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Abstract

A spin system on a lattice can usually be modeled at large scales by an effective quantum field theory. A
key mathematical result relating the two descriptions is the quantum central limit theorem, which
shows that certain spin observables satisfy an algebra of bosonic fields under certain conditions. Here,
we show that these particular observables and conditions are the relevant ones for an observer with
certain limited abilities to resolve spatial locations as well as spin values. This is shown by computing
the asymptotic behaviour of a quantum Fisher information metric as function of the resolution
parameters. The relevant observables characterise the state perturbations whose distinguishability
does not decay too fast as a function of spatial or spin resolution.

Many interesting physical properties of solid materials can be modelled by spin systems, namely regular
networks of finite-dimensional quantum systems which interact locally. Near a second order phase transition,
the spins typically display collective behaviours which can be modelled by a quantum field theory (QFT). Given
that the spin description underlies that in terms of fields, the field observables must have a precise representation
as spin observables.

The quantum central limit theorem and its variations [ 1-3] show that certain spin observables (the
fluctuation operators) satisfy the same algebra as bosons in the thermodynamic limit (i.e., that of infinitely many
spins). This statement holds weakly in terms of expectation values with respect to a product state. It can be
extended so as to apply to a larger set of states, as well as to locally varying fluctuation operators [4].

Here, we show that the form of these special observables can be derived from operational considerations,
independent of the role they play in a central limit theorem. Moreover, our derivation provides a justification for
the way the convergence is formulated. This provides a microscopic justification for the role that n-point
functions play in quantum field theory, and establishes a systematic connection between the spin and the field
description of a system.

Our derivation follows from answering the following question: which perturbations of a given state are most
easily detectable provided certain limitations on experimental resolutions? We answer using the framework
proposedin [5, 6].

1. Framework

The approach relies on two inputs: a coarse-graining operation on states A/ (which we take to be a quantum
channel, or completely positive trace-preserving map acting on density matrices [7]) depending on a family
r = (o, y, ...) of resolution parameters, and a distinguishability (Riemannian) metric on the manifold of
density matrices (states). The metric is characterised by an inner product (-, -), on the tangent space at state p.
The tangent space can be identified with the set of traceless self-adjoint operators as follows: if fis a scalar
function on states, then the operator X is associated with the tangent vector X satisfying
flp+ eX) =f(p) + e(Xf)(p) + O(e?). Thatis, X is the derivative in the direction specified by X.

The channel A transforms a tangent vector X into N(X) (it is its own pushforward since it is linear). Hence
it defines the coarse-grained metric (N(-), N(:) )xq,). We can interpret the coarse-grained distance

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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X = Y3 = (MX = Y), N(X — V)i

as a measure of distinguishability between p + €X and p + €Y to order ¢2, for an observer with experimental
resolutions specified by the family of parameters r of A. The definition of this manifold and information metrics
can be done also for infinite-dimensional Hilbert spaces [8].

We are interested in the amount by which a vector X contracts under the coarse-graining, i.e., in the
contraction ratio

1X) = [ Xl /11X]], ey

where || X|| = || X||a. Specifically, we want to characterise the asymptotic behaviour of 7)(X) for large (coarse)
resolutions parameters r. For instance, if 7j(X) is zero, or decays exponentially with some components of r, then
we can essentially ignore the tangent direction X at p, as it is effectively unobservable. We want to characterise the
real Hilbert space spanned by the remaining tangent vectors.

In order to classify subspaces by their contraction ratio, one could first maximize 7(X) over X to find the
least contracting (most relevant) vector X;, then perform the maximization again in the complement of X; to
find the next most relevant vector X, etc. Mathematically, this is equivalent to solving the eigenvalue problem

NINX)) = ﬁ]?xj, ®)
where N/ ;‘; is the adjoint of A with respect to the inner product (-, -),. The eigenvectors X;are the principal

directions of contraction, with respective contraction ratios ;-
Explicitely, A% is defined by the relation

(NX), Y)arp) = (X, N3(Y)), )

forall X and Y. For instance, for the 2 metric (X, Y>p =tr(X /p Y./p), N ;'f is the channel introduced by Petz
as the transpose channel [9]), which also plays a central role as approximate reversal of A/ [10, 11].
For a generic metric, which can be written as

(X, V), = r(XQ,'(V)), 4)

where ), is alinear operator on density matrices, and Q;l its inverse which should be thought of as a
representation of the metric as linear operator (kernel). The adjoint map is explicitely given by the composition

NH=Q, 0 NTo Q). (5)

Here 1 denotes the adjoint with respect to the Hilbert-Schmidt inner product, i.e., tr(AM (X)) = tr(MT(A)X)
for all operators A, X. This is the Heisenberg-picture representation of the channel A. Notice that time flows
‘backward’ in that picture, as (MN)" = N TMT,

Here, for simplicity, we focus exclusively on the Bures metric given by

Q,(4) = %(pA + Ap), ©)

which is the smallest of the contractive metrics (when normalized to match the Fisher metric on diagonal density
matrices) [12, 13]. This metric is well defined on the submanifold of pure states.

We do not need an explicit expression for Q;l. Instead, we consider tangent vectors of the form X = €,(A)
and Y = €,(B),sothat (X, Y), = tr(A ©,(B)) = Re tr(pAB). For convenience, we write

n(A) = H(X). )

Itis useful to think of A as representing the cotangent vector image of the tangent vector X by contraction with
the metric. The traceless condition on X becomes tr(£2,(A)) = tr(pA) = 0. Hence we represent cotangent
vectors at p by self-adjoint operators of zero expectation value with respect to p. We observe also that, as X is
mapped to N(X), its cotangent representation A is mapped to (N ;':)Jf (A).Indeed, one can directly check that

NX) = Qi) (V) (A)). ®
In fact the role of A/ and N} is reversed as, assuming Y = Oy, (B), then
NHY) = Q,(NT(B)). (©)

On the boundary of the manifold of states, corresponding to those states p which are not invertible, there are
directions X which cannot be written as €2,,(A). However, assuming N(p) is inside the bulk, hence invertible,
those X have 7(X) = 0 and can therefore be neglected. Indeed, for such X; as p tends to the boundary
|X]| — oo, butsince ||X]|»r converges, 7(X) tends to zero.

Proposition 1. If N(p) is invertible, then a tangent vector X at p isirrelevant, i.e., 7i(X) = 0, whenever it is not of
theform X = Q,(A), where A = AT is such that tr (pA%) = 0.
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Said differently, the relevant tangent vectors all live in the Gelfand-Naimark-Segal (GNS) representation of
the algebra of operators with respect to p. Invoking the GNS construction here may be somewhat extravagant as
we are only considering finite-dimensional Hilbert spaces. However, this provides a compact way of thinking
about the above proposition, and it suggests a natural C*-algebraic generalisation of our approach.

The GNS construction works as follows. Let us consider the complex Hilbert space H (resp. H’) whose
vectors are labelled by operators A, equipped with the inner product (A|B) := tr(pA'B)

(resp. (A|B)' := tr(N(p)A'B)). Then, provided N(p) is invertible, we can define the linear operator
N : 'H' — H which maps |A) to | N7 (A)) for any operator A. As noted above, this is in fact the cotangent
representation of the action of N/ j‘;. Operators also naturallyacton H as A |B) := |AB).

Thelinear map N* : H — H’ representing the cotangent action of the original map N is not given by the
complex adjoint of N. It is instead defined via the real inner product through Re (B| N* |A)’ = Re (A| N |B).
In this formalism, equation (2) becomes

NN* |A) = n? |A), (10)

and the contraction ratio of an arbitrary operator A is given by

(A] NN* |A)

(A)? =
! (A]A)

(1

This could be generalised in principle to a setting where the state p is a positive linear functional on a
C*-algebra A, and the channels N T are completely positive unital maps from some algebra A’ to A, provided
that the states p o N7 are faithful. In this representation, the relevant part of the tangent space at p is then the
real subspace of H spanned by |A) where A" = A and p(A) = 0, with metric given by Re (A|B).

2. Spatially homogeneous case

In what follows, we consider n quantum systems, which we refer to as spins or sites, each of dimension d. For the
first example, we assume that the observer cannot choose which spin they address, and that, when measuring a
spin, they do so with resolution y. This can be formalised by assuming that they only have access to the coarse-
grained states N(p + eX)where N'= P o D®", The projective map P(p) = %Zﬂ U, pU/ is the average over
all permutations of the 1 spins, where U, is the unitary operator implementing the permutation 7. The channel
D" is the parallel application of the depolarization map

D(p) =Lp+ (1= )un?, (12)

to each spin, where y € [1, co) represents the resolution, or imprecision, at which spin measurements are
resolved. Observe that D" and P commute, and that D* = D and PT = P. In this example, the channel A/
possesses a single resolution parameter y (hence r = y).

We consider the case of a product state p*" = p ® --- ® p. As explained above (proposition 1), the relevant
part of the tangent space at p®" can be represented by vectors |A) in the GNS representation with respect to p®".

Let us now show that, due to the depolarisation maps, we only need to consider vectors |A) where A is k-local
for any finite k independent of 1, because the contraction ratio 7 (A) for any non-k-local operator A (to be
defined below) is bounded by a function of k which tends to zero as k goes to infinity.

To formulate this more precisely, consider the space V (resp. V') of single-site operators f such that
tr(pf) = 0 (resp. tr(D(p)f) = 0),and let 7} (resp. 7}') denotes the space spanned by the operators of the form
f1(i]) . f;if), 0 < j < k,where f; € V (resp. f; € V’),and ) denotes the operator f acting onsite i. We also
include 1in 7;.

Since the information metric contracts under the action of any channel, we have || X||,v < || X||p#". Hence,
considering only the depolarisation map, one can show (see the appendix) that, in this setting,

Proposition 2. 17 (A) < O(y~**D) forall A suchthat Re (A|B) = 0 forall B € Ty. Thatis, for A orthogonal to
all k-local observables.

Now let us consider the effect of the channel P. This is simpler because P is projective, which implies that all
tangent vectors represented by operators in its kernel are irrelevant. Accordingly, we can directly eliminate such
vectors |A) where A is not fully symmetric under permutation of the spins. Indeed, let P such that
P |A) = |P(A)). We have
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Re (B| P* |A) = Re tr(AP(B) p®") = Re tr(AP(Bp®™"))
= Re tr(P(A)Bp®") = Re (B| P |A). (13)

Hence P* = P.Sincealso P? = P, itisan orthogonal projector. It follows that all vectors | A) orthogonal to
symmetric ones are such that P |A) = 0, hence NN* |A) = PDD*P |A) = 0, where we wrote D for the
representation of D®".

Combining this observation with proposition 2, we conclude that, for the state p and channel N\ introduced
above,

Proposition 3. The eigenspaces of NN* for eigenvalues up to order y=* are contained in the space spanned by | A) for
any fully symmetric A € Ty, namely

Hi = {|P(A)) : A € Ty (14)

Hence, if we want to characterise the tangent directions with contraction ratio only down to order y ¥, we can
restrict the analysis to the subspace generated by the k-local symmetric observables. Since this statement is
independent of n, we can take the thermodynamic limit # — oo with fixed k: this is the setting of the central
limit theorem.

We observe that the dimension of H} does not depend on the number of sites 2. Only the scalar product
(A|B) does. Accordingly, we formulate the central limit as a limit of a sequence of scalar product on a fixed vector
space, which we take to be the complex vector space

k
Fi= VY, (15)
j=0

where © denotes the symmetrised tensor productand V®° = C is the ‘vacuum’ sector. Using the operators

o ()"
we define the surjective linear map o : F; — H3 by
« (fl (ORXENO) f]) = azl atj |G—i21t;fi> |t1:-~:zj:0- (17)
Forany u € Fj, we abbreviate the corresponding linear combination of differentiations as o (u) = A} |G_jf).

For instance, we get o (f) = |Fy), where Fy := %Ei f@Disa fluctuation operator. (Recall that f® denotes the
operator facting on site i.) Also,

a(f® g = |FE) — — |Fy). (18)

The vacuum is mapped to |1).
The GNS inner product is represented on F as

(uv)y = (a@)la@)) = A?A2<Gfif|Gfig>’ (19)

where we have explicitely
(G-lG i) = (GG = (1 + 2o ')
The eigenvalue problem for NN* can be simplified greatly by working with the limiting metric

(ulv) = lim (ulv), = AFAY etref'e) (20)

on Fy: this leads to a form of the quantum central limit theorem. However, we need to make sure that this does
notamount to cheating: i.e., that no vector that is relevant in terms of (-|-),, become artificially irrelevant in terms
of (:|-). In other word, that (u|u) = 0implies (u|u), = Oforall u € F. Thisisindeed the case, which can be
seen from the fact that the subspaces V® and V¢ for i = j are orthogonal in both metrics, and within

V© C Fi both metrics are proportional to each other. Indeed, both generators (G| G,) and (G| G,), are power
series in tr(pf Tg) with no zero coefficient.

From the explicit form of the limiting inner product (equation 20), one recognises that the completion of F;
with respect to it (that is, once zero norm vectors have been modded out) is the 0-to-k-particle subspace of the
symmetric Fock space F built from the single particle space Hilbert space V with the inner product tr(pf g).
Indeed, let a; denotes the annihilation operators on F satisfying lar, ag ] = tr(pfg)1,andlet

¢(f) = af + a;. Consider the normally ordered displacement (Weyl) operators, also called vertex operators,

Gf = eiafgiag — it () 3tr(of 'f) 1)
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on F.Then one can check that, if we write € for the vacuum in F, then

(QI G/ Gy 19) = e 'O = lim (G/|Gy). 22)
Hence the vacuum plays the role of our reference state p®”, and o (1) € H3 is represented by Af Gf e F.
The same construction can be done with respect to the state D(p) instead of p, yielding the spaces F7,
limiting Fock space 7 and vertex operators é} for fe V.

Noting that N |Gy) = |Gp(p)) for f € V', we see that the map N'is represented on F'by N |GA;> = |Gp(p)»

which is the tangent action of the gaussian channel N defined by N T(Gf) = GD( - This a form of central limit
for channels, as done in [14].

These results allow us to fully solve the eigenvalue problem corresponding to equation (2) within the
Gaussian formalism using the method introduced in [15], for the channel N and at the tangent space to the
vaccuum state. We find that NN is block-diagonal, where each block corresponds to a given order of
polynomial generated by G}. For order k polynomials, this is an eigenvalue problem in a vector space of

dimension (d?> — 1)k. Also we know that the polynomials of order k or larger have contraction ratio of
order O(y~ ).

2.1. Example

For instance, consider the case where the dimensionality of each siteisd = 2, each in a pure state p = |0) (0|.
Let 7,1 € {1, 2, 3} denote the Pauli matrices in the basis |0), | 1). A convenient basis of the cotangent space V at
one site (zero expectation value self-adjoint operators) consists of the matrices f, = 7, f, = »and

f; = 7 — 1.Similarly, abasis of the cotangent space V' at N(p) isgivenby f| = /¥ 7, f; = /y mand

f3’ =7—-1 / ¥, where recall that y is the depolarization parameter.
As shown in the general case, in the limit # — 00, we can study the effect of the channel on the tangent space

at p®" by replacing our system with a family of Fock spaces F/ parameterized by y, where the vacuum plays the
role of the state D(p®") and the channel A/ corresponds to the Gaussian channel defined by N T(G;) = GD( f
where G} are normally ordered Weyl operators and Gis Gf/ fory = 1.

For any y, 7' is built by second quantization of the Hilbert space given by V' equipped with the form

(fIf}) = w(@A0) (ODS; ) = y8 + il (23)

fori,j = 1,2 and zero for all other components. The matrix Aj; is antisymmetric with A, = 1. Since the norm
of f3’ is zero, we must eliminate this vector, so that we are left with a two-dimensional Hilbert space spanned by

f/and f).

The imaginary part of this expression gives us the commutator for the quantized version of the elements of
V. Letuswrite £ := ¢ ( fll) / J2and p = ¢/'( fz’) / 2. We see that these operators satisfy the canonical
commutation relations [£, p] = i1. Since these commutation relations are independent of the spin precision y,
we can use the same CCR algebra for all y, including y = 1.

In the basis fl' , f2’ , the covariance form for the vacuum state is represented by the 2-by-2 matrix y1 (real

component of equation (23)), and the gaussian channel N f maps a gaussian state with covarience matrix M to
one with covarience matrix iM + |y - i 1.

We these results we can now proceed as in [15] and solve the eigenvalue problem of equation (2) in details.
The space of polynomials of degree k generated by GJZ can be parameterized using the k-fold tensor products of
the basis { fll, le } on the space (V/)?*. The coarse-grained metric has components compiled in the matrix
Kyk = Re ((Ky)®k) where (K,);; = y6;; + iA;;. Hence, the pure metric has components given by K¥. Moreover,
the components of N are given by the matrix y~*/21, which can be seen from the fact that D¥( fll)z) =y 12
The components of the linear map NN to be diagonalised are given by y ¥ (Kyk)* IK}. For instance, fork = 1,
this yields the eigenvectors £ and p both with eigenvalue y~2, thenfork = 2, 22 — p>and £p + px have
eigenvalue % and £2 + p?and i (®p — pX) have eigenvalue zero, etc. In turn, one can find the direct spin

representation of the corresponding tangent vectors. For instance, Xp + pX corresponds
L _ 1 ), -(j)
to-a(f ©f) =520 7DD,
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3. Quantum field theory

The previous result is the spatially homogeneous, or ‘0-mode’ version of a more general situation where a true
quantum field theory with local degrees of freedom emerges.

We consider again # independent d-dimensional quantum systems, but this time assume that they are
arranged on a regular spatial lattice in D dimensions of space with lattice spacing €.

We use the coarse-graining introduced in [7], namely N = P o D®", where the single-site channel D is
defined in equation (12)and P = 2@/ L with the generator

L(A) = Z(U AU — (24)

where the sum runs over neighbouring sites i and jand Uj; = Uij unitarily swaps them. It is easy to see that D®"
commutes with P and both are self-adjoint with respect to the Hilbert-Schmidt inner product. Here the
resolution parameters of A/ are r = (o, y). Asbefore, y represents a local spin resolution, whereas o is now a
spatial resolution, with unit of distance.

The map P is well defined on an infinite lattice, as a map on the quasilocal algebra A, i.e., the C*-algebra
generated by local operators. This allows us to work directly in the thermodynamic limit # — oo. Instead, this
time we are concerned with the continuum limit ¢ — 0.

The intuition is the following: if we focus on a region of size L < o, then P fully symmetrises the lattice in
that region, hence acting as the channel that we used in the previous example. As ¢ — 0 the number of sites in
thatregion is of order (L/ ¢ )P. Hence, locally, the continuum limit ¢ — 0 looks just like the limit # — 0o in the
previous calculation.

We work with the product state w = p®>°, which is a well defined state on A. As in the previous example,
the action of the local depolarization channels implies that 7 (A) < O(y~**D) whenever A is orthogonal to all
k-local operators. This allows us to also work within the part of the tangent space corresponding to k-local
operators Ty and 7.

Since P implements a convex combination of permutations of lattice sites, wis a fixed point of P. If P denote
the GNS representation of P with respect to w, then it follows that P* = P, and hence

(Al PP* |A) _ (A] P2 |A)

2(A) < = . (25)
7 (Al4) (AlA)

On single site operators in 7;, £ generates a diffusion on the lattice [7]. It follows that, if we denote by 77" the set
of operators of the form A = Y7,z f (je Y where f : RP — Visbandlimited, i.e., its Fourier transform is

supported in theball | p| < A, then, forall A € (T2)L,
n(A) < O(e 27), (26)

On products of k single site operators (which span 7y ), £ generates a permutation of the ksites. Leaving a
proof for future work, let us here argue that this permutation corresponds to a sufficiently good approximation
to kindependent random walks on the lattice, independently of the dimension D of space. Indeed, deviations
from this approximation happen when two walkers would find themselves on the exact same site according to
independent random walks. Here, instead, the walkers swap positions and hence just pass each other, causing
one of the walker’s position to be shifted by one site relative to independent walkers. In one dimension, for
instance, this implies that the difference is always at most a shift by k sites for each walker, since two crossing by
the same two walkers can only undo the shift caused by the first crossing’. This is true also in higher dimension
along each components.

Therefore, we expect that for large o the effect of the map P on 7 does not differ significantly from that of k
independent diffusions on the lattice. Hence, only momentum components p < 1/0 should be relevant also
for operators in 7.

In order to formalize this statement, we need to introduce a few tools. Given a function fassigning a single
site operator f (x) € V toeach x € RP, we introduce the operators

= [[ +ieP?f (je)D). (27)
jezP
The convergence of this product inside .4 may require f to decrease fast enough spatially. However, derivatives
of Gyof finite orderat f = 0 suchas A} G are well-defined for any variations u.

Let us denote by V), the space of band-limited functions from RP to V'with cutoff A, i.e., functions which are
Fourier transforms of functions supported on the ball of radius A. As in the homogeneous case, we consider the
vector space

> This argument was suggested to the author by David Gross.

6



10P Publishing

NewJ. Phys. 19(2017) 013013 CBény

k .
Fi= VY (28)
j=0
and define the surjective linear map o : Fi — Ty, via ov (1) = AGjy.
Let us write

T¢ = a(F}) (29)
for the image of av. Our statement then, is thatforall A € (7 ﬁ)L, we have
n(A) < O(e K 7'K), (30)

That is, components of rapid spatial variations are essentially irrelevant, aslongas A > 1/0. Importantly, this
expression does not depend on the lattice spacing .

We now use this fact to obtain a continuum limit of the tangent space without neglecting any potentially
relevant vectors. We do so by noting that the subspace 774 (which contains all potentially relevant vectors) can be
represented in 4 so that the dependance on € is purely contained in the definition of the scalar product,
namely

(ulv)e = (AFGrALGy). (31)
This can be computed using the fact that
(GAGy) = T (1 + Ptr(of GeYg (je)). (32)
jez?

We then obtain the continuum limit by completing 74 with respect to

(uly) = lim (ulv). (33)
Observing that -
lim (Gy|Gy) = €1 (34)
where
(flg) = fR | tr(pf (g (x)) dx (35)

is the value of the limiting inner product on the one particle sector, then

(ulv) = AFAG elflg) (36)

which we recognize as the scalar product of the symmetric Fock space F built from the single particle Hilbert
space defined by V, equipped with { f|g). This is our continuum limit.

We have to check again that we are not cheating. Namely that completing 3 with respect to (-|-) does not
eliminate any relevant vector, i.e., that lim,,_, o (u,,|u,,) = 0 implies lim,,_, o (u,|t4,)e = Oforall e > 0.Inthe
one particle sector, the discrete scalar product is just a discretization of the integral. The vanishing of the integral
implies that of the sum because our functions are bandlimited: they cannot become arbitrarily peaked so as to
converge to a function that is nonzero only at certain points. This argument can be extended to the multiparticle
sectors.

In thelimit, the operators Gyplay the same role as the normal ordered displacements (Weyl) operators

Gp = e (NT3) (37)

defined on the Fock space .7A-" A where ¢ ( f)=ar+ a}L and agdenotes annihilation operators, in the sense that,
denoting by 2 the vacuum in FA,

) A A
lim (GflG,) = (] G/ G, 19). (38)

If, as argued above, the channel P factors for large o/ € as independent diffusions on the lattice for each term
of a product of single-site operators, then it acts in the limit as follows:

: u AV u AV AT A
forall u, v € Fi, where thelinear map X : V' — Visgivenby
&) = [, 8,0 = 2)f () (40)

and g, is a normalised gaussian of variance o.
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This implies that the map N is represented in the continuum limit by the gaussian channel N satisfying
RN ~
N (Gp) = Gpeyy, (41)

where GAf/ isbuiltas Gf but using test functions taking value on V' rather than V.

One could now finish solving the eigenvalue problem (equation (10)) in terms of this gaussian
representation of the relevant tangent space and channel. We refer to [6] for a general analysis, and to [15] for a
general solution method. The key is to recognise that the map NN* is block diagonal with respects to families of
kmodes p,, ..., p,. Each of these block is finite dimensional, allowing for a per order solution. Moreover, for any

Ainsuchablock, 7(A) < O( y‘ke‘5 b Px'z"z) in terms of the resolutions y and o.

4. Discussion

We have argued that, among all infinitesimal perturbations of the product state of a spin system, which includes
arbitrarily correlated ones, only product of slowly varying fluctuations operators are distinguishable given
certain reasonable experimental limitations. This justifies the application of a continuum limit taking the form
of a central limit by which the relevant perturbations are identified with a subset of the perturbations of a quasi-
free bosonic field state.

In the inhomogeneous case, what is missing to obtain a fully rigorous argument are proofs for equation (30)
and equation (39), which depend on a bound characterizing the difference between the effect of the channel P
on products of local operators and the product of the image of these local operators under P.

This approach possesses some remarkable traits which require further analysis:

(i) The Hilbert space of the emergent quantum field theory corresponds formally to a tangent space of an
underlying microscopic state. This formalises the intuition that the effective quantum field theory describes
quasiparticles which are linear perturbation of an equilibrium state.

(ii) The information metric and coarse-graining quantum channel play an explicit role in identifying the
relevant vectors. The algebra of the emergent quantum field theory is hence determined by a subtle interplay
between the intrinsic correlation properties of the base state, and these extrinsic aspects of the observational
setting.

(iii) Proposition (1) provides an interesting physical interpretation for the GNS construction, provided it is
relevant in infinite-dimensional settings.

(iv) This approach provides a direct connection between a real-space renormalisation scheme on a lattice,
represented by the family of quantum channels, to the standard momentum space renormalisation group of
effective quantum field theories (see [6] for more details).

Altogether, these results validate an approach which allows in principle for the systematic derivation of
relevant fluctuation observables around a given state, and for a given experimental situation. It will be most
interesting to apply it to critical systems, or highly correlated spin states such as the toric code [16], where the
tangent vectors are labelled by string-like operators and the continuum limit is expected to be a topological
quantum field theory [17].
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Appendix. Irrelevance of non-local operators

Let (A|B) := tr(p®"A'B). Given a finite set of sites 3, let 7, denote the linear space spanned by the operators of

the form [];.5, Ai(i) such that tr(pA;) = 0 for all i, where A®”) denotes the single site operator A acting on site i.
The space of k-local operators is

Ti= @ Ty, (42)

[XI<k
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which includes the identity operator. We denote by 73 the space of operators orthogonal to 7} in terms of (-|-).
Itis easy to see that 7y, and 7y are orthogonal whenever 3 = Y. Since the spaces 7y, also span all operators, we
have

T - @ T (43)

[SI>k
The self-adjoint parts of the spaces 7y, are also orthogonal for different >’s in terms of the metric, which is given
by Re (-|-).
Proposition 4. Let A € Tﬁ, A= Aland X = Q s (A), then
Ak y‘2k

2 A
X < =

[1X]P? (44)

providedthat y(y — 1) > d.
Proof. Below, we write A/ := D", The coarse-grained norm of a tangent vector represented by X = XTis
IXIRe = (M), NOO Inen-
We also refer to the coarse-grained metric as the bilinear map sending X and Yto
(NX), N )aipemy = tr (N Qi) MY)).
Let A € Ty. Writing py, = [[;cy; p®,and A5, for A acting only on the sites ¥, we have
NQn(A) = Na(Q,, () [T D). (45)

JE%

We also observe that, in general for any states p,, p,, and any operator B,

Qpep,(BR 1) =Q, (B) @ py (46)
from which we deduce that Q;}l® 0, (B ® py) = Q;ll(B) ® 1. Therefore,
Qe N (A) = Qd (, NeQ,, (A), (47)

which acts nontrivially solely on sites in 3.
It follows that [|€2,(A)[|x- = ||X||x;, where X = €, (A)is interpreted as an operator defined solely on the
Hilbert space corresponding to the sites X. Moreover, if k := |3|, then

Nof2, (A) =y, (A) (48)
and hence,
X[, = »~ e (X, (X))
y (X Na(ps) 2 X Ns(px)2)

y 2 (X2Nz(ps) ™)

ky—2k
——tr(X?). 49
T (49)
The first inequality follows from the fact that the metric we use is the smallest of the (normalised) contractive
metrics, which includes the 2 metric [12, 13]. The second inequality is obtained using the Cauchy-Schwarz
inequality on the Hilbert-Schmidt inner product. The last inequality follows from the fact that

Nps) = (1 =y~ 1. (50)

<
<

N

This can be seen by considering a basis diagonalizing p. Moreover,
tr(X?) = Str(ppA?) + Str(psApsA)
< tr(peA?) < tr(ppA?) = [|IXIP, (51)

where we used again the Cauchy-Schwarz inequality to obtain tr((Apy) psA) < tr( péAz). Therefore, we have
shown thatif X = €,(A), A € T, then

XI5 < nplIXIP, (52)
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where k = [X|and
772 _ dky’Zk
k a- yfl)k
Now let us extend this to all operators A € 7 ,. Wehave A = Y=k Ax, where Ay € Ty, Al = As.
Using equation (47), one can check that Ay and Ay for ¥ = ¥/ are not only orthogonal in the original metric,
but also in the coarse-grained metric. Therefore, writing X5, = €2,(Ayx), we have

XI5 = 22 Xl < D2 o5 lIXs|P
DIk DIk

< [max n? X5 [P = max 3. || X|?. 54
\[ml;imm]lz'z}k” sl |E|;§<U|E|” | (54)

(53)

In order to conclude, we need to determine for which minimal value of y the function 1), is decreasing as a
function k: thisis y (y — 1) > d. Under this condition we have max|s> anZZI = ni. 0
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