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Abstract: In this paper, an optimization approach was presented for the flexural strength and stiffness
design of reinforced concrete beams. Surrogate modeling based on machine learning was applied
to predict the responses of the structural system in three-point flexure tests. Three design input
variables, the area of steel bars in the compression zone, the area of steel bars in the tension zone,
and the area of steel bars in the shear zone, were adopted for the dataset and arranged by the
Box-Behnken design method. The dataset was composed of thirteen specimens of reinforced concrete
beams. The specimens were tested under three-point flexure loading at the age of 28 days and both
the failure load and the maximum deflection values were recorded. Compression and tension tests
were conducted to obtain the concrete data for the analysis and numerical modeling. Afterward,
finite element modeling was performed for all the specimens using the ATENA program to verify
the experimental tests. Subsequently, the surrogate models for the flexural strength and the stiffness
were constructed. Finally, optimization was conducted supporting on the factorial method for the
predicted responses. The adopted approach proved to be an excellent tool to optimize the design of
reinforced concrete beams for flexure and stiffness. In addition, experimental and numerical results
were in very good agreement in terms of both the failure type and the cracking pattern.

Keywords: three-point flexure test; Box-Behnken design; regression analysis; surrogate modeling;
optimization

1. Introduction

The percentage of steel reinforcement controls the behavior and failure process in
reinforced concrete members. This failure can be of steel yielding followed by crushing of
concrete in the case of under-reinforced beams and crushing of concrete in the case of over-
reinforced beams. Hence, minimum ductility requirements should be satisfactorily met
while designing reinforced concrete beams. This can be attained by providing an adequate
amount of tensile reinforcement. If a beam is provided with less steel than required, the
failure becomes brittle. This stimulates instability in the overall response of a beam. Before
concrete cracking, the load-deflection response of a plain cement concrete beam and a
reinforced concrete beam is of equal order. When the ultimate strength generated with the
provided reinforcement is less than the flexural cracking strength, immediate crack growth
is created. Therefore, a certain amount of minimum tension reinforcement is necessary for
ductile behavior. While the percentage of flexural reinforcement increases, the ultimate
strength, and ductility of reinforced concrete beams increase [1]. However, provisions for
minimum flexural reinforcement specified by most codes of practice are based on empirical
approaches. The criteria for evaluating minimum reinforcement consider that a beam
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should not fail instantly upon concrete crushing. To meet this condition, the ultimate
capacity of a reinforced concrete beam should be greater than, or equal to, its cracking
moment. Most codes use flexural strength to evaluate cracking stress in beams [2–9];
however, large-scale specimens have less cracking bending strength than flexural strength.
In the traditional design method, cylinder split tensile test, compression test, and modulus
of rupture tests are used to define concrete properties, which cannot completely characterize
the behavior of concrete [10]. Damage assessment plays an important role in the evaluation
of the stability and strength of a structure, which is significant for both existing structures
and those under construction [11].

The flexural strength of normal-strength concrete members is commonly designed
using rectangular stress block parameters. Current design codes provide rectangular stress
block parameters for a simplified design methodology. However, these stress blocks are
determined by tests of reinforced concrete columns, which have apparent limitations. A
rectangular stress block can be used because the shape of the stress–strain relation of
concrete is analogous to the trapezoid. However, the shape of the stress–strain relationship
of concrete changes into a triangle as the compressive strength of concrete increases. For
this reason, rectangular stress block parameters depend on the compressive strength of
concrete [12].

In design practice, when the deflection of a reinforced concrete beam is calculated,
according to standards, two states are analyzed: the cracked state and the uncracked state.
The flexural stiffness of a reinforced concrete beam changes from an uncracked state to a
cracked state. The equation for the effective moment of inertia used to calculate a moment
of inertia somewhere between the uncracked moment of inertia and the cracked moment
of inertia depends on the applied load. As the load increases, the initial distribution of
stiffness of the element changes, and the number of cracks varies non-deterministically.
The distribution of strains and stresses in concrete and steel, along the axis of the element,
is irregular. The resulting effective moment of inertia can be used in elastic deflection
equations to approximate actual deflections. Enhancing the physical properties of the
concrete can increase the shear strength and flexural strength of the beam [13].

In a previous study, Nariman et al. [14] experimentally and numerically investigated
the flexural strength and stiffness of an invented reinforced concrete beam with a new
reinforcement system comprising additional steel bracings and steel plates, arranged to
auto-balance the compression and tension forces developed in the member due to an
increasing applied load in a three-point flexure test. The newly invented reinforcement
system increased the flexural strength and the stiffness of the member to 300% compared
with an ordinary reinforced concrete beam. LS-DYNA was used for the numerical simu-
lations. Shishegaran et al. [15] suggested a new method to increase the flexural capacity
of reinforced concrete beams in a simply supported form. They adopted laboratory work
together with numerical modeling and the results revealed an increase in the load-bearing
capacity and the stiffness of the structural elements. A stress block method was proposed
by Al-Kamal [16], which was verified using a database that consisted of 52 singly tested
reinforced high-strength concrete beams with a concrete strength above 55 MPa. The
proposed model was compared with models of various design codes and proposals of re-
searchers found in the literature. Ghasemi and Shishegaran [17] proposed a reinforcement
technique in a beam to increase the bending capacity that supports a sealed rubber tube
with a diameter twice that of the reinforcement bar covering the slanted part to separate it
from the concrete of the beam.

Baran and Arsava [18] investigated experimental and numerical analyses of the flex-
ural behavior of concrete beams reinforced with high-strength prestressing strands. For
the same reinforcement amount, beams reinforced with high-strength strands exhibited
slightly smaller service stiffness than those reinforced with conventional reinforcing bars.

The influence of key factors, including the degree of reinforcement, concrete strength,
steel yield strength, compression steel ratio, and confining pressure, were studied by
Zhou et al. [19], based on a theoretical method. They developed a new method of beam
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design called “concurrent flexural strength and deformability design”, which would allow
both strength and deformability requirements to be considered simultaneously.

The process of optimizing the design of flexural strength and ductility of reinforced
concrete beams depends mainly on conducting laboratory tests on both concrete mixtures
and steel reinforcements, which are costly and time-consuming. In this study, we construct
a reliable theoretical tool to efficiently predict and optimize the responses of a reinforced
concrete beam without depending on only laboratory tests. For this purpose, the machine
learning approach is presented. We utilize numerical modeling using ATENA software
with the support of the Box-Behnken design method to construct 13 models of reinforced
concrete beams to build the surrogate models.

2. Response Surface Model

A response surface model (RSM) is a collection of statistical and mathematical tech-
niques that are useful for developing, improving, and optimizing processes. The choice of
RSM for a given computational model depends on the knowledge of the computational
model itself [20,21]. It is used in the development of an adequate functional relationship
between a response of interest, y, and a number of associated input parameters denoted by
(x1, x2, . . . , xk). In general, such a relationship is unknown but can be approximated by a
low-degree polynomial model in the form:

y = f(x)β + ε (1)

where x = (x1, x2, . . . , xk), f (x) is a vector function of p elements that consists of powers
and cross-products of powers of x1, x2, . . . , xk up to a certain degree, denoted by d (≥ 1), β
is a vector of p unknown constant coefficients, referred to as parameters, and ε is a random
experimental error assumed to have a zero mean. This is conditioned on the consideration
that the model provides an adequate representation of the response. In this case, quantity
f ( x)β represents the mean response, that is, the expected value of y, and is denoted by
µ(x). Two important models are commonly used in RSM. These are special cases of the
model in Equation (1) and include the first-degree model (d = 1):

y = β0 +
k

∑
i=1

βixi + ε (2)

and the second-degree model (d = 2):

y = β0 +
k

∑
i=1

βixi + ∑
i<j

∑ βijxixj +
k

∑
i=1

βiix2
i + ε (3)

A series of n experiments should first be carried out, in each of which the response y
is measured (or observed) for specified settings of the control parameters. The totality of
these settings constitutes the so-called response surface design, or just “design”, which can
be represented by a matrix, denoted by D, of order n × k, called the design matrix,

D =



x11 x12 . . . x1k
x21 x22 . . . x2k

. . . . . .

. . . . . .

. . . . . .
xn1 xn2 . . . xnk


(4)

where xui denotes the uth design setting of xi (i = 1, 2, . . ., k; u = 1, 2, . . ., n). Each row of D
represents a point, referred to as a design point, in a k-dimensional Euclidean space. Let
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yu denote the response value obtained as a result of applying the uth setting of x, namely
xu = (xu1, xu2, . . ., xuk), (u = 1, 2, . . ., n). From Equation (1), we then have:

yu = f ′(xu)β + εu , u = 1, 2, . . . ., n (5)

where εu denotes the error term at the uth experimental run. Equation (5) can be expressed
in a matrix form as:

y = Xβ + ε (6)

where y = (y1, y2, . . ., yn), X is a matrix of order n × p of which the uth row is f ′( xu), and
ε = (ε1, ε2, . . . , εn). Note that the first column of X is the column of ones 1n. Assuming that
ε has a zero mean, the so-called ordinary least-squares estimator of β is [22]:

β̂ =
(
X′X

)−1 X′y (7)

The Box-Behnken experimental method is rotatable second-order designs based on
three-level incomplete factorial designs (see Figure 1). The special arrangement of the
Box-Behnken design levels allows the number of design points to increase at the same rate
as the number of polynomial coefficients. For three factors, for example, the design can
be constructed as three blocks of four experiments consisting of a full two-factor factorial
design with the level of the third factor set at zero [23].
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Figure 1. Box-Behnken experimental method.

In this study, for the three input parameters of the Box-Behnken experimental design,
see Table 1. A total of 15 numerical runs were needed. The model was the following form:

y = β0 + β1X1 + β2X2 + β3X3 + β11X2
1 + β22X2

2+β33X2
3 + β12X1 X2 + β13X1 X3 + β23X2 X3 (8)

where y is the predicted response, β0 is the model constant; X1 , X2 , and X3 are
the independent variables; β1, β2 and β3 are the linear coefficients; β12, β13, and β23 are
the cross-product coefficients and β11, β22, and β33 are the quadratic coefficients. The
coefficients, i.e., the main effect (βi) and two factors’ interactions (βij) were estimated from
the numerical simulations by dedicating the least-squares method [24,25].

Table 1. Ranges of input parameters.

Parameter Symbol Minimum
Value

Middle
Value

Maximum
Value

Compression Area of Steel (mm2) X1 157.00 235.50 314.00
Tension Area of Steel (mm2) X2 157.00 235.50 314.00
Shear Area of Steel (mm2) X3 169.56 197.82 226.08

3. Dataset

A total of 13 specimens were used in this research, where every specimen had dif-
ferent compression, tension, and shear reinforcement amounts depending on the model
arrangement constructed using the Box-Behnken experimental design requirements. The
reinforced concrete beam cross section was 200 × 150 mm with a 1020-mm length. We used
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10 mm diameter size steel bars for both compression and tension reinforcement and 6 mm
diameter size steel bars for the shear reinforcement (see Figure 2). The length between the
supports was 890 mm and both supports were rollers, giving freedom in the longitudinal
direction of the specimens with a loading rate of 0.1 MPa/s. The labels of the specimens
were M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M13.
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The arrangement of the specimens is shown in Table 2. A total of 15 models were
created using the Box-Behnken design method with the support of MATLAB code and
models 13, 14, and 15 were the same arrangement; therefore only 13 models would be
utilized in both the experimental tests and numerical simulations. Three input parameters
were considered (compression reinforcement area of steel bars, tension reinforcement area
of steel bars, and shear reinforcement area of steel bars). The minimum, middle, and
maximum values of each input parameter were identified depending on the existing range
for each input parameter (see Table 2).

Table 2. Arrangement of 15 specimens.

Model Area of Compression Steel
Bars (mm2)

Area of Tension
Steel Bars (mm2)

Area of Shear
Steel Bars (mm2)

1 157.00 157.00 197.82
2 157.00 314.00 197.82
3 314.00 157.00 197.82
4 314.00 314.00 197.82
5 157.00 235.50 169.56
6 157.00 235.50 226.08
7 314.00 235.50 169.56
8 314.00 235.50 226.08
9 235.50 157.00 169.56

10 235.50 157.00 226.08
11 235.50 314.00 169.56
12 235.50 314.00 226.08
13 235.50 235.50 197.82
14 235.50 235.50 197.82
15 235.50 235.50 197.82

It is worth mentioning that the outputs are the flexural strength and the stiffness of
the reinforced concrete beam, which were being predicted, and would then be utilized to
undergo optimization of the design. All specimens were prepared using a concrete mixture
with mechanical properties shown in Table 3, determined from the compression cylinder
test and split cylinder tension test of a total of six specimens of concrete cylinders with
dimensions of 20 × 10 cm. The specimens were kept in water for curing for 28 days.
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Table 3. Mechanical properties of the concrete mixture.

Cylinder
Specimen

Maximum Compression
Load (kN)

Cylinder
Specimen

Maximum Tensile
Load (kN)

C1 101.74 T1 85.90
C2 88.45 T2 66.20
C3 99.08 T3 100.19

The results of the three-point flexure test for the 13 specimens of reinforced concrete
beams are recorded in Table 4. The determined outputs were the maximum flexure force
and the maximum deflection for each specimen.

Table 4. Experimental results and the outputs for the specimens.

Model Maximum Flexure
Load (kN) Slope Flexural

Strain(mm/mm)
Young’s Modulus

(N/mm2)
Maximum

Deflection (mm)
Flexural Stress

(MPa)

1 77.240 0.7140 0.1639 104.860 4.430 17.190
2 94.680 0.8330 0.1722 122.340 5.68 21.070
3 79.320 0.7050 0.1704 103.540 5.62 17.650
4 97.040 0.7770 0.1892 114.120 6.24 21.590
5 79.260 0.7400 0.1623 108.680 5.35 17.640
6 97.900 0.8800 0.1685 129.240 5.56 21.780
7 91.900 0.8180 0.1702 120.140 5.61 20.450
8 93.560 0.7610 0.1862 111.770 6.10 20.820
9 78.750 0.9000 0.1326 132.180 4.37 17.520

10 75.240 0.4666 0.2442 68.530 8.06 16.740
11 97.380 0.4440 0.3323 65.210 10.96 21.670
12 107.700 0.6110 0.2670 89.740 8.81 23.960
13 93.930 0.6660 0.2137 97.810 7.05 20.900

4. Finite Element Models

ATENA, along with the GID pre-processor, was used to carry out the numerical
analyses. Regarding the choice of materials, Cementitious2 material was used for concrete;
a fracture–plastic model that considers the fracturing plastic behavior. Bilinear stress–strain
curves were used to model the 15-mm-thick steel plates used for the loading plate, and
pinned supports. The concrete beam, loading plate, and supports were all meshed with
eight-node hexahedral elements, and stirrups and rebars were reinforced with 1-D truss
elements embedded in concrete. The load was applied in a displacement-controlled manner
with increments of 0.1 mm until failure occurred, considering the damage criterion [26].
Monitoring points were defined to obtain the reaction at the loading plate and deflection
at the mid-span The Newton–Raphson method was used to solve the equations. Figure 3
shows a model (M8) of the reinforced concrete beam specimen, which was created using
ATENA, to simulate the three-point flexure test. All the models were created supporting
the details of each specimen.

The results of the flexural stress and the maximum deflection of the specimens deter-
mined from the experimental tests were verified using the results of the numerical models
obtained from ATENA. The verification process was necessary to verify the results of
the experimental tests, and, as a result, the surrogate models would be a strong tool in
predicting the responses of a structural system. Firstly, the flexural stress results of all
specimens in the experimental tests were in excellent agreement with the results of the
numerical models, see Figure 4 and Table 5. The maximum percentage error reached 2.79%
for model M3, which is acceptable.
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Table 5. Error estimation for flexural stress.

Model Flexural Stress ATENA
(MPa)

Flexural Stress
Experiment (MPa) Error %

1 17.15611696 17.185900 0.17
2 21.09721253 21.066300 0.15
3 17.15664377 17.648700 2.79
4 21.59387950 21.591400 0.01
5 17.95554714 17.635350 1.82
6 21.44176454 21.782750 1.57
7 20.31767836 20.447750 0.64
8 20.70511776 20.817100 0.54
9 17.09409603 17.521875 2.44

10 16.33360424 16.740900 2.43
11 21.15750459 21.667050 2.35
12 24.50759912 23.963250 2.27
13 20.92028772 20.899425 0.10

Similarly, the results of the maximum deflection of all specimens in the experimental
tests were in very good agreement with the results of the numerical models, as shown in
Figure 5 and Table 6. The maximum percentage error reached 3.69% for model M3 again,
which is acceptable.
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Table 6. Error estimation for maximum deflection.

Model Max. Deflection ATENA
(mm)

Max. Deflection
Experiment (mm) Error %

1 4.48 4.43 1.12
2 5.48 5.68 3.65
3 5.42 5.62 3.69
4 6.12 6.24 1.96
5 5.27 5.35 1.52
6 5.51 5.56 0.91
7 5.56 5.61 0.90
8 6.02 6.1 1.33
9 4.29 4.37 1.86

10 7.98 8.06 1.00
11 10.85 10.96 1.01
12 8.76 8.81 0.57
13 6.94 7.05 1.59

All the results were successfully verified with a satisfactory rate of error that did not
exceed 5%. Only the maximum errors in both responses of flexural stress and maximum
deflection occurred in specimen M3, which may have been due to many expected reasons:
the asymmetric compaction of the specimen, error in applying the load, or improper contact
between the load and the concrete surface.

Moreover, we will consider two models, M4 and M9, to verify the results of the
experimental tests by comparing both with the numerical simulations obtained from
ATENA. The crack pattern in the experimental test of specimen M4 showed an arc shape
starting from the tension zone in the region between the flexure zone and shear zone, in
both directions. Figure 6 shows the crack pattern associated with M4, showing a very
good agreement with the numerical simulation created in ATENA. The cracks propagated
and connected in the compression zone under an applied load from a small distance. On
the other hand, the crack pattern in the numerical simulation of model M4 from ATENA
showed the same pattern, starting from the tension zone in the region between the flexure
zone and shear zone, in both directions, with a small difference.
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The crack pattern in the experimental test of specimen M9 shows a bounded shape
starting from the tension zone in the flexure zone in both directions. A comparison between
the experimental and numerical patterns is shown in Figure 7.
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5. Surrogate Models

The surrogate models were created using MATLAB codes to determine the coefficients
of regression for each response. The least-squares method was adopted to formulate two
surrogate models. The design matrix was generated to help formulate the surrogate models
by entering the least-squares method equation (see Tables 7 and 8).

Regression analysis was necessary to compare the results gained from the experimental
tests and the results predicted by the surrogate models. Coefficient of determination R2

is a tool used to identify the efficiency of surrogate models, where this parameter has a
range value bounded from 0 to 1. This parameter makes use of a comparison between the
experimental test results and the predicted results. When the value of this parameter is
near 1, it means that the surrogate models are efficient and can be supported to predict the
responses of any structural system.
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Table 7. Design matrix—linear and quadratic terms.

Model Constant X1 X2 X3 X1X1 X2X2 X3X3

1 1.00 157.00 157.00 197.82 24,649.00 24,649.00 39,132.75
2 1.00 157.00 314.00 197.82 24,649.00 98,596.00 39,132.75
3 1.00 314.00 157.00 197.82 98,596.00 24,649.00 39,132.75
4 1.00 314.00 314.00 197.82 98,596.00 98,596.00 39,132.75
5 1.00 157.00 235.50 169.56 24,649.00 55,460.25 28,750.59
6 1.00 157.00 235.50 226.08 24,649.00 55,460.25 51,112.17
7 1.00 314.00 235.50 169.56 98,596.00 55,460.25 28,750.59
8 1.00 314.00 235.50 226.08 98,596.00 55,460.25 51,112.17
9 1.00 235.50 157.00 169.56 55,460.25 24,649.00 28,750.59

10 1.00 235.50 157.00 226.08 55,460.25 24,649.00 51,112.17
11 1.00 235.50 314.00 169.56 55,460.25 98,596.00 28,750.59
12 1.00 235.50 314.00 226.08 55,460.25 98,596.00 51,112.17
13 1.00 235.50 235.50 197.82 55,460.25 55,460.25 39,132.75
14 1.00 235.50 235.50 197.82 55,460.25 55,460.25 39,132.75
15 1.00 235.50 235.50 197.82 55,460.25 55,460.25 39,132.75

Table 8. Design Matrix-Interaction Terms.

Model X1X2 X1X3 X2X3

1 24,649.00 31,057.74 31,057.74
2 49,298.00 31,057.74 62,115.48
3 49,298.00 62,115.48 31,057.74
4 98,596.00 62,115.48 62,115.48
5 36,973.50 26,620.92 39,931.38
6 36,973.50 35,494.56 53,241.84
7 73,947.00 53,241.84 39,931.38
8 73,947.00 70,989.12 53,241.84
9 36,973.50 39,931.38 26,620.92
10 36,973.50 53,241.84 35,494.56
11 73,947.00 39,931.38 53,241.84
12 73,947.00 53,241.84 70,989.12
13 55,460.25 46,586.61 46,586.61
14 55,460.25 46,586.61 46,586.61
15 55,460.25 46,586.61 46,586.61

5.1. Flexural Stress

Table 9 lists the details of the regression coefficients, which were used to formulate the
surrogate model for the flexural stress prediction.

Table 9. Regression coefficients for flexural stress.

Coefficient Value (10−6)

β0 −13.075
β1 138.61 × 10−3

β2 27.47 × 10−3

β3 77.41 × 10−3

β11 −0.11 × 10−3

β22 −0.14 × 10−3

β33 −81.39 × 10−6

β12 2.43 × 10−6

β13 −0.42 × 10−3

β23 0.35 × 10−3

Accordingly, the equation of the surrogate model for predicting the flexural stress in a
reinforced concrete beam is denoted by FS, as follows:
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FS = −13.075 + 138.61 × 10−3·X1 +27.47 × 10−3·X2 +77.41 × 10−3·X3−0.11×
10−3·X2

1−0.14 × 10−3·X2
2−81.39 × 10−6·X2

3 +2.43× 10−6·X1 X2−0.42 ×
10−3·X1 X3+0.35 × 10−3·X2 X3

(9)

The coefficient of determination for the flexural stress for the results of the experimen-
tal tests and the predicted results was R2 = 0.9566, which is an excellent value indicating
the efficiency of the surrogate model to predict the flexural stress in reinforced concrete
beam specimens.

5.2. Maximum Deflection

Table 10 shows details of the regression coefficients, which were used to formulate the
surrogate model for the maximum deflection prediction.

Table 10. Regression coefficients for maximum deflection.

Coefficient Value

β0 −15.464
β1 154.89 × 10−3

β2 118.87 × 10−3

β3 −130.48 × 10−3

β11 −0.32 × 10−3

β22 67.95 × 10−6

β33 0.73 × 10−3

β12 −25.56 × 10−6

β13 31.55 × 10−6

β23 −0. 66 × 10−3

The equation of the surrogate model for predicting the maximum deflection in the
reinforced concrete beam is denoted by MD, as follows:

MD = −15.464 + 154.89 × 10−3·X1+118.87 × 10−3·X2−130.48 × 10−3·X3−0.32
× 10−3·X2

1+67.95 × 10−6·X2
2+0.73× 10−3·X2

3 −25.56 × 10−6·X1 X2+31.55 ×
10−6·X1 X3−0. 66 × 10−3·X2 X3

(10)

The coefficient of determination for the results of the experimental tests and the
predicted results was R2 = 0.9063, which is an excellent value, indicating the efficiency of the
surrogate model to predict the maximum deflection in reinforced concrete beam specimens.

5.3. Regression Analysis

When the surrogate models are ready for prediction, regression analysis is necessary
to compare the results gained from the experimental tests and the results predicted by the
surrogate models. Coefficient of determination R2 is a tool used to identify the efficiency
of the surrogate models, where this parameter has a range value starting from 0 to 1.
This parameter makes use of a comparison between the experimental test results and the
predicted results. When the value of the parameter is near 1, it means that the surrogate
models are efficient and can be supported to predict the responses of any structural system.

5.3.1. Flexural Stress

The coefficient of determination for the flexural stress for the results of experimental
tests and the predicted results was R2 = 0.9566, which is an excellent value indicating the
efficiency of the surrogate model to predict the flexural stress in reinforced concrete beam
specimens (Figure 8). Only 4.34% of the system response was not predictable, which is
very satisfactory.
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5.3.2. Maximum Deflection

The coefficient of determination for the maximum deflection for the results of ex-
perimental tests and the predicted results was R2 = 0.9063, which is an excellent value
indicating the efficiency of the surrogate model to predict the maximum deflection in
reinforced concrete beam specimens (Figure 9). Only 9.37% of the system response was not
predictable, which is satisfactory.
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6. Optimization Results

The factorial method for the predicted results of the flexural stress and the maximum
deflection in reinforced concrete beam specimens was adopted to optimize the design
by identifying the minimum and maximum values of each of the two results. A total of
27 models were constructed supporting the surrogate models to detect the optimum values
for each result. It is worth mentioning that the three considered parameters were used to
formulate the involved models.

6.1. Flexural Stress

Table 11 lists the optimization results for the flexural stress. The optimum values of
the flexural stress were 15.645 MPa for the minimum value for model 1 and 23.891 MPa for
the maximum value for model 13. Thus, the maximum value, in this case, was considered
to undertake its related model arrangement for the optimum design for flexural strength of
reinforced concrete beams.
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Table 11. Optimization results for flexural stress.

Model X1
(mm2)

X2
(mm2)

X3
(mm2) σf(MPa)

1 157.00 157.00 169.56 15.645
2 157.00 157.00 197.82 16.638
3 157.00 157.00 226.08 17.500
4 157.00 235.50 169.56 18.124
5 157.00 314.00 169.56 18.878
6 235.50 157.00 169.56 17.589
7 314.00 157.00 169.56 18.207
8 314.00 235.50 169.56 20.716
9 314.00 235.50 197.82 20.591
10 314.00 235.50 226.08 20.336
11 235.50 314.00 169.56 20.851
12 235.50 314.00 197.82 22.436
13 235.50 314.00 226.08 23.891
14 235.50 235.50 169.56 20.083
15 235.50 235.50 197.82 20.900
16 235.50 235.50 226.08 21.588
17 314.00 314.00 169.56 21.500
18 314.00 314.00 197.82 22.143
19 314.00 314.00 226.08 22.655
20 235.50 157.00 197.82 17.639
21 314.00 157.00 197.82 17.315
22 157.00 314.00 197.82 21.405
23 157.00 314.00 226.08 23.803
24 235.50 157.00 226.08 17.559
25 314.00 157.00 226.08 16.293
26 157.00 235.50 197.82 19.883
27 157.00 235.50 226.08 21.514

6.2. Maximum Deflection

The optimum values of the maximum deflection were 2.77625 mm for the minimum
value for model 1 and 10.38125 mm for the maximum value for model 11. The minimum
value was considered to undertake its related model arrangement for the optimum design
for stiffness of reinforced concrete beams. The results are summarized in Table 12.

Table 12. Optimization results for maximum deflection.

Model X1
(mm2)

X2
(mm2)

X3
(mm2)

δmax
(mm)

1 157.00 157.00 169.56 2.776250
2 157.00 157.00 197.82 3.865000
3 157.00 157.00 226.08 6.116250
4 157.00 235.50 169.56 5.126250
5 157.00 314.00 169.56 8.313750
6 235.50 157.00 169.56 5.158750
7 314.00 157.00 169.56 3.588750
8 314.00 235.50 169.56 5.623750
9 314.00 235.50 197.82 5.392500
10 314.00 235.50 226.08 6.323750
11 235.50 314.00 169.56 10.381250
12 235.50 314.00 197.82 8.620000
13 235.50 314.00 226.08 8.021250
14 235.50 235.50 169.56 7.351250
15 235.50 235.50 197.82 7.050000
16 235.50 235.50 226.08 7.911250
17 314.00 314.00 169.56 8.496250
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Table 12. Cont.

Model X1
(mm2)

X2
(mm2)

X3
(mm2)

δmax
(mm)

18 314.00 314.00 197.82 6.805000
19 314.00 314.00 226.08 6.276250
20 235.50 157.00 197.82 6.317500
21 314.00 157.00 197.82 4.817500
22 157.00 314.00 197.82 6.482500
23 157.00 314.00 226.08 5.813750
24 235.50 157.00 226.08 8.638750
25 314.00 157.00 226.08 7.208750
26 157.00 235.50 197.82 4.755000
27 157.00 235.50 226.08 5.546250

7. Conclusions

Experimental tests and numerical simulations of 13 specimens of reinforced concrete
beams were conducted to optimize their flexural strength and stiffness. We used the Box-
Behnken design method with the support of the ATENA program to verify the experimental
tests and predict the optimum solutions. The following points can be concluded from
our analyses:

1. The Box-Behnken design method manifested excellent strength in building the surro-
gate models to predict the responses of the structural system under loading and, as a
result, a more efficient, safer, and lower-cost design.

2. The numerical models generated in the ATENA program showed a good agreement
with the experimental tests, where the results were very similar and very satisfactory.
In addition, numerical models can be adopted to predict and optimize the design of
the reinforced concrete beams for flexure and ductility.

3. The optimization process produced minimum and maximum responses based on the
factorial method of the predicted responses of the flexural strength and the stiffness
from the surrogate models.
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