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A B S T R A C T

In this work, the reliability of complex systems under consideration of imprecision is addressed. By joining two
methods coming from different fields, namely, structural reliability and system reliability, a novel methodology
is derived. The concepts of survival signature, fuzzy probability theory and the two versions of non-intrusive
stochastic simulation (NISS) methods are adapted and merged, providing an efficient approach to quantify
the reliability of complex systems taking into account the whole uncertainty spectrum. The new approach
combines both of the advantageous characteristics of its two original components: 1. a significant reduction
of the computational effort due to the separation property of the survival signature, i.e., once the system
structure has been computed, any possible characterization of the probabilistic part can be tested with no
need to recompute the structure and 2. a dramatically reduced sample size due to the adapted NISS methods,
for which only a single stochastic simulation is required, avoiding the double loop simulations traditionally
employed.

Beyond the merging of the theoretical aspects, the approach is employed to analyze a functional model of
an axial compressor and an arbitrary complex system, providing accurate results and demonstrating efficiency
and broad applicability.
1. Introduction

Engineering systems constitute a key factor for the state of de-
velopment and progress of modern societies. Typical examples are
infrastructure networks, industrial plants or machines, e.g., gas tur-
bines. Closely integrated into society, the functionality of such complex
capital goods has a significant impact on the economy as well as on
everyday life. However, in reality, engineering systems deteriorate due
to environmental and operational influences. As a result, their overall
performance decreases over time or, in the worst case, they fail entirely.
Consequently, for economic and safety-related reasons the reliability
of a system, i.e., its continuous functionality, is of utmost importance.
In order to ensure this reliability, appropriate decisions must be made
in both design and maintenance. However, since societal growth and
progress is accompanied by increasing size and complexity of societies’
systems [1] and since ‘‘Global population growth will continue for
decades, reaching around 9.2 billion in 2050 and peaking still higher
later in the century’’, [2], this task, i.e., the identification of appro-
priate decisions towards maximum reliability, is becoming increasingly
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challenging. For this reason, the development of sophisticated methods
for quantifying and assessing system reliability gained more and more
importance over the past decades [3–6] and will receive even more
attention in the future.

Conventional tools in system reliability assessment are failure mode
and effect analyses, see, e.g., [7,8], as well as more mathematical rep-
resentations, such as reliability block diagrams, see, e.g., [9], fault tree
and success tree methods, see, e.g., [10,11]. However, as stated in [12],
the calculations for identifying minimal path sets or cut sets might be
too arduous for large complex systems, limiting the applicability of such
methods. Further traditional approaches are Markov models, see, e.g.,
[13] and Petri nets, see, e.g., [14]. In recent research, system reliability
assessment methods are provided, e.g., in [15] and [16] for multi-state
systems, in [17], using Bayesian melding method, including various
available sources on system, as well as subsystem level and in [18,19],
where Yang et al. as well as Xiao et al. propose approaches based on
an active learning Kriging model, considering multiple failure modes
and a multiple response model, respectively. Furthermore, Li et al.
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propose in [20] a reliability approach for analyzing systems composed
of repairable components with complex failure distribution structure.
A comprehensive review on numerous system reliability methods and
the evolution of reliability optimization is provided in, e.g., [21–23].

Various system reliability approaches are based on the mathemati-
cal concept of the structure function that represents a functional state of
a system in dependence on its components states, i.e., its state vectors,
see, e.g., [24,25]. Nevertheless, not only for large systems the structure
function might become complicated or impractical [26,27]. For coher-
ent systems with components of only a single type, i.e., exchangeable
components, the system signature represents a summarization of the
structure function, providing an advantageous tool, see, e.g., [28].

In current research, the concept of survival signature is a promising
approach to efficiently model the reliability of systems with multiple
component types. The survival signature was introduced and discussed
in [29,30] as a generalization of the system signature. Apart from over-
coming the restriction to systems with only one type of components,
similar to the signature, the key feature of the survival signature is a
clear separation between the structure of a system and the probabilistic
properties of its components [31]. In addition, it summarizes the system
structure by aggregating state vectors into single survival signature
entries with associated reliabilities, resulting in significantly reduced
storage requirements and simplified data access. Once the system struc-
ture has been evaluated – usually a demanding task – any number of
calculations for various probability properties can be performed with-
out having to recalculate it. Thus, compared to traditional approaches,
the survival signature reduces the computational effort associated with
repetitive model evaluations that are typically required in reliability
engineering processes. A direct comparison between fault tree, Markov
chain and survival signature modeling is presented in [32].

As stated in [12], a purely analytical implementation of the sur-
vival signature to real-life complex systems is often not feasible and
simulations are required instead. Therefore, in [12], Patelli et al. pro-
vide simulation algorithms based on the concept of survival signature
and Monte Carlo simulation (MCS). However, for large systems the
computational effort of determining the survival signature might be
prohibitive. Thus, current research addresses the approximation of
survival signature entries by estimating the associated reliability values
over a subset of corresponding state vectors, reducing computational
expense for the single required topological system evaluation signif-
icantly [33]. Furthermore, in [34] an efficient algorithm for exact
computation of system and survival signatures using binary decision
diagrams is provided. In addition, sub-structuring the system in serial
or parallel subsystems of smaller size and the subsequent merging of the
survival signatures of these subsystems may be conducted [35]. Further
research combines the notion of survival signature with multiple fail-
ure modes and dependent failures [36], common cause failures [37],
interconnected networks [38] and multi-state components [12].

In reality, design and maintenance decisions determining the reli-
ability of a system have to be made under the presence of uncertain
conditions. Gathering precise information is typically unfeasible, since,
for instance, measurements of lifetime data and subjective assessments
by experts are governed by uncertainty. Thus, comprehensive details,
providing insight into the uncertain system behavior, are required.
Consequently, a challenging task for engineers is how uncertainty can
be integrated into reliability models. In the systemic context, current
approaches to propagate uncertainty in the model are, e.g., Dempster–
Shafer theory [39,40], info-gap theory [41], p-boxes [42,43] and fuzzy
probabilities [44,45]. It shall be noted that a lot of debate is present
in the literature on various aspects of modeling uncertainties, such as
the terminology and interpretation [46,47] as well as their represen-
tation [48,49]. In practice, the reduction of uncertainty is desired but
associated with unavoidable costs, involving for example experimental
campaigns, destructive testing, etc. Therefore, a trade-off is required
by decision-makers, where a critical level of uncertainty needs to be
2

identified among various design and maintenance measures in order
to balance uncertainty and the costs associated with its reduction.
This can be achieved by utilizing fuzzy probabilities as an appropriate
uncertainty representation, as, e.g., Beer et al. propose in [50].

In the context of survival signature, several works, such as in [12,
26,35,51], have already demonstrated how the numerous advantages of
the concept of survival signature and the consideration of uncertainties
can be merged in an encompassing reliability analysis framework.
Accounting for both aleatoric and epistemic uncertainties requires an
adequate treatment in system analysis. An often conducted approach
is a two-staged simulation, known as ‘‘double loop’’ approach, where
variables with epistemic uncertainty are propagated in an ‘‘outer loop’’
and variables with aleatoric uncertainty are sampled in an ‘‘inner loop’’
[52], or, vice versa, aleatory variables are sampled in an ‘‘outer loop’’
and epistemic uncertainty is propagated in the ‘‘inner loop’’ [53]. It
is obvious that for complex systems this naive approach leads to an
extraordinarily large sample size and thus to high computational effort,
see, e.g., [54]. Consequently, simulation methods that enhance compu-
tational efficiency and provide high accuracy with minimal sample size
are desired.

Approaches to circumvent the exhaustive double loop simulation in-
clude interval MCS and interval importance sampling [55,56], stochas-
tic expansions and optimization-based interval estimation [57] as well
as surrogate modeling via optimization and approximation techniques
[58]. Latest methods to improve computational performance for uncer-
tainty quantification, for instance, combine p-boxes, univariate dimen-
sion reduction method and optimization [59], utilize the augmented
space integral [60] or apply line outage distribution factors [43].
Recently, Wei et al. introduced in [61] the non-intrusive stochastic
simulation (NISS), a promising approach for efficient computation of
imprecise structural models with a drastically reduced sample size. The
method splits into two basic approaches, the local extended Monte
Carlo simulation (LEMCS) and the global extended Monte Carlo sim-
ulation (GEMCS), coming along with different advantages in accuracy
and variation.

In the present work, two methodologies from different fields,
namely, structural reliability and system reliability, are joined to derive
a novel and comprehensive approach for system reliability analysis
taking into account imprecisions. More specifically, both, LEMCS and
GEMCS, are adapted and merged with the concept of survival signature.
Through the complex amalgamation, a new methodology is derived,
combining the advantages of both original methods: a significant stor-
age reduction of system topological information and major efficiency
advantages in repeated model evaluations as well as an extensive
consideration of uncertainties with just a single stochastic simulation
needed, reducing the sample size dramatically. The combination of
these advantages leads to beneficial synergy effects, increasing the
efficiency even more. The representation of uncertainties is achieved
by integrating fuzzy probabilities.

The paper proceeds as follows: Section 2 briefly reviews the fun-
damental theory of survival signature, uncertainty, fuzzy probability
and NISS method. Based on this, Section 3 develops the proposed novel
approach. In Section 4 the method is applied to a functional model of a
multi-stage high-speed axial compressor as well as to an arbitrary com-
plex system. Section 5 summarizes the results and discusses questions
for future research.

2. Theoretical fundamentals

2.1. Survival signature

The survival signature according to [29] is a concept for efficiently
determining the time-dependent reliability of systems that are com-
posed of components of different types. Detailed information about the

concept and its derivation can be found, e.g., in [29,30,51].
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2.1.1. Structure function
Suppose a system composed of 𝑚 components of a single type.

Then, 𝒙 =
(

𝑥1, 𝑥2,… , 𝑥𝑚
)

∈ {0, 1}𝑚 defines the state vector of these
components with 𝑥𝑖 = 1 indicating a functioning state of the 𝑖th
component and 𝑥𝑖 = 0 indicating a non-functioning state. The structure
function 𝜙 is a function of the state vector, describing the operating
state of the regarded system: 𝜙 = 𝜙(𝒙) ∶ {0, 1}𝑚 → {0, 1}. Accordingly,
𝜙(𝒙) = 1 indicates a functioning system and 𝜙(𝒙) = 0 indicates a
non-functioning system with respect to the state vector 𝒙.

Suppose a system composed of components of multiple types, i.e.,
𝐾 ≥ 2, then the number of system components is given by 𝑚 =

∑𝐾
𝑘=1 𝑚𝑘

ith 𝑚𝑘 denoting the number of components of type 𝑘 ∈ {1, 2,… , 𝐾}.
Then, the state vector for each type can be defined, equivalent to
systems with only a single component type, as 𝒙𝑘 =

(

𝑥𝑘1 , 𝑥
𝑘
2 ,… , 𝑥𝑘𝑚𝑘

)

.

2.1.2. Survival signature and survival function
The survival signature describes the probability of a system being

in a functioning state, purely depending on the number of functioning
components 𝑙𝑘 for each type 𝑘. Assuming the failure times of compo-
nents of the same type to be independent, identically distributed (𝑖𝑖𝑑)
or exchangeable within this type, the survival signature can be defined
as:

𝛷
(

𝑙1, 𝑙2,… , 𝑙𝐾
)

=

[ 𝐾
∏

𝑘=1

(

𝑚𝑘
𝑙𝑘

)−1
]

×
∑

𝒙∈𝑆𝑙1 ,𝑙2 ,…,𝑙𝐾

𝜙(𝒙), (1)

with
(𝑚𝑘
𝑙𝑘

)

denoting the total number of state vectors 𝒙𝑘 of type 𝑘 and
𝑆𝑙1 ,𝑙2 ,…,𝑙𝐾 denoting the set of all state vectors of the entire system for
which 𝑙𝑘 =

∑𝑚𝑘
𝑖=1 𝑥

𝑘
𝑖 . Thus, the survival signature only depends on

the topology of the system, regardless of any time-dependent failure
behavior of its components. Note that the notion exchangeability,
following [62], implies the input ordering of the random quantities
being irrelevant. As a consequence in practice, rearranging the ex-
changeable assumed components should be irrelevant to real systems.
For components that have the same functionality, come from the same
manufacturer and operate in the same environment, the assumption of
exchangeability is reasonable. However, as the environment changes,
components of the same kind are exposed to different environmental
stresses as, e.g., significantly different temperatures, affecting their
behavior and further their lifetime probability distribution function.
Here, assuming exchangeability would be inappropriate, see [12].

Let 𝐶𝑘(𝑡) ∈ {0, 1,… , 𝑚𝑘} denote the number of components of type
𝑘 in a working state at time 𝑡 and suppose the probability distribution
for the failure times of type 𝑘 to be known with 𝐹𝑘(𝑡), being the
corresponding cumulative distribution function. Then

𝑃

( 𝐾
⋂

𝑘=1

{

𝐶𝑘(𝑡) = 𝑙𝑘
}

)

=
𝐾
∏

𝑘=1
𝑃
(

𝐶𝑘(𝑡) = 𝑙𝑘
)

=
𝐾
∏

𝑘=1

(

𝑚𝑘
𝑙𝑘

)

[

𝐹𝑘(𝑡)
]𝑚𝑘−𝑙𝑘 [1 − 𝐹𝑘(𝑡)

]𝑙𝑘

(2)

describes the probabilistic structure of the system, i.e., the time-
dependent failure behavior of the system components, regardless of
its topology. The survival function, describing the probability of a
regarded system being in a functioning state at time 𝑡, results as:

𝑃
(

𝑇𝑠 > 𝑡
)

=
𝑚1
∑

𝑙1=0
…

𝑚𝐾
∑

𝑙𝐾=0
𝛷
(

𝑙1, 𝑙2,… , 𝑙𝐾
)

× 𝑃

( 𝐾
⋂

𝑘=1

{

𝐶𝑘(𝑡) = 𝑙𝑘
}

)

, (3)

with 𝑇𝑠 denoting the random system failure time. Thereby, the concept
of survival signature separates the topology and the time-dependent
probability structure. In addition, the survival signature is a summary
of the structure function and, therefore, is advantageous compared
to traditional methods when model simulations have to be conducted
repeatedly, especially, if the system failure evaluation is computational
expensive [12,29]. Note that these are precisely the features that make
3

the survival signature so unique and beneficial.
Fig. 1. Interpretation of uncertainty.
Source: Adapted from [63] and [46].

2.2. Uncertainty

In literature, various concepts concerning uncertainty are spread.
Therefore, a brief clarification of the notion of uncertainty, its inter-
pretation, classification and further a hint of how uncertainties can be
advantageously implemented into the probability structure of a system,
as presented in Section 2.1.2, is given in the following.

2.2.1. Interpretation of uncertainty
Initially, a fundamental notion of uncertainty must be established.

Following Nikolaidis in [63], uncertainty can be defined indirectly
by the definition of certainty known from decision theory and its
absence. This interpretation and its associated states are illustrated in
Fig. 1(a). In this sense but extended to a more general interpretation,
certainty, represented by state 4 in Fig. 1, is the state in which complete
knowledge, e.g., concerning model input, is given. This state is ideal
and a deterministic model can be utilized. Accordingly, uncertainty im-
plies incomplete knowledge concerning, e.g., corresponding measures
of a decision and their outcome as addressed in [63] or component
behavior. Further, maximum uncertainty refers to complete ignorance,
i.e., state 1, in which no knowledge is available at all. This is the worst
case scenario yet appearing only in the theoretical sense. In practice,
the present state of information, shown as state 2, typically includes
both knowledge and uncertainty. The gap between complete ignorance
and the present state of information relates to knowledge stated to
be certain, i.e., it can be implemented in the model deterministically,
while the gap between the present state and certainty corresponds to re-
maining uncertainty. Concerning decision-making, stakeholders intend,
among other things, a maximum reduction of hazardous uncertainties,
i.e., shifting the present state of information as close to certainty as cost
and feasibility allow.

2.2.2. Classification of uncertainty
In order to deal with uncertainties in analyses properly, e.g., Der

Kiureghian & Ditlevsen propose a two-part classification of uncertainty
in [47]: ‘‘The advantage of separating the uncertainties into aleatory
and epistemic is that we thereby make clear which uncertainties can
be reduced and which uncertainties are less prone to reduction, at
least in the near-term, i.e., before major advances occur in scientific
knowledge’’. Nikolaidis remarks in [63] that further uncertainty tax-
onomies can be found in the literature. However, a broad consensus
exists that in engineering practice a distinction between these two types
of uncertainty is beneficial and sufficient [46,47,64]. Focusing on this
two-part classification, for the first type frequently used terms are irre-
ducible, aleatoric or objective uncertainty and the second is denoted as
imprecision, epistemic uncertainty, reducible or subjective uncertainty.
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These terms are respectively utilized interchangeably among literature
[46,65]. However, the terminologies are up for debate as can be seen by
comparing, e.g., [46,66,67]. Aughenbaugh & Paredis clarify in [46] the
existence of aleatoric uncertainty as a controversial but philosophical
issue and emphasize the terms irreducible uncertainty and imprecision
with regard to practical application. Accordingly, these terms are used
in the following.

Fig. 1(b) illustrates the distinction into the above-mentioned two
uncertainty types. Here, the state of precise information, shown as
state 3, delimits irreducible uncertainty and imprecision. Thereby, the
gap between state 3 and certainty denotes uncertainty that is claimed
to be irreducible from the current perspective. This type arises from
presumed variability and randomness and impedes the analyst from
being certain throughout the evaluation process [64]. In contrast, the
gap between the present state of information and state of precise
information denotes imprecision. Imprecision arises, e.g., as only a
limited amount of samples or subjective and, thus, fuzzy assessments
of experts on component behavior are available. Further sources of
imprecision and their consideration are discussed in [47] and [68].
Measures can be implemented to increase the quality of information
and, therefore, reduce imprecision [64]. However, these are typically
associated with effort and reaching the state of precise information may
even be unfeasible.

2.2.3. Implementation of uncertainty
Concepts to deal with uncertainty in a model can be distinguished

into three groups, namely, non-probabilistic approaches, precise prob-
ability approaches and imprecise probability approaches [61]. In order
to propagate a clear distinction between irreducible uncertainty and
imprecision throughout analysis only the latter appears appropriate
[61,69]. Thereby, set-theoretical concepts describing imprecision, such
as intervals or fuzzy sets, and probability distributions from traditional
probability theory that represent irreducible uncertainty are combined
[46,70]. Among various alternatives, in this context fuzzy sets are
beneficial [50,71]. For instance, Beer et al. utilize fuzzy sets in reliabil-
ity analyses and propose two approaches to evaluate these. For more
information see [72] as well as [50].

2.3. Fuzzy probability

In system reliability engineering, imprecisions frequently occur,
e.g., due to scarcity of data or vague expert knowledge regarding the
underlying probability distribution types and distribution parameters
of component lifetimes. Fuzzy probability theory enables to take these
imprecisions into account.

Let 𝐹 (𝑥) be a probability distribution function, describing the failure
robability of a system component up to time 𝑥. Further, assume that

the knowledge of the parameters of this distribution function is impre-
cise. Then Fig. 2 shows the fuzzy probability distribution function 𝐹 (𝑥)
describing this phenomenon, with 𝜇(𝐹 (𝑥)) denoting the membership
function of 𝐹 (𝑥) and 𝑠𝑢𝑝𝑝(𝐹 (𝑥)) = [𝐹 𝛼0 (𝑥), 𝐹

𝛼0 (𝑥)] denoting the support
of 𝐹 (𝑥). Note that for 𝜇(𝐹 (𝑥)) = 1, corresponding to an 𝛼-level of 𝛼 = 1,
𝐹 (𝑥) = 𝐹 (𝑥).

In this work, all imprecise distribution parameters are modeled
by triangular fuzzy numbers 𝜃 = (𝑎∕𝑏∕𝑐), with 𝑎 < 𝑏 < 𝑐, [𝑎, 𝑐]
denoting the base of 𝜃 and 𝑏 denoting its vertex. In practice, the
fuzzy probability model can be learned from (precise or censored)
lifetime data by using either frequentist or Bayesian statistical inference
methods. For example, given a small number of precise lifetime data,
the (100 ⋅ 𝛼)% confidence intervals can be inferred for 𝜃 with either
confidence interval estimation or bootstrap approach, where 𝛼 can be
taken as the membership level. Comprehensive information on fuzzy
4

probability and its practical applications is provided, e.g., in [73,74].
2.4. Non-intrusive imprecise stochastic simulation

The NISS, according to [61] and [75], provides a general method-
ological framework for propagating parameterized imprecise proba-
bility models through a black-box simulator with only one stochastic
simulation. Indeed, any stochastic simulation algorithm can be injected
into this framework to tackle different types of problems.

The original extended Monte Carlo simulation (EMCS) method was
introduced in [76] for parametric global sensitivity analysis as well
as parametric optimization and was further developed in [61] and
[75] into the NISS framework for efficient evaluation of moments of
imprecise response functions in a structural context. For the classical
EMCS, the unbiased estimators are derived by sampling from probabil-
ity distribution functions of input variables with imprecise distribution
parameters fixed at a particular point, hence, it has been referred to as
LEMCS in further work. In [61], the GEMCS was established, where
no fixed point of distribution parameter is required, but rather an
auxiliary sampling distribution. Further, the combination of the LEMCS
and GEMCS with high-dimensional model representation (HDMR) was
presented in order to efficiently apply the NISS method to more so-
phisticated and high-dimensional models. Additionally, improvements
for rare failure events were introduced to NISS in [75] and further
developed in [77,78].

Note that all NISS methods (including both LEMCS and GEMCS),
although inspired by importance sampling, have significant different
features, compared to the classical importance sampling including the
one developed in [56]. The specific features of NISS can be summarized
as follows: First, global NISS methods utilize samples generated from
the joint space of component lifetimes and their imprecise parameters
and show better global performance than the classical importance
sampling, especially for the cases with large imprecision. Second, when
applied to the cases with high-dimensional imprecise parameters, two
types of HDMR decomposition are injected into LEMCS and GEMCS
with proper truncation for substantial alleviating the expansion of
variations of estimators, which is a common phenomenon appeared in
all importance sampling based algorithms. Third, all classical stochastic
simulation techniques for stochastic analysis, such as subset simulation
and line sampling, developed for rare event analysis, can be injected
into the NISS framework, following same rationale. This has substan-
tially expended the suitability of NISS framework to different types of
imprecise probability analysis tasks.

In this work, the LEMCS and GEMCS are reviewed, where LEMCS is
the basis of all local NISS methods, while GEMCS provides a basis for
all global NISS methods. The NISS methods are originally developed
for performance and reliability estimation of structures simulated with
a black-box model, such as a finite element model.

3. Proposed methodology

In the following, the two basic NISS methods, LEMCS and GEMCS,
are adapted and merged with the concept of survival signature allowing
for efficient system reliability analyses under the constraint of impre-
cision. These two methods form the basis for all further developments
included in the NISS framework.

Let 𝒕 =
(

𝑡1, 𝑡2,… , 𝑡𝑚
)⊤ denote the failure times of the components of

a system and 𝑇𝑠 indicates the failure time of the system. For a coherent
system a non-decreasing deterministic function, denoted as 𝑇𝑠 = 𝑔 (𝒕),
can be uniquely derived for modeling the relationship between sys-
tem and component failure times. The failure times of all component
functions are intrinsically random variables and the conditional joint
density function is assumed to be 𝑓 (𝒕 |𝜽 ), where 𝜽 indicates the 𝑞-
dimensional vector of non-deterministic distribution parameters. The
imprecision embodied through 𝜽 might result from a lack of life data
on components or expert knowledge and supports can be inferred by,
e.g., confidence interval estimation. Based on the above setting, the
system failure time is also a random variable with non-deterministic
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Fig. 2. Fuzzy probability distribution function of a continuous fuzzy random variable.
Source: Adapted from [73].
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istribution parameters, where the probability distribution reflects the
atural variability of system failure time and the bounds of probability
eflect the degree of unknown on this variability. The system survival
unction can then be formulated as:

𝑠 (𝑡, 𝒕|𝜽) = ∫R+
𝐼 [𝑔 (𝒕) > 𝑡] 𝑓 (𝒕|𝜽)d𝑡, (4)

where R+ indicates the space of non-negative real numbers and 𝐼 [⋅] is
the indicator function with the values being either one if the argument
is true or zero if it is false. With the above setting, the system survival
function can be reformulated as:

𝑅𝑠 (𝑡, 𝒕|𝜽) = ∫R+
𝐼 [𝑔 (𝒕) > 𝑡]

𝑓 (𝒕|𝜽)
𝑓
(

𝒕|𝜽∗
)𝑓

(

𝒕|𝜽∗
)

d𝑡, (5)

here 𝜽∗ can be any fixed and crisp point of 𝜽. Then, given a set of
andom samples 𝒕(𝑛) (𝑛 = 1, 2,… , 𝑁) following 𝑓

(

𝒕|𝜽∗
)

, the LEMCS
estimator of the system survival function is given as:

�̂�𝑠 (𝑡, 𝒕|𝜽) =
1
𝑁

𝑁
∑

𝑛=1
𝐼
[

𝑔
(

𝒕(𝑛)
)

> 𝑡
] 𝑓

(

𝒕(𝑛)|𝜽
)

𝑓
(

𝒕(𝑛)|𝜽∗
) . (6)

This estimator is unbiased and its variance can be easily derived.
Given the above estimator, the bounds of the survival function can be
computed by any global optimization algorithm, such as genetic and
particle swarm algorithms.

The GEMCS method involves first attributing auxiliary distributions
for 𝜽, which, in the simplest case, can be uniform distributions within
[

𝜽𝑙𝑜𝑤,𝜽𝑢𝑝
]

. Let 𝑝 (𝜽) denote the joint density function of these auxiliary
distributions and 𝑝

(

𝜃𝑖
)

the marginal density function of 𝜃𝑖. Then a set
of joint random samples (𝒕(𝑛),𝜽(𝑛)) can be generated following the joint
density function 𝑓 (𝒕,𝜽) = 𝑓 (𝒕|𝜽) 𝑝 (𝜽) of 𝒕 and 𝜽, based on which the
GEMCS estimator for the system survival function results as:

�̂�𝑠 (𝑡, 𝒕|𝜽) =
1
𝑁

𝑁
∑

𝑛=1
𝐼
[

𝑔
(

𝒕(𝑛)
)

> 𝑡
] 𝑓

(

𝒕(𝑛)|𝜽
)

𝑓 (𝒕(𝑛)|𝜽(𝑛))
. (7)

Both the LEMCS and GEMCS performance might vary for different types
of probability distributions or different distribution parameters and can
depend on an appropriate choice for 𝜽∗ and 𝑝 (𝜽), respectively. More
detailed information is provided in [61].

Another key feature of the classical NISS method is the HDMR, see
[61,75], based on which the behavior of the system survival function
with respect to 𝜽 can be learned visibly and the variation of estimators
can be substantially reduced, especially when the number of compo-
nents with imprecise distribution parameters is large. However, in this
paper, the LEMCS and GEMCS estimator are solely utilized without
5

HDMR decomposition.
3.1. LEMCS algorithm

A modified version of the MCS algorithm 2 in [12] is utilized as
the stochastic simulation module for implementing LEMCS and GEMCS.
The LEMCS algorithm is then described as follows:

Step A1. Discretize the support
[

0, 𝑡
]

of system failure time uniformly
as 0 = 𝑡𝑧1 < 𝑡𝑧2 < ⋯ < 𝑡𝑧𝑑 = 𝑡 and initialize the value of 𝜽∗

and the number 𝑁 of deterministic simulations. Let 𝑛 = 1.
Step A2. Sample the failure times 𝒕(𝑛) = (𝑡(𝑛)1 , 𝑡(𝑛)2 ,… , 𝑡(𝑛)𝑚 ) for all compo-

nents following 𝑓
(

𝒕|𝜽∗
)

randomly.
Step A3. At each time instant 𝑡𝑧𝑖, count the number of components

working for each component type as 𝐶𝑘
(

𝑡𝑧𝑖
)

, where 𝑘 =
1, 2,… , 𝐾 denotes the component type.

Step A4. Evaluate the survival signature at each time instant as 𝛷(𝑛)
𝑧𝑖 =

𝛷
(

𝐶1
(

𝑡𝑧𝑖
)

, 𝐶2
(

𝑡𝑧𝑖
)

,… , 𝐶𝐾
(

𝑡𝑧𝑖
))

.
Step A5. Define the weight function for the sample 𝒕(𝑛) as 𝑤(𝑛) (𝜽) =

𝑓
(

𝒕(𝑛)|𝜽
)

𝑓(𝒕(𝑛)|𝜽∗) . If 𝑛 = 𝑁 , finish the simulation; else, let 𝑛 = 𝑛 + 1
and go back to Step A2.

ased on the samples 𝛷(𝑛)
𝑧𝑖 , the LEMCS estimator for the system survival

function at time 𝑡𝑧𝑖 is formulated as:

�̂�𝑠
(

𝑡𝑧𝑖,𝜽
)

= 1
𝑁

𝑁
∑

𝑛=1
𝛷(𝑛)

𝑧𝑖 𝑤
(𝑛) (𝜽). (8)

omputing at each time instant the minimum and maximum values of
he estimator in Eq. (8), by utilizing any global optimization algorithm,
eads to the estimated upper and lower bound of the system survival
unction.

.2. GEMCS algorithm

The GEMCS algorithm is similar to the LEMCS algorithm except that
he stochastic simulation needs to be implemented in the joint space of
and 𝜽. Given the auxiliary density function 𝑝 (𝜽), the GEMCS algorithm
s described as follows:

Step B1. Discretize the support
[

0, 𝑡
]

of system failure time uniformly
as 0 = 𝑡𝑧1 < 𝑡𝑧2 < ⋯ < 𝑡𝑧𝑑 = 𝑡 and initialize the number 𝑁 of
deterministic simulations. Let 𝑛 = 1.

Step B2. Generate a joint random sample (𝒕(𝑛),𝜽(𝑛)) following the joint
density 𝑓 (𝒕|𝜽) 𝑝 (𝜽).

Step B3. Same as Steps A3 and A4.
Step B4. Evaluate the weight function for the joint sample (𝒕(𝑛),𝜽(𝑛)) as

𝑤(𝑛) (𝜽) = 𝑓
(

𝒕(𝑛)|𝜽
)

𝑓
(

𝒕(𝑛)|𝜽(𝑛)
) . If 𝑛 = 𝑁 , finish the simulation; else, let

𝑛 = 𝑛 + 1 and go back to Step B2.
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The GEMCS estimator for the system survival function is formulated
equivalently to the LEMCS estimator in Eq. (8) and the estimated upper
and lower bound of the system survival function can be computed at
each time instant by utilizing any optimization algorithm. Note that
the upper and lower distribution parameter vectors 𝜽(𝑡𝑧𝑖) and 𝜽(𝑡𝑧𝑖),
orresponding to the maximum and minimum survival function values
t time 𝑡𝑧𝑖, are time-dependent and might vary for different time points.

One of the factors when performing the GEMCS method is the pre-
pecification of the auxiliary density 𝑝 (𝜽). It has been demonstrated

that the type of auxiliary distribution has minor effect on the perfor-
mance of GEMCS estimators [79]. In this work, it is set as the uniform
distribution within the support of 𝜽.

The most appealing aspect of both the LEMCS and GEMCS algorithm
is that only a single stochastic simulation is required in order to deal
with the imprecisions. Therefore, the traditional utilized double loop
simulation can be avoided. For both LEMCS and GEMCS, the interval
analysis and stochastic analysis has been successfully decoupled and
the computational cost is mainly governed by the one stochastic sim-
ulation performed. Furthermore, due to the merging with the survival
signature, the stochastic analysis has been separated from the system
topology, thus, only one reliability analysis with respect to the topology
is required for generating the survival signature. Besides these advanta-
geous properties of the survival signature, it is precisely the feature of
only a single required stochastic simulation, that makes the proposed
methodology so efficient and clearly distinguishes it from traditional
approaches. Due to this approach, for any NISS method combined with
the concept of survival signature, the imprecise stochastic analysis for
estimating the bounds of system survival function has been simplified
significantly.

3.3. Repeated p-box analysis for fuzzy probability approximation

In order to compute the survival function of a system with compo-
nents whose random failure times are based on distribution functions
with imprecise distribution parameters modeled by independent fuzzy
numbers with support [𝒂, 𝒄], a procedure is needed to handle these
in probabilistic models. In [50] such a procedure is provided, that is
based on a repeated p-box analysis. The procedure is shown in Fig. 3.
Each 𝑥𝛼 denotes an 𝛼-level set of the fuzzy number �̃�, representing an
interval parameter of a probability distribution and, therefore, defining
a p-box. This leads to an interval 𝑃 𝛼

𝑓 associated with the same 𝛼-
level. Repeating this p-box analysis with different 𝛼-levels leads to
the fuzzy failure probability 𝑃𝑓 . For more detailed information, see
[50]. Note that the combined advantages of the proposed methodology,
originating from the advantages of both the NISS methods and the
concept of survival signature, as well as the beneficial synergy effects
emerging from this combination, facilitate the nested p-box analysis
with significantly reduced computational effort.

3.4. Decision-making procedure

In reality, decision-makers typically encounter situations of im-
precise knowledge about component behavior as starting point. This
might be the case in design and maintenance, if, e.g., only insuf-
ficient information on the installed components has been collected
so far. Depending on the budget, gathering precise information for
each component type, e.g., via experimental campaigns, might not
be feasible, impeding proper reliability analyses. In fact, a complete
elimination of imprecision is in most cases neither necessary nor cost-
efficient. Thus, a procedure for identifying a critical level of imprecision
is crucial for cost-efficient decision-making, balancing the amount of
imprecision and costs associated with its reduction. Integral parts of
such a procedure are illustrated in Fig. 4.

To establish a basis for this procedure, the spectrum of impre-
cision can be represented by means of nested p-boxes, as proposed
in Section 3.3. Further, a certain number of 𝛼-levels is determined.
6

Note that a higher number of 𝛼-levels yields a more comprehensive
imprecision analysis. In the simplest case, each upper and lower pa-
rameter bound is relatively changed to the same extent per 𝛼-level.
Then, each 𝜽𝛼 = (𝜃𝛼1 , 𝜃

𝛼
2 ,… , 𝜃𝛼𝑞 ), with 𝛼 ∈ [0, 1] and the number of

distribution parameters 𝑞, is a tuple of parameter intervals 𝜃𝛼𝑖 of the
fuzzy distribution parameters 𝜃𝑖. Such an implementation allows the
identification of a global critical imprecision level, as the imprecisions
for each component type are altered simultaneously. A more detailed
critical imprecision identification can be conducted by considering
various mixed combinations of imprecision levels or, in a more sophis-
ticated manner, e.g., by means of importance measures in a sensitivity
analysis. However, this is beyond the scope of this paper. According
to the simplest case, for each 𝜽𝛼 the imprecise model is evaluated,
resulting in the lower survival functions �̂�𝛼

𝑠 (𝑡𝑧𝑖) = �̂�𝛼
𝑠 (𝑡𝑧𝑖,𝜽

𝛼(𝑡𝑧𝑖)) and
upper survival functions �̂�

𝛼

𝑠 (𝑡𝑧𝑖) = �̂�𝛼
𝑠 (𝑡𝑧𝑖,𝜽

𝛼
(𝑡𝑧𝑖)) at each time step

𝑡𝑧𝑖. Correspondingly, the time-dependent upper and lower distribution
parameter vectors are 𝜽

𝛼
(𝑡𝑧𝑖) ∈  = {(𝜃1, 𝜃2,… , 𝜃𝑞)|𝜃𝑖 ∈ 𝜃𝛼𝑖 ∀ 𝑖 =

, 2,… , 𝑞} and 𝜽𝛼(𝑡𝑧𝑖) ∈ . Further, a set of reliability requirements
 = {(𝑡1, 𝑅1), (𝑡2, 𝑅2),… , (𝑡𝑟, 𝑅𝑟)} is established, where the tuple (𝑡𝑗 , 𝑅𝑗 ),
with 𝑗 = 1, 2,… , 𝑟, specifies a pair of time and reliability values for
𝑟 requirements. Typically, in practice, only �̂�𝛼

𝑠 (𝑡𝑧𝑖) is relevant with
espect to . Then, �̂�𝑐𝑟

𝑠 (𝑡𝑧𝑖) = min𝛼{�̂�
𝛼
𝑠 (𝑡𝑧𝑖)|�̂�

𝛼
𝑠 (𝑡𝑗 ) ≥ 𝑅𝑗 , (𝑡𝑗 , 𝑅𝑗 ) ∈ ∀ 𝑗 =

1, 2,… , 𝑟} is the critical, i.e., last acceptable, lower survival function.
Thereby, 𝛼𝑐𝑟 = argmin𝛼{�̂�

𝛼
𝑠 (𝑡)|�̂�

𝛼
𝑠 (𝑡𝑗 ) ≥ 𝑅𝑗 , (𝑡𝑗 , 𝑅𝑗 ) ∈ ∀ 𝑗 = 1, 2,… , 𝑟} ∈

[0, 1] indicates the critical 𝛼-level. Note that lower distribution bounds
not necessarily yield lower response function bounds and vice versa. In
accordance, 𝜽𝑐𝑟 = [𝜽𝛼𝑐𝑟 ,𝜽

𝛼𝑐𝑟 ] is the interval of acceptable imprecision.
s a consequence, imprecision has to be reduced at least up to the
ounds of 𝜽𝑐𝑟. This reduction can be achieved for instance by investing
ore budget in experimental campaigns, destructive testing, etc.

The procedure allows decision-makers the straightforward and reli-
ble identification of acceptable levels of imprecision in the underlying
ailure probabilities, e.g., in the design of new systems. Corresponding
o the requirements defined in the right graph of Fig. 4, the acceptable
-level is 𝛼𝑐𝑟 = 0.7 with the tuple of parameter intervals 𝜽𝑐𝑟 =
𝜃0.71 , 𝜃0.72 , 𝜃0.73 ) contained in the tuple of fuzzy numbers �̃� = (𝜃1, 𝜃2, 𝜃3).

This decision-making procedure is demonstrated for the case study in
Section 5.3.

4. Multi-stage high-speed axial compressor

Axial compressors are complex multi-component machines that are
employed in major sectors of society, e.g., in the industrial sector, as a
key component of gas turbines for electricity production or as part of
aircraft engines in the public transport or military sector. Therefore, in
both design and maintenance, it is critical to consider as many system
performance influencing, certain and uncertain, information as possible
to maximize the reliability of the compressor efficiently. In order to
illustrate this, the proposed method is applied to a functional model of
an axial compressor.

4.1. Model

In [80] a functional model of an axial compressor is developed
as the foundation for a reliability analysis. This model has been cre-
ated to represent the reliability characteristic and functionality of the
four-stage high-speed axial compressor of the Institute for Turboma-
chinery and Fluid Dynamics at Leibniz Universität Hannover. Detailed
information about this axial compressor is provided in [81].

The functional model captures the dependence of the overall com-
pressor performance, namely, the total-to-total pressure ratio and the
total-to-total isentropic efficiency, on the surface roughness of the
individual blades, arranged in rotor and stator rows. It is based on
the results of a sensitivity analysis of an aerodynamic model of the
compressor. A network representation of the functional model is shown
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Fig. 3. Nested p-box analysis to determine a fuzzy failure probability.
Source: Adapted from [50].
Fig. 4. Decision-making procedure.
Fig. 5. Functional model of the multi-stage high-speed axial compressor.

n Fig. 5. Each component represents either a stator (S1–S4) or rotor
ow (R1–R4).

The rows are classified into four component types. This classifica-
ion as well as the component arrangement is chosen based on the
ffect of their blade roughness on the two performance parameters of
he axial compressor. More specifically, a connection between start and
nd implies a functioning state of the compressor and an interruption
f this connection means exceeding a roughness-related performance
ariation of at least 25%, corresponding to a non-functioning state.
ore detailed information on the functional model and its formulation

an be obtained from [80].

.2. Reliability analysis

For the time-dependent reliability analysis, each row, i.e., each com-
onent of the functional model, is characterized by a failure probability
epending on its component type. Note that the model is thus formally
7

a reliability block diagram (RBD) [9]. In practice, the underlying dis-
tribution functions have to be derived from existing operational data.
However, in order to prove the usability of the proposed method and
the capability of dealing with imprecisions, exponential functions with
imprecise parameters are assumed for all components. The imprecise
parameters are modeled by triangular fuzzy numbers. Depending on
the respective component type, the following parameters are assumed:
𝜆1 = (0.1∕0.15∕0.2) for type 1; 𝜆2 = (0.2∕0.25∕0.3) for type 2; 𝜆3 =
(0.4∕0.5∕0.6) for type 3; 𝜆4 = (0.6∕0.7∕0.8) for type 4.

After determining the survival signature of the compressor, in a
first step, the imprecise parameters are taken into account by approx-
imating them with a single p-box, being the base of each triangle
fuzzy parameter, corresponding to an 𝛼-level of 𝛼 = 0. The imprecise
parameters result as: 𝜆1 ∈ [0.1, 0.2] for type 1; 𝜆2 ∈ [0.2, 0.3] for type
2; 𝜆3 ∈ [0.4, 0.6] for type 3; 𝜆4 ∈ [0.6, 0.8] for type 4. Based on the
functional compressor representation, shown in Fig. 5, the upper and
lower bounds of the survival function of the compressor are obtained
and displayed in Fig. 6: 1. via traditional double loop approach; 2. via
LEMCS algorithm with 𝜆∗1 = 0.1, 𝜆∗2 = 0.2, 𝜆∗3 = 0.4, 𝜆∗4 = 0.6 as the best
fits for 𝜆∗𝑖 ; 3. via GEMCS algorithm with 𝑝(𝝀) assumed to be uniform;
4. analytically. Note that the sampling density for LEMCS estimation
is generated by setting 𝜆∗𝑖 at their lower bounds. For exponential
distribution, only with this setting, the support of the sampling density
will coincide with the support of the imprecise probability models when
their distribution parameters vary in their imprecise intervals. This
principle for specifying the sampling density is referred to in [61]. The
double loop approach is conducted with 5000 samples (failure times)
on the inner loop and 1000 samples (𝜆-values) on the outer loop. In
other words: 1000 𝜆-vectors are sampled (epistemic space), represent-
ing 1000 different probabilistic models. Each model is solved by MCS
algorithm 2 in [12], generating 5000 failure time vectors per model,
i.e., a total of 5 000 000 samples. Then the enveloping system reliability
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Fig. 6. Survival function bounds of the functional compressor model via double loop approach, LEMCS algorithm, GEMCS algorithm and analytically.
T
D
s

s determined by identifying the minimum and maximum survival
unction value for each time step. Note that the number of samples for
he double loop approach, i.e., the number of failure times as well as the
umber of samples in epistemic space, is adopted from [12]. For both
EMCS and GEMCS where only one simulation is required, 100 000
amples (failure times) are generated each, i.e., only 1∕50th of the
ample size compared to the double loop approach. Time discretization
s set to 𝛥𝑡 = 0.05. Furthermore, the precise survival function of the
xial compressor model, i.e., with distribution parameters 𝜆𝑖 = 𝑏𝑖, is
etermined and displayed in Fig. 6 as well.

Clearly, both the LEMCS and GEMCS algorithm approximate the
nalytically calculated upper and lower bound of the survival function
ccurately with relative errors of: 𝛿𝐿𝐸𝑀𝐶𝑆 = 0.23%, 𝛿𝐿𝐸𝑀𝐶𝑆 = 0.23%

and 𝛿𝐺𝐸𝑀𝐶𝑆 = 0.29%, 𝛿𝐺𝐸𝑀𝐶𝑆 = 0.3%, where 𝛿 relates to the upper
nd 𝛿 to the lower bound of the survival function. Despite a 50-times
ncreased sample size, the double loop approach performs significantly
orse and does not capture the outer boundaries of the survival func-

ion correctly, see Fig. 6. Correspondingly, the relative errors are larger
ith: 𝛿𝐷𝑜𝑢𝑏𝑙𝑒𝐿𝑜𝑜𝑝 = 0.98% and 𝛿𝐷𝑜𝑢𝑏𝑙𝑒𝐿𝑜𝑜𝑝 = 2.58%. To achieve the same
uality of results with the double loop approach as with the LEMCS
r GEMCS, significantly more samples than the 5 000 000 would be
equired.

It shall be noted, that, in general, the GEMCS algorithm has bet-
er global performance than the LEMCS algorithm, as demonstrated
nd discussed in the following, second case study. Further, the ap-
roximation quality of the LEMCS algorithm highly depends on the
hoice, respectively, on the knowledge of the preselected distribution
arameters 𝜆∗𝑖 .

In a second step, by performing a nested p-box analysis to determine
uzzy failure probabilities, described in Section 3.3, further bounds
f the survival function for different imprecision levels can now be
etermined, based on various 𝛼-levels. With regard to the survival
ignature, these only represent a change in the probability structure.
ue to the separation between topological and probability structure,

he survival signature does not have to be recalculated, neither for
arameter variations within an 𝛼-level, nor for each new 𝛼-level, only
he probability structure has to be adapted. This results in a substantial
eduction of the computational effort.

The results of the LEMCS algorithm for different 𝛼-levels are shown
n Fig. 7. Note that for each 𝛼-level just one single stochastic simulation,
ccording to Section 3.1, has to be performed. Clearly, these results sup-
ort decision-makers in design and maintenance processes of complex
apital goods to estimate the level of imprecision that is bearable and
8

till ensures acceptable reliability.
able 1
istribution functions and parameters for each component type of the complex

ystem.
Component type Distribution Parameters Triangular fuzzy numbers

1 Weibull [scale, shape] [(3.6∕4.0∕4.4), (2.1∕2.25∕2.4)]
2 Exponential [𝜆] [(0.1∕0.15∕0.2)]
3 Weibull [scale, shape] [(2.9∕3.05∕3.2), (0.8∕0.95∕1.1)]
4 Log-normal [𝜇, 𝜎] [(2.2∕2.35∕2.5), (3.3∕3.4∕3.5)]
5 Exponential [𝜆] [(0.2∕0.25∕0.3)]
6 Gamma [scale, shape] [(2.1∕2.2∕2.3), (3.2∕3.35∕3.5)]

5. Complex system

In [12] the authors test their introduced simulation approaches
for reliability analysis on an arbitrary complex system. In order to
demonstrate the broad applicability as well as efficiency of the method
proposed in this work, the complex system from [12] is considered and
a reliability analysis is conducted, taking into account imprecisions.

5.1. Model

The complex system consists of 14 components each of which is
assigned to one of six component types. Fig. 8 illustrates the complex
system and the assignment of components to their types. A connection
between the start and destination node indicates a functioning and an
interruption of this connection a non-functioning state of the system.

5.2. Reliability analysis

Each system component is characterized by a specific time-
dependent failure behavior depending on its assigned component type.
Again, in practice, the underlying distribution functions, describing this
behavior, need to be derived from existing operational data. However,
for the purpose of proof of concept and applicability, the arbitrary
distributions and corresponding imprecise parameters shown in Table 1
are assumed. Note that thus the complex system is formally an RBD.
As for the reliability analysis in the previous section, the imprecise
distribution parameters are modeled by triangular fuzzy numbers.

The survival signature of the complex system is provided in Tables 2
and 3. For the sake of conciseness, only the non-trivial survival sig-
nature values are shown, i.e., all values that are not equal to zero or
one.
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Fig. 7. Survival function bounds of a functional compressor model via LEMCS algorithm with fuzzy probability approximation.
Fig. 8. Representation of the arbitrary complex system with 14 components.
Source: Adapted from [12].
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For the time-dependent reliability analysis, the imprecise distribu-
ion parameters are first assumed to be precise by considering just
he vertex 𝑏 of each triangular fuzzy number. Second, the analysis is
onducted by approximating the distribution parameters with a single
-box, corresponding to the base boundaries 𝑎 and 𝑐 of the fuzzy
umbers. Third, the full imprecision is addressed in Section 5.3 by
onsidering the fuzzy numbers according to the repeated p-box analysis
escribed in Section 3.3.

In Fig. 9 the resulting survival function bounds of the complex
ystem are displayed: 1. via traditional double loop approach; 2. via
EMCS algorithm with 𝜃∗𝑖 corresponding to the upper base bounds 𝑐𝑖
f each fuzzy parameter for all two-parametric distributions and with
∗
𝑖 corresponding to the lower base bounds 𝑎𝑖 for both exponential
istributions, see Table 1; 3. via GEMCS algorithm with 𝑝(𝜽) assumed
o be uniform; 4. analytically. Again, the double loop approach is con-
ucted with 5000 samples (failure times) on the inner loop and 1000
amples (𝜽-values) on the outer loop. As in the previous case study, the
umber of samples for the double loop approach is adopted from [12].
or the one required LEMCS and GEMCS simulation, 200 000 samples
failure times) are generated each, i.e., only 1∕25th of the sample size
9

o

ompared to the double loop approach. Time discretization is again set
o 𝛥𝑡 = 0.05. In addition, the precise survival function of the complex
ystem, i.e., with distribution parameters 𝜃𝑖 = 𝑏𝑖, is determined and
isplayed in Fig. 9.

As in the previous analysis of the axial compressor, both the LEMCS
nd GEMCS algorithm approximate the analytically determined bounds
f the survival function of the complex system with high accuracy, see
ig. 9. However, considering the relative errors of both algorithms, it
s noticeable that the GEMCS approximates both bounds equally well,
ith errors of 𝛿𝐺𝐸𝑀𝐶𝑆 = 0.15% and 𝛿𝐺𝐸𝑀𝐶𝑆 = 0.12%, whereas the

LEMCS algorithm provides a deviation in the quality of the bound
approximation that is more significant with 𝛿𝐿𝐸𝑀𝐶𝑆 = 0.06% and
𝛿𝐿𝐸𝑀𝐶𝑆 = 0.32%. The different bound qualities provided by the LEMCS
are due to its locality property that is determined by the choice of the
preselected 𝜽∗. The LEMCS performs locally, i.e., in the region of 𝜽∗

xcellent but worse on a global scale. However, since with the GEMCS
ll failure times are sampled uniformly over the entire range of 𝜽, it
as better global performance, as shown by these results. It shall be
oted that in case of rare failure events, as stated in [61] for both
riginal NISS methods, also for the adapted method proposed in this
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Fig. 9. Survival function bounds of the complex system, displayed in Fig. 8, via double loop approach, LEMCS algorithm, GEMCS algorithm and analytically.
Table 2
Non-trivial survival signature values of the complex system, shown in Fig. 8 —
Part 1.
𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑙6 𝛷

(

𝑙1 ,… , 𝑙6
)

3 1 [1,2] 0 1 0 1/20
3 1 [0,1,2] [0,1] 0 1 1/20
3 1 0 1 1 [0,1] 1/20
3 1 0 0 1 1 1/20
3 2 [1,2] [0,1] 0 1 1/10
3 2 [1,2] 0 1 0 1/10
3 2 0 1 1 [0,1] 1/10
3 2 0 1 0 1 1/10
3 2 0 0 [0,1] 1 1/10
3 1 [1,2] 1 1 [0,1] 1/10
3 1 [1,2] 0 1 1 1/10
3 3 [0,1,2] [0,1] 0 1 3/20
3 3 [1,2] 0 1 0 3/20
3 3 0 1 1 [0,1] 3/20
3 3 0 0 1 1 3/20
3 4 [0,1,2] [0,1] 0 1 1/5
3 4 [1,2] 0 1 0 1/5
3 4 0 1 1 [0,1] 1/5
3 4 0 0 1 1 1/5
3 2 [1,2] 1 1 [0,1] 1/5
3 2 [1,2] 0 1 1 1/5
4 1 [1,2] [0,1] 0 1 1/5
4 1 [1,2] 0 1 0 1/5
4 1 0 1 1 [0,1] 1/5
4 1 0 0 [0,1] 1 1/5
4 1 0 1 0 1 1/5
3 3 [1,2] 1 1 [0,1] 3/10
3 3 [1,2] 0 1 1 3/10

work, instabilities may occur, depending on the sample size. Guidance
on selecting an appropriate sample size is provided at the end of this
section. If rare failure events are of special concern, it is recommended
to use the NISS methods driven by advanced stochastic simulation
techniques such as subset simulation and line sampling, see [75,77,78]
for more details.

The difference between both algorithms is especially apparent for
complex systems such as the one considered in Fig. 8, with various
component types and various underlying multi-parametric and impre-
cise failure distribution functions. However, for less complex systems
with single-parametric distribution functions of the same type as given
for the axial compressor model in the previous section, the LEMCS
performs equally well at both bounds and the errors are barely different
10
Table 3
Non-trivial survival signature values of the complex system, shown in Fig. 8 —
Part 2.
𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑙6 𝛷

(

𝑙1 ,… , 𝑙6
)

4 2 [0,1,2] [0,1] 0 1 11/30
4 2 [1,2] 0 1 0 11/30
4 2 0 1 1 [0,1] 11/30
4 2 0 0 1 1 11/30
3 4 [1,2] 1 1 [0,1] 2/5
3 4 [1,2] 0 1 1 2/5
4 1 [1,2] 1 1 [0,1] 2/5
4 1 [1,2] 0 1 1 2/5
4 3 [0,1,2] [0,1] 0 1 1/2
4 3 [1,2] 0 1 0 1/2
4 3 0 1 1 [0,1] 1/2
4 3 0 0 1 1 1/2
5 1 [0,1,2] [0,1] 0 1 1/2
5 1 [1,2] 0 1 0 1/2
5 1 0 1 1 [0,1] 1/2
5 1 0 0 1 1 1/2
4 4 [0,1,2] [0,1] 0 1 3/5
4 4 [1,2] 0 1 0 3/5
4 4 0 1 1 [0,1] 3/5
4 4 0 0 1 1 3/5
4 2 [1,2] 1 1 [0,1] 2/3
4 2 [1,2] 0 1 1 2/3
4 [3,4] [1,2] 1 1 [0,1] 4/5
4 [3,4] [1,2] 0 1 1 4/5
5 2 [0,1,2] [0,1] 0 1 5/6
5 2 [1,2] 0 1 0 5/6
5 2 0 1 1 [0,1] 5/6
5 2 0 0 1 1 5/6

from those of the GEMCS. Similar to the previous analysis of the axial
compressor, the traditional double loop approach provides substan-
tially worse approximations despite a significantly larger sample size,
as clearly shown in Fig. 9, with errors of 𝛿𝐷𝑜𝑢𝑏𝑙𝑒𝐿𝑜𝑜𝑝 = 2.07% and
𝛿𝐷𝑜𝑢𝑏𝑙𝑒𝐿𝑜𝑜𝑝 = 1.93%. Again, as in the previous case study, to achieve
the same quality of results with the double loop approach as with the
LEMCS or GEMCS, significantly more samples than the 5 000 000 would
be required.

In Fig. 10 a convergence study for the complex system, illustrated in
Fig. 8, is shown. Both algorithms are considered: On the left, the results
of the GEMCS and, on the right, the results of the LEMCS algorithm
are depicted. The graphs display the relative error between the results

of the proposed estimator algorithms and the analytically evaluated
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Fig. 10. Convergence study of the GEMCS and LEMCS algorithms with the relative error of the corresponding survival function bounds with respect to the sample size over 500
valuations each.
urvival function bounds, plotted over various sample sizes with 500
valuations each, reaching from 100 up to 250 000 samples. On the
op, the relative error is evaluated for the upper survival function bound
nd, on the bottom, the relative error is evaluated for the lower survival
unction bound. The errors decrease significantly with increasing sam-
le size and, clearly, for both algorithms and both bounds convergence
s to observe. For the upper bound of the survival function via LEMCS
lgorithm, even small sample sizes are sufficient to yield low median
rrors and variances compared to the GEMCS results due to the specific
hoice of 𝜽∗. In contrast, for the lower bound, the LEMCS performs

significantly worse than the GEMCS. This demonstrates the superior
global performance of the GEMCS algorithm compared to the LEMCS,
while the LEMCS algorithm shows better local performance. However,
considering the GEMCS algorithm, the slightly larger upper median
error indicates the upper survival function bound as a more challenging
region for the global estimator. As stated in Section 4.2 for exponential
distributions, this observation relates to the point that the support of
the sampling density should ideally coincide with the support of the
density with parameters varying in their imprecise intervals, see [61].
However, this condition is not given for the majority of GEMCS samples
at the upper bound, leading to the slightly worse results compared to
11

the lower bound.
As a supplementary decision-making indicator, the coefficient of
variation can be considered to adaptively specify the required sample
size. For instance, a threshold can be set for the coefficient of variation,
e.g., 5%. If the estimated coefficient is above this threshold, more
samples should be considered in order to reduce the variation.

5.3. Imprecision decision-making

Given the fuzzy numbers specified in Table 1, the spectrum of
imprecision is represented by means of a repeated p-box analysis as
described in Section 3.3. The nested p-box analysis conducted via
the GEMCS algorithm provides further survival function bounds of
the complex system, corresponding to different 𝛼-levels, as shown
in Fig. 11. Due to the separation between topological and proba-
bility structure, the survival signature does not have to be recal-
culated, neither for parameter variations within an 𝛼-level, nor for
each new 𝛼-level, only the probability structure has to be adapted.
Consequently, for each 𝛼-level only a single stochastic simulation,
according to Section 3.2, has to be performed. This enables compre-
hensive reliability analyses with substantially reduced cost compared
to traditional approaches. In order to perform decision-making con-

cerning the reduction of system components inherent imprecision,
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Fig. 11. Survival function bounds of the complex system, displayed in Fig. 8, via GEMCS algorithm with fuzzy probability approximation.
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eliability requirements can be established, according to Section 3.4.
n this case study, requirements are arbitrarily assumed with  =
{(𝑡1, 𝑅1), (𝑡2, 𝑅2), (𝑡3, 𝑅3)} = {(1.5, 0.76), (2, 0.49), (3, 0.21)}, as illustrated
in Fig. 11. Due to 𝛼𝑐𝑟 = argmin𝛼{�̂�

𝛼
𝑠 (𝑡)|�̂�

𝛼
𝑠 (𝑡𝑗 ) ≥ 𝑅𝑗 , (𝑡𝑗 , 𝑅𝑗 ) ∈ ∀ 𝑗 =

1, 2, 3} = argmin𝛼{�̂�
𝛼
𝑠 (𝑡)|�̂�

𝛼
𝑠 (1.5) ≥ 0.76, �̂�𝛼

𝑠 (2) ≥ 0.49, �̂�𝛼
𝑠 (3) ≥ 0.21} =

argmin𝛼{�̂�
0.8
𝑠 (𝑡), �̂�1

𝑠 (𝑡)} = 0.8. Note that �̂�1
𝑠 (𝑡) = �̂�1

𝑠 (𝑡) = �̂�
1

𝑠 (𝑡). Im-
recision should be reduced at least up to a level of 𝛼 = 0.8 for all
omponent types corresponding to the tuple of parameter intervals of
𝑐𝑟 = (𝜃0.81 , 𝜃0.82 ,… , 𝜃0.810 ) with 𝜃0.81 = [3.92, 4.08], 𝜃0.82 = [2.22, 2.28],

𝜃0.83 = [0.12, 0.18], 𝜃0.84 = [3.02, 3.08], 𝜃0.85 = [0.92, 0.98], 𝜃0.86 = [2.32, 2.38],
𝜃0.87 = [3.38, 3.42], 𝜃0.88 = [4.00, 4.33], 𝜃0.89 = [3.32, 3.38], 𝜃0.810 = [2.18, 2.22].

6. Conclusion and outlook

The present paper introduces a novel methodology supporting
decision-making in the context of system reliability analysis, taking into
account imprecisions. It allows to efficiently estimate the system reli-
ability in design and maintenance processes, considering uncertainty
in various levels, underlying the system component behavior. Thereby,
decision-makers are enabled to identify a bearable level of imprecision
that still ensures acceptable system reliability.

The proposed method consists of the sophisticated union of the
concept of survival signature with two adapted extended MCS methods
(NISS methods), thus representing a novel development combining two
approaches from two different fields. Considering imprecision into the
probabilistic structure by means of fuzzy probabilities and utilizing
a nested p-box analysis for approximating this fuzziness allows for
the ability of critical imprecision identification. The provided method
combines both tremendous advantages of its two main components:
1. the application of the concept of survival signature dramatically
reduces the computational effort for the analysis, since once it has
been computed, any number of probability structures can be tested
without having to recompute it and 2. the utilization of both adapted
NISS methods is accompanied by the necessity of only a single stochas-
tic simulation per considered uncertainty level and consequently a
substantially reduced sample size compared to traditional approaches,
leading to another significant improvement of efficiency. Precisely
these two characteristics and the symbiosis between them make the
proposed methodology so efficient and widely applicable.

The novel approach is employed to the functional model of an axial
compressor as well as to an arbitrary complex system. A comparison of
analytical and numerical results proves the applicability of the method.
12

n

However, in general, the LEMCS exhibits more local accuracy, while
the GEMCS possesses better global performance and leads to superior
results, especially for systems with complex imprecise probability struc-
ture. In terms of choice of method and application area, the LEMCS is
preferable if accurate local performance is required and the knowledge
for an educated guess of 𝜽∗ is available. While GEMCS should be
pplied if no prior knowledge about the uncertain system behavior
s present. Further, a combination of both methods can be practical
s well. First, GEMCS can be utilized to evaluate the neighborhood
n which the parameter vector 𝜽 yields the critical survival function
ound. Second, LEMCS can be applied to compute the results in the
esired area of interest more accurately.

Further research should address the challenge of computing the sur-
ival signature for lifelike, large and complex systems with components
f various types since it is highly demanding or even unfeasible. Thus,
mproved methods for determining the survival signature or enhanced
ethods for approximations are required. In addition, future work of

he authors will address an improved rare failure event estimation and
urther performance improvements, such as the utilization of an HDMR.
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