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Abstract
Deep-water depositional systems are the ultimate sink for vast quantities of terri-
genous sediment, organic carbon and anthropogenic pollutants, forming valuable 
archives of environmental change. Our understanding of the distribution of these par-
ticles and the preservation of environmental signals, in deep-water systems is limited 
due to the inaccessibility of modern systems, and the incomplete nature of ancient 
systems. Here, the deposit of a physically modelled turbidity current was sampled 
(n = 49) to determine how grain size and grain type vary spatially. The turbidity 
current had a sediment concentration of 17%. The sediment consisted of, by weight, 
65% quartz sand (2.65 g/cm3), 17.5% silt (2.65 g/cm3), 7.5% clay (2.60 g/cm3) and 
5% each of sand-grade garnet (3.90 g/cm3) and microplastic fragments (1.50 g/cm3). 
The grain size and composition of each sample was determined using laser diffrac-
tion and density separation, respectively. The results show that: (a) bulk grain size 
coarsened axially downstream on the basin floor challenging the notion that basin 
floor deposits fine radially from an apex upon becoming unconfined; (b) no sample 
composition matched the input composition of the flow, indicating that allogenic 
signals can be autogenically shredded and spatially variable in sediment gravity flow 
deposits; and (c) microplastic fragments were concentrated in levee and lateral basin 
floor fringe positions; however, microplastic concentrations in these positions were 
lower than input, suggesting microplastics bypassed the sampled positions. These 
findings have implications for: (a) the development of ‘finger-like’ geometries and 
facies distributions observed in modern and ancient systems; (b) interpreting envi-
ronmental signals in the stratigraphic record; and (c) predicting the distribution of 
microplastics on the sea floor.
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1  |   INTRODUCTION

Submarine fans are some of the largest sediment accu-
mulations on earth, and are the ultimate sediment sink for 
large volumes of terrestrial sediment (Figure 1A; Emmel & 
Curray, 1983; Mulder & Syvitski, 1995; Talling et al., 2013). 

Grains of variable sizes, shapes, ages and densities, are trans-
ported in rivers from source areas to fans in oceans and lakes 
(Garzanti et al., 2006; Mason et al., 2017; Webb et al., 2021). 
Terrigenous organic matter can be incorporated into the sedi-
ment load through erosion of soils and land plants, along with 
anthropogenic pollutants (Figure  1A; Baudin et al., 2010; 

K E Y W O R D S

environmental signal, heavy mineral, microplastic, signal preservation, submarine lobe, turbidity 
current

F I G U R E  1   Sediment sources and pathways to submarine fans. (A) Conceptual source-to-sink illustration showing pathways for sediment 
to reach the deep-ocean. Environmental and sedimentary signals include heavy mineral suites, zircons of a given age population, and changing 
sedimentary fluxes in response to climate or tectonic changes. Such signals propagate from hinterland source areas to the ocean; but can be mixed 
through sedimentological processes (e.g. river confluences, littoral transport). Sediment loads can also contain terrigenous organic matter affecting 
the global carbon cycle, and pollutants (i.e. anthropogenic signals). (B) Schematic illustration of how different submarine lobe architectures may 
affect the spatial distribution of heavy minerals
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Galy et al., 2008; Gwiazda et al., 2015; Harris, 2020; Mani 
et al., 2015). Spatial or stratigraphic changes in the volume, 
or flux, of these different grain types can be used to infer 
past environmental changes and signal propagation (Romans 
et al., 2016). How such grain types are spatially distributed is 
relatively well-studied in fluvial and shallow marine systems 
in contrast to submarine fans which are comparatively chal-
lenging to monitor and access. This problem is compounded 
by fundamental differences in transport mechanisms and 
flow structure. Rivers typically have thin bedload layers, with 
most sediment in dilute suspension (van Rijn, 1984); whereas 
sediment gravity flows are often strongly stratified, exhibit-
ing thick bedload layers where sediment concentrations can 
exceed 10% volume in which hindered settling dominates 
and both turbulence and bedform development is suppressed 
(Kuenen, 1966; Lowe, 1982; Paull et al., 2018; Stevenson 
et al., 2018; Talling et al., 2012). Furthermore, bottom cur-
rents can affect submarine gravity flows affecting their dep-
ositional architectures, and rework and redistribute extant 
deposits, affecting grain type distribution (Fuhrmann et al., 
2020; Kane et al., 2020; Rebesco et al., 2014; Shanmugam 
et al., 1993; Stow & Lovell, 1979).

Mineral assemblages, or individual minerals, can be used 
to ascertain the provenance or age of a depositional system 
through comparison with potential hinterland source areas 
(Dickinson & Suczek, 1979; Fontana et al., 1989; Morton & 
Hallsworth, 1994; Sickmann et al., 2016; Zuffa et al., 1995). 
These minerals can have different shapes, sizes and densities 
and are therefore probably fractionated according to their set-
tling velocities (Garzanti et al., 2008). Thus, signals are liable 
to be distorted or diluted by variable depositional processes 
and flow conditions (Ibañez-Mejia et al., 2018; Lawrence 
et al., 2011). While high-density sampling of lithologically 
similar turbidites can provide reliable formation-scale re-
sults (DeGraaff-Surpless et al., 2003), little work addresses 
how heavy mineral signals are fractionated within different 
sub-environments of submarine fans (Figure 1B). Similarly, 
appreciation of the distribution of lighter particles in deep-
water systems, such as microplastics and organic carbon, is 
important in constraining how pollutants are transported and 
stored in the deep oceans, and global organic carbon bud-
gets (Galy et al., 2007; Gwiazda et al., 2015; Kane et al., 
2020; Schlining et al., 2013; Zhong & Peng, 2021). Despite 
the threat posed to marine ecosystems (Kane & Clare, 2019; 
Kane et al., 2020; Martin et al., 2017; Sanchez-Vidal et al., 
2018; Thompson et al., 2004; Woodall et al., 2014), relatively 
few studies document microplastic transport and deposition 
in submarine fans (although see: Kane & Clare, 2019; Kane 
et al., 2020; Pohl et al., 2020b). Consequently, questions re-
main regarding where and how microplastics are deposited in 
deep-water systems.

Traditional models of submarine fans predict radial sed-
iment dispersal patterns upon unconfinement of sediment 

gravity flows, and an associated thinning and fining of the 
deposits (Figure  1B; Luthi, 1981; Normark, 1970; Walker, 
1966). However, systems often exhibit strong direction-
ality, with deposits forming elongate finger-like deposits 
(Figure  1B; Dodd et al., 2019; Groenenberg et al., 2010; 
Klaucke et al., 2004; Twichell et al., 1992). Sediment grav-
ity flows spatially segregate their sediment load according 
to the density, shape and size of grains (Choux & Druitt, 
2002; Hodson & Alexander, 2010; Luthi, 1981; Mériaux & 
Kurz-Besson, 2017; Pyles et al., 2013), and discrete flow-
types carry or deposit these grain types depending on their 
grain-support mechanisms, which can vary spatially and tem-
porally (Baas et al., 2011; Fildani et al., 2018a; Kane et al., 
2017; Stevenson et al., 2014; Talling et al., 2012). The de-
posits of modern sediment gravity flows have been found to 
record spatial changes in heavy mineral composition (Andò 
et al., 2019; McLennan et al., 1989; Sarnthein & Bartolini, 
1973; Sickmann et al., 2019); although the challenges asso-
ciated with sampling modern systems frequently limit the 
spatial resolution and number of samples taken. These obser-
vations translate through geological time to the rock record, 
where similar observations have been recognised in outcrops 
(Norman, 1969). However, outcrops tend to be limited by in-
complete, short length-scale and two-dimensional exposures.

Physical experiments, both two and three-dimensional, 
commonly focus on flow processes and architecture of sedi-
ment gravity flow deposits (Alexander & Morris, 1994; Baas 
et al., 2009; Baker et al., 2017; de Leeuw et al., 2016; Garcia 
& Parker, 1989; Kuenen, 1951; Middleton, 1967; Postma 
& Cartigny, 2014; Soutter et al., 2021; Steel et al., 2017; 
Straub et al., 2008). Comparatively few of these studies ex-
plicitly document the distribution of different grain sizes and 
grain types (Choux & Druitt, 2002; de Leeuw et al., 2018b; 
Luthi, 1981; Mériaux & Kurz-Besson, 2017; Pyles et al., 
2013), and those that do often use dilute and finer-grained 
flows that do not scale well to natural sediment gravity 
flows (Luthi, 1981; Pyles et al., 2013). Consequently, de-
spite recognition that the distribution of grain types in sed-
iment gravity flow deposits is spatially variable, relatively 
few studies have described and quantified the distribution of 
diverse grain type loads.

Here, the spatial distribution of grain size and grain types 
in deposits of an experimental turbidity current are inves-
tigated using a sediment load of quartz sand (2.65  g/cm3; 
herein sand), clay (2.60  g/cm3), silt (2.65  g/cm3), garnet 
(3.90 g/cm3) and microplastics (1.50 g/cm3). The results are 
used to answer the following questions: (a) How are differ-
ent grain sizes and minerals segregated in sediment gravity 
flow deposits? (b) What can these distributions tell us about 
turbidity current structure and evolution? (c) How does grain 
fractionation affect the dilution of a known compositional 
input spatially? (d) What implications does such a fraction-
ation have for signal preservation and sampling strategies in 
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submarine fans? And (e) where are microplastics deposited in 
the deposits of sandy sediment gravity flows?

2  |   MATERIALS AND METHODS

2.1  |  Experiment set-up

The experiment was carried out using the Eurotank 
flume at Utrecht University, which has dimensions of 
11  m  ×  6  m  ×  1.2  m (Figure  2). The design of the basin 
followed Spychala et al. (2020). From proximal to distal, 
the floor of the tank consisted of (a) an inlet pipe which 
discharged the sediment mixtures; (b) a channel 8 cm deep, 
80  cm wide and 3 m long with sculpted levees on a slope 
dipping at 11°; (c) a 4 m long slope dipping at 4° and (d) a 
4 m long, flat basin floor (Figure 2). The base of the tank was 
covered in fine sand, allowing erosion of the substrate by the 
experimental sediment gravity flows in certain areas.

The flow consisted of 400  kg of sediment which was 
mixed in a 900 l mixing tank to a concentration of 17 vol% 
(Figure  2). The sediment mixture was 65% sand (2.65  g/
cm3), 17.5% silt (glass beads; 2.65  g/cm3), 7.5% kaolinite 
(1.5  g/cm3), 5% microplastic fragments, that is not fibres 
(Urea, Melamine and Acrylic; ca 1.5 g/cm3) and 5% garnet 
(3.9  g/cm3). Sand, garnet and microplastics particles were 
moderately to highly spherical, and angular to sub-rounded. 
The sediment had a mixed median grain size of fine sand 
(Table 1; D50 of 141 μm), similar to deposits of many ancient 
and modern deep-water systems (Bell et al., 2018a; Fildani 
et al., 2018a; Hussain et al., 2020; Jobe et al., 2017; Kane 
et al., 2017; Marzano, 1988; Porten et al., 2016; Sylvester & 
Lowe, 2004).

The sediment-water mixture was discharged at 40  m3/h 
into the flume tank. The flow velocity was recorded at eight 

positions in the tank using ultrasound velocity profile (UVP) 
probes; four in an axial dip-oriented transect spaced every 
80 cm (Figure 3; from proximal to distal UVPs 1, 2, 3 and 
4), and five in a strike-oriented transect, which includes the 
most distal UVP of the dip-oriented transect (Figure 3; from 
right to left with respect to flow direction, UVPs 5, 6, 4, 7, 
8). The UVPs were orientated at a 60° angle to the local bed, 
as a result the data collected are from positions ca 10 cm up-
dip of the UVP position (Figure 2). UVP probes 5, 6, 7 and 
8 were positioned perpendicular to the slope, which probably 
resulted in the flow intersecting them at an oblique angle, 
leading to a slight underestimation of the true flow velocity. 
The flow velocity data of each UVP were time averaged to 
enable direct comparison of the velocity profile at various 
locations across the slope.

2.2  |  Sampling method

Upon completion of the gravity flow experiment, the tank 
was drained slowly overnight to limit the development of 
drainage networks on the deposit. Laser scans were con-
ducted prior to the experiment, and after drainage. These are 
used to create digital elevation models (DEMs) with a hori-
zontal resolution of 2 × 2 mm to produce a thickness-change 
map (Figure 3).

Forty nine samples of approximately 10  cm3 were col-
lected from the sediment gravity flow deposit. The upper 
0.1 cm of the deposit was removed prior to sampling in order 
to sample the sandy-part of the deposit, rather than the silt or 
clay-prone cap, as per de Leeuw et al. (2018b). This sampling 
strategy discards the deposits from the waning-flow phase at 
the end of the experiment, and targets the deposits formed 
by the body of the quasi-steady turbidity current (Pohl et al., 
2020a). As the tank is fully contained, this method also 

F I G U R E  2   Eurotank laboratory and 
experiment set-up. Adapted from (Ferguson 
et al., 2020; Soutter et al., 2021)
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removes the impact of reflection of the dilute waning flow 
from the tank walls. Samples were collected from discrete 
sub-environments (e.g. levees) to constrain spatial hetero-
geneities in composition and texture (Figure 3C). The basin 
floor deposit (BFD) was divided into three sub-environments: 
BFD axis, BFD off-axis and BFD fringe. The BFD fringe de-
posits are defined by the presence of ripples. Whereas, BFD 
axis and off-axis sample positions visually appear structure-
less, and so are pragmatically defined as deposits down the 
centreline of the flume tank (i.e. directly downstream of the 

channel mouth), and samples taken laterally away (typically 
ca 40 cm) from the centreline axis, respectively. The tank was 
laser-scanned after sampling enabling precise identification 
of sample positions.

2.3  |  Grain size analysis

Individual samples were thoroughly mixed using a clean spat-
ula to homogenise grain size and grain types. Sub-samples 

Quartz 
sand Garnet Microplastic Silt Kaolinite

D90 (µm) 239.995 306.667 493.618 112.14 46.94

D50 (µm) 161.038 193.349 330.964 52.805 6.511

D10 (µm) 107.664 113.819 217.332 0.977 0.977

Coarse sand (%) 0 0 6.956 0 0.042

Medium sand (%) 4.055 17.839 65.23 0 0.026

Fine sand (%) 73.492 67.161 27.812 5.84 0.084

Very fine sand (%) 22.453 13.786 0.002 31.16 3.655

Coarse silt (%) 0.001 0.692 0 25.369 9.871

Fine silt and clay (%) 0 0.523 0 37.631 86.323

T A B L E  1   Grain size distribution of 
grain types used in the experiment

F I G U R E  3   (A) Difference map documenting topographic changes pre and post-flow. The distal fringe of the deposit is poorly imaged due to 
water that ponded on the basin floor during drainage. (B) Sample map showing locations of samples and graph profiles. (C) Sample locations with 
regard to their associated depositional environment

A B C
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were analysed using a Malvern Mastersizer 3000 (Malvern 
Instruments Limited) and Hydro LV liquid handling unit, 
using water as the dispersant. The instrument was calibrated 
using the manufacturer's latex bead quality assurance stand-
ard and was within the manufacturers specified tolerances. 
Samples were subjected to ultrasonic and pre-measurement 
dispersion. Some samples were analysed more than once 
to confirm there was no sub-sampling bias, and all samples 
were analysed five times, sequentially, to confirm there was 
complete dispersion of the sample. The particle size distribu-
tion was modelled using a Fraunhofer estimation model.

2.4  |  Grain-type segregation

Grain types were segregated to quantify their spatial distribu-
tion. First, the samples were rinsed thoroughly over 63  µm 
sieves to remove the ‘mud’ fraction (silt and clay). Sieves were 
cleaned using an ultrasonic cleaner after each use. The remnant 
sand, microplastic and garnet mixtures were then separated 
using LST™ heavy liquid (Central Chemical Consulting Pty 
Ltd) in a separation funnel. First, garnet was separated from 
the mixtures using a liquid density of 2.80 g/ml. Second, mi-
croplastics were separated from the sand mixture at a liquid 
density of 1.90 g/ml. Samples were steadily poured into the 
LST™, after which they were mixed using a spatula. Samples 
were left to separate for a minimum of 30 min to ensure full sep-
aration of grains. The dense and light separations were poured 
into separate funnels lined with filter paper. Each sample was 
rinsed with deionised water to remove LST™ prior to drying in 
an oven and weighing. The LST™ was filtered and recovered 
after each separation. The coarser fragment of the silt glass 
beads was able to float during the microplastic separation. To 
separate this fraction from the microplastics, the mixture was 
washed through 125  µm sieves using the process described 
above. The D90 of the glass beads was 112.1 µm, and the D10 
of the microplastics was 217.3 µm, which is considered to have 
enabled an effective separation at 125  µm. After separation, 
the sub-samples were each weighed using scales with 0.001 g 
precision, in glass dishes of a known mass, and compared to 
the original sample weight to calculate weight-percent (wt%).

2.5  |  Flow scaling

A Shields scaling approach is utilised as opposed to the 
Froude scaling approach that was commonly used prior to de 
Leeuw et al. (2016). The method is based on the relationship 
between the Shields number (τ∗; Shields, 1936), and the parti-
cle Reynolds number (Rep). The Shields number is defined as:

where ρs is the bulk sediment density (2,705.95  kg/m3), ρf 
the flow density (1,290  kg/m3), D50 the median grain size 
(141  µm), g the acceleration due to gravity and U* is the 
shear velocity (m/s) as described by Middleton and Southard 
(1984), and Van Rijn (1993). The particle Reynolds number 
is defined as:

where υ is the kinematic viscosity of fresh water at 20°C. The 
advantage of the Shields scaling approach is that it enables 
validation that sediment was transported by suspension in the 
flow, which is not guaranteed with a Froude scaling approach 
(Fernandes et al., 2020; de Leeuw et al., 2016). Similarly, the 
Shields scaling approach allows for characterisation of the 
boundary roughness at the base of the flow (Fernandes et 
al., 2020; de Leeuw et al., 2016). If the boundary is smooth, 
there is a thin, laminar layer which prevents particles from 
interacting with the turbulence in the overriding flow. In a 
transitionally rough regime, turbulent eddies can interact with 
the boundary, although viscous forces still exert some con-
trol. Natural turbidity currents typically exhibit transitionally 
rough boundary layers and are above the initiation of suspen-
sion threshold (Fernandes et al., 2020; de Leeuw et al., 2016). 
Shields scaling revealed the bulk experimental turbidity cur-
rent was transitionally rough (Soutter et al. 2021), and above 
the suspension threshold in the channel and on the basin floor, 
and therefore analogous to natural turbidity currents in accor-
dance with the most recent scaling techniques. Such scaling 
methods are developed using flows comprising quartz sand 
and calculated for the bulk flow. As such the behaviour of 
each grain type is more challenging to determine. Garnet is 
denser than quartz and has a greater settling velocity for a 
given grain size (Figure 4), and therefore may have been con-
fined to the basal layers and moved as bedload. Conversely, 
microplastics are less dense than quartz and have lower set-
tling velocities (Figure 4), and therefore probably remain in 
suspension at lower flow velocities.

3  |   RESULTS

3.1  |  Deposit geometry

At the inlet pipe exit, there was an area of erosion as the 
flow met unconsolidated substrate and became relatively 
unconfined. Beyond this area of erosion the flow became 
net-depositional along the channel profile (Figure 3). In the 
channel, the deposit was thickest (4–5 cm) 2 m up-dip of the 
break-of-slope and thinned gradually down-dip to 1–2  cm 
at the break-of-slope (Figure 3). The thickest deposits in the 
channel were in the axis, and deposits thinned towards the 

(1)�
∗ =

U ∗2

(�s∕�f − 1)gD50

(2)Rep =
U ∗ D50

�
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F I G U R E  4   Plot of settling velocity 
against grain size for each sand-grade grain 
type. Key grain size intervals for each grain 
type are marked (D10, D50 and D90), along 
with the D50 and D90 of distal axial sample 
03. Settling velocities were calculated 
according to the method of Ferguson & 
Church (2004), using a flow density of 
1,290 kg/m3
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channel margins which were predominantly eroded by up to 
4 cm (Figures 3 and 5). Outside of the channel, up to 3 cm 
of sediment was deposited on the levees, which generally 
thinned with distance away from the channel.

Beyond the channel, the experiment produced a 460  cm 
long lobate BFD (Figures 3 and 5). Immediately down-dip of 
the channel, the deposit was relatively thin (<3 cm), and gradu-
ally thickened down-dip to a maximum thickness (centroid) of 
6.5 cm, 390 cm from the slope break. The deposit widened from 
80 cm at the base-of-slope, to 200 cm at a distance of 280 cm 
from the slope break. Between distances of 80 and 160  cm 
from the slope break there is a 50 cm wide anomalously thin 
zone (ca 1 cm thinner than the surrounding deposits), similar to 
convex indents described by Spychala et al. (2020), interpreted 
to represent a bypass-dominated area in a channel to BFD tran-
sition zone (Figures 3 and 5). At the centroid, the axis of the 
deposit was >5 cm thick for a width of ca 80 cm. From the axis 
the deposit thinned to <2 cm over a ca 20 cm distance leaving 
thin, laterally extensive margins on a metre-scale. The margins 
of the deposit were dominated by ripples (Figure 5E,F).

3.2  |  Flow velocity measurements

The maximum recorded time-averaged velocity, 1.09 m/s, was 
in the channel at UVP 1 (Figure 3). Flow velocity gradually 
decreased down-dip from the channel mouth to 0.77 m/s at the 
most distal axial probe (UVP 4; Figure 6). Although there was 
a slight increase in flow velocity from UVP 2 at base-of-slope 
(0.95  m/s) to UVP in the anomalously thin zone (1.00  m/s; 
Figure  6). Flow velocity decreased abruptly laterally away 
from the flow axis (UVP 4) to positions off the axis of the flow 
(UVPs 5, 6, 7, 8; Figure 6). Off-axis UVPs 6 and 7 had flow 
velocities of 0.54 and 0.72 m/s, 40 cm to the right and left of the 
flow axis relative to flow direction, respectively (Figure 6). The 
most lateral UVPs, UVPs 5 and 8, had flow velocities of 0.21 
and 0.31 m/s, 80 cm to the right and left of the flow axis relative 
to flow direction, respectively (Figure 6). UVP probes 5–8 were 
aligned straight up-slope, oblique with respect to the oncoming 
flow, therefore the measured velocities from these probes may 
have slightly underestimated true flow velocity.

3.3  |  Grain-type distribution

3.3.1  |  Microplastic fragments

Qualitative observations suggested microplastics were con-
centrated in ripple deposits of the levees and BFD fringes, 
where the lee slopes were enriched in microplastic fragments 
compared to the stoss slopes (Figure 5E,F). The highest and 
lowest recorded weight-percentages of microplastic were 
1.338 wt% at S10 in the lateral BFD fringe, and 0.007 wt% 

at S17 and S31, in the channel axis and CLTZ, respectively 
(Figures 7 and 8); substantially lower than the input of 5 wt%.

The distribution of microplastics was spatially variable in 
the deposit. In the channel and levees the highest microplastic 
concentrations were recorded in levee positions. Channel-axis 
position S26 contained 0.048  wt% microplastic (Figure  7). 
Levee positions S25 and S27, 20 cm lateral to S26, contained 
0.227 and 0.099 wt% of microplastic, respectively (Figure 7). 
Levee positions S24 and S28, 40 cm laterally away from S26, 
contained 0.723 and 0.710 wt%, respectively; an increase of 
1,408% and 1,382% with respect to S26 (Figure 7).

In the BFD, microplastics were most abundant in fringe 
positions, and least common in axial positions (Figures 8 and 
9). For example, BFD axis position S37 contained 0.030 wt% 
microplastic; whereas, BFD off-axis positions S36 and S38 
contained 0.036 and 0.065  wt% microplastic 20  cm to the 
right and left of S37, respectively (Figure 7). In contrast, BFD 
fringe positions S35 and S39 contained 1.185 and 0.393 wt% 
microplastic 40 cm to the right and left of S37, respectively, 
representing increases of a factor of 39 and 12 with respect 
to S37 (Figure 7). No strong trend was identified longitudi-
nally in the BFD axis, with microplastic typically accounting 
for <0.1 wt% of samples (Figure 8). However, microplastic 
abundance almost doubled from 0.088 to 0.172 wt% between 
S03 and the most distal sampled position of S01. Microplastic 

F I G U R E  6   Time-averaged velocity profiles from UVPs 
organised in an inverted 'T' shape. Flow velocity decreases both 
laterally and longitudinally, although is comparatively abrupt laterally 
(e.g. UVP 4 to UVP 7 is 40 cm, UVP 1 to UVP 3 is 160 cm)
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was locally abundant away from the axis of the CLTZ, where 
off-axis samples S20 and S22 contained 0.225 and 0.219 wt% 
microplastic, respectively; in contrast, the comparative axial 
position of S21 contained 0.017 wt% microplastic (Figure 8).

3.4  |  Garnet

Garnet consisted of between 54.7 and 0.1 wt% of samples, 
recorded in the channel axis at S34 and lateral BFD fringe at 
S19, respectively (Figure 10); the original flow composition 
was 5.0 wt% garnet (Figure 11).

Garnet concentration progressively decreased down-dip in 
the channel from 54.7 wt% at the inlet box (S34) to 13.3% just 
before the break-of-slope (S23); a 76% decrease (Figures 8 and 
10). Garnet abundance exhibited abrupt changes across-strike 
from the channel to the levees (Figures 8, 10 and 11). From 
28.0 wt% in the channel axis position of S26, garnet abundance 
decreased to: (a) 7.7 and 2.3 wt% at S27 and S28, decreases 
of 73% and 99%, respectively. And (b) and 3.2 and 2.6 wt% at 
S25 and S24, decreases of 88% and 91%, respectively; on the 
left and right levee with respect to flow direction (Figure 10).

In the BFD the highest recorded garnet concentration, 
10.9 wt% was recorded in the axis of the BFD at S12, im-
mediately down-dip from the CLTZ (Figure 10). Garnet con-
centration was relatively high in proximal axial positions, 
with positions S21, S47, S17, S44, S12 and S37 (proximal to 
distal), all exhibiting garnet concentrations of 7.5–11.0 wt% 
(Figures 10 and 11). Beyond position S37, which had a con-
centration of 9.3  wt%, the garnet concentration decreased 
abruptly (Figures 10 and 11). Position S7, 49 cm down-dip of 
S37 had a garnet concentration of 2.4 wt%; and positions S41, 
S03 and the most-distal sample, S01, had concentrations of 
1.3, 0.7 and 0.2 wt%, respectively (Figure 10).

Strong lateral trends were observed in the BFD. Away from 
the BFD axis the garnet concentration decreased abruptly over 
relatively short distances (Figures  8 and 10). For example, 
the garnet concentration at axial position S17 was 10.3  wt% 
(Figure  10). The garnet concentration of the equivalent off-
axis positions to the left (S18), and right (S16), decreased to 
2.5 and 2.6 wt% over distances of 39 and 36 cm, respectively 
(Figure  10); representing decreases of 79.4% and 74.9%, re-
spectively. The lowest garnet concentrations were recorded in 
the lateral BFD fringes (Figure 9), where the garnet concen-
tration decreased to 0.10 wt%, and 0.14 wt%, at S19 and S15, 
on the left and right lateral fringes of the transect, respectively 
(Figure 10); both decreases of 99% with respect to the BFD 
axis. A similar trend was observed in distal BFD positions, 
albeit with lower axial concentrations. Garnet abundance de-
creased from 2.4 wt% at axial position S07, to 1.1 and 0.9 wt% 
at S08 and S06 in off-axis positions, and 0.2 and 0.3 wt% at S09 
and S05 in lateral fringe positions (Figure 10).

3.5  |  Grain size distribution

Grain size distribution was spatially variable in the flow de-
posit, although the median and mean grain size of all deposits 
was classified as lower fine sand (Figure 12).

3.5.1  |  Median grain size distribution (D50)

The finest median grain size, 130  µm, was recorded in 
the lateral BFD fringe at S19, whereas the coarsest D50, 

F I G U R E  7   Graphs of microplastic particle distribution in the 
deposit, profiles located on Figure 2B. (A) Across strike profile of 
BFD. (B) Across strike profile of the channel fill and levees
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172 µm, was recorded at the most proximal sampled posi-
tion in the channel, S34 (Figure 10). The D50 in the chan-
nel axis decreases down-dip to 142 µm at S23 (Figure 10), 
probably due to the decreasing abundance of the slightly 
coarser-grained garnet with respect to sand. Grain size 
decreased laterally from the channel axis to the channel-
levees (Figures 9 and 12). For example, S26 in the channel 
axis had a D50 of 157 µm, which decreased laterally to 147 
and 149 µm in the levee at S27 and S28, decreases of 7% 
and 5%, respectively (Figure 10).

Down-dip of the channel mouth there was a general down-
dip coarsening in axial BFD positions from 155 µm at S21 
to 170 µm at S41 (an increase of 10%; Figures 10 and 12), 

the coarsest grain size recorded in the BFD. However, this 
coarsening is non-linear throughout the transect. There is a 
fining from 156 µm at S47 to 145 µm at S44, and subsequent 
coarsening to 160 µm at S12 (Figure 10). This coarsening-to-
fining trend corresponds to the anonymously thin zone 40 cm 
down-dip of the channel mouth (Figures 5, 10 and 12). The 
D50 decreases down-dip of S41 to 155 µm at the most distal 
sampled position, S01 (Figures 10 and 12).

Median grain size also varied laterally in the BFD, the D50 
was 140 and 134 µm at S05 and S09, the right and left lat-
eral BFD fringe with respect to flow direction, respectively 
(Figure 10). In contrast, the D50 of the equivalent off-axis 
positions was 162 and 166 µm at S06 and S08, respectively 

F I G U R E  8   Grain-type interpolation 
maps of both raw and normalised values. 
Note different scale bar for each grain 
type. Normalised graphs use a percentile 
classification, with each class comprising 
10% of values
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F I G U R E  9   Cross-plots comparing 
the textural properties and composition of 
sample locations from sub-environments in 
the flow deposit. Coloured polygons were 
qualitatively drawn to illustrate the area 
each sub-environment occupies
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(Figure 10); and 169 µm at axial position S07, 21% and 27% 
coarser than S05 and S09, respectively (Figure 10).

3.5.2  |  90th Percentile grain size distribution 
(D90)

Similar trends were recorded in the D90 of grain size meas-
urements, which ranged from upper fine sand to lower 

medium sand on the Udden-Wentworth scale (Udden, 1914; 
Wentworth, 1922). The coarsest D90, 279 µm was recorded 
in channel at S34, proximal to the inlet pipe (Figure 10). The 
finest D90, 212 µm, was recorded at S15 in the lateral BFD 
fringe (Figure 10).

The D90 decreased down-dip in the channel axis, 
from 279  µm at S34 to 220  µm at S23, a 21% decrease 
(Figures  10 and 12). The D90 decreased laterally from 
241 µm at channel axis position S26, to 228 and 237 µm 

F I G U R E  1 0   Graphs of longitudinal 
and lateral sample grain size and grain-
type distribution in the flow deposit. (A) 
Depositional dip profile from most proximal 
axial sample to the most distal axial sample. 
(B) Across strike profile of the channel fill 
and levees. (C) Across strike profile of the 
proximal BFD deposit. (D) Across strike 
profile of the distal BFD deposit. Profile 
lines are located on Figure 2
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at levee positions S24 and S28, decreases of 5% and 2%, 
respectively (Figures 10 and 12).

Immediately down-dip of the channel mouth at S21 the D90 
was 235 µm, 15 µm coarser than the final channel axis position 
at S23 (220 µm; Figures 10 and 12). The D90 grain size gener-
ally increased down-dip from the channel mouth and CLTZ to 
a maximum of 257 µm at S41 in the distal BFD axis 370 and 
638 cm from the break-in-slope and S34, respectively, and an 
increase of 9% compared to S21 (Figures 10 and 12). There 
is a slight fining from S47 (237 µm) to S17 (234 µm) in the 
CLTZ, superimposed on the overall coarsening trend observed 
in the BFD (Figure 10). The D90 grain size decreased down-
dip of S41, to 253 and 238 µm at S03 and S01, respectively 
(Figures 10 and 12). The D90 decreased laterally from BFD axis 
positions to the BFD fringes, for example the D90 decreased 
from 255.7 µm at S07 in the BFD axis, to 217.1 and 223.1 µm at 
S05 and S09, the right and left lateral fringe, decreases of 15% 
and 13%, respectively (Figures 10 and 12).

3.5.3  |  Mud distribution

Mud, here all grains <63  µm, was most abundant at BFD 
fringe position S19 (12.6% of grains), and least abundant at 
BFD off-axis position S06 (0.4% of grains; Figures 8 and 10).

In the channel and levees mud was most abundant in levee 
positions. For example, channel axis position S26 contained 
2.3% mud (Figures 8 and 10). Mud content increased laterally 
to levee positions S24 and S28 by 206 and 117%, respectively 
(Figures 8 and 10). No strong trends were observed in channel 
axis positions, all samples contained <5% mud (Figure 8).

Mud was more abundant in BFD fringe positions com-
pared to axis or off-axis positions (Figures 8–10). Lobe axis 
position S07 contained 1.1% mud, which increased by 1%, 
and decreased by 61%, at off-axis positions S08 and S06, 
respectively (Figures 8 and 10); mud abundance increased 
to BFD fringe positions S09 and S05 by 881% and 236% 
relative to S07, respectively (Figures  8–10). There was a 
slight ‘cleaning’ of BFD axis and off-axis sands from prox-
imal to distal in the BFD (Figure  8). The most proximal 
BFD positions S20–22 contained more mud (2.2%–4.9%; 
Figure 8), compared to distal positions, for example S36–38 
(1.1%–1.3%; Figure 8). However, the two most-distal axial 
positions showed an increase in mud; S03 contained 0.4% 
mud, which increased to 1.4% at S01 (Figures 8 and 10).

4  |   DISCUSSION

4.1  |  Flow processes

The spatial distribution of grain size and grain type provides 
insights into how flow structure and grain-support mecha-
nisms varied across the depositional system.

F I G U R E  1 1   Comparison of grain-type composition of each 
sampled position and the original flow composition. No sample was 
fully representative of the original flow composition, although axial 
BFD positions were the most representative of the original garnet 
composition
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4.2  |  Channel-levee trends

Channel axis positions were coarser and contained el-
evated garnet concentrations compared to levee positions 
(Figures 9 and 10). Following Rouse (1937), although not-
ing issues with prediction of upper-flow components raised 
in Eggenhuisen et al. (2020), coarser grains were probably 
predominantly concentrated at the base of the flow and 
deposited in the channel axis (Figure 13). Garnet enrich-
ment of up to ca 1,000% compared to the input weight-
percentage in the channel axis suggests the flow was 
initially far above capacity with respect to garnet (Allen, 
1991; Hiscott, 1994); and that bulk scaling approaches pre-
dicting sediment transport in the flow do not capture the 
intricacies of a flow with grains of varying densities. In 
contrast, finer grains were distributed more evenly through-
out the flow (i.e. were therefore more concentrated in the 
upper flow with respect to coarser grains) and were more 
able to overspill the channel on to the levees (Figure 13). 
These observations of coarser channel-fills and finer lev-
ees have been corroborated both experimentally, and from 
both modern and ancient natural systems (Altinakar et al., 
1996; Eggenhuisen et al., 2020; de Leeuw et al., 2018a; 
Hansen et al., 2015; Jobe et al., 2017). Garnet was depos-
ited primarily in the channel axis immediately down-dip 
of the inlet pipe, indicating it was not able to be held in 
suspension by the flow, which was strongly depositional 
(Figures  11 and 13). This probably resulted from flow 
equilibration upon exiting the inlet pipe after becoming 

relatively unconfined (Kneller & Buckee, 2000; Kneller & 
McCaffrey, 2003; Stevenson et al., 2014).

4.3  |  Bypass of coarse grains

From proximal to distal in the BFD axis (i.e. S21–S01), there is 
an increase in grain size and associated decrease in garnet con-
centration (Figure 10). Similar grain size trends were observed 
in the experiments of de Leeuw et al. (2018b). Garnet was prob-
ably predominantly confined to the basal layers (Figure 11) due 
to its higher density and being transported as bedload (Alonso 
et al., 1991). Coarse quartz grains (i.e. D90; Figure 4) have a 
settling velocity (ws) approximately twice that of fine gar-
net grains (i.e. D10; Figure 4). Distal axial samples (e.g. S03) 
have coarser D50 and D90 values than that of the quartz sand 
(Figures 4 and 12) and have low concentrations of other grain 
types, including silt and clay (Figures 8 and 12), suggesting 
that coarse quartz grains preferentially bypassed proximal 
areas. As the flow bypassed coarser quartz grains with high 
ws, but deposited finer garnet with lower ws, it is improbable 
grains were deposited according to ws axially. Therefore, it 
seems improbable the flow was fully turbulent and deposit-
ing according to flow competence in axial positions, and so 
probably had a two-phase structure (i.e. high-density turbid-
ity current; Lowe, 1982). A potential explanation for these ob-
servations is kinetic, or kinematic, sieving in traction carpets, 
which enables finer grains to percolate between coarser-grains 
due to shearing and dilatancy (Cartigny et al., 2013; Middleton 

F I G U R E  1 2   Cubic interpolation of 
grain size distribution in the flow deposit. 
Note different scales on each plot

(% count)
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& Hampton, 1976; Sohn, 1997). This mechanism could allow 
finer grains to percolate downwards and be deposited at the 
base of the flow, whereas coarser grains of quartz were sieved 
to the upper surface of the traction carpets and bypassed further 
into the basin (Figure 13). The periodic collapse and freezing of 
such near-bed layers (Cartigny et al., 2013; Eggenhuisen et al., 
2017; Sumner et al., 2008; Vrolijk & Southard, 1997) suggests 
traction carpets alone may not have transported coarse quartz 
grains from base-of-slope to the distal BFD. The inverse grad-
ing generated by traction carpets could have exposed the coarse 
quartz grains to the overriding flow, where they may have been 
preferentially transported (rolled) further compared to garnet 
due to their smaller pivot angles (Komar, 2007). Repetition of 
these processes could have acted to preferentially deposit finer 
grains (e.g. remnant garnet), whilst coarser quartz was prefer-
entially inhibited from settling and transported downslope.

4.4  |  Lateral variability

Flow deceleration inhibits kinetic sieving due to increased 
settling of grains causing an equal upwards flux of pore water, 

resulting in fine grains moving upwards rather than percolat-
ing downwards (Cartigny et al., 2013; Sumner et al., 2008). 
Deceleration of the flow away from the flow axis probably 
resulted in increased rates of settling and deposition, collaps-
ing any traction carpets present (Figure 13). This resulted in 
deposition of garnet and coarser grains, which could not be 
suspended at low velocities, from the dense basal layer of a 
high-density turbidity current, inhibiting their transport away 
from the axis (Figure 13). The flow axis was narrow, as in-
ferred from the limited lateral distribution of garnet; abrupt 
decreases in off-axis garnet content compared to axial sam-
ples suggest the flow axis had a maximum width of 80 cm 
(Figures 8 and 11). Similarly, the thin channel-to-BFD zone 
at base-of-slope (Figure 5) is interpreted to form due to flow 
relaxation and bypass (Pohl et al., 2019). The width of this 
zone suggests the flow axis had a maximum width of 50 cm. 
The presence of this narrow, high-velocity, flow axis pro-
vides a potential explanation for the erosion of barriers in 
axial positions downstream of the channel mouth in analo-
gous experiments (Soutter et al., 2021). Fringe positions 
are characterised by finer-grain sizes and ripples, indicating 
the flow must have been fully turbulent at these positions 

F I G U R E  1 3   Schematic model of grain-type distribution in the flow, and how spatial variation in grain support mechanism acts to segregate 
grain types in the deposit
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(Figures 5 and 12). Therefore, the flow transformed laterally 
from: (a) a high-density turbidity current with traction car-
pets in the flow axis; (b) a high-density turbidity current with 
strongly depositional basal layer in off-axis positions; (c) a 
low-density turbidity current in fringe positions (Figure 13). 
Parallel laminations probably developed between the flow 
axis and fringe positions (Baas et al., 2004), but were de-
stroyed by liquefaction during sample collection.

4.5  |  Representation of natural 
deposit scales

Submarine lobes and their discrete sub-environments are 
identified based on mapping of stacking patterns and robust 
facies analysis (Prélat et al., 2009). Lobe axis positions are 
characterised by structureless sandstones (i.e. Bouma Ta) 
deposited from high-density turbidity currents with subordi-
nate structured sandstones (Prélat et al., 2009). Lobe off-axis 
positions are characterised by structured (typically planar 
laminated; i.e. Bouma Tb) sandstones, with minor structure-
less sandstones (Prélat et al., 2009). Lateral lobe fringes are 
dominated by structured (typically rippled; i.e. Bouma Tc) 
sandstones deposited from low-density turbidity currents 
(Spychala et al., 2017). The frontal fringes of lobes often, 
but not always, contain hybrid beds (Spychala et al., 2017). 
No flow transformation was observed in this study, so frontal 
fringes are not explicitly discussed.

In the single flow experiment described here, axial BFD’s 
produced from a high-density turbidity current are probably 
most representative of lobe axis positions. Ripple laminated 
deposits of the BFD fringe are most representative of lobe 
fringe deposits. BFD off-axis deposits are probably most rep-
resentative of lobe off-axis deposits as the flow decelerated 
and became more-dilute, representing the transition from 
high-density to low-density turbidity current (Talling et al., 
2012).

4.6  |  Implications for submarine fan 
architecture

Submarine lobe deposits are traditionally considered to thin 
and fine radially away from a locus (channel mouth) due 
to lateral flow spreading and dissipation of energy (Luthi, 
1981). However, recent studies have documented strong 
spatial and architectural heterogeneities in modern and an-
cient lobe deposits (Dodd et al., 2019; Klaucke et al., 2004; 
Spychala et al., 2017; Twichell et al., 1992).

The narrow and strongly directional area of high garnet 
concentrations indicates the flow axis was narrow (<80 cm) 
and aligned with flow direction immediately down-dip of 
the channel (Figure  13). A similar strong axial trend was 

observed by Alexander et al. (2008) who documented rel-
atively coarse-grained axial ridges down-dip of channel 
mouths of physical experiments. These observations from 
individual flows may provide insight into the development 
of finger-like geometries observed in lobes from numerical 
modelling, outcrop and subsurface data (Dodd et al., 2019; 
Groenenberg et al., 2010; Hansen et al., 2019; Klaucke et al., 
2004; Twichell et al., 1992). Distributary channels devel-
oped in lobes, which feed some lobe fingers (Twichell et al., 
1992), may develop due to self-confinement resulting from 
lateral flow relaxation (Pohl et al., 2019). Similarly, lobes 
can show lateral variability in facies and degree of amalga-
mation, forming high-amalgamation-zones, flanked by less-
amalgamated structureless sandstones (Hodgson et al., 2006; 
Johnson et al., 2001; Prélat et al., 2009). At a lobe scale, 
these zones of high-amalgamation may be formed by the 
lateral switching of successive strongly axial flows such as 
observed in this experiment. Alexander et al. (2008) showed 
that slope gradient was a primary control on the development 
of a lateral ridge with flows able to maintain forward momen-
tum upon exiting the channel. Similarly, Pohl et al. (2020a) 
document that the slope gradient is a stronger control on 
sediment bypass and depositional patterns at break-of-slope 
compared to basin floor gradient (see also: Spychala et al., 
2020). Therefore, systems with steeper channel gradients, 
at least immediately up-dip of lobes, may be more probable 
to develop finger-like geometries due to focused axial flow 
components. Lobe deposits are also commonly considered 
to fine both laterally and longitudinally due to the higher 
settling velocities of coarse grains. However, recent studies 
have documented examples of downstream coarsening and 
stepwise fining patterns (Bell et al., 2018a; Pohl et al., 2017; 
Spychala et al., 2021). Strongly axial flows in which coarser 
grains are inhibited from settling compared to finer grains 
due to the effects of drag may provide a mechanism to bypass 
coarse grains distally into the basin (Figure 13).

4.7  |  Autogenic signal shredding in deep-
water systems

Autogenic modulation of signal preservation is compara-
tively well-studied in terrestrial and shallow-marine envi-
ronments compared to submarine fans (Capaldi et al., 2019; 
Covault et al., 2007; Garzanti et al., 2015; Jackson et al., 
2019). Here, a known composition of mixed grain types was 
diluted at the scale of a single turbidity current (Figure 11). 
No sample was fully representative of the original flow com-
position, and the composition of samples varied both later-
ally and longitudinally (Figure  11). Whilst submarine fans 
capture sediment from the full catchment area which can be 
used to interpret bulk signal changes or subsets thereof (Blum 
et al., 2018; Fildani et al., 2018b; Mason et al., 2019; see 



      |  407BELL et al.

also DeGraaff-Surpless et al., 2003), these data suggest any 
such mineralogical signal in a deep-water system is probably 
fractionated in response to spatially variable depositional 
processes. Such effects probably further exacerbate signal 
shredding processes in terrestrial and shallow marine parts of 
the system (Sickmann et al., 2016).

As mineral composition is commonly used to decipher 
provenance, age and palaeoenvironmental signals (i.e. 
changing compositions), understanding how a composi-
tional signal is preserved at the scale of a single flow has 
implications for sampling strategies and interpretation of 
data (Figure 14). Environmental signals are often consid-
ered using numerous events or through time (Romans et al., 
2016). Therefore, the dilution of an individual flow mod-
elled here may not represent a signal sensu stricto. However, 
heavy minerals have been shown to be fractionated by spa-
tial changes in flow processes at the bedform scale (Ibañez-
Mejia et al., 2018); and individual flow deposits of discrete 
depositional processes make up larger scale bodies (Prélat 
et al., 2009). Therefore, the spatial fractionation of grain 
types in sediment gravity flows and their deposits, and how 
these deposits stack, are likely to exert a strong control on 
how environmental signals are preserved and realised in 

deep-water environments. Taking submarine lobes as an 
example, compensational stacking patterns mean that dif-
ferent lobe sub-environments can be stacked in a vertical 
section (Figure 14; Prélat et al., 2009). In limited or 2D ex-
posures where genetically linked sub-environments are not 
exposed this could result in samples being collected from 
different sub-environments in which sediment was depos-
ited from discrete depositional processes (Figure 14). Given 
the strong axial garnet-rich trend described here (Figures 8 
and 11), an autogenic vertical transition from lobe fringe to 
lobe axis (i.e. deposition from low-concentration and high-
concentration turbidity currents, respectively) due to com-
pensational stacking will exhibit a marked increase in heavy 
minerals and may imply a change in signal or provenance 
from mineralogical data (Figure  14). These data demon-
strate that palaeogeographic knowledge and robust facies 
analysis of a system is fundamental to sampling strategies 
and sound interpretation of mineralogical data. Similarly, 
samples from discrete sub-environments can suggest dif-
ferent source terranes from QFL (quartz, feldspar, lithic 
fragments) ternary diagrams (Ragusa & Kindler, 2018), 
and greater concentrations of heavy minerals in channel 
axis positions compared to overbank deposits have been 

F I G U R E  1 4   Schematic depiction of 
how autogenic flow-scale signals could be 
compounded by autogenic compensational 
stacking of successive lobes. (A) Example 
of compensationally stacked lobes in plan 
and cross-sectional views. The limited 
exposure of many ancient systems compared 
to the whole depositional system is also 
illustrated. (B) Schematic log of the position 
in (A). Heavy minerals are probably over-
represented in lobe axis positions with 
respect to both original flow composition, 
and fringe and off-axis positions. Heavy 
minerals in off-axis positions are probably 
under-represented with respect to original 
flow composition and axis positions but 
over-represented with respect to fringe 
positions. Heavy minerals in lobe fringe 
positions are probably under-represented 
with respect to original flow compositions 
and other lobe sub-environments. Data 
points are from samples of equivalent 
positions in the experiment
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observed in modern systems (Andò et al., 2019). Burgess 
et al. (2019) suggested that sediment supply signals are best 
preserved in ‘mid-fan’ areas. Here, the heavy mineral sig-
nal is best preserved in BFD axis positions, although the 
low-density microplastics are poorly represented in these 
positions (Figure 11).

Collecting samples of comparable grain size is some-
times used to minimise these errors (Bateman & Catt, 2007; 
Caja et al., 2010; Garzanti et al., 2009; Ragusa & Kindler, 
2018). However, here sample composition varied markedly 
between samples which were both within the same grain 
size class and closely spaced (Figures 8, 11 and 12). This 
shows that in turbidite deposits the sub-environment of 
deposition, and depositional processes, are strong controls 
on mineral distribution (Figure 13). This reinforces the ne-
cessity of well-constrained stratigraphic frameworks prior 
to sample collection, particularly in systems with narrow 
grain size ranges. In natural systems with wider grain size 
populations of heavy minerals such an effect may be limited 
whereby heavy minerals are deposited with lighter grains of 
similar hydraulic equivalence (Garzanti et al., 2008). Here, 
for example, if added to the flow, silt-sized garnet may have 
been transportable by the flow away from the axis, enabling 
its concentration in the BFD fringes. However, heavy min-
erals can sometimes form narrow grain size classes. For in-
stance, detrital zircons can sometimes form populations of 
discrete grain sizes and ages (Lawrence et al., 2011). These 
zircons can then be hydrodynamically fractionated during 
sediment transport according to their grain size (Lawrence 
et al., 2011). These experiments suggest zircons probably 
show a strong axial trend in sediment gravity flow deposits, 
and that coarser zircon populations are probably distributed 
in axial, and distal axial positions, and depleted in off-axis 
and marginal positions (Figure 14).

4.8  |  Insights into microplastic deposition in 
deep-water systems

Microplastics are ubiquitous on the sea floor (Harris, 2020; 
Kane et al., 2020; Martin et al., 2017; Sanchez-Vidal et al., 
2018; Thompson et al., 2004; Woodall et al., 2014). However, 
the processes transporting them to the deep oceans, and how 
they are spatially distributed are poorly understood (see Kane 
& Clare, 2019). Similarly, the diverse range of sea floor envi-
ronments are sparsely sampled for microplastics (see discus-
sion in Kane & Clare, 2019).

4.9  |  Distribution and potential implications

Here a deep-water depositional system consisting of a 
channel, levees and a BFD were physically modelled in 

three dimensions. The highest microplastic fragment con-
centrations were recorded in levees and BFD fringe posi-
tions, whilst channel axis and BFD axis deposits contained 
the lowest concentrations (Figure  15). Lobe fringe posi-
tions contained the highest recorded microplastic fragment 
concentrations (Figure 15). Lobe fringe environments are 
typically areas with high biodiversity of burrowing or-
ganisms (Crimes, 1977; Heard & Pickering, 2008; Tunis 
& Uchman, 1996; Uchman et al., 2004). Consequently, 
microplastic fragments in these environments are prob-
ably readily entrained into the marine organism food chain 
(Courtene-Jones et al., 2017; Graham & Thompson, 2009; 
Näkki et al., 2017).

Given their comparable low densities some authors have 
suggested microplastic fragments accumulate in similar envi-
ronments to particulate organic carbon (POC) (Haave et al., 
2019; Maes et al., 2018; Vianello et al., 2013), although other 
studies note no correlation between the two (Courtene-Jones 
et al., 2020; Ling et al., 2017; Ronda et al., 2019). However, 
none of these studies document this relationship in sediment 
gravity flow deposits. Organic matter measured in natural 
sediment gravity flow deposits is often concentrated in struc-
tured (i.e. laminated or rippled) very-fine to fine sands and 
sandstones (Hage et al., 2020; Saller et al., 2006), typically 
deposited in lobe off-axis and fringe environments (Bell, 
et al., 2018b; Grundvåg et al., 2014; Mutti, 1977; Prélat et al., 
2009). This relationship can also be inferred from elevated 
bioturbation in these environments (Heard & Pickering, 
2008), suggesting an abundance of food (i.e. POC). Here, 
microplastic fragment concentrations were elevated in BFD 
fringe positions, suggesting POC and microplastic fragments 
may occupy similar depositional environments in submarine 
fans where high levels of bioturbation resulting from abun-
dant POC, and availability of microplastic, may promote up-
take to the food web.

Strong variability in microplastic fragment concentration 
was recorded in the BFD fringe; S10 and S19 contained 1.34 
and 0.01 wt%, respectively (Figure 7). Qualitative observa-
tions of current ripples suggest that microplastics are strongly 
partitioned into the lee slopes of ripples and are relatively 
depleted on stoss sides (Figure  15). This suggests micro-
plastic fragments were more-easily mobilized on the stoss 
slopes, and cascaded down the lee slope, or were readily 
incorporated into the zone of flow separation downflow of 
the ripple (Figure 15). As such, fringe samples with elevated 
microplastic concentrations may contain more lee-slope de-
posits, whereas microplastic-poor fringe samples may have 
predominantly sampled from stoss-slope deposits. While this 
relationship is not quantified here, this observation of highly 
localised microplastic segregation in bedforms may explain 
variability in microplastic concentrations recorded in the 
BFD fringe (e.g. Figure 7) and warrants future research into 
the behaviour of microplastics during bedform development.
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4.10  |  The case of the missing microplastic

The flow contained a known input of 5.00 wt% microplastic 
fragments (Figure 11). In contrast, the highest recorded mi-
croplastic particle concentration was 1.34 wt% in the BFD 
fringe (Figures 8, 10 and 11), and most other sampled po-
sitions contained one to two orders of magnitude less mi-
croplastic (Figure  9). This suggests the sandy deposits of 
sediment gravity flows are not the major sink of microplastic 
fragments in the deep oceans (Figure 15). The question then 
becomes: Where was the microplastic stored? Three probable 
explanations are proposed: First, microplastics were held in 
suspension and bypassed the sand-prone parts of the BFD to 
the siltstone-prone fringe (Figure 15) (sensu Spychala et al. 
2020). Spychala et al. (2020) document a siltstone-prone 

fringe which extends at least 270% further than the sand-prone 
part of the deposit in similar experimental sediment gravity 
flow deposits; Boulesteix et al. (2020) show siltstone-prone 
parts of lobes extending at least 18.5 km beyond the sand pin-
chout; and Stow et al. (1990) recognised finer-grained turbid-
ites in the Bengal Fan which had travelled at least 2,500 km. 
If microplastics do bypass the sand-prone parts of lobes en-
masse these examples suggest they are probably deposited 
over vast areas of the sea floor adjacent to continental mar-
gins, where they may also be reworked and re-concentrated 
by bottom currents (Kane et al., 2020). The second potential 
explanation for the observed microplastic distribution is that 
microplastic fragments are strongly partitioned into the tail 
of the flows and are therefore deposited in finer-grained tur-
bidite caps associated with each bed (Figure  15). This cap 

F I G U R E  1 5   Potential implications of observed microplastic fragment distribution. (A) Predictive model of microplastic fragment distribution 
in deep-water sands. Axis and off-axis positions are strongly depleted in microplastic fragments which bypass to lobe fringe positions. However, 
even the sandy deposits in fringe positions are depleted compared to original flow composition. This suggests that microplastic fragments are likely 
probably strongly fractionated into mudstone caps (i.e. Bouma, 1962 Te division), or bypass to the siltstone fringe, sensu Spychala et al. (2020), and 
are spread over vast expanses of the sea floor. As mudstone caps were not studied, this unknown is represented by question marks. Not to scale. 
(B) Top: Photograph of microplastics in ripple deposits and schematic model showing microplastic particle behaviour and concentration in ripple 
bedform development. Note localised microplastic abundance, and comparative absence, on the lee and stoss slopes of ripples, respectively
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was not sampled in this study, and the flume tank was en-
closed preventing the flow from achieving its natural runout 
distance, as such these first two models cannot be differen-
tiated. In which case the upper divisions of turbidite beds 
would be most enriched in microplastics. Therefore, studies 
taking only surface samples of the sea floor may predict el-
evated microplastic fluxes compared to the full bed and flow. 
And thirdly, that microplastic particles are strongly fraction-
ated into the lee slopes of ripples, which were not explicitly 
sampled in this study. However, the concentrations probably 
required mean this mechanism is not inferred to have been a 
primary sink in the experiment.

5  |   CONCLUSIONS

The sandy deposit of an experimental sediment gravity flow 
containing a sediment load of quartz sand (2.65 g/cm3), silt 
(2.65 g/cm3), kaolinite (2.60 g/cm3), garnet (3.90 g/cm3) and 
microplastic fragments (1.50 g/cm3) was sampled to investi-
gate spatial trends in texture and composition. Grain size and 
grain-type analysis of spatially constrained samples tied to 
specific depositional environments reveal that: 

1.	 The BFD showed a strongly axial concentration of garnet 
which decreased gradually downstream, whilst sample 
grain size increased, suggesting grains were not deposited 
according to their settling velocity. This is interpreted as 
the flow having a narrow high-velocity core in which 
remnant finer grains of garnet were trapped and settled 
at the bases of traction carpets. In contrast, coarser quartz 
grains may have been sieved to the upper surface traction 
carpets, enabling their transport farther into the basin.

2.	 The observed strongly axial deposit challenges traditional 
models of the radial spreading of gravity flows on smooth 
open slopes, with deposits thinning and fining away from 
an apex. The findings provide insight into the linear direc-
tionality observed in natural systems, such as finger-like 
geometries and isolated amalgamated zones.

3.	 A known input composition of mixed grain types was au-
togenically diluted by spatially variable depositional pro-
cesses. No sample was fully representative of the original 
flow composition, and the composition of samples varied 
both laterally and longitudinally. These results predict a 
strong axial trend in heavy mineral composition in depos-
its of unconfined turbidity currents with dense basal lay-
ers. Autogenic (compensational) stacking of successive 
submarine lobes consisting of axial followed by fringe 
facies could therefore show substantially different com-
positions and counts in heavy minerals; translating com-
position dilution at the scale of a flow to signal dilution 
at the scale of a lobe or lobe complex. These data demon-
strate that palaeogeographic knowledge of a system may 

be fundamental to sampling strategies and sound interpre-
tation of mineralogical data from submarine fans.

4.	 Sample composition varied strongly between samples 
which were both within the same grain size class and 
closely spaced, indicating depositional processes act to 
segregate grain types even over relatively short distances. 
This advocates for caution when employing grain size-
based sampling methods, particularly in systems with nar-
row grain size ranges as competence-controlled deposits 
(i.e. planar or ripple laminated) probably host substan-
tially lower concentrations of heavy minerals compared to 
capacity limited deposits (e.g. structureless sandstones).

5.	 Microplastic fragments were most concentrated in the 
levees of the channel and the fringes of the BFD. These 
environments are typically amongst the most bioturbated 
environments of submarine fans, potentially enabling 
ready entrainment of microplastics into the food web.

6.	 All samples were depleted in microplastic (maximum 
of 1.34  wt%) with respect to original flow composition 
(5.00 wt%) suggesting that microplastic fragments are liable to 
either bypass the sandy parts of submarine fans and be spread 
over vast areas or are concentrated in the mud caps of flow 
deposits, and therefore prone to consumption by benthic biota.
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