
sensors

Article

Demand-Driven Data Acquisition for Large Scale Fleets

Philip Matesanz 1,* , Timo Graen 1, Andrea Fiege 1, Michael Nolting 1 and Wolfgang Nejdl 2,3

����������
�������

Citation: Matesanz, P.; Graen, T.;

Fiege, A.; Nolting, M.; Nejdl, W.

Demand-Driven Data Acquisition for

Large Scale Fleets. Sensors 2021, 21,

7190. https://doi.org/10.3390/

s21217190

Academic Editor: Francesco Bellotti

Received: 29 September 2021

Accepted: 26 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Volkswagen Group, 30163 Hannover, Germany; timo.graen@volkswagen.de (T.G.);
andrea.fiege@volkswagen.de (A.F.); michael.nolting@volkswagen.de (M.N.)

2 L3S Research Center, Leibniz University Hannover, 30167 Hannover, Germany; nejdl@l3s.de
3 Faculty of Electrical Engineering and Computer Science, Leibniz University Hannover,

30167 Hannover, Germany
* Correspondence: philip.matesanz@volkswagen.de

Abstract: Automakers manage vast fleets of connected vehicles and face an ever-increasing demand
for their sensor readings. This demand originates from many stakeholders, each potentially requiring
different sensors from different vehicles. Currently, this demand remains largely unfulfilled due
to a lack of systems that can handle such diverse demands efficiently. Vehicles are usually passive
participants in data acquisition, each continuously reading and transmitting the same static set of
sensors. However, in a multi-tenant setup with diverse data demands, each vehicle potentially
needs to provide different data instead. We present a system that performs such vehicle-specific
minimization of data acquisition by mapping individual data demands to individual vehicles. We
collect personal data only after prior consent and fulfill the requirements of the GDPR. Non-personal
data can be collected by directly addressing individual vehicles. The system consists of a software
component natively integrated with a major automaker’s vehicle platform and a cloud platform
brokering access to acquired data. Sensor readings are either provided via near real-time streaming
or as recorded trip files that provide specific consistency guarantees. A performance evaluation with
over 200,000 simulated vehicles has shown that our system can increase server capacity on-demand
and process streaming data within 269 ms on average during peak load. The resulting architecture
can be used by other automakers or operators of large sensor networks. Native vehicle integration is
not mandatory; the architecture can also be used with retrofitted hardware such as OBD readers.

Keywords: sensor-data acquisition; connected vehicles; big data; cloud computing; floating car data;
data streaming; fault-tolerant systems

1. Introduction

Modern cars have the potential to be utilized as a globally distributed sensor platform.
The data generated, thus, provides insight into the vehicle, its driver, and the vehicle
environment. However, these data streams are currently only accessible to the automakers
and a limited set of suppliers. The associated potential remains untapped while there is
great demand from the private and public sectors.

Insurance companies are part of the interested parties. They require fine-grained vehi-
cle sensor data to provide Usage-Based Insurances (UBI), prevent fraud, and reconstruct
the course of accidents. It is a growth market inhibited by the data collection capabilities
of current connected car fleets. Most companies track UBI policies through retrofitted
hardware solutions that are installed to the vehicles at high-cost [1]. Receiving data directly
from the automaker would reduce operational cost significantly [2].

Besides the commercial demand identified in the insurance market, academia also
has many active fields of research that depend on vehicle data. Among these fields are
driver behavior identification [3], inference of lane change intentions [4], or drowsiness
detection [5]. In addition, access to vehicle data is essential for municipalities to facilitate
the transition to Smart Cities [6]. For example, cities may utilize vehicle data to reduce

Sensors 2021, 21, 7190. https://doi.org/10.3390/s21217190 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3546-031X
https://doi.org/10.3390/s21217190
https://doi.org/10.3390/s21217190
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217190
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217190?type=check_update&version=1

Sensors 2021, 21, 7190 2 of 30

fuel consumption of public transportation [7] and predict urban traffic flows from floating
car data [8]. In-vehicle sensors also enable the detection of potholes [9], slippery road
conditions [10], or emission hot-spots [11]. Each of these examples requires recent data
from a large number of vehicles to unfold its full potential. Individual vehicles may not
provide sufficient statistical significance and only provide limited geographic coverage.

It is up to the automakers to tap into this potential. They manage vast fleets with
millions of connected vehicles. Opening the associated data can thus be accomplished by
performing a software update remotely. When designing scalable data platforms, all car
manufacturers face the same significant problems:

• Local data privacy laws cause a globally scattered regulatory landscape. The European
General Data Protection Regulation (GDPR) is especially strict among the different
data privacy regulations. Complying with it, therefore, supports the integration of
weaker frameworks. The GDPR requires obtaining informed consent from the data
subjects before their Personally Identifiable Information (PII) can be collected [12].
Additionally, GDPR key principles such as data minimization or storage limitation
must be applied [13].

• System-design issues are arising from a large number of cars and their diverse sensing
capabilities. The potential supply of data exceeds the demand many times over. Typi-
cal data consumers only access a subset of the whole fleet, and from these vehicles,
only a limited number of sensors are required for their use cases. Consequently, each
data consumer may access individual subsets of the total sensing capacity. The sys-
tem must map this access pattern efficiently. Nevertheless, these subsets can be of
substantial size and place high requirements on the scaling properties of the system.

• Even for a single automaker, hundreds of vehicle models are regularly customized
with model derivatives for specific regions and local markets. Each can have different
sensing capabilities on its own. Additionally, the customers can select optional features
that might introduce additional sensors. The sensors themselves might be supplied
from different producers with varying data-access channels. Therefore, in addition to
the legal heterogeneity, the individual cars are highly heterogeneous.

This paper presents a system that allows individual data consumers to access sensor
data from the globally distributed fleets of major automakers. For this purpose, we integrate
software directly into the vehicle, and a cloud platform facilitates access to the consumers.
This access is either provided via near real-time streaming or recorded trip files. The overall
system was natively integrated with a current vehicle platform of the Volkswagen Group
and thus provides insights into the capabilities of current connected cars. However, native
integration is not mandatory; the software component can also run on hardware retrofitted
in the vehicle.

Our manuscript presents a system architecture and its implementation capable of
addressing all three connected car challenges described above. No vehicle transmits more
than necessary to satisfy the demands of its relevant data consumers. We can enforce GDPR
compliance by requiring prior consent to any transmission of personal data and address
individual vehicles directly to acquire non-personal data. An abstraction layer enables us
to operate in a highly heterogeneous environment that includes cars with different sensor
availabilities and technologies. We compress transmitted data by combining a custom data
preprocessing strategy with an existing generalized compression algorithm. The system
is capable of handling more than 200,000 simultaneously active vehicles. During a perfor-
mance evaluation, it had consistently low response times after self-adjusting the number of
utilized servers.

Contributions

The main contributions of this paper are as follows:

• A method to minimize the scope of acquired sensor data for each vehicle individ-
ually: Each vehicle only transmits data required to fulfill the demand relevant to it.

Sensors 2021, 21, 7190 3 of 30

A data consumer’s demand is considered relevant if the data subject has consented to
fulfill it (personal data) or the individual vehicle was assigned to the demand (non-
personal data).

• Dynamic demand determination in the context of a fixed purpose and data scope.
For this purpose, the data consumers manage tasks which may also include constraints
evaluated on each vehicle locally and data processing options.

• An abstraction layer enables the integration of a heterogeneous fleet through a single
interface. For this purpose, we continuously distribute instructions to the vehicles.
Each instruction describes an individual sensor access pattern. The vehicle checks
these instructions by applying a trial-and-error scheme to determine its sensor capa-
bilities and accessing the corresponding data.

• A compression strategy combines custom data preprocessing with an existing algo-
rithm and, in combination, produces better results than the preprocessing itself or
other existing algorithms alone. The compression ratio was evaluated by using actual
vehicle data.

• A cloud-based reference implementation that handles data processing as distributed
and trip-related transactions. Overall system throughput is automatically adjusted by
adding or removing servers.

• Validation of the scaling properties of the overall system through a realistic simulation
of over 200,000 simultaneously active vehicles.

The remainder of this manuscript is organized as follows: We present an overview of
existing architectures and systems in Section 2. Then, we introduce our proposed system in
Section 3 and address implementation details of its main components in Section 4. The re-
sults of our performance evaluation are detailed in Section 5. We compare our contributions
with the identified works in Section 6. The final Section 7 provides conclusions to the paper.

2. Related Work

This section differentiates between works from academia and commercial systems for
collecting and distributing vehicle sensor data. We present an in-depth comparison with
our contributions in Section 6. In addition, we compare closely related systems with ours
in Table 1.

Sensors 2021, 21, 7190 4 of 30

Table 1. Overview of closely related data acquisition systems regarding selected features, including commercial closed-source products, which are marked with an asterisk. Features that
are not evident from their public documentations are marked with a dash. There are also architectural concepts that assume a native integration but have not integrated their architecture
into a vehicle yet. Some systems include programmable hardware; in this case, we only consider software and cloud platforms provided by the manufacturer [14,15].

Work

Feature
Demand
Driven

Data
Acquisition 1

Multi Tenancy 2

Vehicle
External

Data
Storage 3

Vehicle
External

Data
Streaming 4

Conditional
Data

Acquisition 5

Individual
Vehicle

Addressing 6

Consistency
Guarantees 7

Data
Compression 8

Native
Integration 9

[16] No Yes Yes Yes No No No No No
[17] No No No No Yes No No No No
[18] No No Yes Yes No No No Yes No
[19] No No Yes No No No No No No
[20] No No Yes No No No No No No
[21] No No Yes No No No No No No
[22] No Yes Yes No No No No Yes No
[23] No Yes Yes Yes No No No Yes Yes
[24] No Yes Yes No No No No No No
[25] No Yes Yes No No No No No No
[26] No Yes Yes No No No No No Assumed
[27] No Yes No Yes No No No No Assumed
[28] No Yes Yes No No Yes No No Assumed
[29] No No Yes No Yes Yes No No Assumed

[30] (*) No Yes Yes No No No - - No
[31] (*) No Yes Yes No No No - - No
[32] (*) No Yes Yes Yes No No - - No
[33] (*) No Yes Yes Yes No - - - Yes
[34] (*) No Yes Yes Yes No - - - Yes
[35] (*) No Yes Yes Yes No - - - Yes
[36] (*) No Yes Yes No No - - - Yes
[37] (*) No Yes Yes Yes No - - - Yes
[38] (*) No Yes - - No - - - Yes
[39] (*) No Yes Yes Yes No - - - Yes

[14] No Yes Yes No - Yes No - No
[15] No No No No No Yes No No No

Our Proposal Yes Yes Yes Yes Yes Yes Yes Yes Yes
1 Vehicle-specific scope reduction of transmitted sensors based on data-requirements of data consumers (See Section 3.2). 2 Functionality to let several independent parties work with the system, providing each
party potentially different data. 3 Data can be transferred from the vehicle to an external system and persisted there. 4 The external system continuously provides the received sensor data to other systems via
streaming. 5 Data transmission can be made dependent on a condition evaluated on each vehicle locally. 6 It is possible to collect data from a specific car within a fleet without collecting data from the other cars.
7 The system can collect consistent sensor time series and detect inconsistencies if necessary. 8 The vehicle compresses data before transmitting it to an external system. 9 The system is a native component of a car
and does not require any additional hardware.

Sensors 2021, 21, 7190 5 of 30

2.1. Academia

The development of systems to collect vehicle data is often a prerequisite for answering
research questions based on the data obtained [16–21]. For example, the authors of [16] have
developed driving behavior analysis methods based on continuous streams of vehicular
data. For this purpose, they had to develop an infrastructure capable of providing the
required data. Such a pattern is indicative of a lack of suitable public data-access channels
provided by the automakers.

Customer feedback platforms in the context of the Industry 4.0 vision represent a
subset of these specialized data acquisition systems. Such platforms enable manufactur-
ers to receive usage data directly from their products to improve quality, flexibility and
productivity [21]. The data obtained in this way usually does not leave the sphere of the
automobile manufacturer.

Some works focus exclusively on building platforms to make vehicle data available
to arbitrary data consumers [22,23]. In contrast to the previous works, they provide the
functionality to handle multi-tenant setups in which distinct parties acquire data from a
fleet. For this purpose, they have implemented an authorization layer that restricts data
access for the individual tenants: The driver must grant permission for each tenant to
access data collected from his vehicle. Permission differs from consent because it does not
influence data collection; it takes place in any case.

We utilize consent instead and combine our multi-tenant capabilities with a dynamic
procedure to reduce data acquisition for each vehicle individually. For this purpose, we
natively integrate software with an existing vehicle platform of the Volkswagen Group. This
software selects the sensors to be recorded and can evaluate conditions that influence data
acquisition. The sensor selection depends on the sensors required by the data consumers
and can be continuously adjusted even after the data subject gave consent. In other works,
data acquisition takes place as a static routine that is decoupled from the requirements of
individual data consumers [16,18–25,30–32].

Apart from [23], the presented systems are not integrated natively with the vehicle.
Consequently, the authors had to utilize the On-Board Diagnostics (OBD) interface to
acquire sensor data from the vehicle [16–18,20–22,25]. The OBD is a physical interface
within the car that exposes a small fraction of the data available on the Controller Area
Network (CAN) [40]. Most sensors are connected to the CAN and broadcast messages
containing their latest measurements. The majority of these messages are encoded using
a manufacturer’s proprietary scheme, which can also vary depending on the vehicle
model [26,40]. Thus, parties unaffiliated with the automaker must reverse engineer the
CAN to process all measurements, which is a dedicated field of research [41,42].

While some works use OBD as a sole vehicular data source [16,18,20,21], others also
obtain data from their own sensors [17,22,25,43] or use them exclusively [19]. A combina-
tion of different data sources can also occur on a higher level by aggregating data from
existing telematics systems and smartphones [24]. In some cases, the connection with the
OBD is set up via self-designed hardware [44]. Our system is natively integrated with the
vehicle via software and does not need additional hardware such as an OBD dongle. It
only utilizes sensors that are part of the vehicle and acquires their readings via multiple
software-based data-access channels provided by the vehicle platform.

The OBD interface essentially represents an abstraction layer, as it can provide a
subset of the overall sensor readings of a vehicle through standardized message formats.
Furthermore, it supports the discovery of available standardized sensor readings [21]. We
have developed a higher-level abstraction layer that extends these features. It enables
the data consumers to influence data acquisition in the absence of specific sensors. In-
stead of normalizing the sensor readings, they are supplemented with metadata such
as resolution or sample rate. In addition, we can connect multiple data-access channels
and handle vehicle-specific incompatibilities caused by diverging implementations of the
data-access channels.

Sensors 2021, 21, 7190 6 of 30

The acquired sensor data represent time series. There are compression algorithms
optimized for time-series data that are not specific to the automotive domain [45,46].
Furthermore, there are generalized compression algorithms that can handle arbitrary
binary data [47–53]. We have created a domain-specific and lossless data preprocessing
strategy and combined it with an existing generalized compression algorithm. In [23],
the authors utilize downsampling and histograms to reduce data transmission size, and a
trajectory compression algorithm is used by [18]. In contrast, the authors of [54] propose to
detect anomalies locally on the vehicle and restrict data transmission to them.

Different concepts are used for the processing and storage of data. Some systems
provide a REST interface to access stored data requiring the data consumer to query for
updates [22,23]. In [23,27], the authors use a message broker to push incoming data directly
to data consumers. The works of [16,18] utilize multiple storage layers optimized for
specific use cases. For example, the authors of [18] store the most frequently accessed data
in a memory-based caching system, use a relational database for preprocessed data, and
archive raw data in a NoSQL-based system. Our cloud-native system utilizes a single
storage layer that enables near real-time streaming and continuous sensor data recording.
We can integrate third-party systems from different clouds and deliver events to them, thus
eliminating the need to query for updates.

There are also architectural concepts for acquiring vehicular data [26–29,55]. These
concepts imply an immediate integration into the car without providing a reference imple-
mentation. Unlike the previously mentioned works, these architectures are not forced to
adapt to the reality of the volatile and complex automotive domain. On the contrary, our
work demonstrates the capabilities of modern mainstream vehicle platforms through its
integration into a current platform of the Volkswagen Group.

2.2. Commercial Systems

There exists a commercial market for systems that enable data acquisition from ve-
hicle sensors. We present a selection and distinguish between software-based solutions
and those that require retrofitted hardware installed on the vehicles. These systems are
mainly black boxes, and their implementation details are only known to the manufacturers.
The descriptions are based on the manufacturers’ public documentations.

2.2.1. Software Platforms

Otonomo [33], Caruso [34] and Smartcar [35] are neutral platforms that act as in-
termediaries between automakers and data consumers. The data consumer maintains
a relationship with the neutral platform, which acquires data from the automaker and
forwards it to the customer. The vehicle owner must grant consent by completing an
OAuth flow with the automaker as specified by Extended Vehicle Standard [56]. Each of
these platforms has a REST interface that provides sensor values of individual vehicles.
In addition, they can stream incoming vehicle data to a data consumer supplied server by
utilizing HTTP requests. The sensor availability differs across these platforms. Otonomo
provides filters that limit the streaming of already collected data based on the location of
the vehicles or the age of the data.

Additionally, various car manufacturers offer direct access to vehicle data. These
include Mercedes Benz [36], BMW [37], or Ford [38]. They also require the vehicle owner
to grant permission for data acquisition by performing an OAuth flow. Streaming is not
supported; the customer must poll the data instead.

The Groupe PSA [39] has created a system for acquiring data from fleets belonging to
a single owner. Customers can create Monitors. They consist of a condition validated on the
backend and, if matched, results in a notification to customers. The condition refers either
to a geographical area, the time, or an arbitrary vehicle state (e.g., AC active/inactive).
Additionally, a record is created for each performed trip. It contains the distance and the
start and end position.

Sensors 2021, 21, 7190 7 of 30

2.2.2. Hardware/Software Platforms

Providers such as Zubie [30], Munic [32] or Vinli [31] offer OBD dongles that have
built-in internet connectivity and send vehicle data to an associated cloud platform. All
systems offer interfaces to poll sensor data from the cloud. Munic and Vinli store multiple
updates of a sensor value, while Zubie provides only the last value. Sensor data can only
be streamed to the customer via Munic. The others can send events like the start of a trip
or its completion. Vinli can validate a condition and trigger an event once it is met.

There are also OBD devices designed to be used as software platforms [14,15,57,58].
As such, their users can deploy custom software to them in order to process and transmit
the obtained data. For this purpose, the devices can provide cellular, WiFi, or Bluetooth
connectivity. In addition to OBD, some devices also include their own sensors such as GPS
or accelerometer [14,15,57]. Some providers also offer software to collect data from their
hardware [15] or provide data acquisition as a service via a cloud platform [14,59]. These
devices can also be utilized to run the software component we have natively integrated
into the vehicle.

3. Proposed System

We have created a system that enables individual data consumers to access the sens-
ing capabilities of vast heterogeneous fleets. It consists of an application that is natively
executed by the associated vehicles and a cloud platform. The in-car application includes
an abstraction layer that unifies sensor access across different sensor configurations and
technologies. Each car continuously determines relevant sensors for recording by request-
ing the vehicle-specific data requirements from the cloud platform. The recorded sensor
readings are then transferred to the cloud and processed there. As a result, the readings
are either streamed to the data consumer or persisted as files that map individual journeys
from start to finish (trip files). The data consumer’s infrastructure can be connected directly
to our cloud platform. The connection is established via a message-based interface that the
consumer must provide. Our platform sends messages that include, for example, streaming
data or notifications about newly created trip files. The use of our system is visualized in
Figure 1.

Personal Data

Data-Demand

Data-Demand

Drives / owns vehicle

Data Subject

Non-Personal Data

Data-Demand

Data-Demand

Vehicle
Mapping

Consent

Drives / owns vehicle

Data Subject

Consent

Multiple data-access channels

Abstraction layer

Native data acquisition software

Chunk compression

Sensors

Local persistence

Transmission

Chunk serialization

Consent
Revocation
Message

Chunk buffering

Trip file generation Streaming

Trip file storage Message delivery

Message delivery

Data Subject

Consent
revocation

Revocation reception

Trip file deletion

Message delivery

Responsible for demand

Data Consumer

Responsible for demand

Data Consumer

New
Trip File
Message

Streaming
Data

Message

Figure 1. Use of our system to acquire personal and non-personal data.

3.1. GDPR Related Requirements

The GDPR distinguishes between personal data and non-personal data. Any pro-
cessing of the former requires informed consent, which the data subject must give in
advance [60]. Such consent includes a purpose limitation that also conclusively lists the par-
ties involved in processing the data [61]. Additionally, the principle of data minimization
must be applied. Therefore, only data indispensable for the stated purpose may be col-
lected [13]. The GDPR does not regulate the processing of non-personal data. Consequently,
a system that can legally process personal data is also allowed to process non-personal data.

Sensors 2021, 21, 7190 8 of 30

The term personal data is to be understood very broadly. It refers not only to data that
directly links a person, such as a name, but also to data with an indirect link to a person.
Thus, a license plate is also considered personal data even though the processor might
not be capable of looking up the owner. The mere possibility that such a lookup could be
performed is sufficient for the classification as personal data [60]. The classification of a
set of data into this binary scheme poses a considerable problem in practice [60]. Incorrect
classifications can lead to severe penalties of up to €20 million or 4% of annual global
turnover (whichever is higher) [62]. This is a strong incentive for companies to classify
data as personal when in doubt.

The system we present is designed to meet the legal requirements for processing
personal data (See Table 2). As such, we do not transmit any sensor data from a vehicle
unless informed consent is given. The scope of data collection is determined individually
for each vehicle by applying our demand-driven data acquisition strategy (See Section 3.2).
In this way, we comply with the principle of data minimization and ensure that no data
collection takes place without a purpose. Designing the system to handle personal data
does not prevent its use for non-personal data, as explained in Section 3.8.

Table 2. Requirements for the processing of personal data derived from the GDPR.

Requirement Realization Section

Personal data may only be processed if
prior consent is given.

The data collection software natively integrated with the vehicle
does not collect and transmit any data by default. An individual
vehicle only performs data collection if a consent object exists
within our system associated with the vehicle.

Section 3.2

The collection of personal data may not
exceed the scope of the associated consent.

The data subject consents to grant the data consumer access to an
immutable set of sensors (project). Subsequent data acquisition by
the data consumer can not exceed this scope.

Section 3.2

If consent was revoked, all associated data
must be deleted from our system.

Personal data stored on our system is linked to the associated
consent. If consent is revoked, we automatically delete the
associated data.

Section 4.8

If consent was revoked, all associated data
must be deleted from the infrastructure of
the data consumer.

We notify the data consumer about the revocation via a
message-based interface. The data provided to him always
references the associated consent. Thus, he can carry out a targeted
deletion on his infrastructure.

Section 3.5

If consent was revoked, associated data
acquisition must stop; no further data may
be collected.

Each vehicle communicates continuously with our cloud platform
to stop individual data acquisitions if associated consent is revoked.
The cloud platform will discard data the vehicle transferred before
the revocation was propagated upon receipt.

Sections 4.3 and 4.8

No more data may be collected than
necessary (data minimization).

Each vehicle only transmits sensors required to fulfill the data
demand of the data consumers for which associated consent exists.
Data consumers specify demand according to their needs and can
adjust the scope of data acquisition even after consent is granted.

Section 3.2

3.2. Demand-Driven Data Acquisition

We have found that, in practice, an access pattern prevails in which individual data
consumers want to access different sensors originating from different cars. There may be
overlaps, i.e., multiple consumers can simultaneously access certain vehicles and sensors.
The demand-driven data acquisition method we have developed can efficiently handle
such patterns. It minimizes data collection for each vehicle individually. As a result, we
only collect data required by the data consumers (demand) who obtained consent from an
individual vehicle. An illustration of our applied method is presented in Figure 2.

Data consumers specify their demands within the context of so-called projects. Each
project represents an independent data collection purpose within the meaning of the GDPR.
It contains sensors that define the maximum scope of any data collection carried out
through it. The demand is set separately from the project and can be continuously adjusted
while being within the associated scope. The consent is directed at the project. Thus,

Sensors 2021, 21, 7190 9 of 30

a demand adjustment affects existing and new consents equally. The projects are immutable
and represent reliable constraints on the associated demand.

Transmitted Data Demand Sandbox Demand Specification
Demand
MappingAutomaker Fleet

Vehicle
Mapping

VIN: A3C
User: None

VIN: D4F
User: philip@vw.com

VIN: G5I
User: None

Consent
VIN= A3C
ProjectId= 1

Consent
User= philip@vw.de
ProjectId= 1

Consent
VIN= D4F
ProjectId= 2

Project
ProjectId= 1
Scope=

Position
Outside Temp.
Speed
Breaking Pressure

Processors=

Company A

Project
ProjectId= 2
Scope=

Position
Rainfall Density
Tire Pressure
ABS Activity

Processors=

Company A
Company B

Task
ProjectId= 1
Data Fields= Processing Options=

Condition=
 None

Position

Breaking Pressure
Speed
Outside Temp.

Trip File Generation
Streaming
[..]

Task
ProjectId= 1
Data Fields= Processing Options=

Condition=
 ONLY IF Outside Temp. < -2°C
 AND Speed > 10 km/H

Position

Breaking Pressure
Speed [..]

Trip File Generation
Streaming

Task
ProjectId= 2
Data Fields= Processing Options=

Condition=
 None

Position Trip File Generation
Streaming
[..]

Outside Temp.

Rainfall Density
Tire Pressure
ABS Activity

Position
Speed

Breaking Pressure

Position
Rainfall Density

No Data
Transmission

Figure 2. Application of the Demand-Driven Data Acquisition. The condition of one task does not apply. It is therefore
not executed.

The actual demand of a project is equal to the sum of its tasks. Each task contains a
list of sensors to be acquired, an optional condition, and any processing-related options.
Each vehicle is receiving all tasks for which project-related consent exists. The application
deployed to the vehicles is executing them (See Section 4.4). Therefore, the condition is eval-
uated individually by each car and can include local sensor values, geographic restrictions,
or time limits. A task can perform conditional data collection as it is only executed if the
associated condition holds. Upon execution, the task-related sensors are recorded and trans-
mitted with regard to the processing options: If streaming is activated, the recorded sensor
readings are buffered locally for a shorter time, for example. Additionally, deduplication
occurs; if several tasks contain a sensor, its readings are transmitted once.

Each consent links an individual car with a project. For this purpose, the vehicle can
be addressed via its unique Vehicle Identification Number (VIN). Alternatively, indirect
addressing can occur by utilizing the driver’s account used to log on to the car. Thus,
the data of an individual driver can be collected across multiple vehicles. There can be
multiple consents for each project and car.

3.3. Sensor Abstraction

A highly heterogeneous car landscape characterizes the automotive sector. For exam-
ple, the Volkswagen Group is currently producing 391 different car models globally. They
are built on top of distinct platforms that utilize different technologies. Every model can be
configured to contain optional features upon ordering. These features may result in addi-
tional sensors being added to the car. There are at least two suppliers for every sensor. Each
supplier can introduce custom characteristics into their products, like different data resolu-
tions or access channels. Additionally, software updates may be performed on subsets of
the overall fleet. Such an update can potentially alter sensor-specific data-access channels.

We have created an abstraction layer that reduces the variety of sensors to the in-
dividual data fields that can be read from a car. Consequently, our system only reveals
high-level data fields such as “speed”. The underlying complex variety of different sensors
is invisible to the data consumer. We map this variety via so-called instructions. For each
data field, several instructions can exist. There is one for every distinct data-access channel

Sensors 2021, 21, 7190 10 of 30

that may exist. The application deployed to the vehicles can interpret such instructions to
acquire the associated data fields from its sensors. It can thus also determine local sensor
capacity by trying out the instructions: If the application can successfully execute at least
one instruction of a data field, it is considered available.

The data-access channels have a multi-layered architecture: A custom application
logic is implemented based on existing protocols such as WebSocket or MQTT. An example
for such an implementation is the VIWI interface [63]. The instructions we utilize are
implemented at the protocol layer. For each protocol, there is a dedicated instruction
processing logic in the abstraction layer. The protocol-level implementation enables us to
handle diverging application logic exclusively by adding additional instructions.

We have developed a replication mechanism for this purpose. It continuously transfers
the available instructions to all vehicles (See Section 4.2). In addition, each vehicle reports
local changes in data field availability. An anomaly detection evaluates these changes. We
can thus detect breaking modifications to the data-access channels indirectly and restore
compatibility by adding new instructions. Additionally, we can monitor the overall health
of the system (See Figure 3).

Generated DataVehicle

Task
ProjectId= 1
Data Fields= Processing Options=

Condition=
 None

Position

Breaking Pressure
Speed [..]

Trip File Generation
StreamingOutside Temp.

Task
ProjectId= 1
Data Fields= Processing Options=

Condition=
 ONLY IF Position IS AVAILABLE

Position

Breaking Pressure
Speed [..]

Trip File Generation
StreamingOutside Temp.

Data Collection
Task Executor

Break Pressure
Sensor

Outside Temp.
Sensor

Speed
Sensor

GPS Position
Sensor

...

Sensor
Abstraction

Layer

Instruction

Instruction

Instruction

Instruction

Instruction

WebSocket
Handler

MQTT
Handler

HTTP
Handler

...

Cloud Platform

LTE
Module

REST
Interface

Sensor
Anomaly
Detection

Sensor
Instruction
Manager

...

Sensor
Instruction
Replication

Data Field
Availability
Changes

Case 1

Position
Sample Rate= 1Hz
Resolution= 0.001

None None None ...

Outside Temperature
Sample Rate= 1Hz
Resolution= 0.1

Sample #1 Sample #2 Sample #3 ...

Speed
Sample Rate= 10 Hz
Resolution= 0.25

Sample #1 Sample #2 Sample #3 ...

Breaking Pressure
Sample Rate= 25 Hz
Resolution= 0.1

Sample #1 Sample #2 Sample #3 ...

Case 2

Not Executed / No Data

Figure 3. Usage of the sensor abstraction layer. Individual instructions are available for each sensor. Instructions that are
compatible with the specific vehicle are marked in green, and incompatible instructions are marked in red. In the first case,
as much data as possible is collected, resulting in a sparse dataset because a data field is not available. In the second case, no
sensor readings are collected at all because the condition does not hold.

The abstraction layer is also integrated with the task concept of the demand-driven
data acquisition strategy. By default, a task yields a sparse dataset, i.e., if a data field is not
available on a vehicle, the remaining data fields are still transmitted and made available to
the data consumer. However, it is possible to include the availability of individual data
fields into the condition. As a result, a task can be configured to yield a dense dataset as it is
only executed if the given data fields are available on the vehicle (See Figure 3).

The sensor abstraction layer does not explicitly normalize local sensor peculiarities
such as different data resolutions, sampling rates, or units of measurement. Instead,
the sensor readings are transmitted unchanged in combination with metadata containing
these peculiarities. Consequently, a data consumer can receive sensor data in different
resolutions and sampling rates via a single task.

Sensors 2021, 21, 7190 11 of 30

3.4. Data Transmission and Processing

The vehicle transmits recorded data fields as chunk sequences to the cloud platform.
It generates an independent sequence for each trip, whose components are numbered
consecutively. Each chunk can include time series for multiple data fields, and it is structured
so that there are no dependencies on other chunks. Thus, if chunks are lost, the data loss
is limited to those chunks. The vehicle knows which data fields are retrieved by tasks that
have streaming enabled. It transmits the corresponding data more frequently serialized
as separate chunks. A custom chunk compression strategy is applied as described in
Section 4.5.

A three-phase protocol is employed to transmit each sequence to the cloud platform:
First, the vehicle performs a trip initialization by submitting a unique TripID. Afterward, it
transfers the chunks upon their generation. Finally, after the vehicle has transmitted all
chunks, it sends a commit message that indicates the end of a trip. The commit message
includes the TripID and the number of the final chunk.

The cloud platform is storing all received chunks within a persistent buffer. Upon re-
ceiving the commit message, it performs an aggregation by merging all chunks of the trip.
The resulting aggregate is split based on the contained tasks. A trip file is generated and
stored for each task that has enabled persistence. Receiving a streaming chunk triggers
its immediate processing: The contained data are transferred to the data consumers by
utilizing endpoint messaging as described in the following subsection. The execution of a
sequence transfer is shown in Figure 4.

Vehicle Cloud Platform

 Init: TripID=49e7

Data Consumer

Chunk: TripID=49e7
 ChunkNr=0

 Streaming=true

Chunk: TripID=49e7
 ChunkNr=1

 Streaming=true

Chunk: TripID=49e7
 ChunkNr=2

 Streaming=false

 Commit: TripID=49e7
 FinalChunkNr=2

Data: TripID=49e7

Data: TripID=49e7

Trip-File
Generation

Figure 4. Transmission of a chunked trip sequence.

Multiple persistence layers within the car ensure no data loss occurs if the car is
turned off or has lost its internet connectivity, as described in Section 4.7. However, such
a condition can last for an extended period, e.g., if the vehicle is in an underground car
park. Thus, there is no way to ensure that the vehicle sends the commit message on time.
We enforce a timeout to keep the buffer requirements predictable by avoiding indefinite
buffering. When the timeout occurs, the cloud platform performs the aggregation, which
results in trip files that contain a flag indicating their possible incompleteness. Otherwise,
the completeness can be determined reliably with the final chunk number from the commit
message. Tasks can be configured to discard incomplete files.

Trip files include a reference to the associated consents. If there is a consent revoca-
tion, then the corresponding files are automatically deleted from our platform. The data
consumer will be notified of the revocation via endpoint messaging and can perform a
local deletion by utilizing the embedded references.

Sensors 2021, 21, 7190 12 of 30

3.5. Endpoint Messaging

We assume that data consumers have automated systems for data processing. These
systems can be connected to our cloud platform via a message-based interface (See Figure 5).
Messages delivered through this interface can describe events such as new trip files or
consent revocations. These messages only contain metadata that can be used, for example,
to retrieve the actual trip file via our REST interface. In addition, we also use the message
interface to deliver streaming data. Unlike trip files, it is limited in size because no
aggregation is performed. Therefore, we embed streaming data directly within the message.

Vehicle

Data Collection
Task Executor

Fuel Level
Sensor

Break Pressure
Sensor

Steering Angle
Sensor

GPS Position
Sensor

Battery Voltage
Sensor

.....

Sensor
Abstraction

Layer
LTE

Module

Cloud Platform Data Consumer

Sensor
Anomaly
Detection

REST
Interface

Trip File
Manager

Sensor
Instruction
Manager

Consent
Manager

Demand
Manager

Trip File
Processor

Streaming
Processor

Endpoint
Messaging

Message
Based

Interface

Data
Processing

System

Chunk
Manager

Figure 5. High-level architecture of the proposed system. Components that we have developed are coloured blue.

We use platform-independent Protocol Buffers to serialize the messages [64]. They
enable us to support different transportation channels such as HTTPS, AWS SQS, or Google
Pub/Sub. While the latter have their own authentication methods, the opposite is true for
HTTPS. We utilize asymmetric cryptography to extend every message that is delivered via
HTTPS with a signature. It can be verified by using our public keys.

The delivery of messages must be reliable, as the loss of individual messages can lead
to a GDPR violation. If the data consumer is not notified of consent revocation, he may not
fulfill his obligation to delete associated data. For this reason, we repeat delivery attempts
until they finally succeed.

3.6. Vehicle Authentication

Requests originating from a vehicle are authenticated via signed tokens that contain
the VIN and optionally the user id from the driver. A central Identity Provider (IDP) issues
them. The vehicles have embedded certificates linked to their individual VIN. They utilize
these certificates to obtain tokens from the IDP continuously. In addition, the driver can log
in to the IDP via the vehicle user interface. Then, the IDP extends the token with the user id.
Our cloud platform verifies these tokens and can thus provide the origin of individual data.
Additionally, all communication between the vehicle and our cloud platform is encrypted
by utilizing HTTPS.

3.7. Vehicle Simulators

The system provides functionality to simulate active vehicles. It realizes such simu-
lations by using recordings from real cars. The data contained therein were captured at
the protocol layer and represents a complete snapshot of the data-access channels during a
trip. These snapshots are replayed to create a virtualization of the data-access channels in
the car. The same software components that are usually executed by the car are connected
to them. The result is a realistic simulation covering all system features and offers the same
data as the actual vehicle (See Figure 6).

Simulations of different vehicle models are provided by creating separate recordings
for them. Model-specific characteristics, such as differences in the data-access channels, do
not have to be explicitly mapped since the recordings are made at the protocol layer. We
provide the recordings from different car models as a service.

Sensors 2021, 21, 7190 13 of 30

Vehicle

Data Collection
Task Executor

Sensor
Abstraction

Layer

Fuel Level
Sensor

Break Pressure
Sensor

Vehicle Simulator

Data Collection
Task Executor

Sensor
Abstraction

Layer

MQTT
Replayer

WebSocket
Replayer

Recording of all data
at the protocol layer

Cloud
Platform

Figure 6. Implementation of a vehicle simulator. It executes the same software as the car. We provide
simulated data-access channels that can replay arbitrary recordings from actual vehicles.

The simulators are made available to the data consumers. They can thus develop their
own data processing systems without needing any consent or own vehicles. We also utilize
them to perform load tests (See Section 5) and functional tests.

3.8. Acquisition of Non-Personal Data

The presented system can also collect and process non-personal data for its data
consumers. For this purpose, we utilize the mapping resulting from the consent: As soon
as a consent object is present, an individual vehicle begins collecting and transmitting
the associated demand. When dealing with non-personal data, we can create these objects
without actual consent from the data subjects and utilize them to address individual
vehicles for data collection. There are no additional legal requirements (See Section 3.1).

For practical use in the context of individual data consumers accessing subsets of
the overall fleet, such addressing would have to be automated and intelligent: The in-
tended fleet includes millions of vehicles spread across the globe. Therefore, we must select
the vehicles that provide the most significant benefit for the goals of the data consumer.
For example, if a data consumer wants to determine the most popular radio station in
New York, vehicles in Brazil would be unsuitable. Economic efficiency correlates with
selection accuracy since an incorrect selection generates costs that are not offset by ben-
efits. Our system does not yet include such intelligent addressing. The selection must
precede the task distribution because task conditions are not designed for this purpose.
Using task conditions would require all non-personal data tasks to be executed on every
vehicle. Consequently, we cannot provide access to non-personal data for arbitrary data
consumers efficiently.

However, the system can still efficiently handle use cases that do not depend on such
car selection optimization. Automakers have an interest in collecting data to track wear
and tear on their vehicles. They are also interested in statistics on average consumption
and emissions [21]. It is possible to acquire such data for each model individually: The
automakers assign the VINs, which indicate the associated model. Thus, they can either
create a consent object for all of them or perform sampling by only utilizing a subset of the
models’ VINs.

4. Implementation

Our system is split into multiple components, which are distributed over different
infrastructures (See Figure 5). Most of them are critical for the platform’s reliability and

Sensors 2021, 21, 7190 14 of 30

must be capable of handling high-frequency access patterns. We describe implementation
details of selected components within this section.

4.1. Utilized Technology

The system components running on the vehicle were developed in Node.js without us-
ing an additional framework. They are being executed as a background application without
having a user interface. Our cloud platform was developed in Python and uses the FastAPI
framework [65]. The connection between the two systems is made via client libraries
automatically generated from the Swagger definitions provided by FastAPI. In addition,
we utilize Protocol Buffers for message and sensor data serialization [64]. Furthermore,
the following services provided by Google Cloud Platform and their associated libraries
are used:

• App Engine: A managed service to host web applications. It deploys a user-supplied
application to proprietary virtual machines that spawn within seconds. Thus, it allows
handling sudden spikes of traffic by adjusting the underlying servers just in time [66].

• Datastore: Managed NoSQL database that stores items with unique keys. Its underly-
ing servers manage continuous subsets of the keyspace. Every item is limited to one
update per second. It supports consistent queries and transactions spanning multiple
operations [67].

• Cloud Tasks: Provides the capability to schedule asynchronous HTTP requests. It
supports delayed executions and retries failed requests until they finally succeed.
The requests are stored within queues [68].

• Pub/Sub: Asynchronous messaging service. Messages are published to topics that can
have multiple subscriptions. Published messages are replicated to every subscription
and will be delivered at least once [69].

• Compute Engine: A service that provides virtual servers and auto-scaling. The scaling
can be tied to the in-flight messages of a Pub/Sub subscription [70].

• Cloud Storage: An object store that can persist unstructured blobs/objects within
buckets. Events can be pushed to a Pub/Sub Topic [71].

4.2. Instruction Distribution

The instructions of the sensor abstraction layer must be eventually replicated to the
connected cars (See Section 3.3). No inconsistencies may occur during this process, as this
could cause data fields to become locally unavailable. This process is read-heavy and
requires minimal writing: There are potentially millions of cars regularly querying for
updates. On the contrary, we are adding new instructions very infrequently.

We utilize a replication strategy that relies on multiple Last-Writer-Wins Registers
(LWW Registers), a known conflict-free replicated data type [72]. There is an individual
register for each data field that contains all associated instructions. We eventually apply
the final state of each register to the vehicles upon performing changes to them. For this
purpose, we use an ordered sequence whose elements are the registers. The sorting order
corresponds to the modification date of the registers, which is unique and consistent with
causality. Thus, each element represents a savepoint from which the vehicle queries the
following elements. If we make multiple changes to the same register, only the final
state remains in the sequence. The vehicle can thus skip intermediate states within the
replication process.

A distributed cache layer accelerates the sequence replication of the vehicles. They
regularly query for elements to continue with the local sequence. In return, they receive
the subsequent elements as a sorted list. The sorting property enables distributed caching
that does not require synchronization. No inconsistency occurs when the last item of
an ordered sequence is missing. A subsequent query will yield it as long as the cache
eventually expires.

We have implemented the instruction replication by utilizing Datastore and App
Engine. The former acts as a reliable persistence layer. There is an item for every register,

Sensors 2021, 21, 7190 15 of 30

respectively, data field that contains all associated instructions. Each item has a timestamp
property, and updates are performed in-place. The sequence is generated via a strongly
consistent Datastore query [73] that performs sorting by utilizing the timestamp. The re-
sulting sequences are cached on the individual App Engine instances and can thus be
accessed without additional network calls (See Figure 7). The used timeout has a random
component to avoid a cache stampede.

Cloud Platform

Datastore

ID: B
TS: 2

ID: A
TS: 5

ID: G
TS: 6

ID: D
TS: 8

App Engine Instance #1

Key Value

1

5

ID: B
TS: 2

ID: A
TS: 5

ID: G
TS: 6

ID: G
TS: 6

App Engine Instance #2

Key Value

3
ID: A
TS: 5 Vehicle

ID: B
TS: 2

ID: A
TS: 5

Last TS=5

ID: G
TS: 6

App Engine Instance #n

Key Value

3

5 - no updates -

ID: A
TS: 5

Last TS=5Last TS=5

ID: G
TS: 6

ID: D
TS: 8

ID: G
TS: 6

ID: D
TS: 8

Last TS=5

- no updates -

Figure 7. Sharding during instruction distribution. Datastore acts as single source of truth. App
Engine instances cache queries locally. The timestamp submitted by the car acts as cache key and
query parameter. The cache items can be out of sync as long as they represent an ordered subsequence
and eventually expire (See Section 4.2).

We use a monotonically increasing value as a timestamp. The system time is not
suitable because we are not able to synchronize the clocks appropriately. Even if this were
the case, a small risk of duplicate timestamps would remain. For this, we maintain a
dedicated Datastore entry that acts as a counter. Each register change is a transaction that
includes the counter and increments it to determine a new timestamp.

As a result, we have increased the read throughput by exploiting the auto-scaling ca-
pabilities of App Engine. However, the write throughput is limited to one data field update
and creation per second due to the counter including transaction. As this guarantees consis-
tency, we consider the restriction to be appropriate due to the rarity of instruction updates.

4.3. Consent Lookup

Each vehicle performs regular queries to the cloud platform to determine the relevant
projects. They are determined by evaluating the active consents. For this purpose, each
vehicle transmits its VIN and optionally a user id (identifiers). This operation is primarily
read-heavy, but there cannot be any drawbacks on write performance. It must be possible
to add and revoke the associated consents at a high frequency.

We store each consent as individual Datastore objects and maintain a reverse index for
each identifier to enable querying by them. The access intensity to the individual objects
tends to be equally distributed; consequently, we do not use a cache. Instead, we utilize the
data distribution strategy of Datastore to balance the load evenly across the underlying
server capacity. The assignment of an object to individual servers results from its key [67].

For each consent, we generate a random key with high entropy. The creation is done
within a transaction to ensure that the key is unique. In addition, we maintain the reverse
index within the transaction. For each identifier, there is an object storing all keys and
project references of the associated consents. We derive the key of the reverse index object
deterministically from the corresponding identifier. An index lookup is thus possible via a
single get-operation.

Sensors 2021, 21, 7190 16 of 30

The identifiers may represent monotonically increasing values or have a common
prefix. For example, the first three characters of a VIN are identical for many vehicles
because they contain a manufacturer’s abbreviation [74]. Such keys represent a Datastore
anti-pattern causing a concentration of the associated objects on a small subset of the
server capacity [75]. Therefore, we use a cryptographic hash function to create uniformly
distributed prefixes for the identifiers. This additional prefix causes an even distribution of
the associated objects.

We found that our implementation has few limitations. Each identifier generates
approximately the same load, and we distribute the underlying objects evenly across the
Datastore servers. We are thus not limited in the number of vehicles that query our platform
simultaneously. There are also no limitations in terms of concurrent consent creations and
revocations. However, there cannot be more than one consent revocation or creation per
second for each distinct identifier. This limitation results from the transaction through
which we maintain the reverse index. We consider the limitation to be appropriate.

4.4. Task Distribution

Each vehicle must determine the active tasks for the project references obtained
through consent lookup (See Section 4.3). There is a continuous synchronization with
the cloud platform so that task-related changes can be detected promptly. The process
is predominantly reading-heavy. There is a substantial potential for contention if many
vehicles are linked to the same project and thus query the same data.

A vehicle can be assigned to multiple projects, and each can contain multiple tasks.
We have designed our process to avoid the synchronization of individual tasks. For this
purpose, we have made the tasks immutable and manage a list of active tasks for each
project. Thus, a task is modified by creating an updated task and deactivating the previous
task. The vehicle synchronizes these references continuously and requests the associated
tasks separately. Due to their immutability, tasks can be cached indefinitely by the vehicle
and cloud platform.

We store the tasks as individual Datastore objects. In addition, there is a reverse index
for each project that contains references to its active tasks. We store the reverse index as
a separate object whose key is composed of the project key. This assignment enables an
index-lookup via a single get-operation. When the data consumer creates or deactivates a
task, the reverse index is updated via a transaction.

The reverse index includes a version property turning it to an LWW Register [72]. We
can therefore cache the indexes on the individual App Engine instances without synchro-
nizing them. The vehicle uses the version to ignore stale data. A short expiry interval
ensures the timely propagation of updates.

By not synchronizing individual tasks, we reduce replication overhead. We can apply
different caching strategies due to the separation of tasks and their activation properties.
Immediate caching on App Engine instances automatically adjusts the read capacity to
the current load. There is no limitation on overall projects and tasks. However, for each
project, there can be only one task addition and deactivation per second. We consider this
limitation to be appropriate.

4.5. Chunk Compression

Each vehicle continuously generates and transmits chunks. Under certain circum-
stances, persistence to a local storage medium occurs (See Sections 3.4 and 4.7). Reducing
the chunk size is thus a necessity. Local storage is limited and composed of eMMC memory.
Writing large amounts of data may cause a memory failure [76]. In addition, multiple
applications are consuming the limited internet uplink, and it may be degraded in rural ar-
eas [77]. Compressed chunks have less impact on other consumers, and their transmission
is more likely to succeed on degraded networks. Furthermore, they improve economic
efficiency as uploads from a vehicle are expensive.

Sensors 2021, 21, 7190 17 of 30

We have developed a data preprocessing method that we combine with an existing
compression method. As a result, we achieve a significantly higher compression ratio than
either method can provide on its own.

The preprocessing procedure is lossless and targets the time series contained in a
chunk. Its elements are composed of a limited set of primitives, and each has an associated
timestamp. We convert all values to the smallest possible integers and apply variable-
length integer encoding (VLI Encoding). There is a different conversion strategy for each
primitive, as explained below.

1. Timestamp: The system does not have real-time capabilities and cannot perform
measurements at exact intervals. In addition, most data-access channels only report
measurements if they differ from the previous ones. Consequently, we cannot drop
the timestamps in favor of storing the sequence interval length. However, many
timestamps still represent recurring intervals with slight variations. They originate
from sensors whose values changed with almost every measurement. For example,
the engine speed most likely varies continuously, given a resolution of 1 RPM.
In [46], the authors have found that Delta-Of-Delta (DOD) encoding is a good fit
for timestamps with such characteristics. It enhances Delta encoding, which is a
procedure that only keeps the first value of a sequence. The subsequent values are the
delta to the predecessor (a[n] = a[n]− a[n − 1]). In DOD encoding, the first value is
unchanged, and the second is the delta to the first. Subsequent values are computed
as follows: a[n] = (a[n]− a[n − 1])− (a[n − 1]− a[n − 2]). Thus, they represent the
delta of two deltas.
Applying DOD encoding to the timestamps results in an average compression ratio
of 3.66 (See Table 3).

2. Integer: We apply Delta encoding to integer values. The average compression ratio is
3.76. DOD encoding has not led to further improvements (See Table 3).

3. Float: We found that no sensor exploits the full precision of a float. Thus, we can
perform a reversible conversion into integers (F2I) without information loss. The con-
version is performed by shifting the decimal sign n places to the right (f loat ∗ 10n)
and cutting the remaining decimals. n is equivalent to the decimals of the sensor
resolution. A resolution of 0.25 corresponds to an n of 2.
Applying F2I with Delta- and VLI encoding results in an average compression ratio
of 3.16 (See Table 3).
We have dismissed two other approaches: The authors of [46] are utilizing XOR-based
compression. Their method is optimized for repeating values and can encode them
with a single bit. The reference data consist of 59% repetitions. Deducting them
from their results gives a compression ratio of 2.09. Furthermore, we have validated
the strategy presented by Lindstrom and Isenburg [45]. It relies on a predictor that
benefits from repeated values as well. Applying it to our dataset resulted in an
average compression ratio of 1.24.

4. String: The majority of string-producing sensors yield low cardinality ENUMs. We
apply a dictionary compression scheme to them. The strings are stored once within
the dictionary, and the time series only contains dictionary indexes. An average
compression ratio of 3.53 was achieved (See Table 3).

We have applied multiple compression algorithms to the preprocessed data and found
that preprocessing improves the compression ratio of every algorithm (See Table 4). We
chose to use Gzip [47] due to its low resource requirements and wide availability. Our
preprocessing achieves an average compression ratio of 2.99 (See Table 4). Applying Gzip
afterward improves the ratio to 4.82 while using Gzip alone only results in a ratio of 1.84
(See Table 4).

Sensors 2021, 21, 7190 18 of 30

Table 3. Performance of the preprocessing methods.

Primitive Preprocessing Average Size Ratio

Timestamp 1 None 5563 Byte -
Delta + VLI 1748 Byte 3.18
DOD + VLI 1518 Byte 3.66

Integer 2 None 1069 Byte -
VLI 445 Byte 2.40
Delta + VLI 284 Byte 3.76
DOD + VLI 284 Byte 3.76

Float 3 None 7050 Byte -
F2I + VLI 3239 Byte 2.18
F2I + Delta + VLI 2228 Byte 3.16
F2I + DOD + VLI 2243 Byte 3.14

String 4 None 120 Byte -
Dictionary + VLI 34 Byte 3.53

The results have been computed from datasets acquired from a real vehicle that was driven on a public street.
1 291 sequences; 39 sensors; 269,678 samples. 2 109 sequences; 12 sensors; 29,143 samples. 3 137 sequences;
11 sensors; 241,231 samples. 4 127 sequences; 17 sensors; 2330 samples.

Table 4. Combining our preprocessing strategy with generalized compression algorithms.

Preprocessing Applied
Algorithm No (Ratio) Yes (Ratio) Time (ms)

None 1.00 2.99 -
Gzip [47] 1.84 4.82 38.08
bzip2 [48] 1.87 5.05 21.71
LZMA [49] 2.68 5.36 121.32
LZ4 [50] 1.43 4.05 82.00
Brotli [51] 2.60 5.59 762.41
zstd [52] 1.97 5.01 377.04
zlib [53] 1.84 4.83 38.92

The compression ratios are related to the average size of a chunk (182 kB). The underlying dataset was acquired
from a real vehicle. It contains 589,904 samples from 39 different sensors.

4.6. Chunk Processing

Our system is processing chunks to generate trip files and perform near real-time
streaming. Both operations have different service level requirements. Trip file generation is
not a time-critical operation, and thus large fluctuations in the execution time are tolerable.
For streaming, processing must be as fast as possible, and prolonged outages are not
acceptable. Therefore, we operate separated infrastructures for each operation, aligned
to the appropriate service levels. This separation allows us to make data processing
more cost-effective.

Both infrastructures use the same message-based architecture (See Figure 8). In this
architecture, each message represents an executable job that is self-contained and idem-
potent. The messages are consumed and processed by a server pool whose capacity is
automatically adjusted. There is a persistent message broker that handles job scheduling
and thus decouples scheduling from execution. The decoupling enables us to prevent the
overloading of individual servers. Each server will only execute a limited number of jobs
in parallel. If job creation frequency exceeds the pool’s processing capacity, the broker will
queue the excess. Job scheduling is possible even if there are no servers in the pool.

We adjust the processing pool capacity based on the number of messages scheduled
for execution and currently being executed. For this purpose, we determine how many
servers are required to process these messages in parallel. In addition, we grant each server
a backlog that affects scaling aggressiveness (See Equation (1)). A larger backlog tends to
increase average processing time but suppresses erratic upscaling.

required_servers = messages/per_server_limit ∗ backlog_modi f ier (1)

Sensors 2021, 21, 7190 19 of 30

The trip file creation infrastructure utilizes preemptible Compute Engine instances for
message processing. These instances provide a cost advantage but have a limited lifetime,
and the cloud provider can terminate them at any time. In addition, there may be periods
when preemptible instances are not available due to lack of supply [78]. Furthermore, we
use a higher backlog modifier and thus accept longer delays in execution. For the streaming
infrastructure, we use regular Compute Engine instances and a reduced backlog modifier.

The vehicle performs a chunk transmission in two phases. Initially, it sends the chunk
associated metadata and receives a signed Cloud Storage URL in response. The chunk is
then uploaded via the received URL. We create a Datastore object for each trip to store the
associated chunk metadata and Cloud Storage references. Its key is composed of the trip
identifier, a random value that ensures even distribution across the Datastore keyspace.

Our cloud platform schedules the trip file creation upon receiving a commit message
from the vehicle. For this purpose, we load the trip-associated Datastore object to access
the Cloud Storage references and metadata. These fields are used to create a message that
we send to the message broker of the corresponding infrastructure. During processing,
a server from the pool loads all trip chunks and merges them. It creates a separate file for
each contained task and forwards it to another system for storage (See Figure 8).

Chunk Processing Infrastructure

Processing Node
Compute Engine

Cloud
Pub/Sub

Endpoint
Messaging

Chunk
Manager

Trip File
Manager

Auto-
scaling

Figure 8. A message-based chunk processing infrastructure architecture: There is a pool of stateless
processing nodes to handle the messages. Each message represents an executable job. We use this
architecture to perform streaming or to generate trip files.

The upload of a streaming chunk immediately triggers its processing. The Cloud
Storage bucket sends a message upon receiving the chunk. A random server from the
processing pool loads the chunk and forwards the data using endpoint messaging.

Chunk receive capacity is limited to one per trip and second. This limitation originates
from the single Datastore item utilized to store trip-related chunk metadata and Cloud Stor-
age references. There is no limitation on concurrent trips due to the randomized Datastore
keys and the fact that the throughput of Cloud Storage and Pub/Sub is not limited.

4.7. Chunk Processing Fault Tolerance

Chunk processing is a distributed transaction spanning multiple system boundaries.
Individual failures may not result in data loss or a corrupted state. We have developed
a transaction procedure that relies on passing multiple savepoints sequentially. Each
savepoint represents a self-contained and consistent state. Thus, reaching a new savepoint
enables the deletion of the previous state. Operations to reach a new savepoint are designed
to be idempotent and repeated until they eventually succeed.

The vehicles transmit their data via a three-phase protocol. In this protocol, the se-
quence of operations is essential. For example, a commit may only occur when all chunks
are transmitted (See Section 3.4). The vehicle manages the corresponding operations in a
queue and executes them sequentially using the first-in-first-out strategy. An operation is
only removed from the queue after its successful execution. If an error occurs, the vehicle
delays the next iteration by applying an exponential backoff. The vehicle persists the queue

Sensors 2021, 21, 7190 20 of 30

to a local storage device upon shutdown. It restores the queue and resumes execution
when the car is started again.

The cloud platform receives the vehicle data idempotently and performs deduplication
for this purpose. We use deterministic key generation to ensure that repeated invocations
of the same operation will affect the same objects within our system. The initialization of a
trip results in creating a cloud task, which eventually executes the timeout. We name the
task by combining the trip identifier and the VIN. Cloud Tasks performs deduplication
based on the task name, so reinitialization does not yield another timeout task [68].

Repeated chunk transmissions are also directed to the same Cloud Storage object.
Additionally, we only store distinct references within the associated reverse index. Thus,
we can avoid a continuous object expansion caused by a repeated transmission error.
The vehicle only considers a commit to be successful if the cloud platform has created and
persisted a message to initiate the trip file processing. Otherwise, it repeats the commit as
already described.

By persisting the chunk processing message, we can guarantee its eventual processing.
We obtain this guarantee by utilizing the Pub/Sub message redelivery strategy. Pub/Sub
requires an explicit ACK for each message. Otherwise, it applies an exponential backoff
and schedules the message for redelivery [69]. We ACK a message only in case of successful
execution. The execution itself is designed to be idempotent. Thus, it does not alter or
delete the associated chunks. Chunk deletion is carried out by expiry instead, for which we
use a multiple of the Pub/Sub message retention time. Chunk processing represents the
final savepoint. It encapsulates external calls, such as endpoint messaging. If these calls
fail, the whole processing operation is eventually re-executed.

The trip file generation infrastructure performs deduplication as part of the processing.
Immediately after a server has received a job, it checks whether a Datastore object exists
whose key is composed of the trip identifier and the VIN. If this object exists, it skips the
job. Otherwise, it executes the job and creates the object after successful execution. There is
no mutex to prevent this logic from running in parallel so that race conditions can occur.
In reality, most duplicate calls are filtered. The applied logic does not limit processing
capacity, as the trip identifier is a random value with high entropy. Thus, the used objects
are evenly distributed within Datastore.

As a result, the savepoints ensure that a wide variety of system components can fail
without causing any data loss. However, chunk and message expiry require us to act timely
on processing related outages. We must address them before expiration to avoid data loss.
Thus, we continuously monitor related Pub/Sub metrics such as backlog size and oldest
message age.

4.8. Trip-File Management

The Trip File Manager is responsible for persisting trip files and providing access to
them. It stores them on Cloud Storage and manages their metadata as Datastore objects.
There can be parallel and duplicate calls to the provided functionality (See Figure 9). Thus,
there is a high risk of inconsistencies. Any inconsistency may constitute a data protection
incident in the context of the GDPR and can have serious consequences. To prevent incon-
sistencies, we have adjusted the order of our operations and use Cloud Tasks to ensure their
eventual execution. The following causes for inconsistency were identified and addressed
by us:

1. The Trip File Manager may not accept files associated with revoked consents.
2. The revocation of consent must eventually result in the removal of all associated files

without any leftovers.
3. A previously deleted file must not become available after its repeated submission.

Sensors 2021, 21, 7190 21 of 30

Trip File
Manager

Data
Consumer

Query
Download

Delete

Trip File
Processor

Consent
Manager

Driver

Revoke
Consent

New File
Delete by
Consent

Verify
Consent

Figure 9. Interactions of the Trip File Manager with other system components or stakeholders. They
may be performed concurrently and have the potential to cause inconsistencies.

When a data subject revokes consent, we first block the creation of additional files
before initiating the deletion of existing files. This order enables a one-time sequential
deletion. Upon receiving a revocation request, we create a cloud task that encapsulates
both operations and eventually executes them in the given order. We perform the blocking
by adding a revocation flag to the Datastore object storing the consent. The deletion is
initiated by creating another task, which then performs the same.

The deletion task executes a Datastore query, which targets all files associated with
the consent. It then fetches only a subset of the result and creates another task containing
the query’s cursor. Afterward, it sequentially deletes the individual files contained in the
subset. The additional task does the same but utilizes the cursor to skip previous files. We
thus distribute the deletion across multiple servers, each handling a small fraction of the
associated files.

We create a cloud task for each trip file to be deleted. First, it turns the associated
Datastore object into a tombstone by adding a flag. The object thus becomes invisible to user-
facing queries, and the associated file can no longer be accessed. In addition, the tombstone
blocks the re-creation of the associated file. The task deletes the files afterward from
Cloud Storage.

The trip file manager rejects creating a trip file if an associated consent was revoked
or a tombstone is present. It initially writes the file to Cloud Storage. Afterward, it
performs a Datastore transaction fetching the consent objects and a potentially existing
metadata object. If either a consent was revoked or a tombstoned metadata object exists,
it cancels the transaction and deletes the associated Cloud Storage item. Otherwise, we
create the metadata object within the same transaction. We ensure idempotency by creating
deterministic Datastore keys and Cloud Storage names. The operation is only used by the
trip file processor and thus retried until it eventually succeeds (See Section 4.7).

Preventing the identified inconsistencies has resulted in a limited trip file creation
frequency for each consent. This limitation originates from the transaction that includes the
metadata object and all associated consents. We have deemed this limitation acceptable: A
consent usually relates to a single car, resulting in a limited creation frequency on its own.

5. Performance Evaluation

We have conducted a performance evaluation to assess the scaling capabilities of our
system. For this purpose, we have simulated more than 200,000 vehicles simultaneously
transmitting data to our system. As cars usually idle 95% of the time [79], this simulation is
representative of a much larger fleet in reality. The scope of data collection thus corresponds
to what commercially available products in the field of connected vehicles also have
to achieve.

The performance evaluation is carried out by using real vehicle data: We have per-
formed a 15-min drive with a Volkswagen T6.1 and recorded all data provided by the
vehicle’s data-access channels. The resulting recording was used to generate virtual vehicles
using our simulators, which realistically repeat the drive (See Section 3.7).

Sensors 2021, 21, 7190 22 of 30

We aim to answer the following questions via the performance evaluation:

1. Can the system react to elevated load with an automated increase in server capacity?
2. Is the increased server capacity able to keep processing time constant?
3. Can the system respond to reduced load by automatically reducing server capacity?

5.1. Setup

We have configured our system to make use of all its components. Therefore, we have
created a project containing a single task that has enabled streaming and trip file gener-
ation. Since there are separate infrastructures for each of these kinds of data processing
(See Figure 10), we can thus utilize both (See Section 4.6). In addition, we make use of end-
point messaging by configuring the project and task to use a Google Pub/Sub endpoint to
receive the streaming data and trip file notifications (See Section 3.5). Furthermore, the sim-
ulators do not have any instructions pre-installed and must perform a complete instruction
replication on startup. The other components, such as vehicle authentication or chunk
compression, are integral to data processing and do not require separate configuration.

The cloud system is distributed across three infrastructures (See Figure 10): There
are separate message based infrastructures to handle streaming and trip file processing.
Furthermore, there is a REST backend providing all remaining functionality which is served
via App Engine.

Vehicle

Data Access
Channel#2

Data Access
Channel #1

Native
Software

Backend

App
Engine

Cloud
Datastore

Cloud
Storage

Streaming Processor

Cloud
Pub/Sub

Trip File Processor

Cloud
Pub/Sub

Compute Engine
Cloud
StorageCompute Engine

Data Consumer

Cloud
Pub/Sub

Simulator

Data Access Channel
Replayer

Native
Software

Recording of all data
at the protocol layer

Figure 10. Setup of the performance evaluation: Using our simulators, we generate the same load
as regular vehicles. The load is processed by three different infrastructures, for which we perform
separate monitoring.

Sensors 2021, 21, 7190 23 of 30

Streaming and trip file infrastructures are configured to use e2-highcpu-2 Compute
Engine instances. Each instance may process up to 20 streaming chunks or 17 trip aggrega-
tions in parallel. We have set the backlog modifiers to 30 and 368 for streaming and trip
processing, respectively (See Section 4.6). The backend is configured to use F1 instances
with a target CPU utilization of 70% and a limit of 15 concurrent requests.

Performance monitoring is conducted by using Cloud Monitoring [80]. We record the
number of active vehicles and the server count of each infrastructure. For the backend,
we record the average request latency and request volume. Furthermore, we capture
the average processing time and the number of unprocessed messages for the message-
based infrastructures.

5.2. Results

We have found that the first and third questions can be answered positively. All
monitored infrastructures were able to increase server capacity in response to the increased
load. In addition, server capacity was reduced in response to the drop in load (See Figure 11).

0

20,000

Re
qu

es
ts

/ S

ec
on

d

0

1000

La
te

nc
y

(m
s)

0

500

Se
rv

er
s

0 10 20 30 40 50 60 70 80 90 100
Time (Minutes)

0

100,000

200,000

Ac
tiv

e
Ca

rs

Backend

0

100,000

Un
ac

ke
d

M
es

sa
ge

s

0

2000

4000

La
te

nc
y

(m
s)

0

100

200

Se
rv

er
s

0 10 20 30 40 50 60 70 80 90 100
Time (Minutes)

0

100,000

200,000

Ac
tiv

e
Ca

rs

Streaming Processor

0

200,000

Un
ac

ke
d

M
es

sa
ge

s

0

5000

10,000

La
te

nc
y

(m
s)

0

20

40

Se
rv

er
s

0 10 20 30 40 50 60 70 80 90 100
Time (Minutes)

0

100,000

200,000

Ac
tiv

e
Ca

rs

Trip File Processor

Figure 11. Results of a performance evaluation that was conducted by simulating over 200,000 concurrent cars. Performance
metrics have been recorded for each of our infrastructures. It can be seen that the applied load causes an initial latency
spike on the App Engine and Streaming infrastructure. This results from the rapidly increasing load for which insufficient
capacity is available at this moment. The latency returns to normal after the capacity was automatically increased. It
remains continuously low and thus enables time critical processing operations even at peak load. The latency of the Trip
File Processor is elevated but stays on the same level. Its operations are not considered to be time critical. Thus, we have
applied a less aggressive scaling strategy.

The second question can also be answered positively. There were initial spikes in
latency on the backend and streaming infrastructure. They were caused by insufficient
server capacity to handle the rapidly increasing load. After an automated adjustment, the la-
tency remained continuously low even at peak load. At that time, the average streaming
processing latency was 269 ms, while the backend had an average request latency of 190 ms.
Trip file processing latency was consistently higher due to a less aggressive scaling strategy.
This result is anticipated, as we consider the creation of trip files a time-insensitive operation
(See Section 4.6).

A summary of the measured latencies can be found in Table 5.

Table 5. The latency of the individual infrastructures during the experiment.

Latency (ms)
Infrastructure Mean 99th Percentile 95th Percentile STD. Dev.

Backend 221 471 230 370
Streaming 192 1220 350 263
Trip Files 11,329 14,020 12,997 880

Sensors 2021, 21, 7190 24 of 30

6. Discussion
6.1. Demand-Driven Data Acquisition

The presented demand-driven data acquisition makes large fleets accessible to indi-
vidual data consumers more efficiently than previous methods. Instead of acquiring a
static set of sensors from each vehicle, such as [16,18–25,30–32], we minimize the scope of
data acquisition for each vehicle individually. This optimization facilitates access to subsets
of the total fleet and sensor capacity, as the remaining data do not need to be transmitted
and processed. Thus, operational costs no longer depend primarily on fleet size but rather
on the actual data consumption of the data consumers. This is not the case with any of the
other works.

Minimizing the scope of data acquisition is based on the demand specified by the
data consumers. For this purpose, they manage so-called tasks. These tasks can include
conditions that are evaluated locally on the vehicles, enabling conditional data collection.
In addition, the options for data processing are part of each task. By coupling these options
to the condition, dynamic choice of data processing is possible. Some of the presented sys-
tems can also evaluate conditions. However, they evaluate it on their backends and utilize
the condition to yield events [31,81]. None of the other systems can make data collection
and data processing dependent on a condition evaluated on the individual vehicles.

We can process personal data in a GDPR compliant manner. The vehicles do not trans-
mit any personal data without the prior consent of the data subject. Many of the present
works do not consider consent handling, e.g., [16,19–21,26,28,29]. The authors of [17]
utilize a smartphone app that asks for permission before processing data. Some works
acquire data without prior consent and request consent to access the data already stored on
their platforms [22,23]. By separating consent and demand, we enable the data consumers
to continuously adjust their data collection within the boundaries of the consent—even
after it was given. In addition, we can address individual vehicles for data acquisition
by utilizing the identity signed on to the car. No other system enables data consumers to
adjust their collection of personal data for existing consents or tracking data subjects across
different vehicles.

Furthermore, the presented system is a suitable low-level architecture to acquire
and process non-personal data. The consent objects can be utilized to address individual
vehicles to start data acquisition on them. All benefits of the system also apply to collecting
non-personal data, e.g., the demand-driven data acquisition, scalability, abstraction layer,
or data compression.

6.2. Abstraction Layer

The presented system has an abstraction layer to integrate a heterogeneous fleet
through a single interface. There is an instruction for each sensor particularity existing in
the fleet. The vehicles utilize them to self-determine their sensor capabilities and retrieve
the associated data. In addition, conditional task execution can be performed depending
on sensor availability. Many of the presented works do not consider the need for an
abstraction layer [16–20,25–28,55]. The authors of [29] would like to establish new technical
standards to provide interoperability across different vehicles. In [23], the authors propose
a standard based on a common data format: Automakers should adhere to the format
and use it to submit data to a data marketplace. Another work is utilizing a mapping
table to map varying OBD data IDs with a common natural language identifier such as
“SpeedKmHr” [22]. The authors of [21] make use of OBD discovery in order to determine
sensor availability and report it to their platform.

The data fields exposed by our abstraction layer are similar to virtual sensors, which are
software components that process and make data available from physical sensors or other
software components [82]. There are implementations of virtual sensors that abstract sensor
access via a unified interface. However, the software components of these implementations
are strongly coupled to specific sensors and communicate directly with them [83,84]. Our
abstraction layer is more decoupled from actual sensors and requires little to no modifi-

Sensors 2021, 21, 7190 25 of 30

cations when integrating a new vehicle model that has new sensors. Compatibility can
be retrofitted via the replicated instructions since the underlying protocols usually remain
static. Furthermore, we enhance the provided data with metadata from the originating
sensor as already suggested by [82].

6.3. Data Compression

We developed a method for data preprocessing and combined it with an existing
compression algorithm. This combination resulted in a significant reduction in the size
of transmitted data without any loss of information. Many other works do not consider
compression [16,19–21,24–29,55]. In [18], the authors report using a lossless trajectory
compression method. Another work is utilizing downsampling and histograms to reduce
transmission size [23]. The authors of [54] also propose a lossy compression that restricts
data transmission to anomalies detected locally on the vehicle. Finally, the authors of [22]
mention using a proprietary message format to minimize the volume of transmitted data
but do not elaborate on this issue. We have also compared two stand-alone methods for
the compression of time series data and found that they are not efficient within our domain
(See Section 4.5).

6.4. Data Processing

Our system can record all data generated during a trip and provide it to the data
consumer. By using sequence numbers, we can validate the completeness of trip-related
data. Some systems provide the latest value for each sensor and therefore require the data
consumer to poll, which can cause value changes to be missed [36–38]. Other systems
have a streaming interface to push value changes directly to the data consumer. However,
the consumer cannot determine whether all data of a trip were received [33–35]. In addition,
some platforms store every received sensor value but cannot determine the end of a trip.
Therefore, they cannot reliably generate trip aggregates [18,19,21–23]. The authors of [23]
have also mentioned the use of sequence numbers to determine the completeness and
correctness of data. However, they do not describe the consequence of missing sequence
numbers. Finally, Refs. [18,22] have identified "data loss" as a common issue within this area.

We have implemented the processing of each trip’s data as independent and fault-
tolerant transactions. Multiple savepoints enable operations to be retried upon errors
until eventual success. This implementation prevents data loss during server failures,
connection problems, or a car shutdown. The authors of [22,27] utilize a vehicle-side
buffer to repeat transmissions in case of errors. Only [22] uses a persistent buffer that
can survive a shutdown. The other works do not describe strategies to avoid data loss in
case of transmission errors [16,18–21,23–26,28,29,55]. Our implementation moves beyond
preventing transmission errors and extends to the subsequent data processing.

Our implementation achieves scalability through sharding. For this purpose, we exploit
the internal data distribution of the utilized cloud technologies like Datastore. Our servers
are stateless, except for caching. We can thus distribute requests evenly and randomly
among them and adjust server count on demand. The statelessness also enables us to use
cost-effective preemptible instances for trip file processing. In [26], the author has identified
the acquisition and processing of vehicle data as a scaling issue. He is suggesting the use of
cloud technology. The authors of [22] utilize a SQL Database to store the acquired data and
perform partitioning by creating a separate table for every car. The database is hosted on a
cloud server. Two other works also state to use cloud servers [19,24]. The authors of [16,18]
make use of different storage systems. The most requested data are stored in memory, while
pre-processed data are stored in a relational database, and archival takes place in a NoSQL
database. Most works do not consider scalability [20,23,25,27–29,55]. Furthermore, none of
the systems can perform automatic scaling by adjusting its server count. In addition, no
system does utilize preemptible instances.

Sensors 2021, 21, 7190 26 of 30

6.5. Data Authenticity

We can verify the authenticity of the received data because the vehicles authenticate
themselves via an embedded certificate. In addition, the driver can log in to his car and thus
effectively authenticates against our system. Many of the presented works do not include
procedures to verify the authenticity of received data ([16,18–23,26–28,55]). The authors
of [29] also identified the need to verify the vehicle identity but do not specify a method
for it. Another work also proposes to issue a certificate to each car for authentication [85].

6.6. Performance Evaluation

We performed a simulation by virtualizing the data-access channels with a recording
from an actual vehicle. By running our car application combined with the virtualized access
channels, we could simulate over 200,000 concurrent vehicles. The average processing time
of streaming data is 269 ms at peak load. In [18], the authors injected a historical dataset into
their system. It can handle over 30,000 concurrent vehicles and has an average processing
time of fewer than 2 s. The authors of [59] evaluated the processing performance of the
commercial AutoPi Cloud and measured an average processing and transmission time of
3 s. Another system handles data from 5500 vehicles during production [24]. The other
presented systems do not perform a performance evaluation [19,21–23,25].

7. Conclusions

In this work, we present a system that enables the opening of large fleets of het-
erogeneous vehicles for individual data consumers. We have found that, in practice,
different data consumers have diverging data requirements in terms of required sensors.
In order to handle such access patterns efficiently, we have developed an original demand-
driven data acquisition strategy. It reduces data acquisition for each vehicle individually
to only transmit data required by the data consumers (demand). Furthermore, we map
individual demands to individual vehicles; thus, each car potentially transmits different
sensors. Our design enables demand adjustments even after the data subjects consent by
directing the consents to an immutable maximum collection scope (project). The data
consumers express their demand as a set of tasks that include locally evaluated conditions
and processing options.

Our implementation consists of a cloud platform and a software component we have
integrated natively with a current vehicle platform of the Volkswagen Group. Automakers
usually operate highly heterogeneous fleets, for which we can provide access via a single in-
terface. For this purpose, we have developed an abstraction layer based on the distinct data
fields vehicles can provide. Data transmitted by the vehicles is compressed by combining
custom data preprocessing with an existing generalized compression algorithm. A vali-
dation with sensor data from an actual vehicle has shown this strategy to be significantly
more efficient than existing generalized compression algorithms alone. The cloud platform
provides data streaming or performs a recording of individual trips. We have explicitly
partitioned the data flows within the platform to distribute them evenly across multiple
systems. This partitioning scheme enables us to apply horizontal scaling, which we have
implemented as an automated operation: Servers are added or removed based on the cur-
rent system load. The processing of vehicle data is implemented as distributed transactions.
We persist our data on redundant public cloud services; our servers are stateless and can
fail without data loss. This statelessness allows us to make use of preemptible instances
with low availability for selected data processing jobs. The overall system performance
was evaluated by simulating data acquisition from over 200,000 cars simultaneously.

By integrating our system into a current vehicle platform of the Volkswagen Group, we
have demonstrated the capabilities of modern mainstream cars. We have thus shown that
it is possible to transform an automaker’s fleet into a globally distributed sensor network
by deploying software. However, the resulting architecture is not limited to Volkswagen
vehicles. It is essentially a system to acquire data from large distributed and heterogeneous

Sensors 2021, 21, 7190 27 of 30

multi-sensor networks. As such, other automakers or operators of large sensor networks
may also utilize it.

We believe there is great potential in extending this work with an intelligent vehicle
selection to improve efficiency for collecting non-personal data (See Section 3.8). Personal
data also contain information that is not related to the identity of the data subject. Inte-
gration of differential privacy [86,87] or local differential privacy [88] into the proposed
system would make it available while preserving user privacy. Furthermore, integrating
blockchain into consent handling could enhance trackability and verifiability of personal
data processing [89].

Author Contributions: Conceptualization, methodology, software, writing—original draft prepa-
ration, visualization P.M.; writing—review and editing T.G. and A.F.; funding acquisition T.G. and
M.N.; supervision W.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the German Federal Ministry for Economic Affairs
and Energy (Grant No. 01 MD 19007A).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The Volkswagen Group employs all authors except W.N. The Group can gain a
financial advantage by selling the sensor data of its vehicle fleet.

References
1. Automotive Usage Based Insurance Market Forecast to 2027—COVID-19 Impact and Global Analysis by Technology Fitted

(Smartphones, Black Box, and Dongles); and Policy Type (Pay-As-You-Drive (PAYD) and Pay-How-You-Drive (PHYD)); and
Geography. Available online: https://www.theinsightpartners.com/reports/automotive-usage-based-insurance-market/
(accessed on 8 December 2020).

2. Mai, A.; Schlesinger, D. A Business Case for Connecting Vehicles. Available online: https://www.cisco.com/c/dam/en_us/
about/ac79/docs/mfg/Connected-Vehicles_Exec_Summary.pdf (accessed on 8 December 2020).

3. Ullah, S.; Kim, D.H. Lightweight driver behavior identification model with sparse learning on in-vehicle can-bus sensor data.
Sensors 2020, 20, 5030. [CrossRef]

4. Díaz-álvarez, A.; Clavijo, M.; Jiménez, F.; Serradilla, F. Inferring the driver’s lane change intention through lidar-based
environment analysis using convolutional neural networks. Sensors 2021, 21, 475. [CrossRef] [PubMed]

5. Jeon, Y.; Kim, B.; Baek, Y. Ensemble CNN to Detect Drowsy Driving with In-Vehicle Sensor Data. Sensors 2021, 21, 2372. [CrossRef]
[PubMed]

6. Young, R.; Fallon, S.; Jacob, P.; O’Dwyer, D. Vehicle Telematics and Its Role as a Key Enabler in the Development of Smart Cities.
IEEE Sens. J. 2020, 20, 11713–11724. [CrossRef]

7. Delussu, F.; Imran, F.; Mattia, C.; Meo, R. Fuel Prediction and Reduction in Public Transportation by Sensor Monitoring and
Bayesian Networks. Sensors 2021, 21, 4733. [CrossRef]

8. Zahid, M.; Chen, Y.; Jamal, A.; Memon, M.Q. Short term traffic state prediction via hyperparameter optimization based classifiers.
Sensors 2020, 20, 685. [CrossRef]

9. Fox, A.; Kumar, B.V.; Chen, J.; Bai, F. Multi-Lane Pothole Detection from Crowdsourced Undersampled Vehicle Sensor Data.
IEEE Trans. Mob. Comput. 2017, 16, 3417–3430. [CrossRef]

10. Enriquez, D.; Bautista, A.; Field, P.; Kim, S.i.; Jensen, S.; Ali, M.; Miller, J. CANOPNR: CAN-OBD programmable-expandable
network-enabled reader for real-time tracking of slippery road conditions using vehicular parameters. In Proceedings of the
15th International IEEE Conference on Intelligent Transportation Systems (ITSC), Anchorage, AK, USA, 16–19 September 2012;
pp. 260–264. [CrossRef]

11. Bishop, J.D.; Stettler, M.E.; Molden, N.; Boies, A.M. Engine maps of fuel use and emissions from transient driving cycles. Appl.
Energy 2016, 183, 202–217. [CrossRef]

12. Lee, G.Y.; Cha, K.J.; Kim, H.J. Designing the GDPR Compliant Consent Procedure for Personal Information Collection in the IoT
Environment. In Proceedings of the 2019 IEEE International Congress on Internet of Things (ICIOT), Milan, Italy, 8–13 July 2019;
pp. 79–81. [CrossRef]

13. Vallet, F. The GDPR and Its Application in Connected Vehicles—Compliance and Good Practices. In Electronic Components and
Systems for Automotive Applications; Springer: Cham, Switzerland, 2019; pp. 245–254. [CrossRef]

14. AutoPi Documentation. Available online: https://docs.autopi.io/ (accessed on 13 October 2021).
15. Freematics Homepage. Available online: https://freematics.com/ (accessed on 13 October 2021).
16. Peppes, N.; Alexakis, T.; Adamopoulou, E.; Demestichas, K. Driving Behaviour Analysis Using Machine and Deep Learning

Methods for Continuous Streams of Vehicular Data. Sensors 2021, 21, 4704. [CrossRef]

https://www.theinsightpartners.com/reports/automotive-usage-based-insurance-market/
https://www.cisco.com/c/dam/en_us/about/ac79/docs/mfg/Connected-Vehicles_Exec_Summary.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/mfg/Connected-Vehicles_Exec_Summary.pdf
http://doi.org/10.3390/s20185030
http://dx.doi.org/10.3390/s21020475
http://www.ncbi.nlm.nih.gov/pubmed/33440897
http://dx.doi.org/10.3390/s21072372
http://www.ncbi.nlm.nih.gov/pubmed/33805531
http://dx.doi.org/10.1109/JSEN.2020.2997129
http://dx.doi.org/10.3390/s21144733
http://dx.doi.org/10.3390/s20030685
http://dx.doi.org/10.1109/TMC.2017.2690995
http://dx.doi.org/10.1109/ITSC.2012.6338905
http://dx.doi.org/10.1016/j.apenergy.2016.08.175
http://dx.doi.org/10.1109/ICIOT.2019.00025
http://dx.doi.org/10.1007/978-3-030-14156-1_21
https://docs.autopi.io/
https://freematics.com/
http://dx.doi.org/10.3390/s21144704

Sensors 2021, 21, 7190 28 of 30

17. Khandakar, A.; Chowdhury, M.E.; Ahmed, R.; Dhib, A.; Mohammed, M.; Al-Emadi, N.A.M.A.; Michelson, D. Portable System for
Monitoring and Controlling Driver Behavior and the Use of a Mobile Phone While Driving. Sensors 2019, 19, 1563. [CrossRef]

18. Zhang, M.; Wo, T.; Xie, T.; Lin, X.; Liu, Y. CarStream: An industrial system of big data processing for Internet-of-Vehicles. Proc.
VLDB Endow. 2017, 10, 1766–1777. [CrossRef]

19. Hussain, S.; Mahmud, U.; Yang, S. Car e-Talk: An IoT-enabled Cloud-Assisted Smart Fleet Maintenance System. IEEE Internet
Things J. 2021, 8, 9484–9494. [CrossRef]

20. Silva, M.; Signoretti, G.; Andrade, P.; Silva, I.; Ferrari, P. Towards a customized vehicular maintenance based on 2-layers data-
stream application. In Proceedings of the 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive),
Bologna, Italy, 1–2 July 2021; pp. 193–198. [CrossRef]

21. Silva, M.; Vieira, E.; Signoretti, G.; Silva, I.; Silva, D.; Ferrari, P. A Customer Feedback Platform for Vehicle Manufacturing
Compliant with Industry 4.0 Vision. Sensors 2018, 18, 3298. [CrossRef]

22. Wilhelm, E.; Siegel, J.; Mayer, S.; Sadamori, L.; Dsouza, S.; Chau, C.K.; Sarma, S. Cloudthink: A scalable secure platform for
mirroring transportation systems in the cloud. Transport 2015, 30, 320–329. [CrossRef]

23. Pillmann, J.; Wietfeld, C.; Zarcula, A.; Raugust, T.; Alonso, D.C. Novel common vehicle information model (CVIM) for future
automotive vehicle big data marketplaces. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles,
CA, USA, 11–14 June 2017; pp. 1910–1915. [CrossRef]

24. Rehrl, K.; Henneberger, S.; Leitinger, S.; Wagner, A.; Wimmer, M. Towards a National Floating Car Data Platform for Austria.
In Proceedings of the 25th World Congress on Intelligent Transportation Systems (ITS), Copenhagen, Denmark, 17–21 September
2018; pp. 1–10.

25. Xiao, Z.; Li, F.; Wu, R.; Jiang, H.; Hu, Y.; Ren, J.; Cai, C.; Iyengar, A. TrajData: On Vehicle Trajectory Collection with Commodity
Plug-and-Play OBU Devices. IEEE Internet Things J. 2020, 7, 9066–9079. [CrossRef]

26. Liu, N. Internet of Vehicles: Your Next Connection. Available online: https://www.huawei.com/mediafiles/CORPORATE/
PDF/Magazine/WinWin/HW_110848.pdf (accessed on 20 October 2021)

27. Miche, M.; Bohnert, T.M. The Internet of Vehicles or the Second Generation of Telematic Services. ERCIM News 2009, 77, 43–45.
28. Bonomi, F. The Smart and Connected Vehicle and the Internet of Things. In Proceedings of the Workshop on Synchronization in

Telecommunication Systems, San Jose, CA, USA, 16–18 April 2013.
29. Contreras-Castillo, J.; Zeadally, S.; Guerrero-Ibanez, J.A. Internet of Vehicles: Architecture, Protocols, and Security. IEEE Internet

Things J. 2018, 5, 3701–3709. [CrossRef]
30. Zubie Platform Documentation. Available online: https://zubie.com/developer/ (accessed on 17 December 2020).
31. Vinli Services Documentation. Available online: http://docs.vin.li/en/latest/ (accessed on 17 December 2020).
32. Munic Documentation. Available online: https://store.munic.io/documentations/get_started (accessed on 17 December 2020).
33. Otonomo Platform. Available online: https://otonomo.io/ (accessed on 17 December 2020).
34. Caruso Platform. Available online: https://www.caruso-dataplace.com/ (accessed on 17 December 2020).
35. Smartcar Platform. Available online: https://smartcar.com/ (accessed on 17 December 2020).
36. Mercedes Benz API Platform. Available online: https://developer.mercedes-benz.com/products (accessed on 17 January 2020).
37. BMW CarData. Available online: https://bmw-cardata.bmwgroup.com/thirdparty/public/car-data/overview (accessed on 17

December 2020).
38. Ford Connected Vehicle API. Available online: https://developer.ford.com/fordconnect (accessed on 17 December 2020).
39. PSA B2B Web API. Available online: https://developer.groupe-psa.io/webapi/b2b/overview/about/ (accessed on 17 Decem-

ber 2020).
40. Foster, I.; Koscher, K. Exploring Controller Area Networks. Login Usenix Mag. 2015, 40, 6–10.
41. Marchetti, M.; Stabili, D. READ: Reverse engineering of automotive data frames. IEEE Trans. Inf. Forensics Secur. 2019,

14, 1083–1097. [CrossRef]
42. Young, C.; Svoboda, J.; Zambreno, J. Towards Reverse Engineering Controller Area Network Messages Using Machine Learning.

In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–6.
[CrossRef]

43. Shaily, S.; Krishnan, S.; Natarajan, S.; Periyasamy, S. Smart driver monitoring system. Multimed. Tools Appl. 2021, 80, 25633–25648.
[CrossRef]

44. Palomino, J.; Cuty, E.; Huanachin, A. Development of a CAN Bus datalogger for recording sensor data from an internal
combustion ECU. In Proceedings of the 2021 IEEE International Workshop of Electronics, Control, Measurement, Signals and
Their Application to Mechatronics (ECMSM), Liberec, Czech Republic, 21–22 June 2021; pp. 1–4. [CrossRef]

45. Lindstrom, P.; Isenburg, M. Fast and efficient compression of floating-point data. IEEE Trans. Vis. Comput. Graph. 2006, 12, 1245–1250.
[CrossRef]

46. Pelkonen, T.; Franklin, S.; Teller, J.; Cavallaro, P.; Huang, Q.; Meza, J.; Veeraraghavan, K. Gorilla: A Fast, Scalable, in-Memory
Time Series Database. Proc. VLDB Endow. 2015, 8, 1816–1827. [CrossRef]

47. Deutsch, L.P. GZIP File Format Specification Version 4.3. RFC 1952, 1996. Available online: https://datatracker.ietf.org/doc/
html/rfc1952 (accessed on 20 October 2021).

48. Seward, J. bzip2 Homepage. Available online: https://sourceware.org/bzip2/ (accessed on 30 August 2021).
49. Pavlov, I. LZMA Software Development Kit (SDK). Available online: https://www.7-zip.org/sdk.html (accessed on 30 August 2021).

http://dx.doi.org/10.3390/s19071563
http://dx.doi.org/10.14778/3137765.3137781
http://dx.doi.org/10.1109/JIOT.2020.2986342
http://dx.doi.org/10.1109/MetroAutomotive50197.2021.9502892
http://dx.doi.org/10.3390/s18103298
http://dx.doi.org/10.3846/16484142.2015.1079237
http://dx.doi.org/10.1109/IVS.2017.7995984
http://dx.doi.org/10.1109/JIOT.2020.3001566
https://www.huawei.com/mediafiles/CORPORATE/PDF/Magazine/WinWin/HW_110848.pdf
https://www.huawei.com/mediafiles/CORPORATE/PDF/Magazine/WinWin/HW_110848.pdf
http://dx.doi.org/10.1109/JIOT.2017.2690902
https://zubie.com/developer/
http://docs.vin.li/en/latest/
https://store.munic.io/documentations/get_started
https://otonomo.io/
https://www.caruso-dataplace.com/
https://smartcar.com/
https://developer.mercedes-benz.com/products
https://bmw-cardata.bmwgroup.com/thirdparty/public/car-data/overview
https://developer.ford.com/fordconnect
https://developer.groupe-psa.io/webapi/b2b/overview/about/
http://dx.doi.org/10.1109/TIFS.2018.2870826
http://dx.doi.org/10.1109/WF-IoT48130.2020.9221383
http://dx.doi.org/10.1007/s11042-021-10877-1
http://dx.doi.org/10.1109/ECMSM51310.2021.9468837
http://dx.doi.org/10.1109/TVCG.2006.143
http://dx.doi.org/10.14778/2824032.2824078
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952
https://sourceware.org/bzip2/
https://www.7-zip.org/sdk.html

Sensors 2021, 21, 7190 29 of 30

50. Collet, Y. LZ4 Frame Format Description. Available online: https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md
(accessed on 30 August 2021).

51. Alakuijala, J.; Farruggia, A.; Ferragina, P.; Kliuchnikov, E.; Obryk, R.; Szabadka, Z.; Vandevenne, L. Brotli: A General-Purpose
Data Compressor. ACM Trans. Inf. Syst. 2018, 37. [CrossRef]

52. Cottet, Y.; Kucherawy, M. Zstandard Compression and the ‘Application/zstd’ Media Type. Available online: https://www.rfc-
editor.org/rfc/rfc8878.txt (accessed on 20 October 2021).

53. Deutsch, P.; Gailly, J.-L. ZLIB Compressed Data Format Specification Version 3.3. Available online: https://www.rfc-editor.org/
rfc/rfc1950.txt (accessed on 20 October 2021).

54. Signoretti, G.; Silva, M.; Andrade, P.; Silva, I.; Sisinni, E.; Ferrari, P. An Evolving TinyML Compression Algorithm for IoT
Environments Based on Data Eccentricity. Sensors 2021, 21, 4153. [CrossRef]

55. Golestan, K.; Soua, R.; Karray, F.; Kamel, M.S. Situation awareness within the context of connected cars: A comprehensive review
and recent trends. Inf. Fusion 2016, 29, 68–83. [CrossRef]

56. Road Vehicles—Extended Vehicle (ExVe) Web Services. Standard, International Organization for Standardization, Geneva, CH.
2019. Available online: https://www.iso.org/standard/66978.html (accessed on 28 September 2021).

57. Carloop Documentation. Available online: https://carloop.readme.io/docs (accessed on 13 October 2021).
58. Macchina Documentation. Available online: https://docs.macchina.cc/ (accessed on 13 October 2021).
59. Ferrari, P.; Sisinni, E.; Bellagente, P.; Depari, A.; Flammini, A.; Pasetti, M.; Rinaldi, S. Experimental characterization of an

IoV framework leveraging mobile wireless technologies. In Proceedings of the 2021 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [CrossRef]

60. Finck, M.; Pallas, F. They who must not be identified-distinguishing personal from non-personal data under the GDPR. Int. Data
Priv. Law 2020, 10, 11–36. [CrossRef]

61. Forgó, N.; Hänold, S.; Schütze, B., The principle of purpose limitation and big data. In New Technology, Big Data and the Law;
Springer: Singapore, 2017; pp. 17–42. [CrossRef]

62. Gruschka, N.; Mavroeidis, V.; Vishi, K.; Jensen, M. Privacy Issues and Data Protection in Big Data: A Case Study Analysis under
GDPR. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018;
pp. 5027–5033. [CrossRef]

63. Patrick, L.; Martin, W. Volkswagen Infotainment Web Interface Protocol Specification (Viwi Protocol). W3c Member Submission,
W3C. 2019. Available online: https://www.w3.org/Submission/viwi-protocol/ (accessed on 25 January 2021).

64. Protocol Buffers Homepage. Available online: https://developers.google.com/protocol-buffers/ (accessed on 19 October 2021).
65. FastAPI Homepage. Available online: https://fastapi.tiangolo.com/ (accessed on 18 October 2021).
66. Google App Engine Documentation. Available online: https://cloud.google.com/appengine (accessed on 29 December 2020).
67. Google Datastore Documentation. Available online: https://cloud.google.com/datastore (accessed on 29 December 2020).
68. Google Tasks Documentation. Available online: https://cloud.google.com/tasks (accessed on 29 December 2020).
69. Google Pub/Sub Documentation. Available online: https://cloud.google.com/pubsub (accessed on 29 December 2020).
70. Google Compute Engine Documentation. Available online: https://cloud.google.com/compute (accessed on 25 January 2021).
71. Google Cloud Storage Documentation. Available online: https://cloud.google.com/storage (accessed on 29 December 2020).
72. Shapiro, M.; Preguiça, N.; Baquero, C.; Zawirski, M. Conflict-Free Replicated Data Types. In Proceedings of the 13th International

Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2011), Grenoble, France, 10–12 October 2011;
pp. 386–400. [CrossRef]

73. Google Datastore—Features Documentation. Available online: https://cloud.google.com/datastore/docs/firestore-or-datastore
(accessed on 25 January 2021).

74. Road Vehicles—Vehicle Identification Number (VIN)—Content and Structure. Standard, International Organization for Standard-
ization, Geneva, CH, USA. 2009. Available online: https://www.iso.org/standard/52200.html (accessed on 28 September 2021).

75. Google Datastore—Best Practices Documentation. Available online: https://cloud.google.com/datastore/docs/best-practices
(accessed on 18 January 2021).

76. Zhang, T.; Zuck, A.; Porter, D.E.; Tsafrir, D. Apps Can Quickly Destroy Your Mobile’s Flash: Why They Don’t, and How to Keep It
That Way. In Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys),
Seoul, Korea, 17–21 June 2019; pp. 207–221. [CrossRef]

77. Rizzato, F. Germany’s Rural 4G Users Still Spend One-Fourth of Their Time on 3G and 2G Networks. Available online: https://www.
opensignal.com/blog/2019/06/13/germanys-rural-4g-users-still-spend-one-fourth-of-their-time-on-3g-and-2g-networks (accessed
on 19 January 2021).

78. Costa, B.G.; Reis, M.A.S.; Araújo, A.P.; Solis, P. Performance and cost analysis between on-demand and preemptive virtual
machines. In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER), Funchal,
Portugal, 19–21 March 2018; pp. 169–178. [CrossRef]

79. Frenken, K.; Juliet, S. Putting the sharing economy into perspective. Environ. Innov. Soc. Transit. 2017, 23, 3–10.
2017.01.003 [CrossRef]

80. Cloud Monitoring Homepage. Available online: https://cloud.google.com/monitoring (accessed on 19 October 2021).
81. PSA Monitors. Available online: https://developer.groupe-psa.io/webapi/b2b/monitor/about/ (accessed on 17 December 2020).
82. Martin, D.; Kühl, N.; Satzger, G. Virtual Sensors. Bus. Inf. Syst. Eng. 2021, 63, 315–323. [CrossRef]

https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md
http://dx.doi.org/10.1145/3231935
https://www.rfc-editor.org/rfc/rfc8878.txt
https://www.rfc-editor.org/rfc/rfc8878.txt
https://www.rfc-editor.org/rfc/rfc1950.txt
https://www.rfc-editor.org/rfc/rfc1950.txt
http://dx.doi.org/10.3390/s21124153
http://dx.doi.org/10.1016/j.inffus.2015.08.001
https://www.iso.org/standard/66978.html
https://carloop.readme.io/docs
https://docs.macchina.cc/
http://dx.doi.org/10.1109/I2MTC50364.2021.9459836
http://dx.doi.org/10.1093/idpl/ipz026
http://dx.doi.org/10.1007/978-981-10-5038-1_2
http://dx.doi.org/10.1109/BigData.2018.8622621
https://www.w3.org/Submission/viwi-protocol/
https://developers.google.com/protocol-buffers/
https://fastapi.tiangolo.com/
https://cloud.google.com/appengine
https://cloud.google.com/datastore
https://cloud.google.com/tasks
https://cloud.google.com/pubsub
https://cloud.google.com/compute
https://cloud.google.com/storage
http://dx.doi.org/10.1007/978-3-642-24550-3_29
https://cloud.google.com/datastore/docs/firestore-or-datastore
https://www.iso.org/standard/52200.html
https://cloud.google.com/datastore/docs/best-practices
http://dx.doi.org/10.1145/3307334.3326108
https://www.opensignal.com/blog/2019/06/13/germanys-rural-4g-users-still-spend-one-fourth-of-their-time-on-3g-and-2g-networks
https://www.opensignal.com/blog/2019/06/13/germanys-rural-4g-users-still-spend-one-fourth-of-their-time-on-3g-and-2g-networks
http://dx.doi.org/10.5220/0006709001690178
http://dx.doi.org/10.1016/j.eist.2017.01.003
https://cloud.google.com/monitoring
https://developer.groupe-psa.io/webapi/b2b/monitor/about/
http://dx.doi.org/10.1007/s12599-021-00689-w

Sensors 2021, 21, 7190 30 of 30

83. Ko, J.; Lee, B.B.; Lee, K.; Hong, S.G.; Kim, N.; Paek, J. Sensor Virtualization Module: Virtualizing IoT Devices on Mobile
Smartphones for Effective Sensor Data Management. Int. J. Distrib. Sens. Netw. 2015, 11, 730762. [CrossRef]

84. Madria, S.; Kumar, V.; Dalvi, R. Sensor Cloud: A Cloud of Virtual Sensors. IEEE Softw. 2014, 31, 70–77. [CrossRef]
85. Guo, L.; Dong, M.; Ota, K.; Li, Q.; Ye, T.; Wu, J.; Li, J. A Secure Mechanism for Big Data Collection in Large Scale Internet of

Vehicle. IEEE Internet Things J. 2017, 4, 601–610. [CrossRef]
86. Nelson, B.; Olovsson, T. Introducing Differential Privacy to the Automotive Domain: Opportunities and Challenges. In Proceedings

of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–7. [CrossRef]
87. Wallace, B.; Goubran, R.; Knoefel, F.; Marshall, S.; Porter, M.; Harlow, M.; Puli, A. Automation of the Validation, Anonymization,

and Augmentation of Big Data from a Multi-year Driving Study. In Proceedings of the 2015 IEEE International Congress on Big
Data, New York, NY, USA, 27 June–2 July 2015; pp. 608–614. [CrossRef]

88. Zhao, P.; Zhang, G.; Wan, S.; Liu, G.; Umer, T. A survey of local differential privacy for securing internet of vehicles. J. Supercomput.
2020, 76, 8391–8412. [CrossRef]

89. Barati, M.; Rana, O. Tracking GDPR Compliance in Cloud-based Service Delivery. IEEE Trans. Serv. Comput. 2020.
2020.2999559. [CrossRef]

http://dx.doi.org/10.1155/2015/730762
http://dx.doi.org/10.1109/MS.2013.141
http://dx.doi.org/10.1109/JIOT.2017.2686451
http://dx.doi.org/10.1109/VTCFall.2017.8288389
http://dx.doi.org/10.1109/BigDataCongress.2015.93
http://dx.doi.org/10.1007/s11227-019-03104-0
http://dx.doi.org/10.1109/TSC.2020.2999559

	Introduction
	Related Work
	Academia
	Commercial Systems
	Software Platforms
	Hardware/Software Platforms

	Proposed System
	GDPR Related Requirements
	Demand-Driven Data Acquisition
	Sensor Abstraction
	Data Transmission and Processing
	Endpoint Messaging
	Vehicle Authentication
	Vehicle Simulators
	Acquisition of Non-Personal Data

	Implementation
	Utilized Technology
	Instruction Distribution
	Consent Lookup
	Task Distribution
	Chunk Compression
	Chunk Processing
	Chunk Processing Fault Tolerance
	Trip-File Management

	Performance Evaluation
	Setup
	Results

	Discussion
	Demand-Driven Data Acquisition
	Abstraction Layer
	Data Compression
	Data Processing
	Data Authenticity
	Performance Evaluation

	Conclusions
	References

