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Abstract: The current study presents a detailed assessment of risk zones related to karst collapse
in Wuhan by analytical hierarchy process (AHP) and logistic regression (LR) models. The results
showed that the LR model was more accurate with an area under the receiver operating characteristic
(ROC) curve of 0.911 compared to 0.812 derived from the AHP model. Both models performed
well in identifying high-risk zones with only a 3% discrepancy in area. However, for the medium-
and low-risk classes, although the spatial distribution of risk zoning results were similar between
two approaches, the spatial extent of the risk areas varied between final models. The reliability of
both methods were reduced significantly by excluding the InSAR-based ground subsidence map
from the analysis, with the karst collapse presence falling into the high-risk zone being reduced
by approximately 14%, and karst collapse absence falling into the karst area being increased by
approximately 6.5% on the training samples. To evaluate the practicality of using only results
from ground subsidence maps for the risk zonation, the results of AHP and LR are compared with
a weighted angular distortion (WAD) method for karst risk zoning in Wuhan. We find that the
areas with relatively large subsidence horizontal gradient values within the karst belts are generally
spatially consistent with high-risk class areas identified by the AHP- and LR-based approaches.
However, the WAD-based approach cannot be used alone as an ideal karst collapse risk assessment
model as it does not include geological and natural factors into the risk zonation.

Keywords: karst collapse; risk zonation; analytical hierarchy process; logistic regression; weighted
angular distortion method

1. Introduction

Karst collapse is a significant geological hazard that occurs when subsurface physical
and/or chemical dissolution of carbonate rocks form voids and cavities at depth that
can propagate towards the surface and result in a collapse structure [1,2]. Environmental
problems associated with karst collapse have a serious impact in many regions of the world,
such as the Dead Sea area [3]; Florida and Texas, USA [4]; Hamburg, Germany [5]; Ebro
Valley, Spain [6]; Elba Island, Italy [7]; Guangzhou, China [8]; Hamadan, Iran [9]. Similarly,
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in China, soluble rocks cover an area of 346.3 × 104 km2 in the country, accounting for
more than one-third of the total land area. The karst collapse incidents arising from this
geological environment have affected more than 30 metropolises and 420 counties (districts)
nationwide [10]. Among all cities, Wuhan, built on a well-developed karst ecosystem, is
the most vulnerable mega-city (with people over 12.6 million) to karst collapse. From
1977 to 2018, 38 regions in Wuhan were affected by karst collapse, with the number of
sinkholes reaching 102. These karst collapse incidents not only directly caused at least CNY
114.091 million in economic losses but also seriously jeopardized the safety of residential
areas, transportation, engineering construction, and water supply [11]. Management of
such unpredictable, but everlasting, hazards requires a detailed study of karst collapse-
inducing mechanisms and risk assessment of areas vulnerable to collapse.

In terms of the research on karst collapse-inducing mechanisms, previous studies
have identified the main factors acting as triggers for karst collapse in Wuhan [10,12,13].
These include well-developed karst settings, the typical dualistic structure of the overlying
soil, and the interactive runoff between the Yangtze River water, pore water, and karst
water, as well as the extrinsic triggers such as engineering dewatering from large-scale
municipal construction [14,15]. Moreover, localized ground subsidence was also observed
at historical karst collapse sites in Wuhan, similar to that of Elba Island, Italy [7] and
Alagoas, Brazil [16]. For the vulnerability assessment of karst collapse in Wuhan, all the
existing studies adopted the analytical hierarchy process (AHP) method [17,18], of which
the hierarchy modeling only included the essential controlling conditions. Neither the
external predisposing factors nor the contemporary ground subsidence map of Wuhan was
considered in the modeling [11,19,20].

In this paper, we extend previous susceptibility studies in Wuhan and present the
outcomes of karst collapse risk zonation using two approaches commonly used in geohaz-
ard assessment, namely the qualitative AHP and the semi-quantitative logistic regression
(LR) [21–23]. For the AHP and LR calculation, in addition to typical controlling factors
included in the existing literature in Wuhan, we also consider the influence from urban
land planning, the dynamic/static load factors from municipal traffic/high-rise buildings,
and the ground deformation rates derived from the multitemporal InSAR processing of
Sentinel-1A (April 2015 to June 2019). Moreover, we present results from Weighted Angu-
lar Distortion (WAD), derived from integration of InSAR-based ground subsidence rates,
subsidence horizontal gradient (SHG), and municipal construction density for karst risk
zoning in Wuhan. The WAD approach has been recently adopted as a simple, but practical
and reliable, approach to evaluate surface faulting and subsidence risks in areas such as
Beijing, China [24], Mexico City [25], and Alagoas, Brazil [16]. We compare the results from
these different techniques in a common setting and evaluate the accuracy of AHP- and
LR-based approaches, which provides important inferences on how to accurately assess
karst collapse risk modeling in Wuhan.

2. Study Area and Materials
2.1. Study Area

The study area covers seven central urban regions (I~VII in Figure 1a) of Wuhan city,
with a total area of approximately 3260 km2. The plains, with a few low mountains and hills,
form the basic geomorphological unit of the study area. Geologically, six karst belts (L1–L6
in Figure 1b) with individual lengths of about 35–63 km and widths of 0.5–15 km stretch
throughout the city along a WNW-ESE direction. They cover a total area of 960.95 km2,
accounting for 29.5% of the whole study area. Such karst geological conditions coupled
with the intensive urban construction over the past 20 years, including nearly 12 subway
lines and over 10,000 construction sites, resulted in 84 sinkhole incidents in the study
area from 1977 to 2018 (Figure 1b). Moreover, 87% of these sinkholes occurred in the
Baishazhou-Jiangdi zone, where the typical dualistic structure of the upper soft soils and
lower sand is distributed (Figure 1b).
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Figure 1. (a) Location and coverage of the study area; (b) close-up view of the study area with exemplary photos of sinkholes
in Hanyang Lanjiang Road section ( 1©), Ruanjiaxiang, Lujiajie ( 2©), Fenghuo village ( 3©), and Qingling village ( 4©). The six
karst belts from L1 to L6 are Tianxingzhou karst belt, Bridge karst belt, Baishazhou karst belt, Zhuankou karst belt, Junshan
karst belt, and Hannan karst belt.

2.2. Materials and Data Layers Grading

For this study, we collected nine types of datasets in terms of geological environment
intrinsic conditions and extrinsic trigger conditions as listed in Table 1. Geological and
environmental intrinsic conditions include the following criterion layers: karst geology
conditions (B1), overburden conditions (B2), hydrogeological conditions (B3), and karst
surface subsidence conditions (B4). The extrinsic trigger condition includes the criterion
layer of anthropological activities (B5). Below, we detail different components of the
criterion layer.

Karst geology conditions (B1): these consist of stratigraphic lithology (C11) and the
development degree of karst (C12). The soluble rock strata in the study area are mainly
composed of dolomitic limestone of the Triassic Lower Middle System, flint tuberculous
limestone of the Permian Lower System, thick-bedded spheroidal tuffs and dolomites of the
Carboniferous Upper System, and clay-hosted tuffs of the Lower Carboniferous. They form
two types of karst strata in Wuhan, i.e., covered and buried karst, which, together with
non-carbonate areas, constituted the high, medium, and low susceptibility zones of karst
collapse in Wuhan (Figure 2a). In addition, the development degree of karst determines the
space for overlying soil storage and transport [1], which is an important predisposing factor
for karst collapse. Therefore, we divided the development degree of karst in the study area
into well-developed (κ > 10%), medium-developed (10% ≥ κ ≥ 3%), slight-developed
(κ < 3%), and non-soluble areas (Figure 2b) according to the China karst collapse survey
specification (1:50,000) [12].
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Table 1. Influence grading of karst collapse evaluator.

Karst Collapse Evaluators Influence Grading and Assignment

Criterion Layer Factor Layer High Medium Low Non-Prone

M = 5 M = 3 M = 2 M = 1

Geological
environ-

ment
intrinsic

conditions

Karst geology
conditions (B1)

Stratigraphic
lithology (C11) Covered karst Buried karst -

Non
carbonate

area (M = 0)

Development degree of
karst (C12)

κ > 10%
(well-

developed)

10% ≥ κ ≥ 3%
(Moderate
developed)

κ < 3%
(Slight-

developed)

Non
carbonate

area (M = 0)

Overburden
conditions (B2)

Overlying soil
structure (C21)

Typical
dualistic
structure

Multi-layered
soft soil

structure

Buried and
single-layer

soil structure
-

Overlying soil
thickness (C22) 30–40 m 15–30 m >40 m <15 m

Hydrogeological
conditions (B3)

Proximity to the 4th class
rivers (C31) <1000 m 1000–3000 m 3000–5000 m >5000 m

Quaternary pore water
abundance (C32) >1000 m3/d

100–1000
m3/d <100 m3/d

Non-aqueous
group

Karst surface
subsidence

conditions (B4)

InSAR-based ground
subsidence rates (C41)

−89.7–−5.8
mm/yr

−5.7–−1.3
mm/yr

−1.2–2.3
mm/yr 2.4–29 mm/yr

Extrinsic
trigger

conditions

Anthropological
activities (B5)

Proximity to subway lines
and construction sites (C51) <500 m 500–1000 m 1000–2000 m >2000 m

Urban planning map (C52) R, C M, T, U, W G E

Where κ is cave encounter rates; M is scale value of each grading.

Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. Data layers and subclasses: (a) Stratigraphic lithology; (b) development degree of karst; (c,d) overlying soil structure
and thickness; (e) proximity to the 4th class rivers; (f) quaternary pore water abundance; (g) InSAR-based ground subsidence
rates; (h) proximity to subway lines and construction sites with a building height over 250 m; (i) urban planning map.

Overburden conditions (B2): these include the overlying soil structure (C21) and
thickness (C22). Most karst collapses occur in the dualistic structure overburden area of
the upper soft soils and lower sand in the Baishazhou-Jiangdi zone (Figure 1b), with the
soil thickness generally <15 m. This was closely followed by the multi-layered soft soil
structure area (clay and sandy soil) with a thickness of 15–30 m, and the buried karst and
single-layered soil structure area with a cover thickness of 30–40 m. A few karst collapses
were recorded in areas with the soil thickness exceeding 40 m. Therefore, the overlying soil
structure and thickness were classified into three and four categories, respectively, based
on the recorded karst collapse incidents, as shown in Figure 2c,d.

Hydrogeological conditions (B3): Ref [14] revealed that there existed a frequent in-
teractive runoff recharge of “Yangtze water-pore water-karst water” in the karst zones of
the younger terrace on both sides of the Yangtze River, which promotes the formation
and expansion of subsurface cavities. Therefore, we spatially analyzed the recorded karst
collapses and ranked the proximity to the 4th class rivers (C31) as 0–1000 m, 1000–3000 m,
3000–5000 m, and >5000 m (Figure 2e). In addition, the Quaternary pore water abundance
(C32) ranked as >1000 m3/d, 100–1000 m3/d, and <100 m3/d according to the water yield
data (i.e., cubic meters per day, m3/d) from 361 karst boreholes in the study area (Figure 2f).

Karst surface subsidence conditions (B4): Ground subsidence can usually be regarded
as an indicator of the localized sinkhole formation process, and this is the case in Wuhan.
Spatial analyses of ground subsidence and sinkhole locations in karst zones showed that
areas with dense historical sinkholes were often accompanied by severe localized ground
subsidence [14,15]. To consider the influence of contemporary ground deformation in risk
modeling, we exploited C-band Sentinel-1 SAR data, covering the period from April 2015
to June 2019, and analyzed them using the StaMPS-SBAS method [26] to derive the ground
subsidence rates in Wuhan. Subsequently the InSAR-based ground subsidence rates (C42) in
the study area [14,15] were divided into four categories using the natural break algorithm, i.e.,
−89.7–−5.8 mm/yr, −5.7–−1.3 mm/yr, −1.2–2.3 mm/yr, and 2.4–29 mm/yr, corresponding
to the high-, medium-, low-, and non-prone risk areas, respectively (Figure 2g).

Anthropological activities (B5): In addition to the four geological environment intrinsic
conditions mentioned above, Ref [14] suggested that engineering dewatering from under-
construction subway lines and construction sites, and water depletion from industrial,
commercial, and urban residential production and living, promotes the development of
underground cavities and karst surface subsidence. Therefore, we conducted a distance-
based multi-ring buffer analysis for all subway lines and construction sites with building
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heights over 250 m (C51) in the study area and classified them into four categories, i.e.,
<500 m, 500–1000 m, 1000–2000 m, and >2000 m (Figure 2h). In addition, the urban land
statutory planning provides a glimpse of the future engineering intensity in the karst area.
Therefore, we sorted the urban planning map (C52) into four categories, i.e., manufacturing
(M); transportation (T); municipal utilities (U); warehouse (W); land area, residential (R);
commercial (C); land area, green space and agriculture (G); land area, and ecologically
controlled land and water area (E) (Figure 2i).

The hierarchy, influence grading, and corresponding scale values of the above four
geological environment intrinsic conditions (B1–B4) and anthropological activities (B5)
with a total of nine sub-criteria are shown in Table 1.

3. Methodology
3.1. The AHP-Based Approach to Risk Assessment
3.1.1. Decision Matrices and Consistency Test

We used the T.L. Satty 1–9 scaling method [27] for the pair-wise comparison of all factor
layers under each criterion layer by relatively ranking their prevalence to karst sinkhole
formation. The eigenvector associated with the principal eigenvalue of the pair-wise
comparison matrix was used as the weight. As the comparison matrix is not necessarily a
consistency matrix, we performed the consistency index (CI) and consistency random (RI)
tests. Further, the consistency ratio (CR) could be defined as [27,28]:

CI =
λmax − n

n− 1
, RI =

CI1 + CI2 + · · ·+ CI200

200
, CR =

CI
RI

(1)

where λmax is the principal eigenvalue of the pairwise comparison matrix and n is the order
of the matrix. The comparison matrix is entirely consistent if CI is equal to zero; a smaller
value of CI corresponds to a better consistency. On the other hand, if CR is equal to 0.1, the
comparison matrix has a good consistency, and the grading is reasonable. Otherwise, it
does not meet the consistency principle and needs to be adjusted until the test is passed.
The relative weights of the sub-criteria and data layers are provided in Table 2.

Table 2. Judgement matrix and the combined weights for susceptibility mapping.

Factor Layer Cij Relative to the Criterion Layer Bi

Criterion
Layer

Factor
Layer C11 C12 C21 C22 C31 C32 C41 WCij WCij−Bi

B1
C11 1 1/2 0.3333 0.0782
C12 2 1 0.6667 0.1565

B2
C21 1 2 0.6667 0.2991
C22 1/2 1 0.3333 0.1495

B3
C31 1 1/5 0.1667 0.0137
C32 5 1 0.8333 0.0683

B4 C41 1 1 0.2347

Criterion layer Bi with Respect to Target Layer (Sinkhole or Not)

Criteria Layer B1 B2 B3 B4 WBi Test Index

B1 1 1/2 3 1 0.2347
λmax = 4.0042B2 2 1 5 2 0.4486

B3 1/3 1/5 1 1/3 0.082 CI = 0.0014, CR = 0.0016
Consistency test passedB4 1 1/2 3 1 0.2347

Note where WCij and WBi are the normalized weights of factor and criterion layer, respectively; WCij−Bi is the combined weights calculated by
WCij−Bi = WCij ·WBi , i = 1, 2, · · · , 4; j = 1, 2.

3.1.2. Karst Collapse Susceptibility and Risk Assessment

We adopted the same method as above to assign the weight of karst collapse sus-
ceptibility (λsusc) and the two triggering sub-criteria (λC51 , λC52). In the end, based on the
comprehensive index evaluation model of hazards (Equation (2)), the above three types of
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layers (λsusc, λC51 , λC52 ) were rasterized and superimposed on each other for karst collapse
risk zonation in Wuhan.

Risk = λsusc ∗ SusAHP + λC51 ∗ C51 + λC52 ∗ C52 (2)

3.2. The LR-Based Approach to Risk Assessment

The logistic regression model is a common statistical analysis method for dichotomous
problems, which explores the relationship between a binary dependent variable (usually 0
for the absence of geohazards and 1 for the presence of geohazards) and a set of independent
variables [29,30]. The logistic regression function is given as:

p(y = 1) =
1

1 + e−(b0+b1X1+b2X2+···+bnXn)
(3)

where p is the probability of the event (here sinkhole occurrence); b0 is the intercept;
b1, · · · bn are the coefficients of independent variables (X1, · · ·Xn).

Taking the natural logarithm of both sides of the Equation (3) yields ln[p/(1− p)],
and using it as the dependent variable and all sub-criteria as the independent variables,
the logistic regression equation Equation (4) is established:

Logit(p) = ln(
p

1− p
) = b0 + b1X1 + b2X2 + · · ·+ bnXn (4)

Since the magnitudes and scales of the sub-criteria vary in ranges, the logistic regres-
sion analysis requires unifying the sub-criteria under the same scale. To this end, based on
the historical distribution of 84 sinkholes in the study area, we adopted the certain factors
model [31] to calculate the relative weights (CF) of each grading under the factor layer.

CF =

{ PPa−PPs
PPa(1−PPs)

, PPa ≥ PPs
PPa−PPs

PPs(1−PPa)
, PPa < PPs

(5)

where PPa is the conditional probability of a sinkhole occurring on the i−th level at a
specific sub-criterion, denoted as the ratio of the number of sinkholes fallen in the i−th
level to the area of this level; PPs is the ratio of the total number of karst sinkholes to the
area of the study area.

The derived CF values CFij{i = 1, 2, 3, 4, 5; j = 1, 2, . . . , 4} were used as the indepen-
dent variables (X1, · · ·Xn) for the LR model. The recorded sinkhole presence and the
randomly generated sinkhole absence data were divided into training and test samples
according to 80% and 20%, respectively. The CF values of the training sample points were
input to Equation (4) to construct a binary LR model and derive the regression coefficients
b1, · · · bn. The probability of occurrence of karst collapse in each unit was subsequently
derived by substituting the b1, · · · bn back into Equation (3). At last, following the China
karst collapse survey specification (1:50,000), the natural break algorithm in ArcGIS® was
adopted to perform the karst collapse risk zoning in Wuhan, and the rationality and
accuracy of the constructed LR model were analyzed based on the reserved 20% sample.

3.3. The Weighted Angular Distortion Approach to Risk Assessment

After obtaining the mean ground subsidence rates using the StaMPS-SBAS technique,
the risk zoning map for the cumulative period (April 2015 to June 2019) was produced
based on the angular distortion β, which was calculated as the ratio of the subsidence
horizontal gradient (SHG) between two adjacent pixels to the horizontal distance between
them [32–34] using a slope algorithm available in ArcGIS®. Compared to vertical ground
deformation (Vsub), a large subsidence horizontal gradient (SHG) around deformation
clusters contributes more significantly to risk zoning results, and the local municipal con-
struction density (MCden) represents, somehow, an indicator of vulnerability [33]. Therefore,
we assigned three times more weight to the subsidence horizontal gradient than ground



Remote Sens. 2021, 13, 5063 9 of 20

subsidence rates and introduced the municipal construction density calculated as the
area ratio of subway lines, large construction sites, and the unit (90 m × 90 m) based on
the results in Figure 2h. The proposed weighted angular distortion model (WAD) was
defined as:

Risk = ((3× SHG) + Vsub)×MCden (6)

Finally, we divided the risk map into four categories by using the natural break
algorithm in ArcGIS®.

4. Risk Zonation Results
4.1. Risk Zonation by AHP-Based Approach

According to the procedures described in Section 3.1, we first conducted the pairwise
comparison for each sub-criterion under each criterion layer and obtained the judgment
matrix (Table 2). As seen from Table 2, the CI value of the four criterion layers is 0.0014, the
CR ratio is 0.0016, and the consistency of the factor layer under each criterion layer is zero,
which satisfies the consistency test. On this basis, normalization of the principal eigenvector
associated with the judgement matrix for predisposing factors yielded the largest weight
to overburden conditions (B2) (0.4486) followed by karst geology conditions (B1) (0.2347),
karst surface subsidence conditions (B4) (0.2347), and hydrogeological conditions (B3)
(0.082). The results are shown in the last two columns in Table 2.

Subsequently, based on the quantitative grading map of each sub-criterion in Figure 2a–i,
the AHP-based karst collapse susceptibility evaluation model was achieved by using the
weighted comprehensive index method:

SusAHP = 0.0782 ∗ C11 + 0.1565 ∗ C12 + 0.2991 ∗ C21 + 0.1495 ∗ C22 + 0.0137 ∗ C31 + 0.0683 ∗ C32 + 0.2347 ∗ C41 (7)

After obtaining the karst collapse susceptibility (SusAHP), we superimposed the influ-
ence of anthropological activities and used the same method in Section 3.1 to calculate the
sub-criterion weights, as shown in Table 3.

Table 3. Judgement matrix and the combined weights for risk mapping.

Risk Evaluator B5 SusAHP WBi Factor Layer C51 C51 WCij WCij−Bi

B5 1 1/2 0.3333
C51 1 5 0.8333 0.2777
C52 1/5 1 0.1667 0.0556

SusAHP 2 1 0.6667 1 0.6667

Thus, a model for evaluating the risk of karst collapse in Wuhan was obtained:

RiskAHP = 0.6667 ∗ SusAHP + 0.2777 ∗ C51 + 0.0556 ∗ C52 (8)

Based on the natural break algorithm in ArcGIS®, the areas with RiskAHP values
between 2.4392 and 4.9089 were defined as high-risk, between 1.6566 and 2.4392 as medium-
risk, and between 0.8435 and 1.6566 as low-risk (Figure 3).
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Figure 3. Karst collapse risk zonation maps for the study area based on AHP approach. 1©, 2©, and
3© denote three karst collapse-prone areas discussed in Section 5.1.

4.2. Risk Zonation by LR-Based Approach

For the LR-based model, the created fishnet tool first generated a 90 m × 90 m grid
in each sub-criterion layer. Sixty-eight sinkhole locations (80% of the total sinkholes) were
randomly selected as training samples (we refer to them as sinkhole presence, and the op-
posite are sinkhole absence). In addition, in order to not lose generality, a certain percentage
of sinkhole absence data were still needed to be involved in constructing the LR model.
LR modeling using an unbalanced dataset (e.g., presence to absence ratio = 1:1.78) would
result in a decreased root mean square error from 0.44 to 0.42 and an increase in model R2

from 0.25 to 0.32 when compared to a balanced dataset [22,35,36]. Therefore, we generated
sinkhole absence data by randomly locating 122 data points (1.78 × 68) within the karst
zones according to the ratio in [22]. A total of 190 sinkhole presence and absence training
data were used to construct the logistic regression model. Table 4 shows the CF values
for each grading under each factor layer. We extracted the CF values of nine sub-criteria
at 190 training samples and imported them into SPSS® software [37] for binary logistic
regression analysis.
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Table 4. CF values of the influence grading of karst collapse evaluators in Wuhan.

Evaluation
Indicators Influence Grading Category Area

(km2)
No. of

Sinkholes CFij
Evaluation
Indicators

Influence
Grading

Category Area
(km2)

No. of
Sinkholes CFij

Stratigraphic
lithology (C11)

Covered karst 675.386 52 0.7113

Quaternary pore
water abundance

(C32)

>1000 m3/d 299.246 12 0.4236

Buried karst 343.594 32 0.7655 100–1000 m3/d 239.509 56 0.9211

Non carbonate area 2553.428 0 −1 <100 m3/d 766.762 15 −0.1714

Development
degree of karst

(C12)

κ > 10%
(well-developed) 317.358 72 0.9179 Non-aqueous

group 2266.890 1 −0.9817

10% ≥ κ ≥ 3%
(Moderate developed) 209.871 10 0.5187

InSAR-based
ground

subsidence rates
(C41)

[−89.7–−5.8] 18.922 17 0.9973

κ < 3%
(Slight-developed) 433.358 2 −0.8075 [−5.7–−1.3] 152.928 41 0.9343

Non carbonate area 2611.821 0 −1 [−1.2–2.3] 2823.822 24 −0.6440

Overlying soil
structure (C21)

Typical dualistic
structure 101.631 65 0.9864 [2.4–29] 576.736 2 −0.8555

Multi-layered soft soil
structure 871.090 7 −0.6636

Proximity to
subway lines and
construction sites

(C51)

<500 m 372.673 46 0.8290

Buried and
single-layer soil

structure
2599.687 12 −0.8074 500–1000 m 302.405 27 0.7544

Overlying soil
thickness (C22)

<15 m 842.408 6 −0.7021 1000–2000 m 447.687 0 −1.0000

15–30 m 1497.982 15 −0.5799 >2000 m 2449.643 11 −0.8127

30–40 m 751.259 59 0.7175

Urban planning
map (C52)

M, T, U, W 445.662 7 −0.3373

>40 m 480.759 4 −0.6516 R, C 526.281 59 0.8093

Proximity to the
4th class rivers

(C31)

<1000 m 648.032 24 0.3739 G 1539.057 11 −0.7010

1000–3000 m 693.538 50 0.6901 E 1061.407 7 −0.7243

3000–5000 m 567.284 5 −0.6307

>5000 m 1663.473 5 −0.8748
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The correlation analyses of each sub-criterion using SPSS® revealed that the correla-
tions of overlying soil thickness with overlying soil structure and proximity to the fourth
class rivers were −0.534 and −0.507, respectively. The correlations of proximity to subway
lines and construction sites with the development degree of karst and urban planning
map were −0.641 and 0.758, respectively. The correlations between other sub-criteria were
less than 0.5. To avoid the accuracy loss of the LR model due to the involved redundant
factors, overlying soil thickness and proximity to subway lines and construction sites were
not included in the final LR model. Finally, we obtained the regression coefficients B for
these seven factors and the intercepts, which were 5.640, 1.685, 2.343, −0.642, 2.606, 3.879,
0.104, and −1.961. The correlation matrix and LR parameter estimates for the determined
evaluators are shown in Table 5 and Figure 4.

Table 5. Correlation matrix of determined evaluators.

Factor Layer C11 C12 C21 C31 C32 C41 C52

Stratigraphic lithology (C11) 1.000 −0.016 0.029 −0.045 0.037 0.164 0.056
Development degree of karst (C12) 1.000 0.106 0.078 0.213 0.202 −0.363

Overlying soil structure (C21) 1.000 −0.184 0.361 0.138 −0.098
Proximity to the 4th class rivers (C31) 1.000 −0.231 −0.063 0.071

Quaternary pore water abundance (C32) 1.000 0.022 −0.178
InSAR-based ground subsidence rates (C41) 1.000 −0.090

Urban planning map (C52) 1.000

Figure 4. Parameter estimates of the logistic regression based on the sinkhole presence/absence training data. Sig denotes
the significance and Exp (B) is odds ratio (OR).

In the LR-based geohazard susceptibility assessment, B represents the weight of each
sub-criterion while the sig reflects their significance in the model; the smaller the sig value,
the more significant the sub-criterion is in the LR model. Moreover, the model is statistically
significant only when the sig value is less than 0.05 [29]. In view of this, as seen from
Figure 4, except for the proximity to the fourth class rivers and urban planning map, the
sig values of other sub-criteria are less than 0.05. Eventually, this effective LR-based karst
collapse risk assessment model ranked the seven predisposing factors to karst collapse risk
(odds ratio, EXP(B)) as stratigraphic lithology (281.440), InSAR-based ground subsidence
rates (48.383), Quaternary pore water abundance (13.539), overlying soil structure (10.414),
development degree of karst (5.390), urban planning map (1.110), and proximity to the
fourth class rivers (0.526) (Figure 4).
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The regression coefficients of each sub-criterion were then substituted into Equation
(4) to yield the logistic regression equation:{

Logit(p) = −1.961 + 5.64C11 + 1.685C12 + 2.343C21− 0.642C31 + 2.606C32 + 3.879C41 + 0.104C52
p = 1/(1 + e−Logit(p))

(9)

where C11, . . . C52 are CF values of seven determined sub-criteria.
Referring to the China karst collapse survey specification (1:50,000) [12], we used the

natural break algorithm in ArcGIS® to categorize the areas with probability values between
0.2591 and 0.9999 as high-risk, between 0.0318 and 0.2591 as medium-risk, and between 0
and 0.0318 as low-risk. The other areas were less likely to experience karst collapse, and,
thus, we obtained the karst collapse risk zoning map in Wuhan (Figure 5).

Figure 5. Karst collapse risk zonation maps for the study area based on LR approach.

4.3. Risk Zonation by InSAR-Based Angular Distortion Approach

A simple classification of the derived SHG from InSAR-based ground subsidence
rates from April 2015 to June 2019 was conducted by accounting the geotechnical practice
on practical limits for the allowable settlement of buildings (Figure 6a). For angular
distortion level we took the lead from previous studies and considered four categories,
low (β ≤ 1/3000), medium (1/3000 < β ≤ 1/1500), high (1/1500 < β ≤ 1/500), and
very high (β > 1/500), indicating an increased likelihood of damage [32,34]. However,
we adopted the risk level-I-II-III-IV (1/10 of the four categories) instead of the above four
categories (very high, high, medium, low) because the ground subsidence rates in this
study area during this period were generally low, and no grids with the derived SHG
exceeded 0.002 rad, i.e., 1/500.
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Figure 6. (a) Subsidence Horizontal Gradient of the study area in Wuhan; (b) combined weighted
density of subway lines and construction sites with building height over 250 m; (c) karst collapse risk
zonation maps based on WAD approach.

As with the previous studies [14,15], Hankou and Wuchang (HK-WC) suffered the most
severe ground subsidence with a maximum subsidence rate of−89 mm/year (Figure 2g). How-
ever, the geological conditions of non-karst strata and overlying multi-layered soft soils
led to ground subsidence in Hankou and Wuchang, characterized mainly by consolidation
mechanisms and with a large scale of uniform subsiding. Such an extent and distribution
of ground subsidence resulted in moderate deformation gradients with a maximum SHG
of 1/826 and 99.5% of the grids having SHG values less than 1/3000. In contrast, among
the six karst belts, especially in the Tianxingzhou (L1) and Baishazhou karst belts (L3),
localized ground subsidence led to relatively large deformation gradients at the edges
of the deformed and non-deformed areas (a total of 339 grids with a cumulative area of
3.1 km2 falling into the medium-high risk zone), which, in turn, caused severe tear damage
to buildings (Figure 6a).

In addition, ground subsidence was observed along subway lines and around large
construction sites (with building heights over 250 m) in karst zones. Therefore, we cal-
culated the point and line densities MCden (Figure 6b) based on the results in Figure 2h
and integrated them into Equation (6) to derive the calibrated risk values. In the end, the
natural break algorithm was used to divide the calibrated risk values into four risk classes,
corresponding to high-risk zone (−0.2271~−0.0386), medium-risk zone (−0.0386~−0.0099),
low-risk zone (−0.0099~0.0014), and non-risk zone (0.0014~0.0120) (Figure 6c).

5. Discussion
5.1. Comparison of Karst Collapse Risk Zonation Results

According to the GIS statistics of the three risk zonation results, approximately 17.7%
(170.52 km2) of the total karst area (960.95 km2) in the risk map derived from the AHP-based
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approach fell into the high-risk class. The medium- and low-risk classes covered almost
51.6% (495.46 km2) and 30.7% (294.97 km2) of the total karst area. In contrast, the high-,
medium-, and low-risk classes derived from the LR-based approach accounted for 14.4%
(139.06 km2), 36.0% (345.84 km2), and 49.6% (476.05 km2) of the total karst area, respectively.

The karst collapse high-risk areas identified from AHP- and LR-based approaches were
located in (1) Jiefang Avenue, Houhu Avenue, Heping Avenue, and GongrenVillage in the
L1 karst belt (zone 1© in Figures 3 and 5); (2) Moshui lake north road, Hanyang Avenue, and
the area west of the Xunsi River in the L2 karst belt (zone 2© in Figures 3 and 5); (3) Hanyang
Yingwu—Jiangang Road area, Wuchang Jiefang Bridge—Wutai Gate, Fenghuo Village,
Maotan Port, and Baisha Road area in the L3 karst belt (zone 3© in Figures 3 and 5). The
spatial distribution of high-risk areas identified by both approaches were highly correlated,
with only a 3.3% area discrepancy. This suggested that the subjective judgment approach
based on a priori information on karst collapse and the semi-quantitative approach based
on the recorded sinkhole presence were comparable in terms of high-risk class zonation.

In terms of medium- and low-risk karst collapse classes, the zoning results of the
AHP- and LR-based approaches were similar in spatial distribution; however, there were
distinct discrepancies in the category areas. The AHP-based approach tended to allocate
more areas to the medium-risk class (15.6% more) and less areas to the low-risk class
(2.7% less). There are several reasons for this discrepancy in the results between AHP
and LR. One could be the non-uniformity of rules in assigning weights (or scales) to each
sub-criterion between the subjective judgment-based AHP model and the certain factors-
based semi-quantitative LR model. For instance, the AHP-based approach ranked the
first four predominant predisposing factors to karst collapse as overlying soil structure
(0.2991), proximity to subway lines and construction sites (0.2777), InSAR-based ground
subsidence rates (0.2347), and development degree of karst (0.1565). However, for the
LR-based approach, the stratigraphic lithology (281.440) had a dominant role followed
by InSAR-based ground subsidence rates (48.383), Quaternary pore water abundance
(13.539), and overlying soil structure (10.414). Alternatively, no rigid risk-grading criteria
were available in karst collapse engineering practice. Instead, a natural break algorithm
was used to subdivide the two types of derived risk values, using scalar values in AHP
and using probability in LR, which results in different spatial extents of the risk areas in
two methods.

In addition, the WAD-based approach, as an approach to risk zoning based directly
on measured data, is essentially distinguished from the above two qualitative and semi-
quantitative models that rely on historical or empirical information. Although it was
impossible to perform a strict grid-by-grid comparison, the areas with relatively large SHG
values within the L1, L2, and L3 karst belts were generally spatially consistent with the
high-risk class areas identified by the AHP- and LR-based approaches. For example, there
were 217 grids with SHG values between 1/1500–1/500 (high susceptibility area) and a
total area of 1.68 km2 along the Houhu Avenue and Heping Avenue in the L1 karst belt,
Moshui lake north road in the L2 karst belt, Hanyang Yingwu -Jiangang Road, and in the
Fenghuo Village zone in the L3 karst belt (zones 1©, 2©, and 3© in Figures 3 and 5).

In order to evaluate the importance of including information from ground deformation
into the risk models, we made a test by excluding InSAR-based ground subsidence rates
(C41) from both the AHP- and LR-based approaches. As seen in Figure 7a,b the zoning
results of the AHP and LR without the sub-criterion C41 vary significantly in the area of
each risk zone compared to the model that considers ground deformation in Figure 5a,b.
For instance, the area of high-, medium-, and low-risk classes varied by 6.9%, −4.7%, and
−2.2% for the AHP-based approach, and −37.1%, 33.2%, and 3.9% for LR-based approach,
respectively. Moreover, the new models reduced the karst collapse presence, falling into
the high-risk zone by 15% (AHP) and 13%, (LR) respectively (Figure 7c), and increased the
karst collapse absence, falling into the karst area by 5% (AHP) and 8% (LR) on the training
samples (Figure 7d). This proves the necessity of including ground subsidence rates into
karst collapse risk zoning.
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Figure 7. Karst collapse risk zonation maps for both models excluding the InSAR-based ground
subsidence rates (C41) sub-criterion. (a) AHP-based; (b) LR-based. Comparison and statistics of
sinkhole presence (c) and absence (d) on the training samples.

Note that the karst collapse risk situation reflected by the WAD-based approach was
milder than the AHP- and LR-based results. This is because the WAD-based approach
focuses on the tearing damage to buildings by inhomogeneous ground deformation. Al-
though Wuhan showed different patterns of ground subsidence, the extents were generally
small and there were no grids in the whole study area that exceeded the threshold of
building tear resistance (with an SHG value of 0.002 radian) [32,34] to be included in very
high-risk class, i.e., β > 1/500 (Figure 6a). Therefore, the risk levels-I-II-III-IV in Figure 6a
represent only the relative likelihood of collapse.

5.2. Zoning Results Test and Model Evaluation

We tested the reasonability of AHP- and LR-based approaches for karst collapse
risk zoning and their accuracy based on the test samples (20% sinkhole presence and
its 1.78 times sinkhole absence, i.e., 16 and 29, respectively). We conducted this test by
(1) counting the proportion of sinkhole presence within each risk class to test model
reasonability, and (2) using the receiver operating characteristic curve (ROC) to evaluate
model accuracy [38–40]. To test the model reasonability, we calculated the ratio of sinkhole
presences falling in each risk class to all sinkhole presences in the test samples (Perci

pres),
the percentage of the area of each risk class to the total area of karst zones (Perci

area ), and
their ratio (Ratioi). A reasonable karst collapse risk assessment model implies that, for the
test samples, the percentage of sinkhole presences falling into the high-risk class should be
the largest, and the percentage of the low-risk area over the whole study area should be
the largest; further, Rationon < Ratiolow < Ratiomedium < Ratiohigh.

From Table 6, the AHP-based approach predicted that 81.3% (13/16) of the sinkholes
occurred in the high-risk zone, accounting for 17.7% of the total karst area. The LR-based
approach performed better in mapping sinkhole risks, as it predicted 93.8% (15/16) of sink-
holes within the high-risk zone, which accounted for 14.4% of the total karst area. Moreover,
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the zoning results derived from the LR-based approach satisfied the above three hypotheses,
i.e., Perchigh

pres , Perclow
area accounting for the maximum, and Ratiolow < Ratiomedium < Ratiohigh.

However, the AHP-based approach didn’t fulfill the hypothesis that Perclow
area accounts for

the maximum.

Table 6. Verification results of AHP- and LR-based approaches for the karst collapse occurrence in Wuhan using the test samples.

Risk Level
Perci

area
Perci

pres Ratioi

AHP-Based LR-Based AHP-Based LR-Based AHP-Based LR-Based

Low-risk zone (I) 30.7% 49.6% 0 0 0 0
Medium-risk zone (II) 51.6% 36.0% 3/16 1/16 0.363 0.174

High-risk zone (III) 17.7% 14.4% 13/16 15/16 4.590 6.510

The ROC curve and the area under the ROC curve (AUC), plotted in a frame with
the true positive rate (sensitivity) as the longitudinal axis and the false positive rate (1-
specificity) as the horizontal axis, and provides a more intuitive measure of the accuracy
of the two models [38]. Therefore, we calculated the ROC curves for all the models using
the test samples, and compared their AUC values to verify the accuracy of the AHP- and
LR- based approaches. Note that, for the AHP model, to calculate its ROC, we normalized
the derived risk values to approximate them as the probability of karst collapse (0 to 1).
However, for the LR model, we directly calculated the karst collapse probability based on
Equation (4), constructed from the training samples and the corresponding seven types of
CF values at the 45 test points. Finally, the test samples’ sinkhole presence and absence (1
and 0) were used to perform the ROC calculation for both models (Figure 8).

Figure 8. ROC curves for the AHP- and LR-based models for karst collapse risk assessment using
the test samples. Diagonal represents 1:1 line between sensitivity and 1-specificity.

From the results of the reasonability (Table 6) and accuracy tests (Figure 8), both mod-
eling approaches performed well in karst collapse risk zoning. The AUC values derived
from the AHP and LR models were 0.812 and 0.911, respectively, which both exceeded
0.8, indicating goodness of fit for karst collapse risk zoning for this study. However, the
LR-based approach was relatively better than the AHP-based approach in terms of model
accuracy, with the confusion matrix of the training data showing an overall accuracy of
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98.4% for the model. This is due to the fact that (1) the Perchigh
pres and Perclow

area of the LR-based
approach were 12.5% and 18.9%, larger than those of the AHP-based approach, respectively,
and (2) the AUC for the AHP-based approach was almost 10.9% smaller than those for the
LR-based approach.

5.3. Analysis of the Applicability of Three Approaches on Karst Risk Zonation

Qualitative and semi-qualitative approaches to karst collapse risk zoning depend
on correctly identifying predisposing factors and their relative contributions to sinkhole
formation. The extensive work conducted by previous researchers on the recognition and
contribution determination of predisposing factors to karst collapse and subsidence in
Wuhan [13–15] provided valuable a priori information for selecting sub-criterion in the
risk zoning modeling in this study, further ensuring the accuracy of karst collapse risk
zoning by qualitative and semi-quantitative models (e.g., AHP and LR). However, for
some karst collapse areas where a priori information is lacking (e.g., Guizhou, China),
the biggest challenge of the AHP- or LR-based approach is the uncertainty in prioritizing
predisposing factors to sinkhole formation. In particular, the AHP-based approach requires
multiple evaluations through a trial-and-error process to generate logically consistent
relative weights to predict existing sinkhole incidents better. It is worth noting that this trial
and error approach is the introduction of bias towards sinkhole presence. Consequently,
this approach may allocate more areas to the higher karst collapse risk classes (17.7% in
this study), thus limiting its applicability in sinkhole risk mitigation strategies. For the
LR-based approach, although the certain factors method could aid in the determination of
the relative importance of sub-criteria on karst collapse occurrence, it remains a challenge to
specify which factors are selected for modeling. The WAD-based approach proposed herein
can reflect the vulnerability of surface structures the most objectively and quantitatively,
particularly for localized collapse or deformation such as sinkholes. Therefore, it can
aid the AHP-based approach in assigning scales and the grading of each sub-criterion in
both models. However, the WAD-based approach cannot be used alone as an ideal karst
collapse risk assessment model, as it does not consider geological and natural factors in
the risk analysis, and is more suitable for cases where a single factor dominates ground
subsidence. Moreover, if a localized subsidence pattern similar to that of a sinkhole exists
in the non-karst area, it would lead to logical errors to stubbornly use this approach for
karst collapse risk zoning.

6. Conclusions

The study presents a comparison between a subjective judgment-based AHP model,
a certain factors-based semi-quantitative LR model, and the quantitative WAD-based
approach to risk zonation related to karst collapse in Wuhan city. Our results suggest that
the LR-based approach is, in general, superior to the AHP-based approach, as it (1) better
satisfied the assumption that “the percentage of sinkholes falling into the high-risk class
and the percentage of low-risk area are the largest”, and (2) its area under the receiver
operating characteristic (ROC) was 0.911 compared to the 0.812 obtained with the AHP-
based approach. Nevertheless, both models performed well in identifying high-risk areas
with a highly correlated spatial distribution and only a 3.3% discrepancy in area. For the
medium- and low-risk classes, their spatial distribution of risk zoning results were similar;
however, the category areas were varied. In particular, we found that inclusion of the
InSAR-based ground subsidence velocities significantly improves the correct prediction
of sinkhole presence and the ability to avoid incorrect prediction of sinkhole absence for
both models. However, given the non-uniformity rules of the two models in assigning
weights (or scales) to each sub-criterion, the LR-based approach ranked the stratigraphic
lithology (281.440) as a dominant factor, followed by InSAR-based ground subsidence rates
(48.383), Quaternary pore water abundance (13.539), and overlying soil structure (10.414),
while the AHP-based approach identified overlying soil structure (0.2991) as the main
factor for karst collapse, followed by proximity to subway lines and construction sites
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(0.2777), InSAR-based ground subsidence rates (0.2347), and the development degree of
karst (0.1565).

In addition, the WAD-based method proposed in this study suggested that the regions
with relatively large SHG values within the L1, L2, and L3 karst belts were generally
spatially consistent with the high-risk class areas identified by the AHP- and LR-based
approaches. Although it focused more on quantitatively deriving the tearing damage
caused by local collapse or deformation (e.g., sinkholes), the WAD-based method could aid
the AHP-based approach in assigning scales and the grading of each sub-criterion in both
models, especially for some karst collapse areas where a priori information is lacking.
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