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Abstract Geometric formulations for the inverse kinematics problem (IKP) in
robotics are often set up in the full Cartesian space of three translational and three ro-
tational coordinates (3T3R). When transferring this to tasks with spatial rotation like
3T2R, 2T3R or 2T2R, the result is usually not defined in a minimal set of indepen-
dent coordinates. Removing the excluded operational space coordinates completely
from the expressions is interesting from a theoretical point of view and simplifies
further calculations. This can be achieved by formulating a 2R residual using the Z-
Y ′-X ′′ Tait-Bryan angles and a 2T residual derived by the projection of the pointing
direction on a plane. In this paper, the minimal-coordinate IKP is derived for 2T2R
and 2T3R tasks on position level with application to a gradient-projection scheme.
Limitations of the redundant coordinate are considered within the nullspace.

Key words: Serial-link robot, Inverse kinematics, Functional redundancy, Geomet-
ric model, Nullspace projection, 2T2R, 2T3R, Coordinate inequality constraint

1 Introduction and State of the Art

The inverse kinematics of robot manipulators in tasks with reduced degrees of
freedom (DoF) has been investigated in the context of functional redundancy, where
operational space and joint space have more DoF than the task space [17]. Some
tasks with axis-symmetric tools like welding [2, 9] or drilling [19, 21] require three
translational and two rotational DoF (3T2R), where six-axis robots are redundant.

In some applications, the process is also independent of the feed in the tool axis’
direction. This results in a task with five DoF with full orientation (2T3R) or four
DoF with rotational symmetry (2T2R), which can lead to one or two redundant DoF.
In waterjet cutting the jet can have an effective cutting range of several centimeters
[1]. The laser target acquisition task e.g. allows arbitrary motion in beam direction
[3]. Other laser appliances like laser cutting [4] or remote laser welding [5] can have
a variable distance with a focus area or an adjustable focus point. Further examples
are drilling with a dedicated feed axis of the drilling tool [10], spraying with a range
of distance [6] or the usage of a camera with a specific depth of field [7]. It should
be noted that in most of these 2T applications, the feed can not be disregarded as
for the 2R case, but merely has to be limited to an acceptable range [7]. A related
case are 2T constraints in the remote center of motion (RCM) problem [13, 14].
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Exemplary 2T applications specifically of parallel mechanisms are 2T3R medical
needle holders [11], laser satellite tracking (implemented as 3T2R in [3]), 2T2R
oscillating screens [18] or simulation of a 2T3R spinal cord in bionics [20].

The solution of the inverse kinematic problem (IKP) with functional redundancy
can be obtained with the well-established nullspace-projection method [17]. A re-
quirement to use the method is the proper construction of the IK residual and the
IK Jacobian. One way is to add a virtual joint into the kinematic structure and to
augment the manipulator Jacobian by one column [2]. By adding a virtual prismatic
joint the 3T2R task from [2] can be transferred to a 2T2R task like in [5] or for
the RCM problem in combination with an RCM-constrained Jacobian in [13]. The
augmentation approach has the drawback that it has a higher computational cost
and can lead to an ill-conditioned Jacobian [9]. The need of a minimal-coordinate
approach is emphasized for the RCM problem in [14]. Another option to adapt the
Jacobian is to reduce it instead of augmenting it by removing a row of the “task
frame Jacobian” [22]. Reducing the Jacobian requires calculating the full residual
and Jacobian first and removing the redundant row subsequently [16].

Further solutions for the functional redundancy are based on the orthogonal de-
composition of the twist [8] or constructing a cone or pyramid with a range of
tolerances for tilt angles and positions on the tool axis [6]. Another approach uses
a functional relationship between task DoF and redundant DoF for an optimized
performance index via Monte-Carlo simulation [19]. Identifying the functional re-
lationship requires pre-defining a functional space. For the considered 2T2R case
with two redundant DoF a closed-form solution is harder to obtain, if possible at all.
Cascaded optimization utilizes an inner loop that solves the standard IK problem
and an outer loop optimizing the performance index [21]. Cascaded optimization
and global optimization in general have higher computational cost and do not exploit
the nullspace-projection method, which is favorable due to local optimality and effi-
ciency, provided a feasible formulation is chosen. In [12] e.g. only a scalar potential
is used as a constraint for a cone-like task similar to 2T2R, termed “field of view”.
This leads to issues with the differentiability [12] and therefore with IK convergence.

Despite their occasional occurrences in literature, the kinematics of tasks with
2T3R and 2T2R DoF are not systematically investigated for functional redundancy
yet andmethods for a general modeling of these tasks are sparse. Further, the problem
is mostly formulated on velocity level which requires attention when handling the
nonlinear orientation residual, since the residual’s Jacobian is not the differential
kinematics Jacobian. In this paper a general minimal-coordinate geometric approach
for the position-level IKP for 2T3R and 2T2R tasks is presented. The focus lies on
local optimization, as motivated above. The contributions of this paper are:

• a general kinematic modeling approach for the IKP of 2T3R and 2T2R tasks,
• an application to the inverse kinematics of serial robots with functional redun-
dancy and redundant coordinate limitations, shown by a simulation example.
The outline of this paper is as follows. In Sect. 2 the proposed kinematic modeling

approach for a serial chain is shown. The application to inverse kinematics and the
resolution of functional redundancy is given in Sect. 3. Section 4 demonstrates the
results of the simulation examples and Sect. 5 concludes the paper.
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2 Inverse Kinematic Model for Serial Chains

For robots in 2T2R and 2T3R tasks one translational DoF needs to be removed from
the kinematic equations to obtain an expression of minimal dimension. This DoF
is defined to be the displacement along the end effector’s z axis. The established
formulation for the translational part of the inverse kinematics (IK) residual that
relates the robot’s joint coordinates q and operational space coordinates x is

δ̃t(q, x) = (0)rDE = −(0)rD + (0)rE (q) = −xt + (0)rE (q) ∈ R3 (1)

with xË =
[
xËt xËr

]
=

[
r0D,x r0D,y r0D,z ϕx ϕy ϕz

] ∈ R6 and xr asTait-Bryan angles.
Coordinate systems are defined for the robot base (CS)0, the actual end effector pose
(CS)E and the desired pose (CS)D , expressed with x. The residual (1) is not feasible
for the 2T case since it would correspond to an exact position adjustment. To obtain
translational redundancy, new coordinates must be chosen that allow an elimination
of the redundant DoF in the residual. The goal is to choose the coordinates xt and xr
so that they can be reduced via selection matrices to yt = Py,t xt for the 2T case and
yr = Py,r xr for the 2R case. By stacking the translational and rotational coordinates
the combinations 2T2R and 2T3R (and also 3T2R or 3T3R) can be created.

In this approach the translational task minimal coordinates are chosen as

yt =
[
r0D′,x r0D′,y

] Ë
= Py,t

[
r0D′,x r0D′,y λD′

] Ë ∈ R2, (2)

where the index D′ in r0D′,x and r0D′,y refers to the intersection of the z axis of
(CS)D with the x-y plane of (CS)0 shown in Fig. 1a and λD′ = (D)rDD′,z is the
distance to this intersection point which is derived in the following.

The point E ′ is obtained similarly from (CS)E by setting up a line equation

g(q) = (0)rE (q) + λ(0)eEz (q) (3)

from the vector of location (0)rE (q) in the direction of the z axis eEz (q) of (CS)E .
The intersection (0)rE′ of the line in (3) with the x-y plane of (CS)0 is obtained by

λ(q) = λE′(q) =
(
0 − r0E,z(q)

) /eEz,z(q) = −r0E,z(q)/eEz,z(q). (4)

Inserting λE′ in g(q) gives (0)rE′ , which is also sketched in Fig. 1a. The variable
λE′ can be understood as the distance from (CS)E to E ′.

D′

E′
ψt

(CS)0
e0
x

e0
y

e0
z

(CS)E
eEx

eEz
eEy

(CS)D
eDxeDz

eDy

(CS)0 (CS)D

Rx (ϕx )Ry (ϕy )

(CS)E
0RE (q)

Ry (αy )Rx (αx )

(CS)A1

(CS)A2 Rz (αz )

Rz (ϕz+αz )

Rz (ϕz )

(a) (b)

dz,min

dz,max
dz

rDE

dy
dx

ϕz

Fig. 1 (a) Geometric approach for the IK’s position residual and (b) orientation residual
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With the new coordinates corresponding to (2), the translational residual

δt(q, x) =
[−r0D′,x(x)+r0E′,x(q), −r0D′,y(x)+r0E′,y(q), −λD′(x)+λE′(q)

] Ë (5)

is now defined. The reduced residual for 2T tasks can be obtained through

ψt(q, y) =
[
1 0 0
0 1 0

]
δt(q, x) = Pψ,tδt(q, x) ∈ R2. (6)

The peculiarity of the kinematic model lies in the sole dependency on the reduced
coordinates y. For the solution of the IKP shown in Sect. 3 the gradient of the residual
w.r.t. q is needed. It follows by partial derivation (and by ignoring the third row) to

∂

∂q
ψt(q, x) = Pψ,t

( ∂
∂q
(0)r0E′(q)

)
= Pψ,t

( ∂
∂q
(0)r0E (q) + ∂

∂q

(
λE′(q)(0)eEz (q)

) )

= Pψ,t

( ∂
∂q
(0)r0E (q) + ∂λE

′(q)
∂q

(0)eEz (q) + λE′(q)
∂(0)eEz (q)

∂q

)
. (7)

Since λE′(q) from (4) is the quotient of f1(q) = −r0E,z(q) and f2(q) = eEz,z(q),
dependent on q, it’s partial derivative is calculated by the quotient rule for differential
calculus. The term ∂eEz (q)/∂q in f2 can be obtained either by symbolic derivation
using computer algebra systems or by a relation with the rotational part of the
geometric Jacobian, which can be derived with themethods from [16]. The rotational
residual is calculated as in [16] using Z-Y ′-X ′′ Tait-Bryan angles

δr(q, x) = α
(
DRE (q, xr)

)
= α

(
0R
Ë
D(xr)0RE (q)

)
= [αz, αy, αx]Ë ∈ R3. (8)

The series of elementary rotations is depicted in Fig. 1b. By explicitly adding
two intermediate frames (CS)A1 and (CS)A2 that share the same z axis with the
desired frame (CS)D , the purpose of this angle convention becomes apparent. Since
the rotation around this axis is the redundant DoF, these frames with elementary
rotations ϕz and αz can be omitted for the reduced residual, which is sketched by the
dashed line to (CS)A2. Analogously to (6), multiplying a permutation matrix leads
to the reduced residual ψr(q, y) = Pψ,rδr(q, x) ∈ R2 for 2R tasks. For the derivation
of the gradient ψr,∂q = ∂ψr/∂q and details of this approach refer to [16, 15].

Similar to the coordinate definitions y and x, the full residual ψ(q, y)Ë =[(Pψ,tδt(q, x))Ë (Pψ,rδr(q, x))Ë
]
is obtained by stacking the translational and ro-

tational residual in any combination depending on the task DoF (2T2R, 2T3R, ...).
This is done by choosing the according permutation matrix, e.g. by Pψ,t=Pψ,2T, from

Pψ,3T = I3, Pψ,2T =

[
1 0 0
0 1 0

]
, Pψ,3R = I3, Pψ,2R =

[
0 1 0
0 0 1

]
. (9)

The constraint/residual definition above can be interpreted as a generalized formal
description of an equality task for the task coordinates y, as e.g. discussed in [12].
A possible range limitation for the redundant T and/or R coordinate (introduced e.g.
in [7]) builds upon this definition and corresponds to an inequality constraint (or
set-based task in [12]) and will be discussed in the next section.
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3 Inverse Kinematics and Functional Redundancy

An analytic closed-form solution to the implicit inverse kinematics problem ψ(q, y)
can only exist in a parameterized form (since dim(q)>dim(y)) and for certain kine-
matic conditions [17]. Therefore the solution of the IKP is obtained through the
Newton-Raphson method derived by the Taylor series of the IK residual ψ(q, y) to

ψ(qk+1, y) = ψ(qk, y) + ψ∂q(qk, y)(qk+1 − qk) !
= 0 (10)

with the IK Jacobian matrix ψ∂q(qk, y). With † for pseudo inverse, the increment

∆qk = (qk+1 − qk) = − (
ψ∂q(q, y)

)†
ψ(qk, y) (11)

of the joint angles can be used in an iterative algorithm to move towards the solution.
Secondary tasks v=h∂q can be optimized in the nullspace of the operational task via

∆q = ∆qT + ∆qN = −ψ†∂qψ + N v with N = I − ψ†
∂q
ψ∂q (12)

using the gradient-projection method. To focus on the geometric derivation of the
residual, using multiple optimization criteria as shown in [12] is not considered.

The distance dz of robot end effector toworkpiece in pointing direction is obtained
from the vector (D)r ËDE = [dx, dy, dz] shown in Fig. 1a. The reference distance of
the robot can be limited e.g. by the task specification to be within the bounds dz,min
to dz,max. To respect these bounds the modified hyperbolic potential function

hdz,hyp(dz) =
(dz,max − dz,min)2

8

(
1

(dz − dz,min)2
+

1
(dz − dz,max)2

)
≥ 1 (13)

from [21] can be used. Cubic splines serve for activation of the potential beyond zero
at the thresholds dz,thr,min and dz,thr,max, which provides a continuously differentiable

hdist(hdz ) =



hdz,hyp(hdz ) for dz < dz,sw,min or dz > dz,sw,max

0 for dz,sw,min < dz,thr,min ≤ dz ≤ dz,thr,max

hdz,spline(hdz ) otherwise (cubic spline interpolation).
(14)

A symbolic derivation of (14) w.r.t. q is not feasible. Instead, the gradient is
computed with the projection of the known expression ∂h(dz)/∂dz as

h∗∂q = (∂h/∂dz) (∂dz/∂q). (15)

The asterisk denotes the origin of the term from a projection approach instead
of a symbolic derivation. Using symbolic derivation leads to a different expression
h∂q , but after projection into the nullspace of the IK Jacobian in (12), both gradients
are equal, i.e. Nh∂q = Nh∗

∂q . The second term in (15) comes from the last row of
the rotated translational part (D)J t of the robot’s Jacobian. A rotation from default
base frame J t:=(0)J t into desired frame (CS)D is performed with

(D)J t =
DR0(0)J t =

DR0
∂

∂q
(0)rE =

∂

∂q
DR0((0)rD+(0)rDE ) =

∂

∂q
(D)rDE . (16)

This is the author's version of an article that has been published in the 2022 Proceedings of
�Advances in Robot Kinematics�. Changes were made to this version by the publisher prior to

publication. Final version of record available at https://doi.org/10.1007/978-3-031-08140-8_43

Copyright (c) 2022 Springer Nature Switzerland AG. Personal use of this material is permitted. For
any other purposes, permission must be obtained from Springer Nature.



6 M. Schappler et al.

The relations hold since DR0 and (0)rD are only dependent on the desired pose x
and not on the joint configuration q and are invariant to the operator ∂/∂q. Generally
spoken, the Jacobian relation is invariant to the reference frame. Therefore ∂dz/∂q
in (15) can be obtained as the last row of the Jacobian (D)J t from (16).

Other performance criteria can be included like a potential from [9] based on the
squared deviation of the joint coordinates q from their mid-range q̄ with

h1(q) = 1
2
(q − q̄)ËW 1(q − q̄), h1,∂q =

∂h1
∂q
= W 1(q − q̄) and W 1 = I . (17)

Both criteria are combined to one potential htotal = hdist + h1. Other criteria like
singularity avoidance [9] or hyperbolic weight of joint limit distance [21] can be used
as well. If e.g. for 2T2R tasks a two-DoF functional redundancy arises, a task-priority
scheme [12] can be used to incorporate several objectives simultaneously.

4 Evaluation

A simulation study was performed with the proposed algorithm for an industrial
robot kinematics of type KUKA KR 30-3. The initial robot pose is shown in Fig. 2a
together with the desired pose (CS)D and possible limitations for the redundant coor-
dinate dz in the 2T tasks. Different settings (combining fixed/free/limited translation
3T/2T/2T* and fixed/free rotation 3R/2R) of the IK algorithm are compared with
summed optimization of the criterion h1 from (17) and hdist from (14). The resulting
final poses for each setting are shown in Fig. 2b–e. The evolution of the redundant
translational coordinate dz (in the 2T case) and the redundant rotational coordinate
ϕz regarding the z axis (in the 2R case) are plotted in Fig. 3a–b and the optimization
criterion h1 in Fig. 3c. The IK progress is normalized from 0 to 100%. However,
the number of iterations k in (11) varies from 16 (3T2R), over 150 (2T2R*, with
dz limitation) and 166 (2T3R*) to 181 (2T2R, without dz limitation). It depends on
the maximum step size (for holding the linear approximation), damping (of least-
squares), convergence criteria (set for ψ and ∆qN to 10−6) and other meta parameters
in the implementation of (11). The computation time remains low with about 24 µs
per iteration for the 2Tmethods and 63 µs for the 3T2Rmethod (due to higher impact
of overhead) using a Matlab-Mex Linux implementation on an Intel i5-7500 CPU.
Using the method online in robot control is therefore possible, as shown by others.

(a) Initial Pose (b) 3T2R (c) 2T2R (d) 2T2R* (dz lim.) (e) 2T3R* (dz lim.)

dz,min < dz < dz,max

allowed range

(CS)0 (CS)0 (CS)0 (CS)0 (CS)0

(CS)D(CS)D(CS)D
(CS)D

(CS)D(CS)E
(CS)E

(CS)E

(CS)E (CS)E

Fig. 2 (a) Robot in initial pose and (b–e) in final poses for different IK settings
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Fig. 3 (a) Target distance dz with threshold dz, thr,min/max and limit dz,min/max, (b) end effector ro-
tation ϕz corresponding to (CS)E and (c) joint limit optimization criterion h1 over the convergence
of the IK algorithm. Dashed lines mark δ 0 0

In the 2T2R case, without limiting the coordinate dz , the functional redundancy
of degree two is used only for a far reaching elongation of the arm in Fig. 2c. This
strongly improves h1, but is infeasible regarding collisions, singularities and possible
process restrictions. This is improved by the method 2T2R* which uses h1 + hdist
at the cost of a degraded h1, see Fig. 2d. Using a fixed orientation ϕz with 2T3R*
does not allow to improve h1 further since the one degree of functional redundancy
is already used for hdist which is at it’s limit as can also be seen in Fig. 2e. Finally,
for comparison, the case of 3T2R in Fig. 2b is included with a shifted (CS)D in
the middle of dz,min and dz,max, which allows optimization of h1 to a poorer result
than the other methods due to the reduced range of self-motion. While the overall
convergence of all methods is clear from Fig. 3, a remaining problem is visible at the
2T3R* case. Leaving the linear approximation leads to oscillations in the nullspace
motion between the criteria hdist and h1, i.e. a degraded convergence in the second
half of themotion, whichmay be solved by further tuning of the damping parameters.

5 Conclusion and Remark on Parallel Robots

The proposed formulation for the definition of the inverse kinematics problem can
be used for tasks with two translational degrees of freedom and spatial motion,
especially 2T2R and 2T3R. The method is targeted at a numeric implementation
with an analytic derivation and can be embedded in larger frameworks, such as task-
priority inverse kinematics of [12]. Extensions such as the limitation of the redundant
coordinate with a projection method make it feasible in practical applications.

The minimal dimension of the residual and the elimination of dependent opera-
tional space coordinates allow an efficient transfer to gradient projection schemes for
parallel robots with functional redundancy to extendworks like [3] and [10] on 2T2R
tasks. The first leg chain’s kinematic constraints then correspond to the residual ψ in
this paper and the constraints of following leg chains have to be defined relative to
the first, leading leg [15]. The functionally redundant direct and inverse kinematics
matrices (“Jacobians”) can then be obtained by differentiating the constraints. The
position-level IK can then be used for pose optimization in synthesis or control.
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