
       

The June 2020 Aniangzhai landslide in Sichuan 
Province, Southwest China: slope instability 
analysis from radar and optical satellite remote 
sensing data

Abstract A large, deep-seated ancient landslide was partially reac-
tivated on 17 June 2020 close to the Aniangzhai village of Danba 
County in Sichuan Province of Southwest China. It was initiated by 
undercutting of the toe of this landslide resulting from increased 
discharge of the Xiaojinchuan River caused by the failure of a land-
slide dam, which had been created by the debris flow originating 
from the Meilong valley. As a result, 12 townships in the down-
stream area were endangered leading to the evacuation of more 
than 20000 people. This study investigated the Aniangzhai land-
slide area by optical and radar satellite remote sensing techniques. 
A horizontal displacement map produced using cross-correlation 
of high-resolution optical images from Planet shows a maximum 
horizontal motion of approximately 15 meters for the slope failure 
between the two acquisitions. The undercutting effects on the toe 
of the landslide are clearly revealed by exploiting optical data and 
field surveys, indicating the direct influence of the overflow from 
the landslide dam and water release from a nearby hydropower 
station on the toe erosion. Pre-disaster instability analysis using 
a stack of SAR data from Sentinel-1 between 2014 and 2020 sug-
gests that the Aniangzhai landslide has long been active before the 
failure, with the largest annual LOS deformation rate more than 50 
mm/yr. The 3-year wet period that followed a relative drought year 
in 2016 resulted in a 14% higher average velocity in 2018–2020, in 
comparison to the rate in 2014–2017. A detailed analysis of slope 
surface kinematics in different parts of the landslide indicates that 
temporal changes in precipitation are mainly correlated with kin-
ematics of motion at the head part of the failure body, where an 
accelerated creep is observed since spring 2020 before the large 
failure. Overall, this study provides an example of how full exploita-
tion of optical and radar satellite remote sensing data can be used 
for a comprehensive analysis of destabilization and reactivation 
of an ancient landslide in response to a complex cascading event 
chain in the transition zone between the Qinghai-Tibetan Plateau 
and the Sichuan Basin.

Keywords Landslide · Multi-temporal InSAR (MTI) · Cross-
correlation · Satellite remote sensing · Sentinel-1/2 · Slope failure · 
NDVI

Introduction
Landslides are widespread geological hazards in mountainous 
regions worldwide. Once a landslide mass loses its stability, it could 
induce strong destructiveness. Landslide processes are complex 
and often comprise different process types. Some of them move 

fast (Quecedo et al. 2004), but several other landslides also take 
place slowly and steadily at the beginning, and then accelerate 
suddenly terminating in catastrophic avalanche-type or collapse-
like movement styles (De Blasio 2011). Landslides have occurred 
more frequently due to increased urbanization, continued defor-
estation, and increased extreme weather events (Schuster 1996; 
Biasutti et al. 2016; Lee 2017). To monitor landslide disasters and 
build effective early warning systems (EWSs), the adopted techni-
cal means should meet at least the following requirements: Ade-
quate regional coverage and temporal sampling capacity, sufficient 
measuring accuracy related to the velocity of the monitored pro-
cesses, and good cost performance. Ground-based methods, such 
as continuous GNSS for landslide monitoring, are difficult to set 
up and implement in mountainous and remote areas (Akbarimehr 
et al. 2013). Instead, optical and radar satellite remote sensing plays 
a promising role in driving innovation in large-scale detection, 
monitoring, and assessment of landslide hazards and can be quite 
useful to incorporate in the framework of multidisciplinary disaster 
risk reduction (DRR).

Cross-correlation of optical images can be used to assess 
the kinematics of large slope failures (Travelletti et al. 2012; 
Yang et al. 2020). Furthermore, automated and semi-automated 
approaches using time series of multi-sensor optical images have 
already been developed to create multi-temporal inventories by 
identifying landslide areas based on changes in vegetation cover 
(Behling et al. 2016; Yang et al. 2019). Optical remote sensing data 
have become more commonly available in recent years and are 
easily understood and handled by non-experts (Yang et al. 2020). 
However, clear sky images may not be readily available prior to and 
during a given landslide event. Moreover, the displacement accura-
cies retrieved from cross-correlation analyses are highly dependent 
on the resolution of the optical remote sensing acquisitions and the 
satellite’s precise orbit position and orientation posture (Debella-
Gilo and Kääb 2011). Hence, optical remote sensing has limited use 
in reliably supporting near real-time hazard assessments and EWSs.

Synthetic aperture radar (SAR) offers new opportunities to sup-
port the systematic detection and monitoring of landslides over 
extensive regions and for the development of regional-scale land-
slide warning systems (Colesanti and Wasowski 2006; Bianchini 
et al. 2013; Herrera et al. 2013; Motagh et al. 2013). With synoptic 
imaging capabilities, under inclement weather conditions and inde-
pendent of sunlight conditions, SAR techniques provide invaluable 
information on landslide locations, boundaries and changes to veg-
etation within landslide bodies, based on the exploitation of radar 
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amplitude and phase information. Advanced multi-temporal InSAR 
(MTI) methods, e.g., persistent scatterer interferometry (PSI) and 
small baseline subsets (SBAS), can be exploited to evaluate subtle 
changes in landslide creep rates in response to external triggering 
factors; these changes can indicate impending failures (Teshebaeva 
et al. 2015; Handwerger et al. 2019; Hu et al. 2020). The new surge in 
available SAR data via Sentinel-1 (S1) satellites has provided golden 
opportunities to use SAR sensors as operational instruments for 
landslide hazard assessments (Solari et al. 2019) and temporal pre-
dictions of large failures (Mantovani et al. 2019). In particular, S1 
data have higher spatial resolution and global dual-polarization 
coverage with improved revisit times of 6–12 days over the data 
from previous C-band SAR missions such as ERS and Envisat. As 
S1 data are available at no cost, there has also been growing inter-
est from scholars for objective change detections, landslide hazard 
assessments, and potential techniques for multidisciplinary DRR 
(Feng et al. 2015; Barra et al. 2016; Dai et al. 2016; Intrieri et al. 2018; 
Dini et al. 2020; Dai et al. 2020).

On 17 June 2020, close to Aniangzhai village of Danba County 
in Sichuan Province of Southwest China, a massive landslide of ∼ 6 
million m3 Yan et al. (2021) was partially reactivated. The main trig-
gering factors were the undercutting effects and erosion on the toe 
of the landslide body from the overflow of a dammed lake (height 
of nearly 8 ∼ 10 meters), which was created by debris flows coming 
from the northern Meilong valley comprising a complex cascad-
ing event chain. Firstly, the heavy rainfall in summer 2020 induced 
debris flows in the Meilong valley. With the help of Sentinel-2 (S2) 
optical images, we observe that the debris flow generated from the 
valley regions north of the reservoir flowed toward the south. Then, 
the washed-out stones and soils formed a barrier dam just under 
the ancient Aniangzhai landslide body and blocked the Xiaojin-
chuan River, leading to an increase in the water level (seeing sup-
porting material: Fig. S1). Thereafter, the overflow of the barrier 
dam, influenced by the discharge of the surplus water from the 
nearby hydropower station to reduce the flood pressure, under-
cut the toe of the landslide, resulting in partial reactivation of this 
ancient landslide body. Soon after the lower part of the landslide 
area collapsed gradually. In this case, this specific cascading event 
chain of “rainfall–debris flows–dammed lake–outburst floods– 
erosion–landslide” was formed and threatened a dozen villages 
downstream, resulting in an evacuation of more than 20000 people 
to abandon and leave their home towns (Yan et al. 2021).

In this study, we report investigations on ground deformation of 
the Aniangzhai landslide before and during June 2020 failure using 
optical and radar satellite remote sensing data. Sub-pixel cross-
correlation of high-resolution optical images from Planet is utilized 
to obtain information on the main landslide failure, e.g., horizontal 
movement and moving direction. Then, S1 SAR data are analyzed 
using the MTI techniques to assess the slope instability between 
2014 until the time of failure. The results are then analyzed against 
changes in meteorological conditions to assess the long-term and 
transient behavior of the Aniangzhai landslide. We also evaluate a 
method for anticipating the time of failure based on MTI results 
using a modified inverse-velocity method. Finally, we introduce 
some findings based on the abnormal behaviors of the Normalized 
Difference Vegetation Index (NDVI) and interferometric coherence 
over the landslide mass before the failure.

Environmental and geomorphological settings
Danba County is located on the southeastern edge of the Qinghai- 
Tibet Plateau, and Aniangzhai village is located in the center of 
Danba County. The geomorphological structure of the region  
comprises high mountains and narrow valleys with an average 
elevation of approximately 1800 meters. The June 2020 Aniang-
zhai landslide is a case of a partial reactivation of an ancient and 
larger slope failure (Zhao et al. 2021). The original ground surface of 
the Aniangzhai landslide has an elevation of approximately 2000∼
2500 meters. The topographic profile and possible thickness of the 
landslide body were investigated in a recent study exploiting UAVs 
(Zhao et al. 2021), suggesting a maximum thickness of approxi-
mately 60 meters. Based on our field investigation and (Zhao 
et al. 2021), the vertical component of motion was significant at the 
head part of the failure, while the landslide slipped down as a whole 
in the middle-lower part. Therefore, we assume that the Aniangzhai 
landslide has a rotational–translational mechanism, with rotational 
component being more significant in the upper part and transla-
tional component becoming predominant in the middle-lower part. 
Moreover, this region is located in the upper reaches of the Yangtze 
River, which is full of water resources. The foot of the Aniangzhai 
landslide area reaches the Xiaojinchuan River. There is also a dam 
nearby, which is very close to the failure region upstream (Fig. 1). 
We compared the river courses in June over the last 3 years before 
the 2020 failure (seeing supporting materials: Fig. S2). The river 
courses demonstrate similar extents and appearances in 2018 and 
2019, regulated by the reservoir upstream. In contrast, the river 
course during the 2020 failure event shows major inundation due 
to surplus water from the reservoir. The annual mean temperature 
for this region is approximately 14 ◦ C. However, due to elevation 
changes, the differences between the top of the mountain and the 
valley could be greater than 24 ◦ C. Because of the plateau mon-
soon climate and complicated geomorphology, lots of natural dis-
asters are taken place frequently in this region, especially landslide 
hazards.

Figure 2 illustrates a Skysat optical image and several photos 
from the fieldwork, in which different zones of the landslide area 
are highlighted. The high-resolution optical image from Skysat 
was acquired on 25 November 2020 with an accuracy of half-meter 
(Fig. 2f). The landslide area lays on the hillside north of the country 
town, and it was previously described as an ancient rockfall area. 
The red line in Fig. 2f, indicates the center part of the failure, which 
had the largest deformation in this event; the orange line indicates 
the medium motion of approximately 1 ∼ 5 meters, while the yellow 
line reveals the extent of the whole landslide body. It is obvious 
to see the main scarp on the head of the failure area, as well as 
the erosion on the toe of the landslide. As demonstrated in Fig. 2e, 
the vegetation on the toe was washed away and a steep valley was 
formed in the front of the landslide body due to enormous mass 
loss. And this directly triggered the reactivation of the ancient land-
slide body. The deformation then started in the upper part, and the 
whole block was moving downwards.

Figure 2b, h and i shows the boundaries of the landslide failure. 
Figure 2b reveals the northern lateral flank of the landslide, where 
cracks, approximately 1 ∼1.5 meters wide, caused by block motion 
are clearly visible. Figure 2h displays the southern flank of the cen-
tral failure, which had the fastest displacement rates during the 
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2020 failure. Figure 2i shows the main scarp of the failure in the 
southeast direction. Other pictures reveal examples of damages that 
occurred in this disaster. Figure 2a and d show the ravaged roads, 

which were broken and had a drop of a few meters. Figure 2c and g 
displays a damaged EHV (Extra High Voltage) transmission tower 
and a cracked house in this event.

Fig. 1   Location of the study area. Backgrounds are Planet high-resolution remote sensing optical images (RGB bands), which are acquired (a) 
before the failure on 15 June 2020, and (b) after the failure on 24 June 2020

Landslides 19 & (2022) 315



Original Paper

Data and methodology

Remote sensing optical images
We use two high-resolution optical satellite images acquired by 
Planet Lab (Team 2017) satellite constellation to assess the horizon-
tal kinematics of the failure, i.e., extent, direction and magnitude. 
The satellite data is acquired right before and after the event, i.e., on 
15 June 2020 and 24 June 2020, respectively (Fig. 1). The used Planet 

Lab satellite imagery has a resolution of about 3 meters. Indeed, the 
horizontal displacements are quite obvious when these two images 
are superimposed on each other. The Planet Lab images comprise 
three multi-spectral bands covering the visible part of the spectrum 
(RGB). The red band is used in this study with the best root-mean-
square error in image registration among these three bands. The 
two Planet images are cropped to the same subset covering the 
landslide area forming the input to the cross-correlation analysis 

Fig. 2   Display of the landslide failure and different zones of the land-
slide body, as well as examples of damages in the event. (a) Ravaged 
roads on the edge of the central failure. (b) The northern lateral flank 
of the landslide. (c) Damaged EHV (Extra High Voltage) transmission 
tower. (d) Front view of ravaged roads. (e) The toe of the landslide 
body. (f) Skysat optical image acquired on 25 November 2020, with 

the boundaries of three different zones of the landslide, i.e., the red, 
orange and yellow lines represent the areas with the fast, medium, 
and slow movements in this event, respectively. (g) Cracked house. 
(h) The southern flank of the center part, which had the fastest dis-
placement rates during this failure. (i) The main scarp of the failure in 
the southeast direction
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using the COSI-Corr software package to estimate the horizontal 
displacements (Leprince et al. 2007). The cross-correlation is esti-
mated with steps of 2 × 2 , which provides the west–east (W-E) and 
north–south (N-S) horizontal displacements calculated by every 
two steps. Then a median filter is applied. In the end, the magnitude 
of displacement in each pixel is calculated as the norm of vectors 
from the results in two directions.

MTI analysis using Sentinel‑1 SAR data

We apply the C-Band SAR images acquired by S1 satellite for MTI 
analysis in this study (Copernicus 2020), specific information of 
the acquisition can be found in supporting materials (Table S1). 
In detail, the InSAR processing is carried out immediately after 
the failure with 89 descending images of S1 Interferometric Wide 
(IW) swath mode from October 2014 to July 2020. Among them, 
a few images in 2014–2015 cover the study area partially and they 
are stitching together for the exploitation. The spatial resolution 
is approximately 5m × 20m with a 250 km swath. There are both 
ascending and descending datasets available. As seen from optical 
images, the main direction of the slope is toward the north–west, 
which causes foreshortening effect in ascending data. Thus, the 
descending data are selected for our analysis in this case. Due to 
the temporal gap of the original dataset in 2017–2018, the MTI pro-
cessing is carried out in two temporal frames, i.e., 2014–2017 and 
2018–2020.

During the processing, the time series of SAR images are well-
coregistered and then cropped to the identified subset of the land-
slide area. The subset covers an area of approximately 26 square 
kilometers ( 4.7 × 5.6 km). The 2000 SRTM DEM (30m) is utilized 
for geocoding and estimating the topographic phase component 
in InSAR processing (Farr et al. 2007). The processing chain of 
S1 has already been mentioned in many previous studies (Fattahi  
et al. 2016; Grandin et al. 2016; Yagüe-Martínez et al. 2016;  
Haghshenas Haghighi and Motagh 2017). The traditional InSAR has 
limitations for landslide monitoring. The main limitations are the 
widespread loss of coherence between consecutive image acquisi-
tions and atmospheric disturbances (Zebker and Villasenor 1992; 
Wasowski and Bovenga 2014). Thus, we apply the advanced MTI 
techniques to mitigate the problem and retrieve the information  
of displacement, i.e., PSI and SBAS methods. The GAMMA and 
StaMPS software packages are used for the implementation  
of interferometric and MTI analysis (Hooper et al. 2007, 2012;  
Wegnüller et al. 2016), with atmospheric correction obtained using 
the Generic Atmospheric Correction Online Service (GACOS) 
product (Wang et al. 2019; Morishita et al. 2020). In PSI processing, a  

stack of single-master interferograms is generated and the pix-
els with the highest signal-to-ratio values are selected (Hooper 
et al. 2004, 2007). Such pixels are regarded as Persistent Scatterers 
(PS), mostly come from rocks and man-made features. As for the 
SBAS method, the algorithm exploits a network of small temporal 
and spatial baselines to minimize the decorrelation between image 
pairs (Lanari et al. 2007; Anderssohn et al. 2009). The distributed 
scatterer (DS), which is defined as the pixel that shares similar sta-
tistical behavior with its neighbouring pixels, is taken into account. 
MTI baseline networks and selecting criteria can be found in sup-
porting materials (Fig. S3–S6). With the help of MTI techniques, we 
could obtain comparable results between PSI and SBAS methods for 
analyzing slope instability. In addition, MTI time series are further 
exploited using inverse-velocity (INV) theory to predict the time 
of failure.

Auxiliary data

To better understand the dynamics of the Aniangzhai landslide 
in relation to potential influencing factors, some auxiliaries are 
exploited (Table 1). The first auxiliary includes precipitation 
retrieved from the Climate Hazards Group InfraRed Precipita-
tion with Station data (CHIRPS). Spanning all longitudes, CHIRPS 
incorporates 0.05◦ resolution ( ∼5km) satellite imagery between 
50◦S–50◦ N and in-situ station data to create gridded rainfall time 
series. The precision of the rainfall datasets is sufficient for appli-
cations and exploitation at the regional scale. In our study area, 
available CHIRPS data cover a time span of 20 years between 2000 
and 2020, and the precipitation is calculated for Danba County.

The second auxiliary includes multiple optical remote sensing 
collections to obtain NDVI values. The NDVI value is calculated 
as follows:

where RED is the red portion of the electromagnetic spectrum and 
NIR is near-infrared light. In this study, NDVI time series from 
three different satellite datasets are exploited and compared. Details 
can be found in Table 1. The MODerate-resolution Imaging Spec-
troradiometer (MODIS) Reflectance product MCD43A4 provides 
daily reflectance data adjusted using a bidirectional reflectance 
distribution function (BRDF). Data of both Terra and Aqua satel-
lites are used in the generation of this product, providing the high-
est probability for quality assurance input data (DAAC 2021). For 
comparison and validation, two other collections of optical remote 
sensing satellites are applied, i.e., the Landsat-8 collection (16-day 

(1)NDVI =
NIR-RED

NIR+RED

Table 1   Parameters 
investigated for analyzing 
slope instability before failure 
using Google Earth Engine, 
parameters of SAR images 
from S1A are listed together for 
comparison as well

Exploited dataset Temporal 
resolution

Spatial resolution Duration of exploited 
dataset

SAR images Sentinel-1A 12 days 5m × 20m Oct 2014 to June 2020

Rainfall CHIRPS daily 0.05◦(∼5km) Jan 2000 to June 2020

NDVI MODIS daily 500m Jan 2014 to May 2021

NDVI Landsat-8 16 days 30m Jan 2014 to May 2021

NDVI Sentinel-2 5 days 10m Dec 2018 to May 2021
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temporal resolution and 30-meter spatial resolution), and S2 data 
(5-day temporal resolution and 10-meter spatial resolution). To be 
noticed is that the S2 dataset for this study area is only available 
since late 2018.

The precipitation and NDVI analyses were conducted with the 
help of the Google Earth Engine (GEE). We developed our own 
scripts to generate the monthly-mean and yearly precipitation dur-
ing 2000–2020 for Danba County for further exploration in this 
study, while NDVI is calculated or obtained for the slope affected by 
the landslide from the mentioned three satellite collections during 
different periods (Table 1). The NDVI values are further compared 
with the interferometric coherence. The purpose of the comparison 
is to see whether some features could be obtained for early warning 
without complex MTI processing (Jacquemart and Tiampo 2021).

Inverse‑velocity theory for anticipating the time of failure

When landslides, rockfalls and similar hazards are investigated, 
one of the major interests is to predict a potential time range when 
a failure might be likely to happen. For this goal, already several 
approaches have been developed, among them, the INV method 
which is considered to be a simple but effective method for EWS 
being used in many studies during recent years (Carlà et al. 2017; 
Zhou et al. 2020).

In order to apply INV, the first step is to calculate the velocity of  
LOS displacement from the time series of displacement. The cal-
culation of landslide velocity is always a complicated problem. On 
the one hand, the strength parameters for different landslide types 
should be considered in the calculation. On the other hand, the 
friction coefficient and friction resistance will change with differ-
ent stages of activities and the volumes of the landslide (De Blasio  
2011). The key challenge is that in reality the observations  
of displacement could be influenced by manmade or systematic 
noises. Such noises include measurement errors, random instru-
ment noises and noises from periodic changing factors such as 
rainfall, groundwater, human activities, etc. These noises could 
lead to outliers and abnormal behaviors for INV, which makes 
data smoothing necessary. In previous studies, some approaches 
are exploited to generate the smoothing of the displacement, such 
as short-term and long-term moving averages and exponential 
smoothing functions (De Blasio 2011; Carlà et al. 2017). In this 
study, we have applied these different approaches, but the outcomes 
have not been satisfying. The reason for this is, if the kernel of the 
smoothing function is too large, the filtered curve would possi-
bly lose some important features, whilst the noise in displacement 
could not be improved using a smaller kernel.

In order to obtain ideal fittings which capture the relevant 
features and to mitigate the influence from noises, we propose a 
method to smooth the displacement values obtained by MTI pro-
cessing. The method uses least squares and L1 regression under the 
assumption that after the main failure has happened, the further 
displacement occurring within the landslide area remains more 
or less constant. In this context, we introduce the parameter c to 
represent the limitations of the measurements, whereas c1 and c2 
represent the minimum and maximum detectable displacements, 
respectively. In specific, if the magnitude of displacement is larger 
than c1 , then the slope movement is considered to occur in form of 
sliding. Since the obtained MTI measurements are characterized by  

cm to mm precision (Osmanoğlu et al. 2011; Wang et al. 2012;  
Motagh et al. 2017; Haghighi and Motagh 2019), we introduce a relatively  
generous threshold amounting to c1 is 0.01 meter. Since we do not 
want to over-smooth the features caused by the landslide failure in  
the fitting process, the parameter c2 is not set in this study. In the 
result, we calculate the smoothed displacement by the following 
equation:

where y represents the observation, x is variable and A comprises 
the sparse matrix for the tridiagonal representation of the standard 
second difference operator, and � is the factor balancing the fitting 
and sparsity. To solve (2), a package for solving convex optimiza-
tion problems (Grant and Boyd 2008, 2015) was used, to derive x 
that minimizes expression (2) being subject to the constraints while 
using identical parameters. Values of INV will approach zero cor-
responding to the increasing time as velocities increase asymp-
totically closer to the failure. Once the smoothed displacements 
are generated, INV could be derived and thus, a prediction of the 
failure could be achieved.

Results

Horizontal displacement based on high‑resolution optical 
images
Figure 3 illustrates the horizontal displacement calculated from 
Planet optical images for a short period of time comprising the 
situation right before and after the failure, i.e. 1 day before the fail-
ure and 8 days after the failure. The applied two Planet images are 
shown as background in Fig. 3. The main component of the hori-
zontal displacement occurs in the W-E direction with a maximum 
displacement of approximately 13.2 meters toward the west. In the 
N-S direction, the displacement is oriented toward the north with 
a maximum displacement of approximately 6.9 meters. Overall, 
the absolute horizontal displacement is estimated as the norm of 
vectors from displacements in N-S and W-E directions, and the 
maximum magnitude reaches approximately 14.7 meters in the 
NW direction. The result also demonstrates that some localized 
deformations exist out of the main body of the failure, mainly in the 
northwest and southwest corners of the area shown on the image 
in Fig. 3. The moving directions of those localized deformations 
are different compared to the ones obtained for the main failure. 
This subset area is shown with significant motion comparing to 
the surrounding areas. From Fig. 3, we can see that the maximum 
horizontal displacement rate could reach ∼1.6m/day, which is too 
large to be applied using InSAR monitoring (Crosetto et al. 2016).

MTI analysis

Figure 4 shows a comparison of the results of MTI processing for 
the two different periods using both PSI and SBAS methods. The 
displacement rates have been derived in line-of-sight (LOS) direc-
tion, whereas positive values represent motion towards the satellite, 
whilst the negative values represent motion away from the satellite. 

(2)

⎧
⎪⎨⎪⎩

argmin
���y − x��22 + �‖Ax‖1

�

c1 ≤ xi+1 − xi ≤ c2
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The reference point, representing a stable area during the whole 
time period is selected outside of the landslide region in the north-
ern hill slope. From the MTI analysis, it is deducted that the area of 
the June 2020 failure had already experienced movements prior to 
the actual failure, especially in the center part of the landslide body.

As seen in Fig. 4, the creeping movement could already be 
revealed within the landslide body for the time period of 2014–2017. 
In this period, the maximum displacement rate in LOS direction 
amounts to approximately −24 and −38 mm/yr, for the PSI and 
SBAS methods, respectively. For the 2018–2020 period up to the 
failure, the displacement rates within the area of the June 2020 fail-
ure have significantly increased compared to the 2014–2017 period, 
reaching the maximum of approximately −40 and −55 mm/yr for 
the PSI and SBAS results, respectively, in the center of the landslide 
body. Moreover, the areas outside of the landslide failure turn out 
to be stable in general. The relevant statistics for the PSI and SBAS 
results for the ancient slope failure reactivated in 2020 can be found 
in Table 2.

Figure 5 shows a comparison of displacements time series along 
a selected topographic profile (marked by blue in Fig. 4d) for the 
SBAS results in 2018–2020. Point T1 is situated on the channel floor 
and points T2-T4 are located on the partial failure part; while T5 
and T6 are situated on the upper part of the ancient landslide and 
outside of the failure body. The displacements rates of selected 
points in the top (T5 and T6) and bottom (T1 and T2) zones are 
smaller compared to the displacements rates in the central fail-
ure zones (T3 and T4). Meanwhile, the central failure zones have a 
relatively larger slope inclination compared to the top and bottom 
zones. The above results are further elaborated in the Discussion.

Influence of precipitation on the kinematics of the landslide

Figure 6a demonstrates the annual precipitation amounting to 855.5 
mm in 2014, then increasing by 5.7% in 2015, but decreasing by 
9.0% in 2016. In contrast, for the period of 2017–2019, we observe 
a constant increase by 12.3%, 1.1% and 5.2% respectively compared 
to the previous year. Figure 6b shows that from April to June 2020, 
rainfall is 30.5%, 4.0% and 26.4% higher than the long-term average 
for the last 20 years, respectively.

To better quantify the role of the 2020 heavy precipitation in 
influencing the kinematics of the landslide, we focused on the 
2018–2020 period and analyzed the time series of LOS displace-
ments at different parts of the landslide. Figure 7 illustrates the 
locations of ten points selected arbitrarily over the whole landslide 
body: points P1-P3 from the head of the failure part (Zone I); points 
P4-P6 from the central failure body (Zone II); points P7-P9 from 
the foot of the landslide (Zone III); and point P10 from the landslide 
body, but outside of the 2020 failure.

The results of MTI time series for the selected points are dis-
played in Fig. 8; the dot lines show the time series retrieved from 
the SBAS processing, while the blue lines represent the fitting 
curves obtained based on the smoothing methodology described 
in Sect. 3.4. As seen in Fig. 8, points P1-P3, which are located in 
Zone I, show accelerations and decelerations throughout the entire 
time series with a clear accelerating trend as of spring season in 
2020. In contrast to points P1-P3, the displacement rates at points 
P7-P9 are relatively lower; they exhibit periods of acceleration in 
the step-wise pattern and a constant velocity at the end of the time 
series. Points P4-P6 in the center region show the highest displace-
ment rates among all the selected points with fewer variations in 
overall velocity compared to other parts of the landslide, although 
some periods of slowing-downs and accelerations occur in the 
same period as in case of points P1-P3 (e.g., in June 2019). Point 
P10, located outside of the 2020 failure, reveals a steady movement 
at the beginning, punctuated by a short episode of acceleration in 
March–April 2019 and another obvious acceleration since spring 
2020.

Figure 9 reveals the comparison of the LOS velocity of points 
P1-P3 on the image of Fig. 9a and the corresponding precipitation 
in the period of 2018–2020. These three points are selected for 
INV processing due to the strong correlation of the simultane-
ous speeding up of their displacement rates in response to the 
increasing cumulative precipitation in the rainfall season. Obvi-
ously, there are three rainfall seasons in Fig. 9b, corresponding to 
the rainy months of May to September. We calculate the increments 
of the precipitation in different years and then compare this with 
the amount of changes in the corresponding LOS displacements 
of the selected points in the same duration. The results are dis-
played in Table 3. Here we observe that for the first time period 
of mid-April to mid-June in 2018, where rainfall reaches 248 mm, 
approximately 6.5, 6.5 and 2.3 mm increases in displacement values 
are observed at points P1-P3, respectively. Interestingly, compared 
to the period t1 , the increments of displacement in t2 of these points 
decline corresponding to the reduced rainfall, i.e., when the rainfall 
in t2 drops by approximately 12%, the variations of displacement 
of points P1-P3 also drop by approximately 36%, 53% and 79%, 
respectively. However, for the third time span t3 , we can see that 

Fig. 3   2D results of horizontal displacement (Duration: 15 June 
2020 and 24 June 2020) generated using Planet optical images. The 
lengths and directions of the arrows represent the magnitudes and 
the moving directions of motion. The orange line represents the fail-
ure area (same as in Fig. 2)
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Fig. 4   Comparison of MTI results for (a) PSI in period of 2014–2017, 
(b) SBAS in 2014–2017, (c) PSI in 2018–2020 and (d) SBAS in 2018–
2020; the blue line and triangles in (d) show the location of the 

selected topographic profile and points analyzed in Fig. 5. Image 
background is comprised of the Planet optical image acquired on 15 
June 2020
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Fig. 5   Plotting of displacement rates along a topographic profile for the SBAS results in 2018–2020. The location of the profile is shown in 
Fig. 4d. (a) The selected topographic profile. (b)–(g) show the MTI results of points along the selected profile from northwest to southeast
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since the rainfall raises by 22% compared to t2 , the displacement 
increments of points P1-P3 also increase by 59%, 160% and 456% 
than the values in t2.

INV results for anticipating the time of failure

Figure 10 demonstrates the results of INV analyses. In Section 3.4, 
we described anticipating the time of failure using the modified 
INV theory. The period considered in the INV analyses is from 
April 2020 to mid-June 2020, which is affected by the heavy precipi-
tation before the failure, and is the same for all the selected points. It 
is worth noting that, the areas with accelerating LOS displacement 
before failure are needed to be evaluated for INV analysis (Manconi 
and Giordan 2016). Otherwise, the method leads to underestima-
tion or overestimation of the failure time. This has been shown in 
Fig. 10b for points P5 and P7, which are located in an area, where no 
acceleration was found before the failure. Applying the INV method 
to these two points resulted in overestimated prediction times, i.e., 
approximately 20 and 66 days after failure. The results presented 
in Section 4.3 shows that among the whole landslide body, only the 
top of the failure area indicated accelerated creep since spring 2020 
in response to the heavy rainfall (Zone I in Fig. 7). By performing 
INV analysis for the points in this area, we observe that the INV 
can predict the time of failure properly (Fig. 10a).

Comparison of NDVI and coherence values

Figure 11a shows the negative correlation between coherence and 
NDVI (MODIS) in 2014–2020. Regardless of the temporal gap in 
SAR data availability, the changes in coherence and NDVI show 
quite an obvious opposite trend. NDVI indicates whether or not 
the target region being observed is covered by vegetation, while 
coherence is used to describe changes in backscattering properties 

Table 2   Relevant statistics of MTI results for the ancient slope failure 
reactivated in 2020 (Fig. 1). Parameters for the PSI and SBAS results 
(Fig. 4) of the two periods are listed respectively

Statistics Number 
of PS/
DS

Max.  
displacement

Max. 
velocity

Mean velocity

(Unit:) (-) (mm) (mm/yr) (mm/yr)

PSI 2014–
2017

180 −55.7 −23.8 −12.9

SBAS 2014–
2017

133 −88.4 −37.8 −14.7

PSI 2018–
2020

167 −91.6 −40.3 −15.6

SBAS 2018–
2020

342 −124.1 −54.6 −17.9
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Fig. 6   (a) Annual precipitation within Danba County for period of 
2014 to 2020. (b) Comparison of monthly-mean precipitation for 
period of the last 20 years with precipitation in 2020

Fig. 7   Location of arbitrarily selected points (P1-P10) over the land-
slide body. The region is classified according to the behavior of these 
points from spring 2020 until the failure; P1-P9 are within the failure 
region while P10 from the landslide body is located outside of the 
2020 failure. T1-T6 are the selected points along topographic profile 
as shown in Fig. 4d. The background image is from Planet optical 
image

Landslides 19 & (2022) 321



Original Paper

and similarities between radar echoes (Wang et al. 2009). The high 
NDVI values occur in summer, when the area is covered by more 
vegetation and thus the coherence becomes low. In contrast, less 
vegetation and thus, less volume scattering in winter results in 
higher coherence values for that season. An interesting result from 
Fig. 11a is that coherence drops to its lowest values ( ∼0.22) over 
the past six years before the landslide failure. There are another 
two minimum values for June 2015 and July 2016 in the coherence 

plot. However, these minima are caused by long temporal baselines 
between SAR image pairs during these periods.

Figure 11b shows the comparison of NDVI values from three 
different satellite collections pronounced in Sect. 3.3. Due to the 
limited temporal resolution, NDVI values generated from Land-
sat-8 could not reveal promising results for detailed monitoring of 
vegetation dynamics. In contrast, NDVI time series generated from 
MODIS and S2 show good temporal correlation and agreement. 
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Fig. 8   LOS displacements for period of 2018–2020 for SBAS result and the corresponding fittings of points (a) P1-P3, (b) P4-P6, (c) P7-P9 and 
(d) P10. The locations of points have shown in Fig. 7

Landslides 19 & (2022)322



Moreover, the two NDVI time series show some declines before the 
failure, i.e., MODIS-derived NDVI shows two declines of approxi-
mately 50 and 10 days before the failure; whilst the one derived 
from S2 indicates a drop of approximately 20 days before the failure. 
Reasons for these drops are elaborated in more detail in Discussion.

Discussion
This study has shown the great potential of applying high-
resolution optical and radar satellite remote sensing data and 
related techniques for the quantitative multi-temporal assess-
ment of surface kinematics related to the 2020 Aniangzhai 
landslide failure in the mountainous region of Danba County. 
Generally, optical and radar remote sensing are two methods 
with their own advantages and weaknesses that can be used 
to monitor different stages or types of landslides, e.g., from 
initial slow creep motion to accelerated stage. These methods 
are complementary to each other and are exploited together 
in this study.

Based on the optical remote sensing data, the dynamics of the 
presented cascading events leading to Aniangzhai landslide fail-
ure could be clearly observed in their consecutive steps, allowing a 
comprehensive understanding of the resulting disaster chain. The 
failure with large displacement as shown in Fig. 3 is beyond the 
detective capability of the InSAR technique (Crosetto et al. 2016). 
Our optical results are similar to the deformation vector distribu-
tion of reactivated deposits obtained by (Zhao et al. 2021). How-
ever, (Zhao et al. 2021) presented the results from tens of monitor-
ing points from 22 June to 12 July, while in our study we derived 
the horizontal deformation of the whole failure area using opti-
cal remote sensing data between 15 June and 24 June. They also 
concluded that the Aniangzhai landslide slipped down as a whole; 
as the movement did not change the microtopography, rather the 
relative positions of points. Our fieldwork supports this observa-
tion, e.g., the houses on the failure body were only cracked but not 
collapsed (Fig. 2). The flooded areas, as well as the sediments of 
debris flows, are well demonstrated in the Planet and S2 images, 
indicating the direct cause and the sources of this event. The main 
direction of horizontal displacement from Planet optical images 
also provides a guidance for choosing the 6-year descending data-
set in MTI analysis with a better observation geometry. Moreover, 
the results obtained from optical images of the June 2020 failure 
indicate larger deformation on the lower part of the slide compared 
to its middle and head parts in the large failure zone (Fig. 3). The 
explanation for this result could be that the foot of the landslide 
is closer to the river and is influenced by both water release from 
the upstream dam and barrier lake to relieve flood pressure. All 
these factors make the slope more vulnerable to undercutting and 
erosion, resulting in the large failure on the lower part of the slide. 
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Fig. 9   Comparing of landslide kinematics with the corresponding 
precipitation in points P1-P3. (a) Fitted LOS displacements of points 
P1-P3 from 2018 to 2020. The marked periods are mid-April to mid-

June in the three rainy seasons before the failure. Relevant statistics 
of increments are listed in Table 3. (b) The daily and cumulative pre-
cipitation from 2018 to 2020

Table 3   Increments of precipitation and the corresponding incre-
ments of LOS displacement of points P1-P3 from mid-April to mid-
June in 2018–2020

Increment Δt
1

Δt
2 Δt

3

Rainfall (mm) 247.79 217.03 264.49

Displacement in P1 (mm) 6.49 4.14 6.58

Displacement in P2 (mm) 6.49 3.02 7.86

Displacement in P3 (mm) 2.33 0.50 2.78
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As for the undercutting effects and erosion on the toe of the land-
slide body, debris flows from the Meilong valley caused by higher 
rainfall in summer 2020 played a vital role. This is consistent with 
the conclusions as revealed in (Yan et al. 2021). They suggest that 
the continuous rainfall in 2020 increased groundwater content and 
reduced the stability of loose sediments in Meilong valley. Then 
the debris flows formed in Meilong valley washed away loose sedi-
ments and bedrocks in the Xiaojinchuan River, a barrier dam was 
formed just under the Aniangzhai landslide toes and eventually the 
overflowed current from the barrier dam washed and eroded the 
foot of the ancient landslide body.

By applying radar remote sensing and MTI techniques, tem-
poral and spatial variability in the kinematics of the Aniangzhai 
landslide from 2014 until the 2020 failure could be comprehensively 
investigated (Fig. 8 and Table 2). Mean LOS deformation rates dur-
ing pre-disaster stage clearly identifies instability of the landslide, 
with the largest deformation rates higher than 50 mm/yr in Zone II. 
The deformation rates, however, change spatially in the entire slope 
with points located on larger slope angles, i.e., T3 and T4 in Fig. 5, 
showing higher LOS displacement rates compared to the other 
points. Zhao et al. (2021) identified the Aniangzhai slope as show-
ing characteristics of a landslide with a constant deformation state 
that requires certain prevention measures before entering into next 
phase of catastrophic failure. Our multi-temporal interferometric 
results confirm this observation by Zhao et al. (2021) and further 
show that the long-term displacement rates before the June 2020 
failure were not constant; rather, they changed over time. Influ-
enced by above-average precipitation in summer and the 3-year 
wet period that followed a relative drought year in 2016, we observe 
that the landslide moved in 2018–2020 approximately 14% faster 
than in 2014–2017.

To better investigate the role of precipitation in influencing the 
kinematics of landslides, the statistics on the 2018–2020 period 

from mid-April to mid-June are analyzed (Table 3). This clearly 
shows how temporal changes in precipitation are correlated with 
the kinematics of motion of points in Zone I (Fig. 7). Several InSAR 
studies have shown that ancient landslides reveal instabilities or 
even precursors in the form of accelerated creep before the failure 
(Teshebaeva et al. 2015; Handwerger et al. 2019; Ao et al. 2020), but 
the source of acceleration could be different. In some cases, e.g., 
Teshebaeva et al. (2015), small creeps and accelerations have been 
correlated well with the increasing seismicity. We have checked the 
Chinese Earthquake Catalog and searched for earthquakes around 
Aniangzhai with a radius of 20 km over the last 1 year before the 
failure. Results, however, show no big earthquake ( > 2.0 ) occurred 
in the region; the nearest seismic activity during this period was 
around 25 km away from Aniangzhai in the southwest direction on 
9 January 2020 (M 1.8 and a depth of 10 km). Therefore, we exclude 
tectonic forces as the source of the accelerated creep in Zone I.

It is worth noting that deep-seated landslides such as Aniang-
zhai cannot directly react to rainfall, since the changing of ground-
water conditions towards activation of the sliding plane requires 
some time until the surface runoff has been infiltrated to a certain 
depth (Iverson 2000; Vallet et al. 2016). In the normal non-flooding 
seasons, toe erosion of the landslide should be a constantly ongoing 
process as well, leading to a backward propagation of deforma-
tion in the upslope direction until the time of failure (Teshebaeva 
et al. 2015; Leroueil and Locat 2020). In this process, rainfall does 
not play a direct role, but as an indirect one usually occurring with 
a lag in time (Iverson 2000; Teshebaeva et al. 2015; Haghshenas 
Haghighi and Motagh 2016; Vallet et al. 2016). In our case, how-
ever, results show that the lag time in the head is very short as 
the acceleration there occurs almost at approximately the same 
time when the precipitation increases. More, in-depth geophysical 
analysis will be needed to investigate the reason behind this short 
time lag between rainfall and motions in Zone I of this deep-seated  
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Fig. 10   (a) Results of INV analysis for points (a) P1-P3 and (b) P5 and P7. Red lines display the results of INV, whereas the black dashed lines 
show the actual failure time

Landslides 19 & (2022)324



landslide. Besides, our results of precipitation analysis also reveal 
that the formation of debris flows in the Meilong valley could trace 
back to April 2020 (Fig. 6 and Fig. 9), when rainfall was approximately  
30% higher than the mean values of the last 20 years. This is con-
sistent with (Chen et al. 2005), that the formation of debris flow in 
this area, i.e., Danba County requires a longer preparatory phase of 
increased precipitation before a larger rainstorm eventually trig-
gers the onset of the debris flow. All these observations suggest that 
the ancient Aniangzhai landslide was already active, which eventu-
ally failed partially following the undercutting effect in 2020.

The MTI analysis also provides a good basis for investigat-
ing evolution and kinematics of motion in different parts of the 
Aniangzhai landslide. The smoothing method developed in Sec-
tion 3.4 helped us to properly smooth the data in order to detect 
the long-term and transient deformation without losing significant 
information from the data. These results have important implica-
tions for developing an early warning system for the Aniangzhai 
landslide and highlight that InSAR techniques can be used as an 
operational monitoring system in Aniangzhai to track progressive 
deformation and potential release areas in near real time in order 
to mitigate hazards associated with landslide failure (Hu et al. 2018; 
Carlà et al. 2018, 2019; Ao et al. 2020). Future works should focus 
on comparing the performance of moderate resolution S1 images 
with higher-resolution SAR images from missions like TerrasAR-X 

or CosmoSky-Med to better investigate the potential and existing 
limitations in Sentinel-1 data for landslide analysis Bovenga et al. 
(2012); Milillo et al. (2014); Hosseini et al. (2018); Liu et al. (2020).

NDVI analysis using MODIS and Sentinel-2 data reveals some 
interesting patterns, which may have the potential for early land-
slide warnings in the Aniangzhai landslide. As expected, the NDVI 
values increase while the coherence decreases due to the corre-
sponding increases in the volume scattering. This behavior has been 
illustrated well in Fig. 11a, where a negative seasonal correlation is 
clearly observed between the coherence and NDVI values. Despite 
having different spatial resolutions, time series of NDVI from 
MODIS and S2 show good consistency with each other (Fig. 11b). 
Two interesting drops are observed in NDVI retrieved from MODIS 
data before the 2020 failure; one in May, and the other in June 2020, 
i.e., 50 and 10 days before the large failure. For the S2 data, a sin-
gle drop is observed, i.e., 20 days before the failure. To investigate 
whether these signals are related to the behavior of the Aniangzhai 
landslide or whether they occur seasonally and independent of the 
slope motion, we plotted the NDVI values (MODIS) in 2020 against 
its historical values of the 2017–2019 period in Fig. 12a. Examples 
of LOS displacements in 2020 from points selected arbitrarily from 
Zone I are also shown in Fig. 12a for comparison.

It is difficult to fully disentangle the causes of the drops in NDVI 
values, as such drops are influenced by many factors including soil 
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Fig. 11   (a) Comparison of NDVI (MODIS) and interferometric coher-
ence of the 2014–2020 period. The S1 dataset for this region has a 
temporal gap in 2017–2018. (b) Comparison of NDVI time series 

from three different satellite collections of the period from July 2018 
to May 2021. The NDVI and coherence values are calculated for the 
same slope area affected by the failure
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moisture, surface erosion, plant degradation and slope deforma-
tion (Nicholson and Farrar 1994; Farrar et al. 1994; Liu et al. 2015; 
Jacquemart and Tiampo 2021). One explanation could be that the 
drops are related to errors in data production. As mentioned in Sec-
tion 3.3, the MODIS dataset is generated with adjustment through 
BDRF, which might contribute to interpolation errors. Alternatively, 
the drops could be related to changes in vegetation structure before 
the failure as it occurs at approximately the same time, when a dis-
tinct acceleration in landslide active deformation is seen; no similar 
behaviours were observed in the historical values. Unfortunately, 
the S2 data do not have a dense temporal coverage for the first drop 
to be used as the validation. However, based on the above discus-
sion and our results, we do not exclude the interpretation that the 
increase in rate of active deformation or the occurrence of small 
landslides before the main failure, as observed in seismic data (Yan 
et al. 2021), could have altered the scattering properties and vegeta-
tion structure in the landslide region, in turn leading to lower NDVI 
values. Similar observations of shallow soil erosion and vegetation 
damage near fault zones and river networks have been reported 
elsewhere (Gan et al. 2019; Jacquemart and Tiampo 2021; Geitner 
et al. 2021). As for the post-failure behaviors of NDVI time series, 
signification changes are expected compared to the pre-failure situ-
ation (Fig. 11 and 12a). Similar observations of post-event behaviors 
can be found in (Behling et al. 2016). The structure of vegetation 
over the slope area could be greatly influenced by the large failure, 
and would last for a certain period in the future.

In a similar manner as above, we also investigated the changes 
in the time series of coherence values for the Aniangzhai landslide. 
A recent study indicated the linear relationship between NDVI 
and coherence (Bai et al. 2020). As longer temporal baselines could 
lead to lower coherence values, only SAR images with a 12-day tem-
poral baseline were used here. However, as shown in Fig. 12b, the 

coherence-based results are not very promising. A possible rea-
son is that coherence is usually already low during summer in this 
region, since this time of the year is characterized by maximal veg-
etation growth. Therefore, it seems difficult to accurately discern 
a further drop in the time series due to low coherence and high 
uncertainty. Nevertheless, we can still observe a relatively stronger 
declining trend for coherence in 2020 compared to the previous 
years, which might be related to active deformation and changes 
in volume scattering of the landslide. Unfortunately, there are no 
available Sentinel-1B data for this study area. Otherwise, we could 
study the coherence from 6-day image pairs to determine whether 
the drop in coherence caused by slope destabilization would be 
more accessible. It can be assumed that, if performed in winter, 
coherence analysis might have resulted in a better performance 
for ongoing slope activation with less vegetation compared to the 
analysis in this study.

The stretch to an EWS is hypothetical at this stage, and addi-
tional case studies are needed to further analyze the key factors 
in changing NDVI and coherence values. We suggest that the con-
sideration of both parameters might lead to possible observations 
of signs of slope activation. With more experiments in the future, 
these results might contribute to a potential EWS for landslide 
hazards.

Conclusion
This paper focused on exploiting multi-sensor remote sensing 
technology to investigate the June 2020 Aniangzhai slope failure 
and the active deformation prior to the event since late 2014. Cross-
correlation analysis of high-resolution optical data from Planet 
provides detailed information about the spatial pattern of slope 
kinematics. Moreover, the undercutting effects on the toe of the 
landslide body, which played a vital role in the toe erosion and 
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Fig. 12   (a) Comparison of NDVI (MODIS) in 2017–2019 and in 2020, and orange lines are examples of LOS velocities in 2020 for points 
selected arbitrarily within the head of the failure region. (b) Comparison of coherence for time period of 2018–2019 and in 2020
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reactivation of this ancient landslide body, are also clearly visible 
in the optical data. The toe erosion was triggered by overflow of a 
dammed lake, created due to heavy rainfall and the resulting debris 
flows coming from the Meilong valley to the Xiaojinchuan River, 
and was influenced also by the discharge of the surplus water from 
a nearby hydropower station to reduce the flood pressure. Comple-
mentary analyses using multi-temporal SAR satellite remote sens-
ing shows that the Aniangzhai landslide was not dormant. Rather, it 
was already active before the failure, with a maximum LOS displace-
ment rate of around 38 mm/yr in 2014–2017, reaching approximately 
55 mm/yr in 2018–2020. Our findings indicate that not the whole 
landslide body was subject to accelerating creep before the June 
2020 failure; rather, only the points situated on the upper parts of 
the landslide failure sustained pronounced acceleration of the creep 
starting in spring 2020. As a result, the time series of displacements 
derived from these points could be utilized to forecast the poten-
tial window of failure. Moreover, we observed the sign in which an 
acceleration of creep on the head part of the failure region and a 
decrease in NDVI values took place almost at the same time, oppo-
site to the prevailing trends in this area. We discussed the likely 
causes to interpret this phenomenon and suggested that this sign 
may be regarded as a parameter to be integrated into an EWS. With 
more case studies in the future, the methods proposed in this paper 
can be utilized under the framework of multidisciplinary DRR for 
a comprehensive analysis of the cascading event chain influencing 
the instability of the ancient landslides.
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