiO2-Al2O3-FeO*-MnO-MgO-CaO-Na2O-K2O. Orange and yellow stars represent the presumed 
parental melts; MB-av basalt (Bas1 and Bas2 parental melts) and SB-av andesite, respectively. Blue and black lines represent Bas1 and Bas2 fractionation trends 
respectively, as calculated for MB-av basaltic melt. The Red line represents And fractionation trend as calculated for SB-av andesitic melt. Green and pink 
lines represent maximum assimilation trends as calculated for the suspected parental SB-av andesitic and MB-av basaltic melts, respectively. The domains of 
possible AFC processes are presented in green and purple shaded areas (for SB-av andesitic and MB-av basaltic melts, respectively) situated between maximum 
assimilation/mixing- and FC- trends. The compositions of the Cadomian assimilant and the NE Iran Cadomian crust are taken from Moghadam, Li, Griffin, 
et al. (2020). The detailed description of the FC-AFC modeling using major elements is presented in Supporting Information S1.
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ascent of melts into the upper parts of the feeding system (Annen et al., 2006a; Ginibre & Worner, 2007; 
Lucci et al., 2020). Furthermore, it has been demonstrated through numerical modeling that deep-crustal 
chambers undergoing prolonged or repeated recharge events are less prone to magma-evacuation concern-
ing the shallower stagnation layers (Karlstrom et al., 2010). Such recharge can produce growing mafic to 
intermediate magma reservoirs by deforming and assimilating the surrounding lower-to middle crustal 
rocks (e.g., Karlstrom et al., 2010; Lee et al., 2014).

To evaluate the effect of the growing deep reservoir(s) on Quchan magmatism, we examined the REFC 
model of Lee et al. (2014). However, since the literature contains few well-documented examples of REFC-
type magmatic systems (e.g., Portnyagin et  al.,  2015 and references therein), we approached the mode-

Figure 12.  Sr/Y versus Y and Dy/Yb versus Yb diagrams illustrating the genesis of the Quchan volcanic rocks via FC-AFC of basaltic and andesitic parental 
melts represented by MB-av basalt (Bas1) and SB-av andesite, respectively. Bulk rock/melt partition coefficients used are reported in diagrams and were 
calculated following the procedure presented in Supporting Information S1. AFC curves represent De Paolo Assimilation and Fractional Crystallization 
solutions. The percentages indicate the amounts of fractionating assemblages. Equations and parameters used are presented in Supporting Information S1. We 
also tested the recharge, evacuation and fractional crystallization (REFC) model of Lee et al. (2014), using the same partition coefficients as for the FC-AFC 
trends. The REFC modeling was applied to both basaltic (MB-av) and andesitic (SB-av) parental melts and has been calculated to 10 times (10×) of the initial 
mass of the magma chamber (M0

ch = 1). See text for explanation and Supporting Information S1 for details of the calculations.
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ling through a conservative hypothesis assuming (a) the recharge rate 
(dMr = 0.4) is higher than the sum of crystallization and evacuation rates 
(dMx + dMe = −0.3), and this corresponds to a magma chamber growth 
of 10% (DMch = +0.1) at each overturn; and (b) possible large fractiona-
tion between incompatible trace and REE elements can be achieved as a 
function of the crystallizing phases involved (e.g., Lee et al., 2006; Portny-
agin et al., 2015). Using the same partition coefficients as in our FC-AFC 
models, the REFC modeling was applied to both basaltic (MB-av) and 
andesitic (SB-av) reservoirs and calculated up to 10 times (10×) the initial 
mass of the magma chamber (M0

ch = 1).

Results are reported in Table S5 and presented in Figure 12. Compared to 
pure FC, the REFC modeling for the basaltic reservoir suggests an inter-
esting scenario characterized by (a) a progressive depletion of Sr in resid-
ual liquids compared to the Sr enrichment in the FC-trend, (b) a stronger 
depletion of Y and (c) less fractionation of HREEs. We emphasize that 
the progressive growth of the basaltic reservoir seems to have no direct 
influence on the HREE budget in the evolved melts. On the other hand, 
nearly all Quchan volcanic rocks are included in the compositional space 
between FC and REFC trends, when departing from the same MB-av pa-
rental melt in the Sr-Y plot (Figure 12a).

The complexity behind the evolution of magmas in the Quchan volcanic 
system can be described by three samples from the same AG locality: AG-
12-3 andesite, AG12-4 dacite and AG12-1 rhyolite. These three samples 
(a) show Sr-Y signatures close to the Cadomian assimilants (Figure 12a); 
(b) can be interpreted as daughter liquids after ca 50% fractionation of 
the andesitic SB-av melt; (c) can be interpreted as fractionated melts ex-
tracted by a progressive growth (1.3×) of the deeper basaltic reservoir; (d) 
can be produced by 60%–80% AFC of a pristine basaltic melt; or (e) can 
represent the evolved melts extracted from a growing (1.1–1.2×) ande-
sitic reservoir (Figure 12a). We suggest that all these scenarios may have 
occurred during the genesis of AG rocks, as might be expected in a real 
magmatic plumbing system. However, since non-adakitic sample AG12-
1 has higher εNd(t) and εHf(t), we suggest this sample can be considered 
as a fractionated melt, extracted during the progressive growth of deeper 
basaltic reservoirs with more juvenile isotopic signatures than the other 
rocks.

The FC-AFC-REFC models presented in this study highlight the general 
perspective of magmatic plumbing systems toward an innovative vision 
of magmatic feeding systems made up of multiple types of transport of 
basaltic magmas and storage chambers distributed within the crust. In 

these settings, multi-stage open-system processes such as the FC-AFC processes can lead to the evolution 
of magmas to yield felsic rocks and/or via AFC and extreme amphibole fractionation to produce adakites.

5.3.4.  Isotope Modeling of Subducted Trench Sediments Added to DM

We have used Sr-Nd-Pb isotope modeling (Figure 13) to further investigate the role of mantle heteroge-
neity as well as crustal contamination (or AFC) in the genesis of the Quchan felsic rocks. However, the 
other ambiguity is that the Quchan basalts show depletion in Nb-Ta except for sample MB12-2 which lacks 
such depletion; all these basalts have Nb/La∼0.6 to 1. Sample MB12-2 with less of a subduction signature 
has REE- and trace-element patterns similar to enriched MORBs and shows derivation from an enriched 
mantle. However, this sample with εNd(t) = 4.4 and εHf(t) = 9.5, still has radiogenic Pb-isotope ratios with 
∆8/4–60.1, which show the involvement of components from subducted sediments in their mantle source. 
Using trace elements, we suggested that a 90:6:4 mixture of DM, terrigenous trench sediment and altered 

Figure 13.  Mixing mass balance modeling of the initial 143Nd/144Nd 
(a) and 87Sr/86Sr (b) isotopic ratios versus 206Pb/204Pb, using the depleted 
mantle (DM) and Cadomian continental crust endmembers to unravel the 
isotopic signatures of the Quchan magmatic rocks. Mixing mass balance 
modeling is also presented between mixed mantle (1) (MM (1), i.e., 90% 
depleted mantle + 6% subducted sediments + 4% altered oceanic crust, 
AOC) and the Cadomian continental crust of Iran. Diamond marks on 
curves show 1%–10% mixing between endmembers. Data for Pacific 
MORBs and Pacific arc tholeiites are from EarthChem (https://www.
earthchem.org). Geochemical data for Late Cretaceous to Pleistocene 
magmatic rocks are from Moghadam, Li, Li, et al. (2020). All data 
including those for MORBs and arc tholeiites have been corrected for 
24 Ma radiogenic growth.
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oceanic crust, following 5% aggregated fractional melting (and/or 89:11 mixture of DM and Eastern Medi-
terranean Sea sediments, following 6% aggregated fractional melting) could produce modeled melts that are 
geochemically close to the composition of the Quchan basalts (except for sample MB14-2 which needs an 
enriched mantle with less input from the subducting sediments). Again, we clarify that our trace elements 
model is not a unique solution to explain the genesis of all basaltic rocks, but this model is geologically rea-
sonable. To better understand the role of mantle heterogeneity and crustal contamination, we have further 
used mass-balance modeling to calculate the Sr, Nd and Pb isotopic composition of a mixed mantle (1) and 
(2) (MM(1) and MM(2) in Figure 9) sources using both mixtures of 90:6:4 of DM, terrigenous trench sedi-
ment, altered oceanic crust, and 89:11 of DM and Eastern Mediterranean Sea sediment– probably similar to 
the depleted mantle-sediment melange model suggested by Marschall and Schumacher (2012). The mixed 
mantle (1) has 87Sr/86Sr = 0.70386, 143Nd/144Nd = 0.51283 and 206Pb/204Pb = 18.20, which are quite similar to 
the isotopic signatures of the selected basalts (both samples MB12-1 and MB12-2) with 87Sr/86Sr = 0.70434 
to 0.70500, 143Nd/144Nd = 0.512834 to 0.512884 and 206Pb/204Pb = 18.42 to 18.59. On other hand, the mixed 
mantle (2) has 87Sr/86Sr = 0.70434, 143Nd/144Nd = 0.51276 and 206Pb/204Pb = 18.22 isotopic ratios that are 
slightly unradiogenic in Nd but radiogenic in Sr and Pb compared to the mixed mantle (1) (Figure 13). Then 
the mixing trends between a depleted mantle (DM) and Cadomian continental crust and also between the 
mixed mantle (1) (MM(1)) and the Cadomian continental crust have been modeled. All parameters for 
modeling are presented in Table S6.

Our modeling displays two features. (a) The Quchan samples show two mixing trends (Figure 13), one be-
tween the depleted mantle and Cadomian continental crust and the second one between the mixed mantle 
(1) and the Cadomian continental crust. These trends are better recognized in the Nd versus Pb isotope 
plot. (b) The mixed mantle (1) can produce the Nd-Pb isotopic signatures of the basalt samples MB12-1 and 
MB12-2, although the 87Sr/86Sr(t) value in sample MB12-2 is a bit higher than in sample MB12-1. This mixed 

mantle (1) can melt to produce the Quchan basalts, although it should 
produce basalts with Nb-Ta depletion. Since basalt sample MB12-2 shows 
no clear Nb-Ta depletion (and together with sample MB12-1 displays less 
enrichment in Rb, Ba, U and Th compared to the modeled melt), it could 
be derived from a distinct, but enriched source—compared to the other 
Quchan basalts– possibly with the addition of lesser amounts of subduct-
ing sediments. Therefore, the isotopic data require at least three com-
ponents, which are also recognized in the trace elements of basalts and 
felsic rocks using our modeling for the mantle source (Section 5.1) and 
FC-AFC processes (Section 5.3). Our modeling suggests that the isotopic 
signatures of the Quchan lavas most likely reside in both the lithospheric 
mantle and in the Cadomian continental crust of Iran.

5.4.  Magmatism in NE Iran

5.4.1.  Formation of Quchan Rocks

Our results are graphically summarized in Figure 14 and show that the 
geochemical-isotopic variations in Quchan lavas can be provided first 
by both sub-continental lithospheric mantle and then by the Cadomian 
continental crust of Iran. However, since the Quchan rocks have most-
ly high εNd(t)>+4 and εHf(t)>+6, it can be assumed that these isotop-
ic values are not consistent with the presence of a lithospheric mantle 
(unless that lithospheric mantle was itself a previous subducted slab), 
but instead could attest to a variably depleted mantle beneath an oceanic 
back-arc or an intraoceanic arc system. We must emphasize that there 
is neither any trace of an oceanic back-arc basin during the Late Oligo-
cene in NE Iran nor evidence for an intraoceanic arc within the narrow 
Sabzevar-Torbat-e-Heydarieh fossilized back-arc basin. However, the ra-
diogenic Nd and Hf isotopes for the Quchan rocks can be inherited from 
the pre-existing depleted mantle which prevailed beneath the Late Creta-

Figure 14.  Schematic representation of the magmatic processes to yield 
the Quchan mafic and felsic rocks. Melting of a depleted to enriched 
(refertilized) lithospheric mantle and further fractional crystallization of 
olivine (Ol) and pyroxene (Py) in lower crust magma chambers produce 
the more evolved melts. These evolved melts further undergone fractional 
crystallization and assimilation-fractional crystallization in lower to 
middle magma chambers (hot zones) along with extreme amphibole 
crystallization to produce felsic and/or adakitic rocks. Black dikes display 
the melt conduits for primitive basaltic melts to enter the Melting, 
Assimilation, Storage, and Homogenization (MASH) zones in the deep 
lower crust, whereas colored dikes show the migration of evolved magmas 
into shallow magma chambers and/or into the surface.
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ceous-Paleocene Sabzevar-Torbat-e-Heydarieh back-arc basin. According to our major- and trace-element 
and Sr-Nd-Pb modeling, we suggest a four-stage scenario for the formation of the Quchan lavas. (a) Melting 
of a metasomatized mantle, a DM re-fertilized by altered oceanic crust, trench sediments and/or sediment 
melts, to produce the original basaltic melts. The refertilization of the mantle can have occurred during the 
previous subduction, that is, from Late Cretaceous to Oligocene (ca 27 Ma). However, our isotopic modeling 
shows that both depleted and refertilized mantle sources seem to be involved during the magma genesis. 
(b) Early fractionation of olivine and pyroxene from basaltic melts in lower-to middle-crust hot zones to 
produce more-evolved (andesitic) melts with higher H2O contents. (c) Extensive fractionation of amphibole 
and assimilation of continental crust (AFC) in the middle crust and shallow magma chambers, to pro-
duce the adakitic magmas with spoon-like MREE-HREE patterns. This process would further perturb the 
isotopic ratios of the Quchan magmas. (d) Recharge of magma chambers to perturb the geochemical-iso-
topic systematics of fractionated magmas, which can further suffer AFC processes to generate the felsic 
rocks. Empirical models suggest that hydrous basaltic magmas can stall in the lower-middle continental 
crust, in hot zones, and fractionate to produce crystal mush (e.g., Annen et al., 2006a, 2006b; Bachmann 
& Bergantz, 2008; Hidalgo & Rooney, 2014; Hidalgo et al., 2007). The crystal mush or the hot zones can 
be replenished by new pulses of basaltic magmas. These processes that is, replenishment and thus mag-
matic fractionation, can explain the oscillatory zoning in amphibole and plagioclase and the variable iso-
topic signatures of the fractionated rocks. Extreme amphibole fractionation could be expected to generate 
amphibole cumulates in the middle-lower crust. Outcrops of these cumulates are lacking in the Quchan 
area, which is covered by Oligocene magmatic rocks and younger volcanic-sedimentary rocks, but there are 
1–2 m thick layers of amphibole (±<10 clinopyroxenes) cumulates in other outcrops in NE Iran that accom-
pany deep-seated, deformed Eocene granodiorites and diorites. These cumulates are similar to mono-min-
eralic amphibole cumulates reported from continental arcs worldwide, for example, Antarctica (Tiepolo & 
Tribuzio, 2008), south China (Sun & Zhou, 2008) and from southern and central American volcanic arcs. 
Crystallization of amphibole cumulates in the middle crust, along with assimilation of continental crust, 
could rapidly increase the SiO2 content of the residual magmas (e.g., Carmichael, 2002), which could pro-
duce Quchan dacites and rhyolites upon eruption. Amphibole fractionation and AFC processes further can 
generate residual magmas with adakitic geochemical compositions (Castillo et al., 1999).

5.4.2.  Magmatic Triggers in NE Iran

Zircon U-Pb, K-Ar, and Ar-Ar ages imply that magmatism in the NE Iran back-arc started in the Mid-Late 
Cretaceous (∼110 Ma) and continued until the Pleistocene (e.g., Alaminia et al., 2013; Ghasemi et al., 2010; 
Jamshidi et al.,  2015; Kazemi et al., 2019; Rostami-Hossouri et al., 2020; Shabanian et al., 2012, among 
others). Late Cretaceous magmatism in the NE Iran back-arc is consistent with subduction initiation along 
the Zagros suture zone or the Main Zagros Thrust (MZT) at ca 110-100 Ma and along the Makran zone in 
south Iran (e.g., Barbero et al., 2020; Burg, 2018; Esmaeili et al., 2020; Moghadam & Stern, 2011; Moghad-
am et  al.,  2010; Moghadam, Khedr, et  al.,  2014; Monsef et  al.,  2018) (Figure  1a). Subduction initiation 
drove extension in the overlying plate of the Iranian plateau, caused exhumation of high-pressure rocks 
(blueschists) along with the Zagros ophiolites (Angiboust et al., 2016; Moghadam et al., 2017) and triggered 
the formation of back-arc oceanic basins within the Iranian plateau, such as the Sabzevar-Torbat-e-Hey-
darieh oceanic back-arc in NE Iran (Moghadam, Corfu, et al., 2014). This extension was also responsible 
for a high rate of magmatism in the Iranian plateau, mainly in the NE segment. This Mid-Late Cretaceous 
magmatism in the NE Iran back-arc is represented by arc tholeiites and calc-alkaline rocks (Figure 6).

The NE Iran magmatism entered a waning stage during Paleocene to Early Eocene time coeval with the 
exhumation of blueschists and thus the closure of the Sabzevar-Torbat-e-Heydarieh back-arc oceanic basin 
(Bröcker et  al.,  2021). The Paleocene to Early Eocene magmatism is characterized by highly radiogenic 
arc-tholeiitic to calc-alkaline igneous rocks. Magmatism began to increase during the Middle Eocene (48–
40 Ma), coeval with flare-up magmatism in other segments of both the magmatic front and back-arcs in Iran 
(Moghadam, Li, Li, et al., 2020; van der Boon et al., 2021). High magmatic fluxes during the Eocene were 
accompanied by extension throughout the Iranian plateau driven by the roll-back of the Neotethyan slab 
(Chiu et al., 2013; Verdel et al., 2007). The extension was accompanied by core-complex formation, basin 
deepening and subsidence, leaving a thick sequence of Nummulite-bearing limestones and green marine 
pyroclastic rocks, which are accompanied by and/or interlayered with Eocene volcanic rocks (Kargaranbaf-
ghi & Neubauer, 2015; Kargaranbafghi et al., 2012, 2015; Moghadam et al., 2018; Verdel et al., 2007). The 
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Eocene magmatism in NE Iran shows both calc-alkaline and adakitic geochemical signatures (Figure 6). 
Magmatism seems to have waned during the Late Eocene and restarted during the Mid-Late Oligocene, 
after the collision between Arabia and Eurasia at ∼27 Ma. Magmatism continued during Miocene and Pleis-
tocene time in NE Iran with the eruption of subaerial andesites from NE Iran (NW Torbat-e-Heydarieh). 
Oligocene and younger magmatic rocks from NE Iran show enrichment in large ion lithophile elements 
and depletion in high field strength elements, and these magmas are inferred to be mainly derived from a 
subduction-modified mantle source, refertilized by subduction components from subducting Neotethyan 
oceanic lithosphere beneath Iran, before Iran and Arabia collided at ca 27 Ma.

Since there is ∼600 km between the magmatic front (Urumieh-Dokhtar magmatic belt, Figure 1) and back-
arc region in NE Iran, some believe that the Cenozoic magmatism in NE Iran could be related to the sub-
duction and thus closure of the Neotethyan branches or the Sabzevar-Torbat-e-Heydarieh oceanic back-arc 
basin in NE Iran (e.g., Moghadam, Khedr, et al., 2015). We would argue that (a) the distance between the 
magmatic front and back-arcs is controlled mainly by the dip of the subducting slab; (b) in most retreating 
arcs, the back-arc magmatic belt is mostly restricted to ∼100–300 km from the magmatic front (as in the 
southern Andean subduction system); (c) in some subduction systems—for example, extensional ones—the 
back-arc magmatism is located far away from the trench. For example, the Cenozoic back-arc magmatism 
in the Oligocene San Juan Volcanic Field (USA) could be traced ∼1,000 km away from the trench (Lake & 
Farmer, 2015).

We cannot rule out the subduction of the Neotethyan back-arc lithosphere in NE Iran, but the polarity of 
this subduction has been challenged. Many argue that the back-arc lithosphere has been subducted toward 
the north—beneath the Turan Plate—and thus has produced the Quchan Oligocene rocks (e.g., Ghasemi 
et al., 2010), but without a trace of Late Cretaceous-Eocene magmatism. However, the “collisional” or “col-
lision-related” terms we use in this study refer to the magmatism occurring after the collision between Iran 
and Arabia at ∼27 Ma, which is abundant in all parts of Iran. The tectonic forces needed for continental col-
lision—that is, those related to the opening of the Red Sea and convergence between Arabia and Iran– could 
also be a trigger for the closure of the Sabzevar-Torbat-e-Heydarieh oceanic basin in NE Iran, although the 
exhumation of the Paleocene-Early Eocene blueschists in the Sabzevar-Torbat-e-Heydarieh oceanic basin 
(Bröcker et al., 2021) and the deposition of Paleocene-Eocene basal conglomerates (+terrigenous sediments 
upwards the section) to seal these ophiolites show that this Neotethyan back-arc basin was closed earlier 
than Late Oligocene.

6.  Conclusions
Late Cretaceous to Pleistocene magmatic rocks are common in NE Iran and are related to the subduction 
initiation beneath the Iranian Plateau during Late Cretaceous and then to a magmatic flare-up in Eocene 
time due to the Neotethyan rollback, and finally to the collision between Iran and Arabia at ca 27 Ma. Late 
Oligocene volcanic rocks including basalts, andesites, dacites and rhyolites are abundant in NE Iran (south 
Quchan), with the felsic rocks showing zircon U-Pb ages of 25–24 Ma. These rocks have subduction-relat-
ed geochemical signatures and are characterized by variable Sr-Nd-Pb-Hf isotope compositions. The geo-
chemical compositions of Quchan basalts are generally in agreement with partial melting of a refertilized 
mantle, generated by the interaction of a depleted mantle with subducting altered oceanic crust and over-
lying sediments. However, the Sr-Nd-Pb isotopic ratios and modeling could highlight that both a depleted 
and an enriched mantle were involved in the genesis of the Quchan rocks. Fractional crystallization and 
assimilation-fractional crystallization models imply that basaltic melts could pool in the lower crust and 
fractionation of early olivine and clinopyroxene can yield fractionated, H2O-rich melts. These evolved melts 
can foster extreme amphibole fractionation in the lower-middle crustal hot zone, along with assimilation of 
the Cadomian continental crust, to produce the Quchan felsic rocks and/or adakites.

Data Availability Statement
All data underlying the finding of this paper can be accessed from both Supporting Information S1 and 
http://dx.doi.org/10.17632/8zm7zkrrnb.1.
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