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Abstract
Spatial autoregressive models typically rely on the assumption that the spatial
dependence structure is known in advance and is represented by a deterministic
spatial weights matrix, although it is unknown in most empirical applications.
Thus, we investigate the estimation of sparse spatial dependence structures
for regular lattice data. In particular, an adaptive least absolute shrinkage and
selection operator (lasso) is used to select and estimate the individual nonzero
connections of the spatial weights matrix. To recover the spatial dependence
structure, we propose cross-sectional resampling, assuming that the random
process is exchangeable. The estimation procedure is based on a two-step
approach to circumvent simultaneity issues that typically arise from endogenous
spatial autoregressive dependencies. The two-step adaptive lasso approach with
cross-sectional resampling is verified using Monte Carlo simulations. Eventu-
ally, we apply the procedure to model nitrogen dioxide (NO2) concentrations
and show that estimating the spatial dependence structure contrary to using
prespecified weights matrices improves the prediction accuracy considerably.
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1 INTRODUCTION

Modeling dependencies in spatial or spatio-temporal data theoretically requires accounting for n2 − n potential interac-
tions between the n spatial units of a sample, which raises two important challenges. First, the number of unknown
connections grows quadratically with the sample size, which can become computationally demanding especially in the
context of big data. Second, the identification suffers from an incidental parameter problem because the number of
unknown parameters exceeds the sample size n.

In geostatistics, it is therefore typically assumed that the spatial dependence can be described by a spatial covariance
function, which is independent of the spatial location. This covariance function usually depends on additional parameters
but in a much lower dimension than the number of observations. Several choices of this covariance function and its esti-
mation have been discussed for both stationary (e.g., Cressie & Huang, 1999; Gneiting, 2002; Ma, 2003) and nonstationary
spatial dependence (e.g., Nott & Dunsmuir, 2002; Nychka et al., 2002; Paciorek & Schervish, 2006; Risser & Calder, 2015;
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Sampson & Guttorp, 1992). Under certain assumptions (e.g., as long as the misspecified covariance function is compati-
ble with the true covariance function), the asympotic kriging performance is not affected if the covariance is misspecified
or estimated (e.g., Putter & Young, 2001; Stein, 1988). Nevertheless, the true underlying spatial dependence is typically
unknown (e.g., Reich & Fuentes, 2012). Moreover, modeling spatial data with Gaussian Markov random fields assum-
ing a certain covariance function is computationally demanding, especially in the case of large data sets (e.g., Simpson
et al., 2012).

Similarly, in spatial econometrics, the spatial dependence is described by the multiple of an unknown scalar and a
prespecified weighing matrix to reduce dimensionality. The focus of this article is on the latter case and spatial autore-
gressive models in particular. For these classical econometric approaches, the unknown scalar parameter reflects the
strength of the spatial dependence. The prespecified spatial weights matrix is often based on distance measures between
the individual locations, which involves geographic proximity (cf., Anselin, 1988; Cliff & Ord, 1973; Ertur & Koch, 2007)
or other types of adjacency, such as social (see, e.g., Cohen & Tita, 1999) or economic (see, e.g., Besner, 2002; Bodson
& Peeters, 1975) characteristics. The most common specifications involve q-nearest neighbors, binary contiguity, and
inverse distance matrices. Alternatively, geographically weighted regression models can capture spatial dependence by
coefficients that are allowed to vary across space assuming a certain weight structure (cf., Fotheringham et al., 1997;
Harris et al., 2010; Leung et al., 2000). Geniaux and Martinetti (2018) combined both approaches, that is, geographically
weighted regression and spatial autoregressive models. Of course, the results of such models are only valid if the weights
matrix has been correctly specified. However, in most applications the true underlying dependence structure is unknown
(see also Gibbons & Overman, 2012). Hence, a priori selections of the spatial weights matrix have raised considerable
criticism, especially because different weighting matrices can lead to very different and, therefore, contradicting estima-
tion results (cf., Mizruchi & Neuman, 2008; Smith, 2009). In particular, the results must be interpreted conditioned on
the assumed weighting scheme (cf., Debarsy et al., 2012).

Consequently, a variety of alternative approaches have been suggested that involve parametric or semi-parametric
estimation procedures (see, e.g., Pinkse et al., 2002) or matrix selection from a set of candidate schemes based on
goodness-of-fit criteria, such as maximized log-likelihood values (cf., Stakhovych & Bijmolt, 2009). Alternatively, Bhat-
tacharjee and Jensen-Butler (2013) proposed estimating the weights from an estimated spatial autocovariance matrix.
This approach uses panel data under the constraint of symmetry and a finite sample size of n. Hence, the number of
unknown spatial connections or weights is reduced by half. In addition to symmetry, other identifying assumptions have
been proposed to estimate the individual spatial weights. Basak et al. (2018) suggested estimating a triangular spatial
weighting matrix from the covariance matrix under the assumption of causal ordering in acyclic networks. Moreover, the
least absolute shrinkage and selection operator (lasso) originally suggested by Tibshirani (1996) has been used to estimate
sparse spatial weighting matrices. Ahrens and Bhattacharjee (2015) suggested identifying an approximately sparse spa-
tial weights matrix using a two-stage lasso estimation procedure. Lam and Souza (2019) proposed estimating the spatial
weights matrix from a linear combination of different specifications adjusted using a potentially sparse matrix. More-
over, Otto and Steinert (2018) discussed an adaptive lasso procedure to estimate the spatial dependence and an unknown
number of possible structural breaks simultaneously. Wheeler (2009) introduced a lasso estimation procedure for variable
selection in geographically weighted regression models. In the geostatistical context, Krock et al. (2020) proposed to apply
a graphical lasso approach instead of implying a certain dependence structure by a suitable covariance function. This is
particularly useful for nonstationary spatial data when independent observations of the same spatial field are present.
Recently, this approach has been extended to multivariate data (cf., Krock et al., 2021).

However, most of these approaches have in common that they require spatio-temporal data, where the spatial depen-
dence is not varying over time, or repeated (independent) measurements of the spatial field. To the best of our knowledge,
little attention has been paid to purely spatial models where the number of spatial links exceeds the sample size and where
no dependence structure must be assumed in advance. Zhu et al. (2010) proposed penalized maximum likelihood (ML)
estimators to select covariates and a neighborhood structure for lattice data in the context of conditional and simultaneous
spatial error models. More precisely, the unknown spatial weights matrix is represented by a linear combination of indi-
vidual matrices reflecting the neighborhood sets of different orders. Bhattacharjee et al. (2012) proposed estimating the
spatial weighting matrix in hedonic pricing models under the structural assumption of symmetry. Merk and Otto (2021)
investigated the estimation of a triangular spatial weighting matrix in the context of directional spatial autoregressive
dependencies.

Contrary to these approaches, we suggest estimating all relevant spatial connections for purely spatial regular lattice
data based on cross-sectional resampling. Thus, instead of estimating the spatial dependence structure over an entire
(possibly high-dimensional) dataset, smaller exchangeable subsamples or blocks are repeatedly drawn from the spatial
field to estimate the spatial dependence. The spatial weights and regressors are selected and estimated by the adaptive
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lasso approach proposed by Zou (2006) as an extension of the original lasso that enables individual shrinking. To avoid
endogeneity issues arising due to the dependent variable simultaneously serving as an explanatory variable, we propose
a two-step approach incorporating instrumental variables (IVs) in the first step.

The rest of this article is organized as follows. Section 2 describes the theoretical framework, including the spa-
tial autoregressive regression model, regularity assumptions, and the two-step adaptive lasso estimation procedure. The
results obtained from the Monte Carlo simulations on the performance of the spatial weights estimates are reported in
Section 3. Furthermore, we apply the two-step adaptive lasso approach to model nitrogen dioxide (NO2) concentrations.
Finally, the last section presents the conclusion.

2 THEORETICAL MODEL

Let {Y (s) ∶ s ∈ D} be a univariate spatial stochastic process at known locations s in the set D, which is a subset of
the d-dimensional real numbers Rd, where s may vary discretely or continuously over D. Spatial data can be generally
classified into three categories, namely, spatial point patterns, geostatistical (or continuous) processes, and lattice data
(Cressie, 1993). For the latter case, the process is observed on regular or irregular grids in the two-dimensional space. In
this article, the focus is on regular lattices that cover all kinds of images, like remotely sensed or microscopic imagery.
Hence, D is a subset of Z2 and the individual locations {s1, … , sn} represent a discrete collection of n equally sized and
shaped grid cells. Due to the natural ordering and predictable relative placement, regular lattice data are an obvious
choice for modeling neighborhood relations or dependence structures. Typical specifications of this spatial dependence
structure involve a fixed number q of nearest neighbors, like the four first-order neighbors to the north, south, east, and
west. However, the true underlying structure of the data-generating process is usually unknown (cf., Gibbons & Over-
man, 2012). In particular, there are up to n2 − n potential connections between the n locations of a sample. We consider
these links as unknown parameters along with the degree of dependence at each true link.

While the spatial autoregressive dependencies between the individual responses denoted by the vector Y =
(Y (si))i=1,… ,n are commonly characterized by prespecified spatial weighting matrices, we explicitly assume that W =
(wij)i,j=1,… ,n is unknown. In other words, the ith row of W reflects how the corresponding observation on the dependent
variable Y (si) is influenced by observations in all other regions. For example, wij > 0 indicates that Y (si) depends posi-
tively on Y (sj), while wij = 0 corresponds to the (conditionally) independent case. Thus, the model equation of a spatially
autoregressive response variable can be specified as

Y = WY + X𝜷 + 𝝐, (1)

or as the reduced form

Y = (I − W)−1(X𝜷 + 𝝐), (2)

where X is an n × k matrix comprising k explanatory variables, I is the identity matrix of dimension n, and 𝝐 is an
n-dimensional vector of independently and identically distributed residuals with zero mean and positive finite variance
𝜎2. Moreover, let y = (y(si))i=1,… ,n be the observed vector of Y. In contrast to classical models, we do not incorporate a
spatial autoregressive coefficient 𝜌 because W and 𝜌 are not separately identified if the spatial weights matrix is unknown
(Bhattacharjee & Jensen-Butler, 2013; Gibbons & Overman, 2012). In the following sections, we will explain the estima-
tion method in detail. To give the reader a structured overview of this multi-step approach, the entire procedure is shown
schematically in Figure 1.

2.1 Cross-sectional resampling

In contrast to spatio-temporal data, where the spatial dependence structure may be recovered by repeated observations
over time, we propose using cross-sectional resampling for purely spatial processes. That is, we randomly draw r locations
s∗1 , … , s∗r without replacement and identify the respective m nearest locations for each sampled location. Hence, there
are r sampled blocks of size m + 1 consisting of s∗ and its m nearest locations. Let Ỹ denote the corresponding vector of
sampled responses (Y (s∗1), … ,Y (s∗r ))

′. To estimate the spatial weights from this sample, we assume that the data have
the following two properties.
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Full data set Y(s1), ..., Y(sn)

Set of r observations Y(s∗1), ..., Y(s∗r)

Set of r observations Y(s∗1), ..., Y(s∗r)

with their respective m nearest co-
variates as instrumental variables

Adaptive lasso for IV regression of the m
nearest loactions (for a sequence of λ1)

with their IV-predicted neighbours

Adaptive lasso to estimate the spatial dependence
w between Y(s∗1) and its m nearest locations and
the regression coefficients β (for a sequence of λ2)

The non-zero weights in (w1, ..., wm)�
reflect the spatial dependence be-

tween Y(si) and its q true neighbours 

Reconstruct the weight matrix W from w anw d re-
estimate the final model with W to obtain the estimates

and standard errors of the regression coefficients β

(see Figure 2)

(see Section 2.2.1)

(see Figure 3)

(see Section 2.2.2)

cross-sectional resampling of r locations

optimal penalty parameter λ∗

1 = arg min AICc (λ1)

optimal penalty parameter λ∗

2= arg min AICc (λ2)

optional step

{X(s∗i ),...,X(s∗i )  :  i = 1,...,r}(1) (m)

(1) (m){Y(s∗i ),...,Y(s∗i )  :  i = 1,...,r}˘ ˘

ˆˆ

ˆ ˆ
ˆ

ˆ

F I G U R E 1 Schematic representation of the estimation procedure. The example data set on the right-hand side is taken from Table 4

First, the set of the q true (but unknown) links of the ith location N∗
i is a subset of the m nearest locations of si, which is

denoted by Ni. Accordingly, not all locations in Ni actually have an impact on si, but only the q true links, which constitute
the nonzero elements in the spatial weights matrix W. Hence, the proportion of zero entries in W is always greater than
mn∕(n2 − n). This assumption implicitly draws on Tobler’s first law of geography (Tobler, 1970) that nearby observations
are more alike than distant ones.

Second, the conditional distributions of the response variables given the observations of their m nearest locations,
that is, fY (si)|{Y (s(j)i )∶j=1,… ,m} with s(j)i being the jth nearest location of si, is the same for all locations. This implies



MERK and OTTO 5 of 18

that the spatial dependence structure is constant across space and the process is exchangeable across these blocks.
Note that this assumption is not restrictive because it is assumed for each stationary geostatistical process or spatial
econometric models with uniform weighting structures. Of course, the conditional distribution varies for the locations
along the edges of the random field, where the m nearest locations are not completely identified. In consequence,
these bordering locations are not sampled but they may be considered as part of the neighborhood subsets of other
locations.

For illustration, consider the following example depicted in Figure 2 with n = 10 × 10 locations and two randomly
sampled locations. For both of these locations, the q = 3 neighbors to the north, north-east, and east are contained in the
respective m = 8 nearest locations. The observed dependence is the same for all locations, except for the ones along the
border.

As a consequence of the above assumptions, the spatial weighting matrix is composed of a unique parameter vector
w = (w1, … ,wm)′ that appears in each row of W (except for the bordering locations) reflecting how each location is
affected by its m nearest locations. The choice of m thereby determines the number of potential neighbors considered or
equivalently, sets a distance-cutoff after which the spatial dependence is supposed to be zero. Large values of m ensure
that all true neighbors are covered and simultaneously induce sparsity of the spatial weights vector w. More precisely,
the set of potential neighbors can be chosen permissively large (beyond the expected distance-cutoff) due to the lasso’s

10987654321

1

2

3

4

5
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8
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Locations that are not used for resampling
s

∗1 N
∗1 = (s(1)

∗1 , . . . ,s(8)
∗1 ) True links N ∗

∗1

s
∗2 N

∗2 = (s(1)
∗2 , . . . ,s(8)

∗2 ) True links N ∗

∗1

F I G U R E 2 Cross-sectional resampling (first step). Two sample locations s∗1
and s∗2

are highlighted in orange and blue, respectively,
including their eight nearest locations representing the sets Ni. The true links, N∗

i , are drawn by arrows. The setting has an anisotropic
dependence from the north-east
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property to select the true model from a large set of potential covariates, which is explained in more detail in the following
sections.

2.2 Two-step lasso estimator

Classical least squares estimators are inconsistent in the context of endogenous spatial dependencies. Consistent proce-
dures, such as the ML approach (cf., Anselin, 1988; Lee, 2004; Ord, 1975) or generalized method of moments (cf., Kelejian
& Prucha, 1999), circumvent simultaneity issues arising due to interdependence among neighboring locations. Alterna-
tively, Kelejian and Prucha (1998) proposed a two-stage least squares estimation procedure, which is computationally less
demanding than the ML approach. More precisely, the right-hand side endogenous variables are replaced by predictions
of the response variable obtained by an IV regression. In addition, Ahrens and Bhattacharjee (2015) adapted a two-step
estimation procedure for spatio-temporal data to estimate spatial weights, where the number of instruments can be larger
than the sample size, assuming approximate sparsity.

Our estimation procedure is based on a two-step adaptive lasso approach that allows recovering the spatial dependence
structure. The first step involves finding suitable instruments to predict the endogenous spatially lagged variables. In the
second step, the response variables are replaced with their predicted values to circumvent simultaneity issues arising from
simultaneous spatial autoregressive dependencies, and all parameters of the full model are estimated. Below, we will be
more specific about these two steps.

2.2.1 First step: IV regression

In the first step, we estimate Ỹ using l instruments by a linear model, that is,

Ỹ = Z̃𝜽 + 𝝂, (3)

where Z̃ is the corresponding r × l matrix of instruments associated with the r sampled locations, and 𝜽 is the correspond-
ing l-dimensional vector of coefficients with l ≥ 1. Moreover, 𝝂 denotes the r-dimensional vector of the IV random errors.
The fitted values of this regression are used to instrument the spatially lagged variables (i.e., the m nearest locations) in
the second step.

Of course, the instruments must fulfill certain requirements. It is assumed that the instruments are independent of
the regression residuals but correlated with the response variable or endogenous variables in general.

In contrast to the proposal by Kelejian and Prucha (1998) that the instruments should be composed of exogenous
regressors X and first and higher-order spatial lags (WX,W2X, …) using prespecified spatial weights, the spatial weights
matrix is unknown in our case. For that reason, we take all exogenous regressors at the sampled locations and at their m

nearest locations as IVs. Consequently, there are l = k + mk instruments with m ≪ n. In particular, Z̃ = (X̃,
≈
X), where X̃ =

(X(s∗1), … ,X(s∗r))′ corresponds to exogenous variables observed at the sampled locations and
≈
X comprises the exogenous

variables at the m nearest locations, that is,

≈
X =

⎛⎜⎜⎜⎝
X(s(1)∗1

) … X(s(m)
∗1

)
⋮ ⋱ ⋮

X(s(1)∗r
) … X(s(m)

∗r
)

⎞⎟⎟⎟⎠ (4)

with X(s(1)∗ ), … ,X(s(m)
∗ ) being the exogenous variables at the m nearest locations of s∗. For simplicity, we assume that the

size of the subset of potential neighbors m is the same in the first and second step.
Finally, the first-step adaptive lasso estimator is given by

�̂� = arg min
𝜽

‖‖Ỹ − Z̃𝜽‖‖2
2 + 𝜆1 ‖𝝍1◦𝜽‖1 . (5)

The objective function consists of two parts, where the first term minimizes the residual sum of squares between
observations on the response variables and corresponding instruments. The second term imposes a penalty on the
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absolute size of the coefficients, where 𝜆1 denotes the tuning parameter and𝝍1 corresponds to the adaptive weights. Both
𝜆1 and 𝝍1 are described in more detail in the following subsection.

Equivalent to the choice of the m nearest locations, the set of instruments can be permissively large, since the adaptive
lasso approach is selection consistent and shrinks irrelevant parameters toward zero (see Zou, 2006). This motivates the
application of the lasso estimation in the first step.

Using this model, we can predict the vector Y (except for the locations at the edges of the random field). Eventually,
these predicted values denoted by Y̆ (si) are used to instrument the spatially lagged variables in the second step to avoid
endogeneity.

2.2.2 Second step: Full model

Let Y̆ denote the r × m matrix of predicted values obtained from the first-step estimation. That is,

Y̆ =
⎛⎜⎜⎜⎝
Y̆ (s(1)∗1

) … Y̆ (s(m)
∗1

)
⋮ ⋱ ⋮

Y̆ (s(1)∗r
) … Y̆ (s(m)

∗r
)

⎞⎟⎟⎟⎠ (6)

with Y̆ (s(1)∗ ), … , Y̆ (s(m)
∗ ) being the IV-predictions of the response variable at the m nearest locations of s∗.

In the second step, we estimate the full model given by (1) but replacing the endogenous variable on the right-hand
side with Y̆. To be precise, the second-step adaptive lasso estimator is given by

(�̂�, ŵ)′ = arg min
(𝜷,w)′

‖‖‖Ỹ − X̃𝜷 − Y̆w‖‖‖2

2
+ 𝜆2

(‖‖‖𝝍2,𝛽◦𝜷
‖‖‖1

+ ‖‖𝝍2,w◦w‖‖1

)
,

s.t. w ≥ 0 and ‖w‖1 < 1, (7)

where the first term minimizes the residual sum of squares between observations on the response variable and exogenous
variables, which consist of explanatory variables X̃ and first-step predictions of the endogenous variable Y̆.

The constraint ‖w‖1 < 1 ensures that ||Ŵ||∞ < 1 and, thus, (I − W) is invertible and the model is well-defined
and stationary. The locations are only sampled from the center (excluding the edges of the random field), such
that all entries of Y̆ are known. The blocks or sets of the m nearest locations of the sampled locations can poten-
tially overlap. Biscio and Waagepetersen (2019) showed the consistency of subsampling-based statistics having an
additive structure if the number of blocks is going to infinity regardless of whether the blocks are overlapping or
disjointed.

In Figure 3, we illustrate the locations and values that are used in the second step (i.e., the observation Y (s∗i) and the
IV-predicted values Y̆ (s(1)∗i

), … , Y̆ (s(m)
∗i

) for i ∈ {1, 2} sample locations).
The second term of the first and second-step estimation corresponds to the lasso penalty term that penalizes the abso-

lute size of the coefficients in 𝜽 and (𝜷,w)′, respectively. The nonnegative regularization or tuning parameters 𝜆1 and 𝜆2
are obtained based on information criteria. In particular, we focus on the corrected Akaike information criterion (AICc)
suggested by Ninomiya and Kawano (2016) for lasso regression. However, because the large and small elements in the
regression coefficients are equally driven to zero, the regular lasso yields excessively penalized large coefficients. Thus,
the 𝓁1 penalty additionally consists of individual weights such that the regression coefficients may be penalized individ-
ually (cf., Zou, 2006). The weights of the first and second steps are given by the l-dimensional vector 𝝍1 = 1∕|�̂�0|, the
l-dimensional vector 𝝍2,𝛽 = 1∕|�̂�0| and the m-dimensional vector 𝝍2,w = 1∕|ŵ0|. The individual vectors �̂�0, �̂�0, and ŵ0
represent prior parameter estimates that are obtained by a ridge regression. The ridge regression exploits the proposed
two-step estimation procedure in order to avoid endogeneity issues due to the simultaneity. Hence, the sampled obser-
vations are regressed on their respective spatially lagged exogenous variables in the first step and on predictions of the
spatially lagged dependent variables in the second step, respectively.

Finally, recall that m (i.e., the number of potential links) can be chosen much larger than q (i.e., the number of true
links), because the adaptive lasso shrinks irrelevant links to zero. It just has to be ensured that there are sufficiently many
observations in the center, because increasing values of m lead to broader regions at the borders of the spatial field that
have to be left out.
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Y ( s ∗ 1 )

Y̆ ( s (1)
∗ 1

) Y̆ ( s (2)
∗ 1

) Y̆ ( s (3)
∗ 1

)

Y̆ ( s (4)
∗ 1

) Y̆ ( s (5)
∗ 1

)

Y̆ ( s (6)
∗ 1

) Y̆ ( s (7)
∗ 1

)
Y̆ ( s (8)

∗ 1
)

Y ( s ∗ 2 )

Y̆ ( s (1)
∗ 2

)
Y̆ ( s (2)

∗ 2
) Y̆ ( s (3)

∗ 2
)

Y̆ ( s (4)
∗ 2

) Y̆ ( s (5)
∗ 2

)

Y̆ ( s (6)
∗ 2

) Y̆ ( s (7)
∗ 2

) Y̆ ( s (8)
∗ 2

)
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Locations that are not used for resampling in the second step
Locations for whichY̆ (s) can be predicted in the first step

s
∗1 N

∗1 = ( s(1)
∗1 , . . . ,s(8)

∗1 )
s

∗2 N
∗2 = ( s(1)

∗2 , . . . ,s(8)
∗2 )

F I G U R E 3 Cross-sectional resampling (second step). Two sample locations s∗1
and s∗2

are highlighted in orange and blue, respectively,
including their eight nearest locations representing the sets Ni. The locations for which Y̆ (s) could be predicted by the instrumental variables
in the first step coincide with all locations that are used for resampling in the first step (Figure 2)

Moreover, it is important to mention that the computational complexity does not depend on the sample size n but on
the number of sampled locations r. Thus, it is potentially scalable and useful for big geospatial data (if r is chosen smaller
than n).

3 SIMULATION STUDY

In the following subsections, we analyze whether the spatial dependence structure can be recovered using the aforemen-
tioned procedure. More precisely, we critically examine the performance of the estimators with respect to (a) the number
of cross-sectional resampling replications r, (b) the number of potential neighbors m, and (c) the number of the true links
q, where the ratio of true to potential neighbors reflects the extent of the sparsity of the spatial weights vector. Moreover, we
analyze the performance of the approach for two distinct types of spatial dependence, namely, isotropic and anisotropic
processes.

3.1 Considered settings

For both specifications of the spatial dependence, we consider a 30 × 30 regular lattice with n = 900 grid cells. Regarding
the spatial structure of the locations, two different weighting schemes are employed. The first specification corresponds
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to an isotropic spatial process (Case A) commonly known as the Queen’s matrix, where each location is equally affected
by its q = 8 nearest neighbors with which it either shares a common edge or a vertex, namely,

wij =

{
1∕8 ⋅ c, if j ∈ N∗

i (q = 8) ∧ i ≠ j,
0, else.

(8)

In contrast, the second specification corresponds to an anisotropic spatial process (Case B) with each location being
equally affected by its two neighbors to the east and south-east, namely,

wij =

{
1∕2 ⋅ c, if j ∈ N∗

i (q = 2) ∧ i ≠ j,
0, else.

(9)

Moreover, each row of W sums to a constant c, reflecting the strength of the spatial dependence, which is conse-
quently constant over all locations. Different degrees of positive spatial autoregressive dependence are applied, namely,
c ∈ {0.5, 0.7, 0.9}. For simplicity and without loss of generality, we consider k = 1 exogenous regressor. We perform 1000
Monte Carlo replications simulating the process

Y = (I − W)−1(X𝛽 + 𝝐), (10)

where both X = (Xi)i=1,… ,n and 𝝐 are drawn from the Gaussian distribution (i.e., Xi ∼  (0, 1) and 𝜖i ∼  (0, 𝜎2 = 1)), and
𝛽 = 1.

For estimating the spatial dependence structure, different sizes m are considered that ensure the sparsity of the spatial
weights vector (i.e., q < 0.5m), namely, m ∈ {24, 48} for Case A and m ∈ {8, 24, 48} for Case B. In addition, three different
replication levels r are employed to assess whether the estimates improve with the number of observations. The minimum
number is rmin = 30, the maximum number rmax = (

√
n −

√
(m + 1) + 1)2 includes all observations of the square lattice

(except for the edges) and the medium number is rmed = ⌊(rmin + rmax)∕2⌋.

3.2 Recovery of the dependence structure

Figure 4 illustrates how often each connection is identified as being nonzero for the isotropic setting (Case A). In general,
the proportion of correctly identified neighbors or nonzero spatial connections increases with the number of replications
r. The four true neighbors that are horizontally or vertically located tend to be selected more often than the four diagonal
neighbors. This might be due to spatial spillover effects that occur because the eight first-order neighbors of si are them-
selves influenced by their eight nearest neighbors, the second-order neighbors of si, and so on. Thus, the true neighbors
also transmit spillover effects from higher-order neighbors that decrease strictly monotonically with increasing order.
For example, if m = 24, the horizontal and vertical neighbors possess the same number of second-order neighbors as the
diagonal connections (i.e., eight), but their spillovers from the third-order neighbors are higher.

Figure 5 depicts the recovery rates for the anisotropic setting (Case B). As in the previous specification, the number
of correctly identified neighbors increases with the number of replications. However, in contrast to the first specifi-
cation (isotropic setting, Case A), the recovery frequencies are much higher for the correctly identified q = 2 nonzero
connections. For instance, if r ∈ {rmed, rmax}, both true neighbors are identified across all Monte Carlo iterations. Thus,
the identification of the true neighbors improves with the degree of the sparsity in w for fixed numbers of potential
neighbors m.

As in Case A, the identification also suffers from spatial spillover effects, especially in the case of strong spatial depen-
dence (i.e., c ∈ {0.7, 0.9}). In particular, the zero connections that are located in the east and south-east direction of the
true connections are more frequently falsely selected than other zero elements if m = 24. Hence, the second-order neigh-
bors are erroneously assumed to be nonzero connections because they affect the first-order neighbors. The effect from
these second-order neighbors thereby increases with the strength of spatial dependence c due to the lasso’s property to
select irrelevant predictors that are highly correlated with the true predictors (eg., Zhao & Yu., 2006). Increasing the num-
ber of nearest locations (i.e., m = 48) mitigates the influence from second-order neighbors but slightly raises the frequency
of falsely selected third-order neighbors. However, the frequency of falsely selected higher-order neighbors decreases with
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c = 0.5 c = 0.7 c = 0.9

rmin

m
=

24

rmed

rmax

rmin

m
=

48

rmed

rmax

F I G U R E 4 Recovery frequency of isotropic q = 8 spatial dependence structure (Case A). Columns correspond to the strength of the
spatial dependence c ∈ {0.5, 0.7, 0.9}. Rows correspond to the number of replications r ∈ {rmin, rmed, rmax} for m = 24 and m = 48,
respectively. The true neighbors are marked by a cross

increasing order. Moreover, the spillover effects are dispersed over several grid cells. Thus, expanding the set of the m
nearest locations contributes to the reduction of spatial spillovers and the selection of false neighbors. Alternatively, the
number of nearest locations can be adjusted to exclude the second- and higher-order neighbors, for example, by choosing
a small neighborhood size of m = 8.

In addition to the individual recovery frequencies, Table 1 reports the overall specificity Π0 and sensitivity
Π1 statistics in addition to the frequency of minimized AICc. Specificity refers to the average percentage of cor-
rectly identified zero elements, while sensitivity indicates the average percentage of correctly identified nonzero
weights.
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c = 0.5 c = 0.7 c = 0.9

rmin

m
=

24

rmed

rmax

rmin

m
=

24

rmed

rmax

rmin

m
=

48

rmed

rmax

F I G U R E 5 Recovery frequency of anisotropic q = 2 spatial dependence structure (Case B). Columns correspond to the strength of the
spatial dependence c ∈ {0.5, 0.7, 0.9}. Rows correspond to the number of replications r ∈ {rmin, rmed, rmax} for m = 8, m = 24, and m = 48,
respectively. The true neighbors are marked by a cross
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T A B L E 1 Overall specificity and sensitivity of the estimated spatial weights depending on the type of weighting scheme, the true
number of positive weights q, the strength of the spatial dependence c, the number of cross-sectional resampling replications r, and the
number of potential neighbors m

c = 0.5 c = 0.7 c = 0.9

q m rmin rmed rmax rmin rmed rmax rmin rmed rmax

Isotropic setting (Case A)

8 24 AICc 0.724 0.763 0.763 0.662 0.699 0.673 0.701 0.583 0.476

48 AICc 0.276 0.237 0.237 0.338 0.301 0.327 0.299 0.417 0.524

24 Π0 0.953 0.859 0.818 0.918 0.817 0.795 0.783 0.801 0.794

48 Π0 0.973 0.916 0.887 0.958 0.894 0.882 0.899 0.903 0.914

24 Π1 0.101 0.438 0.627 0.174 0.609 0.780 0.324 0.564 0.713

48 Π1 0.059 0.358 0.551 0.112 0.559 0.755 0.211 0.590 0.750

Anisotropic setting (Case B)

2 8 AICc 0.651 0.666 0.611 0.737 0.605 0.522 0.733 0.692 0.701

24 AICc 0.196 0.185 0.259 0.168 0.193 0.216 0.170 0.167 0.120

48 AICc 0.153 0.149 0.130 0.095 0.202 0.262 0.097 0.141 0.179

8 Π0 0.886 0.829 0.822 0.834 0.840 0.832 0.754 0.851 0.872

24 Π0 0.945 0.905 0.912 0.913 0.905 0.919 0.823 0.872 0.889

48 Π0 0.968 0.932 0.942 0.954 0.937 0.951 0.915 0.919 0.942

8 Π1 0.479 0.989 1 0.674 1 1 0.696 1 1

24 Π1 0.261 0.963 0.999 0.383 0.995 1 0.444 0.976 0.999

48 Π1 0.168 0.936 0.997 0.251 0.988 1 0.265 0.975 0.999

Note: The percentage of minimized AICc can be used to select m.

Across all model specifications, the sensitivity Π1 increases with the number of cross-sectional resampling repli-
cations. Hence, the recovery of the true spatial weights improves with the number of sampled observations. In the
case of anisotropic dependence (Case B) with c = 0.5 and m = 48, the sensitivity rises from 16.8% to 99.7%. Regard-
less of the model specification, the proportion of correctly identified zero elements Π0 is less sensitive with respect
to r and maintains a level of 75%–97%. Regarding the choice of m, smaller neighborhood sizes tend to coincide
with higher sensitivity values. Conversely, the percentage of correctly identified zero elements Π0 decreases with
decreasing m. Hence, recovering the true neighbors benefits from smaller sets of potential candidates, while the iden-
tification of zero connections improves with the extent of the sparsity in w. Concerning the neighborhood setting,
higher individual recovery frequencies are also reflected in the overall sensitivity values, which are much higher in
the case of anisotropic dependencies (Case B). In particular, for r = rmax, the average percentage of correctly identified
nonzero connections is approximately 100%. In contrast, for Case A with q = 8 true neighbors, the average percent-
age of correctly identified nonzero weights does not exceed 78%, implying that not all of the eight neighbors are
identified.

In accordance with the sensitivity values, lower neighborhood sizes m also tend to yield lower AICc values. Based
on the AICc and sensitivity values, the neighborhood size should therefore be chosen as small as possible and as large
as necessary to cover the true neighbors even if it comes at the expense of increasing the proportion of falsely selected
zero weights. Bühlmann and Van De Geer (2011) pointed out that false-positive rates (i.e., falsely selected variables) can
typically not be avoided due to the lasso’s property to select too many variables. This property impairs if predictor variables
are highly correlated leading to the selection of higher-order neighbors in the case of spatial autoregressive dependencies.
Moreover, high values of Π0 do not necessarily indicate good model performance because setting all weights to zero yields
a value of Π0 = 1.
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3.3 Estimation accuracy

To evaluate the performance of the parameter estimates, the mean absolute errors (MAE) of the regression coeffi-
cient 𝛽 and the spatial weights vector w are reported in Table 2. Moreover, the bias of 𝛽 is displayed and the bias
of the spatial weights is evaluated separately for the zero weights w0 and nonzero weights w1. The estimation accu-
racy improves with the number of replications r in terms of lower MAE and less biased regression coefficients and
nonzero spatial weights. Similar to the specificity, the bias of the zero weights is less sensitive to changes in m.
Since Π0 < 1 across all model specifications (i.e., false-positive rates can hardly be avoided), the average bias of the
zero weights is greater than zero, while the nonzero weights are downward biased. Concerning the choice of the
neighborhood size, the bias of the nonzero connections tends to decay with decreasing m. In contrast, the impair-
ment of the specificity increases the bias of the zero weights as m decreases. Due to the sparsity of w, the overall
MAE is predominantely determined by the m − q zero connections instead of the q nonzero ones. Therefore, sim-
ilar trends occur in MAEw as in the bias of the zero weights, that is, the MAE of the spatial weights improves
with m.

To summarize, the number of cross-sectional resampling replications is essential for the identification of the spatial
weights structure and the performance of the corresponding estimates. In particular, the average percentage of correctly
identified nonzero weights and the recovery frequency of each individual neighbor increase. At the same time, the estima-
tion accuracy improves with the number of replications. The number of correctly identified zero connections (specificity)
is less affected by changes in r and is smaller than 100% across all model specifications. These false-positive rates result
from spatial spillover effects that lead to false selections of higher-order neighbors and the lasso’s tendency to select
too many variables. For higher subset sizes (i.e., m = 48), the individual neighbors are more difficult to determine and
the estimated nonzero spatial weights are more biased. Regarding the identifying assumption of the sparsity of the spa-
tial weights matrix, which is reflected by the number of true neighbors q, sparse matrices with few nonzero weights
are better identified than dependence structures that are more connected. Finally, even though the model performance
generally improved with increasing r, the medium number of replications already achieves satisfactory results. Espe-
cially in the presence of few true neighbors (Case B), the nonzero spatial weights are identified in the majority of the
cases (93.6%–100%). By employing cross-sectional resampling or by considering a subsample instead of the entire spa-
tial domain, we can therefore decrease the computational burden, which is particularly essential in the context of big
geospatial data.

4 EMPIRICAL APPLICATION

In this section, we apply the proposed approach to model the spatial dependence of NO2 emissions. We consider
satellite-derived monthly concentrations measured in billion molecules per mm2 from October 2004 for three different
50 × 50 grids (n = 2500) with a grid-cell resolution of 0.1◦ across North America. NO2 primarily arises from combustion
processes and traffic and is therefore particularly concentrated around urban areas. For this reason, population size is
included as an exogenous predictor and IV in addition to temperature and elevation (see, e.g., Hart et al., 2009; Skene
et al., 2010 for the effect of different covariates on NO2 emissions). Both NO2 concentrations and the exogenous regressors
are retrieved from NASA Earth Observations (NEO).

To investigate the spatial neighborhood structure, different neighborhood sizes m ∈ {8, 24, 48, 80,120} are considered
in the first and second steps, respectively. The estimation is based on 90% of the center observations using the maximum
number of considered neighborhood sizes m = 120 as a reference. In consequence, r = 0.9 ⋅ (

√
n −

√
120 + 1 + 1)2 = 1440

observations are randomly sampled in the first step and r = 810 in the second step. The remaining 10% of observations
are used to evaluate the out-of-sample fit of the estimation procedure.

To assess whether the estimation of the spatial dependence structure improves the predictive accuracy, we compare
the model fit of the estimated spatial weights matrix with the two most commonly used contiguity-based deterministic
specifications, namely the Queen’s and Rook’s matrices. According to the Queen’s specifications, each grid cell is equally
affected by its q = 8 neighbors with which it either shares a common edge or vertex. In contrast, the Rook’s matrix is
based on the assumption that the q = 4 true neighbors only correspond to the adjacent locations to the north, south, east,
and west.

The model fit is evaluated based on the corrected AIC, in-sample, and out-of sample RMSE between observed and
predicted NO2 concentrations. Table 3 reports these model performance measures in addition to the NO2 concentrations
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T A B L E 2 The mean absolute error (MAE) and average bias of the regression coefficient 𝛽 and the spatial weights w
depending on the type of weighting scheme, the number of true positive weights q, the strength of the spatial dependence c,
the number of cross-sectional resampling replications r, and the number of potential neighbors m

c = 0.5 c = 0.7 c = 0.9

q m rmin rmed rmax rmin rmed rmax rmin rmed rmax

Isotropic setting (Case A)

8 24 MAE𝛽 0.2201 0.0644 0.0467 0.2274 0.0705 0.0485 0.3263 0.0940 0.0560

MAEw 0.0292 0.0256 0.0221 0.0398 0.0318 0.0255 0.0519 0.0430 0.0361

Bias𝛽 −0.1259 0.0116 0.0122 −0.0884 0.0176 0.0128 −0.0521 0.0157 0.0162

Biasw0
0.0088 0.0108 0.0105 0.0138 0.0146 0.0125 0.0270 0.0205 0.0180

Biasw1
−0.0427 −0.0208 −0.0131 −0.0544 −0.0203 −0.0140 −0.0660 −0.0349 −0.0287

8 48 MAE𝛽 0.2467 0.0642 0.0470 0.2484 0.0706 0.0487 0.3137 0.0942 0.0546

MAEw 0.0153 0.0143 0.0129 0.0208 0.0176 0.0141 0.0288 0.0210 0.0165

Bias𝛽 −0.1809 0.0074 0.0126 −0.1382 0.0156 0.0132 −0.0620 0.0169 0.0163

Biasw0
0.0050 0.0059 0.0059 0.0070 0.0074 0.0062 0.0132 0.0079 0.0058

Biasw1
−0.0512 −0.0294 −0.0199 −0.0668 −0.0261 −0.0159 −0.0808 −0.0335 −0.0231

Anisotropic setting (Case B)

2 8 MAE𝛽 0.2007 0.0640 0.0462 0.2369 0.0718 0.0491 0.3428 0.1014 0.0580

MAEw 0.0610 0.0267 0.0191 0.0749 0.0263 0.0189 0.1045 0.0309 0.0188

Bias𝛽 −0.0912 −0.0155 −0.0109 −0.1024 −0.0245 −0.0174 −0.1547 −0.0427 −0.0279

Biasw0
0.0226 0.0138 0.0103 0.0322 0.0127 0.0096 0.0499 0.0123 0.0072

Biasw1
−0.1252 −0.0251 −0.0152 −0.1506 −0.0274 −0.0163 −0.2262 −0.0450 −0.0261

2 24 MAE𝛽 0.2443 0.0652 0.0471 0.2772 0.0736 0.0507 0.3566 0.1091 0.0661

MAEw 0.0268 0.0133 0.0089 0.0373 0.0143 0.0089 0.0532 0.0256 0.0171

Bias𝛽 −0.1729 −0.0201 −0.0119 −0.1919 −0.0327 −0.0196 −0.2073 −0.0679 −0.0444

Biasw0
0.0102 0.0073 0.0049 0.0158 0.0076 0.0048 0.0246 0.0139 0.0094

Biasw1
−0.1893 −0.0530 −0.0293 −0.2568 −0.0628 −0.0358 −0.3642 −0.1419 −0.0960

2 48 MAE𝛽 0.2869 0.0669 0.0478 0.3270 0.0761 0.0518 0.3913 0.1166 0.0715

MAEw 0.0152 0.0083 0.0053 0.0202 0.0083 0.0048 0.0289 0.0140 0.0079

Bias𝛽 −0.2380 −0.0263 −0.0144 −0.2667 −0.0395 −0.0232 −0.2839 −0.0864 −0.0542

Biasw0
0.0060 0.0047 0.0030 0.0080 0.0045 0.0026 0.0127 0.0074 0.0041

Biasw1
−0.2140 −0.0680 −0.0358 −0.2920 −0.0746 −0.0359 −0.3984 −0.1555 −0.0854

of the three selected regions and the respective estimated spatial weights. Regarding the spatial weights vector, we select
the neighborhood size m yielding the lowest AICc value, namely, m = 80 in the first example and m = 120 in the second
and third examples.

All three estimated spatial dependence structures are irregular and asymmetrical and therefore do not correspond to
either the Queen’s or Rook’s matrices. Estimating the spatial weights structure thereby leads to improved model perfor-
mances in terms of lower AICc values and better out-of-sample and in-sample fits across all three regions. More precisely,
the out-of-sample predictions improve by around 10%–41% in contrast to employing prespecified Queen’s or Rook’s
matrices.

Concerning the effect of exogenous regressors, the competing model specifications lead to different results because
the regression coefficients depend on the choice of both the spatial weighting scheme and the spatial extent. Table 4
reports the estimated coefficients obtained from re-estimating the full model based on all n = 2500 observations. More
precisely, we construct the spatial weighting matrix Ŵ from the spatial weights vector ŵ and re-estimate the model using a
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T A B L E 3 NO2 observations (first row), estimated weights (second row), corrected AIC, in-sample RMSE, and out-of-sample RMSE
based on estimated weights ŵ, the Queen’s matrix and Rook’s matrix for three different regions (columnwise)

37.5◦–42.5◦ north 32◦–37◦ north 38◦–43◦ north

82◦–87◦ west 82.5◦–87.5◦ west 109◦–114◦ west

NO2 observations

Estimated weights

m ŵ Queen Rook ŵ Queen Rook ŵ Queen Rook

AICc 120 1549.3 1550.4 1547.5 1546.7 1616.9 1614.2 1559.3 1623.6 1616.8

80 1538.7 – – 1547.9 – – 1568.4 – –

48 1545.1 – – 1555.3 – – 1559.6 – –

24 1584.8 – – 1612.9 – – 1599.8 – –

8 1553.8 – – 1589.4 – – 1646.2 – –

In-sample RMSE 120 0.2596 0.2526 0.2456 0.2385 0.3821 0.3777 0.2781 0.3927 0.3819

80 0.2277 – – 0.2465 – – 0.2976 – –

48 0.2445 – – 0.2691 – – 0.2831 – –

24 0.3373 – – 0.3788 – – 0.3499 – –

8 0.2746 – – 0.3455 – – 0.4326 – –

Out-of-sample RMSE 120 0.2607 0.2491 0.2549 0.2362 0.4043 0.4035 0.2623 0.3699 0.3761

80 0.2244 – – 0.2604 – – 0.2860 – –

48 0.2507 – – 0.2857 – – 0.2589 – –

24 0.3726 – – 0.3331 – – 0.3160 – –

8 0.2848 – – 0.3326 – – 0.4265 – –

Note: Bold values correspond to minimum AICc values and lowest in-sample RMSE.

regular two-stage least squares approach to compute standard errors and determine the significance of the estimated
model coefficients.

Most noticeably, the effect of the population size is positive and significant across all three regions if the weights are
estimated. In contrast, the association between NO2 emissions and elevation level is negative but only significant in the
second example. These results are in line with other findings that NO2 emissions increase with the population, which
serves as a proxy of anthropogenic sources (e.g., road traffic), while higher elevation levels contribute in reducing the
pollution (cf., Hart et al., 2009). The coefficient sign of temperature is not constant but insignificant in all three selected
regions.

5 CONCLUSION

In contrast to the classical spatial autoregressive models that require prior specifications of a spatial weights matrix,
this article investigates the estimation of the spatial dependence structure for purely spatial regular lattice data.
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T A B L E 4 Estimated coefficients of the exogenous regressors for the three spatial
regions depending on the weighting scheme

37.5◦–42.5◦ north 32◦–37◦ north 38◦–43◦ north
82◦–87◦ west 82.5◦–87.5◦ west 109◦–114◦ west

Estimated weights Ŵ

Elevation −0.0025 −0.0138∗∗∗ −0.0080

(0.0047) (0.0048) (0.0054)

Temperature 0.0017 −0.0079 0.0003

(0.0053) (0.0052) (0.0057)

Population 0.0158∗∗ 0.0363∗∗∗ 0.0132∗∗∗

(0.0063) (0.0071) (0.0043)

Queen’s matrix

Elevation −0.0075∗∗∗ −0.0088∗∗ −0.0113∗

(0.0045) (0.0045) (0.0066)

Temperature 0.0098∗ 0.0044 −0.0028

(0.0048) (0.0048) (0.0069)

Population 0.0226∗∗ 0.0152∗∗∗ 0.0147∗∗∗

(0.0054) (0.0058) (0.0054)

Rook’s matrix

Elevation −0.0026 −0.0061 −0.0086

(0.0041) (0.0040) (0.0058)

Temperature 0.0033 0.0014 −0.0028

(0.0045) (0.0043) (0.0063)

Population 0.0112∗∗ 0.0170∗∗∗ 0.0077

(0.0052) (0.0056) (0.0051)

Note: Standard errors are in parentheses. Significant at ***1% level, **5% level, *10% level.

A two-step adaptive lasso approach is suggested to estimate the individual spatial links, assuming the sparsity of the
spatial weights and the exchangeability of the random process. Apart from the sparsity of the spatial weights, no
structural assumptions such as symmetry or a triangular form are imposed, allowing all types of irregular depen-
dence structures to be estimated. Moreover, we propose using cross-sectional resampling to recover the spatial depen-
dence structure. Thus, in contrast to other estimation methods like ML or Gaussian Markov random fields, we avoid
computationally demanding matrix operations by considering a smaller subsample of the spatial domain and by sub-
stituting the spatial weights matrix with a stacked, unique weighting vector that captures the spatial dependence
structure.

The Monte Carlo results demonstrate that the estimators appear to be consistent with an increasing number of
cross-sectional resampling replications. More precisely, the average percentage of correctly identified spatial connections
increases, and the spatial weight estimates are most accurate for the maximum number of replications. However, even
a medium number of replications already ensures the recovery of the true neighbors in the majority of the cases while
maintaining low false-positive rates. This strengthens our proposal to reduce the computational burden by considering a
subsample instead of the entire spatial domain, which is particularly relevant in the context of big geospatial data. Regard-
ing the selection of the set of nearest locations, contradictory influences exist on the model performance. On one hand, a
low number of nearest locations carries the risk of not covering all relevant neighbors. Moreover, spatial spillover effects
are more concentrated on very few false neighbors if the set of potential neighbors covers the higher-order neighbors. On
the other hand, true neighbors are better identified and the nonzero weights are less biased. In addition, more observa-
tions are available for cross-sectional resampling, which is particularly relevant for small data sets, and the computational
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effort is less demanding. In consequence, lower neighborhood sizes are favored in terms of corrected information crite-
ria. Finally, sparse dependence structures with very few true neighbors are better identified than spatial weights matrices
that are more connected.

For the empirical application, we investigate the spatial dependence structure of the NO2 data. We find that the predic-
tion accuracy in terms of the in-sample and out-of-sample RMSE can be improved considerably by estimating the spatial
weights in contrast to employing deterministic specifications that are based on prior selections of the q nearest neighbors.

Finally, our approach is suitable for representing the spatial dependence structure for regular lattice data provided
that the spatial dependence is constant across space. Hence, structural breaks or heterogeneous spatial dependencies are
not accounted for and should be investigated in future research. Moreover, additional assumptions on the ordering of
the nearest locations are required if other types of spatial data, such as irregular lattice or geostatistical processes, are
of interest. In particular, different distance lags and directions between point-referenced locations or polygon centroids
could be considered to define the neighbors corresponding to each weight.
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