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A B S T R A C T

With the release of the latest generations of sequencing machines, the
cost of sequencing a whole human genome has dropped to less than
US$1,000. The potential applications in several fields lead to the forecast
that the amount of DNA sequencing data will soon surpass the volume
of other types of data, such as video data. In this dissertation, we present
novel data compression technologies with the aim of enhancing storage,
transmission, and processing of DNA sequencing data.

The first contribution in this dissertation is a method for the compres-
sion of aligned reads, i.e., read-out sequence fragments that have been
aligned to a reference sequence. The method improves compression by
implicitly assembling local parts of the underlying sequences. Compared
to the state of the art, our method achieves the best trade-off between
memory usage and compressed size.

Our second contribution is a method for the quantization and com-
pression of quality scores, i.e., values that quantify the error probability
of each read-out base. Specifically, we propose two Bayesian models that
are used to precisely control the quantization. With our method it is
possible to compress the data down to 0.15 bit per quality score. Notably,
we can recommend a particular parametrization for one of our models
which—by removing noise from the data as a side effect—does not lead
to any degradation in the distortion metric. This parametrization achieves
an average rate of 0.45 bit per quality score.

The third contribution is the first implementation of an entropy codec
compliant to MPEG-G. We show that, compared to the state of the art, our
method achieves the best compression ranks on average, and that adding
our method to CRAM would be beneficial both in terms of achievable
compression and speed.

Finally, we provide an overview of the standardization landscape,
and in particular of MPEG-G, in which our contributions have been
integrated.

Keywords: compression, DNA sequencing, MPEG-G
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K U R Z FA S S U N G

Mit der Einführung der neuesten Generationen von Sequenziermaschinen
sind die Kosten für die Sequenzierung eines menschlichen Genoms auf
weniger als 1.000 US-Dollar gesunken. Es wird prognostiziert, dass die
Menge der Sequenzierungsdaten bald diejenige anderer Datentypen,
wie z.B. Videodaten, übersteigen wird. Daher werden in dieser Arbeit
neue Datenkompressionsverfahren zur Verbesserung der Speicherung,
Übertragung und Verarbeitung von Sequenzierungsdaten vorgestellt.

Der erste Beitrag in dieser Arbeit ist eine Methode zur Komprimierung
von alignierten Reads, d.h. ausgelesenen Sequenzfragmenten, die an
eine Referenzsequenz angeglichen wurden. Die Methode verbessert die
Komprimierung, indem sie die Reads nutzt, um implizit lokale Teile der
zugrunde liegenden Sequenzen zu schätzen. Im Vergleich zum Stand der
Technik erzielt die Methode das beste Ergebnis in einer gemeinsamen
Betrachtung von Speichernutzung und erzielter Komprimierung.

Der zweite Beitrag ist eine Methode zur Quantisierung und Kom-
primierung von Qualitätswerten, welche die Fehlerwahrscheinlichkeit
jeder ausgelesenen Base quantifizieren. Konkret werden zwei Bayes’sche
Modelle vorgeschlagen, mit denen die Quantisierung präzise gesteuert
werden kann. Mit der vorgeschlagenen Methode können die Daten auf
bis zu 0,15 Bit pro Qualitätswert komprimiert werden. Besonders hervor-
zuheben ist, dass eine bestimmte Parametrisierung für eines der Modelle
empfohlen werden kann, die – durch die Entfernung von Rauschen aus
den Daten als Nebeneffekt – zu keiner Verschlechterung der Verzerrungs-
metrik führt. Mit dieser Parametrisierung wird eine durchschnittliche
Rate von 0,45 Bit pro Qualitätswert erreicht.

Der dritte Beitrag ist die erste Implementierung eines MPEG-G-kon-
formen Entropie-Codecs. Es wird gezeigt, dass der vorgeschlagene Codec
die durchschnittlich besten Kompressionswerte im Vergleich zum Stand
der Technik erzielt und dass die Aufnahme des Codecs in CRAM sowohl
hinsichtlich der erreichbaren Kompression als auch der Geschwindigkeit
von Vorteil wäre.

Abschließend wird ein Überblick über Standards zur Komprimierung
von Sequenzierungsdaten gegeben. Insbesondere wird hier auf MPEG-G
eingangen, da alle Beiträge dieser Arbeit in MPEG-G integriert wurden.

Stichworte: Kompression, DNA-Sequenzierung, MPEG-G
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N O TAT I O N

Here we provide a concise reference describing the notation throughout
this dissertation. A similar notation is used in [GBC16].

numbers and arrays

a A scalar

a A vector

A A matrix

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

(a0 a1 · · ·an−1)T A vector consisting of the n elements a0
to an−1

indexing

ai Element i of vector a, with indexing starting
at 0

Ai,j Element i, j of matrix A, with indexing start-
ing at 0

xi



xii notation

sets

A A set

R The set of real numbers

Z The set of integers

N The set of natural numbers, including 0

|A| The cardinality of set A

{0, 1} The set containing 0 and 1

{0, 1, . . . ,n} The set of all integers between 0 and n

[a,b] The real interval including a and b

(a,b] The real interval excluding a but includ-
ing b

A \ B Set subtraction, i.e., the set containing the
elements of A that are not in B

{x ∈ R | x > 0} Set-builder notation: the set of all strictly
positive real numbers

functions

f : A→ B The function f with domain A and range B

f(x)
∣∣
x=0 Value obtained by evaluating the function f

at x = 0

f(x;y) A function f of x parametrized by y

probability and information theory

P(a) A probability distribution over a discrete
random variable

p(a) A probability distribution over a continuous
random variable

a ∼ P Random variable a has distribution P

Ea∼P[f(a)] Expectation of f(a) with respect to P(a)

vara∼P(f(a)) Variance of f(a) under P(a)

cova∼P(f(a),g(a)) Covariance of f(a) and g(a) under P(a)
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1
I N T R O D U C T I O N

In the year 1977, the first full genome was sequenced: it was the genome of
bacteriophage ΦX174, consisting of a mere 5,386 base pairs (bp) [San+77].
Since then, the techniques used for DNA sequencing, i.e., the process
of determining the sequence of nucleotides in DNA, have made great
progress.

DNA is a molecule that carries the genetic information responsible for
growth, development, functioning, and reproduction of all organisms and
many viruses on earth. In 1953, James Watson and Francis Crick identified
the double helix molecular structure of DNA [WC53], depicted schemat-
ically in Figure 1.1. Aided by technologies such as PCR, researchers
were able to complete the sequencing of more and longer genomes: the
genome of bacteriophage λ (48,502 bp) was published in 1982 [San+82],
and the genome of Escherichia coli (approximately 4.6 million bp) was
published in 1997 [Bla+97]. These efforts culminated in the completion of
the HGP [Int01]. An initial rough draft of the human genome (approxi-
mately 3 billion bp) was published in 2000, and the project was declared
complete in 2003.

In the mid to late 1990s, several new methods for DNA sequencing
were developed. These were called high-throughput sequencing (HTS) or
next-generation sequencing (NGS) methods to distinguish them from the
earlier methods. By the year 2000, the first commercial DNA sequencing
machines that implemented these new methods were available. In the
21

st century, many projects—such as the 1000 Genomes Project [The10],
with the aim to create a detailed catalog of human genetic variation, and
TCGA1, targeting genetic mutations responsible for cancer—have been
driving the development of, and benefited from, HTS technologies.

The HGP took almost 13 years to complete and it cost approximately
US$3 billion; that is roughly US$1 per bp. However, with the introduction

1 https://www.cancer.gov/tcga

1
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2 introduction

Figure 1.1: The double helix molecular structure of DNA. Reprinted by permission
from Springer Nature [WC53].

of the latest generation of sequencing equipment, the cost of sequencing
a whole human genome has been reduced to less than US$1,000

2.
The potential applications in several fields—such as precision medicine

and oncology—lead to the forecast that the amount of DNA sequencing
data will soon surpass the volume of video data uploaded to YouTube,
or tweets posted on Twitter [Ste+15]. By that point the costs associated
with storing, transmitting, and processing the large volumes of DNA
sequencing data will largely exceed the sequencing costs.

The main objective of this dissertation is the development of compres-
sion technology that facilitates scalable DNA sequencing data storage,
transmission, and access. Consequently, the developed technologies can
help create an ecosystem of applications, as well as eventually democra-
tize and fully exploit its yet-to-be-discovered potential.

1.1 motivation

Nowadays, HTS technologies are used to generate the majority of DNA
sequencing data. HTS technologies achieve a high throughput by mas-
sively parallel sequencing of DNA fragments, i.e., they do not sequence

2 https://www.genome.gov/sequencingcostsdata

https://www.genome.gov/sequencingcostsdata


1.1 motivation 3

input: DNA library preparation sequencing output: reads

Figure 1.2: DNA sequencing workflow. The input DNA is preprocessed (“library
preparation”) before the actual sequencing. The sequencing yields a
set of reads. Each read corresponds to a single DNA fragment.

entire DNA molecules3. A set of preprocessing steps is necessary to
achieve a high throughput. These preprocessing steps include the frag-
mentation of DNA molecules into a platform-specific size range and
the ligation of specialized adapters to fragment ends. Also, to achieve
the mentioned parallelism, the DNA fragments are duplicated multiple
times. These preprocessing steps are summarized under the term “library
preparation”. The actual sequencing, i.e., the reading of DNA fragments,
is then performed by a sequencing machine implementing a specific HTS
technology. The output of the sequencing process is a set of sequence
“read-outs”, or “reads”, in short. For each DNA fragment in the library,
an estimate for each base (“base call”) is produced by the sequencing
machine. The reads can be thought of as strings randomly sampled from
the DNA molecule(s) that are being sequenced. Typically, each base call is
accompanied by a quality score which indicates the confidence in the base
call. Figure 1.2 schematically illustrates the DNA sequencing workflow.

During the last two decades DNA sequencing costs decreased rapidly
and significantly. Figure 1.3 shows the decrease in DNA sequencing
costs per human genome. The sequencing of the human genome in the
course of the HGP (1990–2003) cost approximately US$3 billion [Int01].
However, around 2001, the cost was estimated to already have decreased
to around US$100 million. Until 2007 this cost dropped by roughly one
order of magnitude to approximately US$10 million. Although by the
year 2000, the first commercial DNA sequencing machines implement-
ing NGS methods were available, they only saw widespread market
adoption around 2007. Consequently, in the following decade the cost

3 So-called “third-generation” sequencing technologies (e.g., nanopore sequencing) are able to
sequence entire DNA molecules. However, the data generated by third-generation technologies
accounts only for a minor share of the entire DNA sequencing data being generated.
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Figure 1.3: DNA sequencing costs per human genome. Data from: https://www.
genome.gov/sequencingcostsdata.

dropped even more drastically. Finally, with the introduction of the latest
generation of sequencing equipment, the cost of sequencing a whole
human genome has been reduced to less than US$1,000. The decrease in
cost is even outpacing Moore’s law. Originally, Moore’s law is based on
the finding that the number of transistors in a dense integrated circuit
doubles approximately every two years. Applied to the subject matter,
Moore’s law would predict that the cost of the sequencing of a human
genome would be halved every two years. While this roughly holds true
for the period from 2001 to 2007, the advent of HTS technologies led to a
tremendous drop in the cost of DNA sequencing in the period from 2007

to 2009. During these two years the cost of DNA sequencing per hu-
man genome dropped by a factor of approximately 40, far outpacing the
cost that would have been predicted by Moore’s law. The reduced cost
facilitates larger research studies, precision medicine, and the commer-
cialization of DNA sequencing. However, this and other trends in HTS
data generation indicate that storage, transmission, and bandwidth costs
will soon surpass the cost of sequencing and become the main bottleneck

https://www.genome.gov/sequencingcostsdata
https://www.genome.gov/sequencingcostsdata
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DNA molecule

reads

sequencing depth

Figure 1.4: Reads, sequencing depth, and coverage. The top of the figure schemati-
cally shows a DNA molecule which is subject to sequencing. Below, the
set of reads which is generated by the sequencing process is depicted.
Here we assume that the reads were produced with a sequencing
technology that yields reads with a constant length. A location with a
sequencing depth of 5 is highlighted. The coverage is the average se-
quencing depth over all locations. In this example the coverage is 4.5×.

in omics4 as well as in the application of HTS data to precision medicine.
One approach to mitigate the burden of HTS data on storage, bandwidth,
and transmission is the use of high-performance compression techniques
specifically designed for HTS data.

Viewed from another angle, the drop in cost of DNA sequencing also
facilitates more sophisticated research studies by performing “deeper”
sequencing experiments. The sequencing depth indicates how many
reads are estimated to overlap a specific location on the DNA molecule
that was sequenced. The coverage is the average sequencing depth over
all locations. It is usually expressed as for example “30×”. Achieving
more coverage is costly, since more consumables (for library preparation
and operating sequencing machines) must be accounted for. However, in
most research settings higher coverage is desirable as it facilitates higher
certainties about the underlying DNA molecules. Figure 1.4 illustrates
the relations between reads and sequencing depth as well as coverage.

Reads as output by a sequencing machine are typically stored in the
FASTQ format [Coc+10]. The FASTQ format is a textual file format where
each base is stored as an 8-bit ASCII character. Usually, the characters
A, C, G, and T are used for the bases adenine, cytosine, guanine, and
thymine, respectively. Also, in the case that a particular base could not
be identified (“called”), the character N is typically used. In general, any
character from the IUPAC nucleotide codes could be used. Also, each
base is accompanied by a quality score, a value indicating the confidence
in the base call. Each quality score is also stored as 8-bit ASCII character.

4 The term “omics” encompasses various biology disciplines whose names end in the suffix
“-omics”, such as genomics and proteomics.
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Table 1.1: Transmission times of human WGS data. The sizes are approximate and
correspond to the sequencing of a whole human genome at a coverage
of 200×.

Contents Format Size Bandwidth
25 Mbit/s 1 Gbit/s

Reads FASTQ ≈ 1,285 GiB 5.1 days 3.1 hours
Alignments SAM ≈ 2,570 GiB 10.2 days 6.2 hours

The FASTQ format also includes a string identifying each read. We refer
the reader to Section 2.3.2 for a more detailed description of the FASTQ
format.

Thus, storing the human genome—which consists of roughly 3 bil-
lion bp—in the FASTQ format would yield a file with a size5 of approx-
imately 6.4 GiB. Sequencing the human genome at a coverage of 200×
would hence yield a FASTQ file with a size of about 1,285 GiB. Typically,
reads are subsequently aligned (e.g., with respect to an externally pro-
vided reference genome). This process yields so-called alignments, which
are typically stored in the SAM format [Li+09]. Similar to the FASTQ
format, the SAM format is a textual file format. With regard to the data
in a FASTQ file, the alignments contain additional alignment information
as well as further metadata. We refer the reader to Section 2.3.3 for a
more detailed description of the SAM format. The additional alignment
information and metadata renders SAM files roughly twice as large as
their corresponding FASTQ counterparts. To illustrate the impact of these
file sizes, Table 1.1 shows example transmission times of human WGS
data stored in the FASTQ and SAM formats. As shown in Table 1.1,
transferring the SAM file over a network with a bandwidth of 25 Mbit/s
takes 10.2 days. However, research studies nowadays are rarely limited
to one individual. Typically, it is necessary to exchange DNA sequencing
data equivalent to hundreds or thousands of human genomes. Therefore,
nowadays, transmission by courier is still a very popular option. It is
evident that either significantly higher network bandwidths or more
efficient compression technologies are required to satisfy requirements
on storage, bandwidth, and transmission.

5 We assume that the strings that identify the reads induce an overhead of 15% with respect to
the size that is occupied by bases and quality scores. Hence, here, the approximate FASTQ file
size is calculated as 3 · 109 · 2 · 1.15 B ≈ 6.4 GiB.
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1.2 state of the art and contributions

We present the state of the art in DNA sequencing data compression by
dividing it into four different categories: i) the compression of aligned
reads, where several specialized compression methods have been pro-
posed in the literature that leverage alignment information to exploit the
redundancy introduced by the coverage; ii) the compression of quality
scores, where quantization is the key to achieve compression while at the
same time preserving downstream analysis performance; iii) the entropy
coding of DNA sequencing data, where the goal is to find models that
best describe the data; and iv) standards and implementations, where
the aim is to provide perennial specifications to enable the widespread
adoption of compression technologies to democratize the use of DNA
sequencing data. For each category, we point out where our contributions
provide improvements over the state of the art.

Figure 1.5 shows the timeline of the state of the art and contributions.
Key contributions are shown in bold; supplementary contributions are
shown in italics. Several specialized compression methods for the com-
pression of aligned reads (BAM [Li+09], CRAM [Fri+11], Quip [Jon+12],
DeeZ [HNS14]) predate our contribution, TSC [VMO16]. Our contribu-
tions QScomp [Vog+18b; Vog+18a] and CALQ [VOH17; VOH18] for the
compression of quality scores are the most recent methods in a line of
specialized quality score compression methods (P-/R-Block [CMT14],
QVZ [Mal+15], Quartz [Yu+15], QVZ2 [HOW16]). We also integrated
CALQ in AliCo [Och+19], a compressor for aligned reads which is fo-
cused on streaming of compressed data. Also, Figure 1.5 shows our contri-
bution for the entropy coding of DNA sequencing data, GABAC [Par+19;
Vog+20]. Finally, in Figure 1.5, we show our software Genie, the first open-
source implementation of the file format and compression technology
specified in the ISO/IEC 23092 series.

1.2.1 Compression of Aligned Reads

The first DNA-related compression solutions aimed at the compression
of entire genomes. An example is DNACompress [Che+02]. In the years
up to 2007 this area was limited to the compression of genomes by
means of dictionary-based compression methods. These methods were
specifically tailored to the properties (such as approximate repeats and
palindromes) of genomes. Starting in 2009, tools were developed that
encode genomes with the help of a reference genome. Examples include
DNAzip [Chr+09] and iDoComp [OHW15]. With these reference-based
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Figure 1.5: Timeline of the state of the art and contributions. Key contributions are
shown in bold; supplementary contributions are shown in italics.

methods it is possible to compress a single human genome down to a
few megabytes.

The compression of reads differs significantly from the compression
of entire genomes, since a set of reads exhibits intrinsic redundancy,
due to the coverage. Tools for the compression of reads are for example
SCALCE [Hac+12] and ORCOM [GDR15]. ORCOM frequently yields the
best compression, since it changes the order of reads in such a way that
compression efficiency is maximized. Changing the order of reads is a
legitimate approach because the reads constitute a set; in principle they
are randomly sampled fragments from the underlying DNA molecules.

Aligned reads are commonly stored in the SAM format [Li+09]. Due
to the alignment information (and the sorting of alignments by their
loci), the redundancy introduced by the coverage is easily accessible for
compression algorithms. To address the compression of aligned reads,
several specialized compression methods have been proposed in the
literature. Examples are BAM [Li+09], CRAM [Fri+11] (in its different
versions), Quip [Jon+12], and DeeZ [HNS14]. These methods use refer-
ence sequences for the compression of aligned reads, in combination with
dictionary-based coding or arithmetic coding. Currently, CRAM 3.0 is
the method seeing the broadest acceptance. Compared to its predecessor
CRAM 2.0, CRAM 3.0 generally provides better compression by includ-
ing more sophisticated entropy codecs. However, in one of our previous
works we have shown that newer methods achieve better compression
than both CRAM 2.0 and CRAM 3.0 [Num+16].

Our contribution, TSC [VMO16], was designed with the goals of achiev-
ing a low memory footprint and operating without external reference
sequences. It combines alignment information to implicitly assemble
local parts of the underlying genome to compress alignments. In contrast
to the state of the art, the proposed method does not require reference
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sequences to encode alignments. Compression is performed on-the-fly
using only a sliding window (i.e., a continuously updated short-time
memory) as the context for predicting reads. This eliminates the need to
hold reference sequence(s) readily available in memory.

1.2.2 Compression of Quality Scores

None of the above solutions for genome, read, or alignment compression
focuses primarily on the compression of quality scores. However, it
has been shown that quality scores can take up to 80% of the lossless
compressed size [Och+17]. To further reduce file sizes, Illumina proposed
a binning method to reduce the number of different quality scores from 42

to 8. With this proposal, Illumina opened the door for lossy compression
of quality scores.

The disadvantage of lossy compression of quality scores is that down-
stream analyses could be affected by the loss incurred with this type of
compression. However, Yu et al. [Yu+15], Ochoa et al. [Och+17], as well
as our own works [Alb+16; Her+17; Her+18] showed that quality scores
compressed with more advanced methods can not only perform better in
downstream analyses than Illumina-binned quality scores, but in some
cases even better than the original quality scores, because these methods
remove noise from the data. These conclusions were made by conducting
rate-distortion analyses, where novel distortion metrics are applied that
are specifically tailored to different DNA sequencing data workflows
such as variant calling.

Our contribution to the field of compression of quality scores is cen-
tered around minimizing the impact of lossy quality score compression
on downstream analyses. All the previously proposed lossy compressors
for quality scores are primarily focused on (unaligned) reads; and even
if those compressors could be easily applied to alignments, they do not
exploit the extra alignment information. Therefore, it is of primary impor-
tance to propose a specialized method for aligned data. Our contribution,
CALQ [VOH17; VOH18], exploits the alignment information to build
sophisticated models to measure the “activity” at each locus of the under-
lying genome. CALQ further determines the acceptable level of distortion
for the quality scores such that subsequent downstream analyses are
presumably not affected. Finally, the quality scores are quantized and
compressed accordingly. In this way, a high compression is achieved with
a negligible impact on downstream analyses.
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1.2.3 Entropy Coding of DNA Sequencing Data

The first step of typical state-of-the-art DNA sequencing data compressors
such as CRAM [Fri+11] or DeeZ [HNS14] is to represent the information
by splitting the data into a set of homogeneous descriptor streams, where
each contains a specific type of data (e.g., mapping positions, quality
scores, or mismatch information). Each descriptor stream is more likely
to contain stationary data, enabling a more efficient compression. How-
ever, the state-of-the-art methods used to compress such streams are
general-purpose compression methods. CRAM uses a mixture of experts
comprising the general-purpose compressors gzip, bzip2, xz, and a range
variant of the family of ANS methods [Dud14]. DeeZ uses a combination
of dictionary-based and arithmetic coding-based compression methods.

Our contribution, GABAC [Par+19; Vog+20], combines proven coding
technologies, such as CABAC [MSW03], binarization schemes, and trans-
formations, into a straightforward solution for the compression of DNA
sequencing data.

1.2.4 Standards and Implementations

The growth of the DNA sequencing market in recent years prompted
the development of standardized data formats for DNA sequencing data.
Over the last years, besides growing activities in the vibrant bioinfor-
matics research community, there has been a proliferation of commercial
initiatives, such as 23andMe6 and MyHeritage7, as well as government-
led initiatives targeting the application of DNA sequencing on population
scale. On the forefront of standardized data formats is the ISO/IEC 23092

series (branded as MPEG-G), a standard series developed by ISO and
IEC [VO17; Alb+18]. Most technologies presented in this dissertation
were submitted to the standardization process of the ISO/IEC 23092 se-
ries. However, ISO and IEC are not the only organizations standardizing
DNA sequencing data compression technologies. Most notable, founded
in 2013, GA4GH is an international coalition focused on implementing
effective genomic and clinical data sharing. Both standardization efforts
have been started following industry and market needs.

Most of our contributions in the above-mentioned fields are adopted in
the ISO/IEC 23092 series. Most prominently, the technology behind our
contribution TSC [VMO16; MVO] as well as the technology behind our
contribution CALQ [VOH17; VOH18; VHO; VOb; VOa] were adopted.

6 https://www.23andme.com

7 https://www.myheritage.com

https://www.23andme.com
https://www.myheritage.com
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1.3 outline

In Chapter 2, we introduce the fundamentals that are necessary for the
understanding of this dissertation. These fundamentals range from molec-
ular biology over a detailed essay about DNA sequencing technologies
to data compression. We also provide a brief introduction to the field of
bioinformatics, to bridge the gap between the classical domains covered
by this dissertation: biology on the one hand, and computer science as
well as electrical engineering on the other hand.

We present our methods for the compression of aligned reads and
quality scores in Chapters 3 and 4. Both chapters include a detailed
review of the corresponding state of the art.

In Chapter 5, we investigate entropy coding of DNA sequencing data.
Here we discuss the premier implementation of an entropy codec compli-
ant to ISO/IEC 23092-2: GABAC.

Chapter 6 gives an overview of de-facto, industry and international
standards for DNA sequencing data representation before focusing on
the ISO/IEC 23092 series. We show how our contributions in the above-
mentioned fields are adopted in the ISO/IEC 23092 series and in which
regards they constitute key components. Finally, we present an imple-
mentation of the file format and compression technology specified in the
ISO/IEC 23092 series.





2
P R E L I M I N A R I E S

In this chapter we lay out the foundations necessary for the understanding
of the methods presented in Chapters 3, 4, and 5 in this dissertation. These
foundations span multiple disciplines. They range from molecular biology
in Section 2.1 and DNA sequencing in Section 2.2 over bioinformatics in
Section 2.3 to data compression in Section 2.4.

2.1 the central dogma of molecular biology

DNA is the molecule that is the foundation of all organisms and many
viruses1 on earth. It contains the genetic information that is responsible
for the functioning of these entities. In 1953, James Watson and Francis
Crick identified the double helix molecular structure of DNA [WC53].
This structure is schematically depicted in Figure 1.1 (page 2). The double
helix is formed by two strands that coil around each other. Each strand
consists of atomic units called nucleotides2. Each nucleotide is composed
of the monosaccharide3 deoxyribose, a phosphate group, and a nucle-
obase (or base, in short). The base can either be adenine (A), cytosine
(C), guanine (G), or thymine (T). The deoxyribose of one nucleotide and
the phosphate group of the next nucleotide are joined to one another
by covalent bonds, forming a so-called sugar-phosphate backbone. The
bases of the two strands are connected to one another by hydrogen bonds,
according to the base pairing rules (A with T and C with G). Two such
complementary bases form a base pair. Hence, the two strands carry the
same genetic information, which is encoded in the particular sequence of
nucleotides.

1 Organisms are individual entities that embody the properties of life, i.e., metabolism, growth,
reproduction, and others. Viruses are commonly not considered as organisms, since they do
not have their own metabolism.

2 Technically, a DNA strand is a polymer. A polymer is a large molecule composed of repeated
atomic units called monomers. In the case of DNA the nucleotides take the role of monomers.

3 Monosaccharides are also called simple sugars. Beside deoxyribose, examples of monosaccha-
rides include glucose and fructose.

13
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DNA

RNA protein

Figure 2.1: The central dogma of molecular biology [Cri58; Cri70]. The three
general genetic information transfers are depicted with solid arrows.
The three special transfers are shown with dashed arrows.

DNA is not the only molecule capable of carrying genetic informa-
tion. In general, genetic information can be carried by nucleic acids
(i.e., DNA and RNA) or proteins. The genetic information is encoded
in the particular sequence of nucleotides, in the case of nucleic acids,
or amino acids, in the case of proteins. The flow of genetic information
in biological systems between these types of molecules is explained by
the central dogma4 of molecular biology, developed by Francis Crick.
He published it in 1958 [Cri58] and refined it in 1970 [Cri70]. The cen-
tral dogma states that the transfer of genetic information from nucleic
acid to nucleic acid, or from nucleic acid to protein may be possible,
but that the transfer of genetic information from protein to protein,
or from protein to nucleic acid is impossible. More specifically, there
are 32 = 9 conceivable types of genetic information transfer between
these three molecule types. Of these, three “general” transfers occur
normally in most cells: DNA replication (DNA−→DNA), transcription
(DNA−→RNA), and translation (RNA−→protein). Three “special” transfers
occur only under specific conditions: RNA replication (RNA−→RNA),
reverse transcription (RNA−→DNA), and direct translation from DNA to
protein (DNA−→protein). The remaining three transfers (protein−→protein,
protein−→DNA, protein−→RNA) are believed never to occur. The central
dogma of molecular biology is visualized in Figure 2.1.

In what follows we focus on two general genetic information transfers:
transcription (DNA−→RNA) and translation (RNA−→protein), because
these two transfers play the major role in gene expression, the process by
which genetic information contained in a gene, i.e., a sequence of DNA

4 The use of the word “dogma” in this context is controversial, as also acknowledged by
Crick [Cri88]. He suggests that “hypothesis” could be used as well.
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nucleotides, is used to synthesize a gene product. Gene products are
typically proteins but can also be various types of so-called functional
RNA in the case of non-protein-coding genes. In the following description
of transcription and translation we focus on the synthesis of proteins.

During transcription, a DNA strand is used as template for the pro-
duction of a complementary RNA strand5. This process is performed
by the enzyme RNA polymerase. The RNA strand synthesized by RNA
polymerase is called primary transcript. In the case of prokaryotic genes
the primary transcript is mRNA, and it is in unaltered form ready for
translation into protein. In the case of eukaryotic genes the primary tran-
script must undergo further processing (yielding “mature” RNA) before
it is ready for translation into protein.

During translation an mRNA strand is used as template for the pro-
duction of one or more proteins. Here, sequences of nucleotide triplets
(called codons) are translated into sequences of amino acids, according to
the genetic code6. These sequences of amino acids further fold, yielding
biologically functional proteins with a three-dimensional structure.

Considering the essential role that nucleic acids play in molecular
biology, it becomes clear that gaining knowledge about their exact nu-
cleotide sequences is of utmost importance. Note that, as RNA is less
stable than DNA, it is technically more feasible to determine DNA nu-
cleotide sequences. The procedure for determining the exact sequence of
nucleotides in DNA is known as DNA sequencing. By sequencing DNA it
is possible to determine the nucleotide sequences of specific genes, larger
stretches of DNA, chromosomes, and thus even entire genomes. DNA
sequencing also facilitates the indirect determination of the sequences of
the other molecules that are capable of carrying genetic information: RNA
(for this purpose RNA is reverse transcribed to complementary DNA)
and proteins (accomplished by lookup in databases generated through
various DNA sequencing projects, such as UniProt7). DNA sequencing
has thus emerged as a pivotal technology in many areas of biology and
other sciences such as medicine; it has even prompted the advent of new
disciplines, of which the most prominent ones are bioinformatics and
computational biology8.

5 Note that in RNA, with respect to DNA, thymine (T) is replaced by uracil (U).
6 The genetic code is a set of rules specifying how to translate genetic information in the form

of codons from DNA or mRNA into proteins. For more detailed information we refer the
reader to [Lod+07].

7 https://www.uniprot.org

8 Bioinformatics and computational biology are related but distinct disciplines. Where bioin-
formatics refers to the computational study of large sets of biological data, the focus of
computational biology is on finding computational solutions to particular biological problems.

https://www.uniprot.org


16 preliminaries

2.2 dna sequencing

DNA sequencing is the process of determining the exact order of nu-
cleotides in DNA. DNA sequencing also facilitates the indirect determina-
tion of the sequences of RNA and proteins. In general, DNA sequencing
is based on the determination, i.e., reading, of the nucleotide sequences
of DNA fragments. Hence, the output of sequencing is a set of sequence
“read-outs”, or “reads”.

Since the 1970s, an abundance of sequencing methods has been de-
veloped. They can be classified into “basic” methods (Maxam-Gilbert
sequencing, chain-termination sequencing) and HTS methods, which
again can be subdivided into short-read methods (massively parallel
signature sequencing, polony sequencing, pyrosequencing, combinato-
rial probe anchor synthesis, sequencing by oligonucleotide ligation and
detection, Ion Torrent semiconductor sequencing, DNA nanoball sequenc-
ing, Illumina sequencing) and long-read methods (SMRT sequencing,
nanopore sequencing) [Qua+12; Liu+12; Chi+13].

Table 2.1 gives an overview about the main characteristics of chain
termination sequencing, representing the basic methods, sequencing by
synthesis (i.e., Illumina sequencing), representing short-read methods,
and SMRT sequencing as well as nanopore sequencing, both representing
long-read methods.

2.2.1 Basic Methods

In 1977, Frederick Sanger, who also led the effort of sequencing the first
full genome—the one of bacteriophage ΦX174 [San+77]—developed, to-
gether with colleagues, the first rapid sequencing method: the “chain
termination” method for sequencing DNA molecules. He was draw-
ing on results from Padmanabhan, Wu, and colleagues [PW72; RTP73;
Jay+74], and published the method in 1977 [SNC77]. This was a major
breakthrough and it earned him his second9 Nobel Prize in Chemistry
in 1980 (he and Walter Gilbert shared half of the prize “for their con-
tributions concerning the determination of base sequences in nucleic
acids” [Nob21b] with Paul Berg “for his fundamental studies of the
biochemistry of nucleic acids, with particular regard to recombinant-
DNA” [Nob21b]). During that time, Allan Maxam and Walter Gilbert also
developed sequencing methods, including one for “DNA sequencing by
chemical degradation” [MG77]. Chain-termination and Maxam-Gilbert
sequencing are referred to as “basic” sequencing methods.

9 In 1958, he was awarded a Nobel Prize in Chemistry “for his work on the structure of proteins,
especially that of insulin” [Nob21a].
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2.2.2 High-Throughput Methods

The soaring demand for low-cost sequencing has prompted the devel-
opment of HTS methods that parallelize the sequencing process. HTS
methods can be subdivided into short-read and long-read methods.

2.2.2.1 Short-Read Methods

Process improvements, in particular massive parallelization, led to the
second, or next, generation of sequencing methods, called as such to
distinguish them from the earlier basic methods. The majority of NGS
methods was developed in the mid to late 1990s, and implemented in
commercial sequencing machines by the year 2000. Among them, the
method used by Illumina, sequencing by synthesis, has been the one
seeing the widest use. Sequencing by synthesis is a method that produces
rather short reads with lengths between 50 and 600 bp. These short reads
typically exhibit a single-read accuracy of more than 99% [GMM16]. Ow-
ing to their high throughput, the majority of sequencing data generated
today is produced using short-read methods.

In what follows, we briefly revisit the sequencing by synthesis method.
This method is composed of three basic steps: sample preparation, cluster
generation, and sequencing.

In the sample preparation step, single-stranded DNA is fragmented.
Subsequently, adapters are added to the ends of the fragments. The
prepared fragments are then loaded onto a flow cell which contains
oligonucleotides that provide anchoring points for the adapters.

When the DNA fragments are attached to the oligonucleotides on the
flow cell, the cluster generation step takes place. This mainly involves the
amplification of DNA fragments, where all copies of a fragment accumu-
late in the form of a cluster10. This guarantees that in the sequencing step,
when for a given cluster all identical fragments are read simultaneously,
enough light is emitted (from fluorescently tagged nucleotides), such that
detection of newly added nucleotides is facilitated.

Next, the sequencing step takes place. Here, complementary strands
are synthesized, via DNA polymerase, alongside each (copy of a) DNA
fragment. The synthesis is performed in cycles. A cycle begins with
modified nucleotides being washed onto the flow cell. These nucleotides
are modified in such a way that DNA polymerase can only add one
nucleotide at a time to the strands under synthesis. Moreover, these

10 Illumina, for instance, uses so-called “patterned” flow cells that contain nanoscale wells
(nanowells) at fixed locations across the flow cell. Clusters can only form in these nanowells.
This structured organization of clusters provides several advantages. For instance, it is not
necessary to map cluster sites (as the nanowell positions are known).
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nucleotides are fluorescently tagged. After the addition of nucleotides,
the clusters are excited by a light source and a characteristic fluorescent
signal is emitted and captured by a camera. Then, the next cycle may
begin. A computer software (“base caller”) analyzes the captured images
to identify (or “call”) the nucleotides. At the end of each cycle, all newly
synthesized strands have the same length. Hence, the read length is
determined by the number of cycles. As an example, on the Illumina
MiSeq sequencer one full cycle takes approximately 6 minutes, and
reagent kits for read lengths of 25–300 bp are available. Sequencing at a
read length of 150 bp with the “MiSeq Reagent Kit v2 Micro” kit11 takes
approximately 15 hours, plus an overhead of around 4 hours for cluster
generation and base calling. In this setting a yield of 8 million reads (i.e.,
4 million pairs) would be achieved.

2.2.2.2 Long-Read Methods

Sequencing methods producing long reads are often referred to as third-
generation methods. They aim at reading the sequences of entire DNA
molecules, which can facilitate, among others, a better understanding of
large structural variations. While short reads are well suited to discover
SNPs, indels, and small structural variations, large structural variations
such as copy number variations are difficult—and sometimes impossible—
to capture with short-read technology. The most prominent approaches
are the SMRT sequencing technology from Pacific Biosciences12 and
nanopore sequencing from ONT13.

SMRT sequencing technology is based on sequencing by synthesis.
However, the reading process is altered such that the reading of much
longer DNA molecules becomes practical. Specifically, the reading occurs
in tiny ZMWs. A ZMWs can be viewed as a very small light detection
volume. Attenuated light illuminates a ZMW from below, penetrating
the lower 20–30 nm of each ZMW. A DNA-polymerase complex is im-
mobilized at the bottom of the ZMW and color-labeled nucleotides are
introduced into the ZMW “chamber”. A light pulse is produced during
synthesis, which can be detected. This process is performed in parallel in
tens of thousands of ZMWs.

Nanopore sequencing in turn is based on entirely different chemistry.
Here, a protein nanopore is placed in a polymer membrane that is electri-
cally resistant. By setting a voltage across this membrane an ionic current
is passed through the nanopore. When an analyte passes through the
pore or near its opening, this event produces a characteristic disruption

11 https://www.illumina.com/systems/sequencing-platforms/miseq/specifications.html

12 https://www.pacb.com

13 https://nanoporetech.com

https://www.illumina.com/systems/sequencing-platforms/miseq/specifications.html
https://www.pacb.com
https://nanoporetech.com
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in current. The measurement of this current makes it possible to identify
the molecule in question.

In particular, ONT technology can be miniaturized for portable anal-
yses. Most notably, the MinION® was already used on board of the
International Space Station. An even smaller device, designed for the use
with smartphones, is under development at the time of writing14.

2.3 representation of dna sequencing data

In general, DNA sequencing is based on the determination of the nu-
cleotide sequences of DNA fragments. The initial representation of nu-
cleotide sequences is method-dependent. For example, in nanopore se-
quencing, the initial representation of a nucleotide sequence is in the
form of a time series of a change in ion current of a nanopore. In sequenc-
ing by synthesis, the initial representation is in the form of images of
fluorescently labeled nucleotides. However, eventually, all representations
can be converted into a set of strings consisting of the characters A, C,
G, and T. This conversion process is referred to as base calling, which is
performed by different—often proprietary—software.

Sequencing data is stored in a number of different file formats. The
most common ones are the FASTA format, the FASTQ format [Coc+10],
and the SAM/BAM format [Li+09; The21]. These file formats can be
considered as de-facto standards for the storage of nucleotide and amino
acid sequences (FASTA), reads (FASTQ), and alignments (SAM/BAM).
However, they exhibit several caveats; this fact is among the main drivers
of standardization activities that aim to better represent sequencing data.

To illustrate one of these caveats, consider the raw read data produced
during human WGS, as outlined in Section 1.1: in the FASTQ format, each
base is stored as an 8-bit ASCII character, accompanied by a quality score
(indicating the confidence in that the base was called correctly), which is
also stored as 8-bit ASCII character. The FASTQ format also includes a
string identifying each read. Sequencing the human genome (which con-
sists of roughly 3 billion bp) at a coverage of 200× would yield a FASTQ
file with a size of about 1,285 GiB. By this example alone is it evident
that even simple modifications (such as the use of a naïve 2-bit encoding
for nucleotides) would already yield major improvements, let alone the
possible improvements that sophisticated compression techniques could
bring to the table. However, the FASTA, FASTQ, and SAM/BAM formats
are still widely used.

14 https://nanoporetech.com/products/smidgion

https://nanoporetech.com/products/smidgion


2.3 representation of dna sequencing data 21

We detail the FASTA format, the FASTQ format, and the SAM/BAM
format in Sections 2.3.1, 2.3.2, and 2.3.3, respectively.

2.3.1 The FASTA Format

The FASTA format is a textual file format for the representation of nu-
cleotide and amino acid sequences. Each sequence is identified by a
description line, which is also often referred to as header line or identifier
line. Modern bioinformatics programs expect that the description line
starts with “>”. Typically, the description line only contains a unique
identifier for the sequence. However, it can also contain additional in-
formation such as FASTA sequence identifiers15 as defined by the NCBI.
A single sequence can be stored in a single line, or it can be broken up
and occupy multiple lines. Each nucleotide or amino acid in a sequence
is represented with a single ASCII character according to the IUPAC
nucleotide and amino acid codes. We refer to the tuple of description line
and sequence as FASTA record.

As an example, Figure 2.2 depicts the sequence of isoform 1 of human
serum albumin16 in the FASTA format, as retrieved from the UniProtKB/
Swiss-Prot database17. The description line starts with “>”, followed
by a FASTA sequence identifier (“sp|P02768|ALBU_HUMAN”) and
additional supplementary information. The actual amino acid sequence
is broken up and stored across multiple lines.

As another example, Figure 2.3 depicts the first 283 nucleotides of the
sequence of the HBB18 gene in the FASTA format, as retrieved from the
NCBI GenBank database19.

2.3.2 The FASTQ Format

Similar to the FASTA format, the FASTQ format is a textual file format. It
is mainly used for the representation of reads, i.e., nucleotide sequences,
including corresponding quality scores. It is the de-facto standard for the
storage of reads.

Each read is represented by a single FASTQ record, which consists of
four lines. The first line contains the read identifier. It starts with “@” and
is similar to the FASTA description line. Typically, sequencing machine

15 https://ncbi.github.io/cxx-toolkit

16 Human serum albumin is a protein found in human blood.
17 https://www.uniprot.org

18 HBB is a protein which is a part of hemoglobin A, the most common form of hemoglobin in
adult humans.

19 https://www.ncbi.nlm.nih.gov

https://ncbi.github.io/cxx-toolkit
https://www.uniprot.org
https://www.ncbi.nlm.nih.gov
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1 >sp|P02768|ALBU_HUMAN Albumin OS=Homo sapiens OX=9606 GN=ALB PE=1 SV=2
2 MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPF
3 EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP
4 ERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLF
5 FAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAV
6 ARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLK
7 ECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYAR
8 RHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFE
9 QLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVV

10 LNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTL
11 SEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLV
12 AASQAALGL

Figure 2.2: Sequence of isoform 1 of human serum albumin in the FASTA format.
The description line starts with “>”, followed by a FASTA sequence
identifier (“sp|P02768|ALBU_HUMAN”) and additional supplemen-
tary information. The amino acid sequence is broken up and stored
across lines 2–12.

1 >NG_059281.1 Homo sapiens hemoglobin subunit beta (HBB), RefSeqGene (
↪→ LRG_1232) on chromosome 11

2 AACGAATGAGTAAATGAGTAAATGAAGGAATGATTATTCCTTGCTTTAGAACTTCTGGAATTAGAGGACA
3 ATATTAATAATACCATCGCACAGTGTTTCTTTGTTGTTAATGCTACAACATACAAAGAGGAAGCATGCAG
4 TAAACAACCGAACAGTTATTTCCTTTCTGATCATAGGAGTAATATTTTTTTCCTTGAGCACCATTTTTGC
5 CATAGGTAAAATTAGAAGGATTTTTAGAACTTTCTCAGTTGTATACATTTTTAAAAATCTGTATTATATG

Figure 2.3: The first 283 nucleotides of the sequence of the HBB gene in the FASTA
format.

vendors generate read identifiers in a proprietary systematic way. The
second line contains the nucleotide sequence, where each nucleotide
is represented with a single ASCII character according to the IUPAC
nucleotide codes. The third line starts with “+” and contains an optional
description. Usually this line is left empty; it then only contains “+”
as separator between the nucleotide sequence and the quality scores.
The fourth line contains the quality scores. A quality score q is a value
indicating the confidence in a base call. The first widely adopted quality
scores were produced by a base calling program called Phred [EG98],
which linked the base-calling error probability perror logarithmically to
the so-called Phred quality score q:

q = −10 · log10 perror. (2.1)

Phred quality scores are typically offset to be able to represent them with
a single ASCII character. For example, in the Sanger quality score format,
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1 @SRR001665.1 071112_SLXA-EAS1_s_4:1:1:672:654 length=70
2 GCTACGGAATAAAACCAGGAACAACAGACCCAGCACATTAACAACAAAGGGTAAAAGGCATCATGGCTTC
3 +SRR001665.1 071112_SLXA-EAS1_s_4:1:1:672:654 length=70
4 IIIIIIIIIIIIIIIIIIIIIIIIEII9IIIEIIIIIIIIIIIIII4IIIIIGIHIIIIIII=IIIIIII
5 @SRR001665.2 071112_SLXA-EAS1_s_4:1:1:657:649 length=70
6 GCAGAAAATGGGAGTGAAAATCTCCGATGAGCAGCTTGATGCGACGACGCACCTCGTTGTTACGCACTTC
7 +SRR001665.2 071112_SLXA-EAS1_s_4:1:1:657:649 length=70
8 IIIIIIIIIIIIIIIIIIIIIIIIII8II=II;IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII5IIII

Figure 2.4: Two FASTQ records (each consisting of four lines), obtained from the
sequencing of Escherichia coli, strain K-12, substrain MG1655.

the offset 33 is added; hence Phred quality scores between 0 and 93

would be represented by the ASCII characters “!” (33) to “~” (126). As
a short example, a base-calling error probability of perror = 0.001 would
translate to the Phred quality score q = −10 · log10 0.001 = 30, which in
turn would be represented by 30+ 33 = 63 (i.e., “?”) in the Sanger quality
score format.

As an example, Figure 2.4 shows two FASTQ records, obtained from
the sequencing of Escherichia coli, strain K-12, substrain MG1655, as
retrieved20 from the SRA21. Here, the read identifiers (lines 1 and 5) start
with the SRA run accession number, followed by additional information.
Note that, here, the third line contains a copy of the read identifier (this
is done by convention in SRA data).

2.3.3 The SAM/BAM Format

Similar to the FASTA and FASTQ formats, the SAM format is a textual
file format used for the representation of alignments, i.e., reads that
have been aligned to reference sequences and hence are accompanied by
additional alignment information and possibly further metadata.

The SAM format is composed of an optional header section and an
alignment section. Header lines start with “@”, while alignment lines
do not. Each alignment line consists of 11 mandatory fields for essential
alignment information such as the mapping position, and of a variable
number of optional fields for further metadata, such as information

20 To generate Figure 2.4, we retrieved the data with the SRA run accession number
SRR001665 from the SRA. Subsequently, we used the tool fastq-dump (with the command
“fastq-dump -stdout -maxSpotId 2 SRR001665”) from the SRA Toolkit (https://github.
com/ncbi/sra-tools) to extract the shown FASTQ records. Finally, for visualization pur-
poses, we trimmed the nucleotide sequences and the quality scores to a length of 70.

21 https://trace.ncbi.nlm.nih.gov

https://github.com/ncbi/sra-tools
https://github.com/ncbi/sra-tools
https://trace.ncbi.nlm.nih.gov
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1 Coor 12345678901234 5678901234567890123456789012345
2 ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
3 +r001/1 TTAGATAAAGGATA*CTG
4 +r002 aaaAGATAA*GGATA
5 +r003 gcctaAGCTAA
6 +r004 ATAGCT..............TCAGC
7 -r003 ttagctTAGGC
8 -r001/2 CAGCGGCAT

Figure 2.5: Reads aligned to a reference sequence. Six reads are aligned to a ref-
erence sequence ref. Uppercase characters indicate nucleotides that
match to the reference sequence; lowercase characters indicate nu-
cleotides that do not match to the reference sequence (and that are
hence “clipped” from the alignments). Dots represent a gap (here sepa-
rating the split alignment). Example originally presented in [The21].

specific to the alignment software that was used. Note that all fields are
delimited by tab characters.

We explain the SAM format with an example. For more details we refer
the reader to the Sequence Alignment/Map Format Specification [The21].

Figure 2.5 illustrates six reads that have been aligned to a reference
sequence (ref). The reference sequence is given coordinates (Coor) from
1 to 45; their remainders of the integer division by 10 are shown in line 1.
Note that the reads include nucleotides that seem to be inserted with
respect to the reference sequence (between reference sequence coordinates
14 and 15). r001/1 and r001/2 represent a read pair, r002 is a single
read, r003 is a chimeric22 read, and r004 represents a split alignment.
Uppercase characters indicate nucleotides that match to the reference
sequence; lowercase characters indicate nucleotides that do not match to
the reference sequence (and that are hence “clipped” from the alignments).
Dots represent a gap (here separating the split alignment).

Figure 2.6 shows the data from Figure 2.5 formatted in the SAM format.
The first two lines (starting with “@”) contain the header section. The
subsequent lines 3 to 8 constitute the alignment section. In the alignment
section, column 1 identifies the read. Columns 3 and 4 identify the
reference sequence and the mapping position, respectively. Column 6

contains the so-called CIGAR string, which contains a specially encoded
version of the edit operations that are necessary to transform the read
into the portion of the reference sequence that it maps to. Column 10

contains the actual nucleotides. Finally, column 11 would contain the

22 A chimeric read cannot be represented as a linear alignment; it is represented as a series of
linear alignments that do not have large overlap. For more information we refer the reader
to [The21].
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1 @HD VN:1.6 SO:coordinate
2 @SQ SN:ref LN:45
3 r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
4 r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
5 r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA *
6 r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
7 r003 2064 ref 29 17 6H5M * 0 0 TAGGC *
8 r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT *

Figure 2.6: Reads aligned to a reference sequence, represented in the SAM for-
mat. This example additionally shows two header lines (starting with
“@”). Note that, here, quality scores are omitted (indicated by “*” in
column 11. Example originally presented in [The21].

associated quality scores, but these are omitted (indicated by “*”) in this
example. Further optional columns are assumed not to be present.

A BAM file is the binary equivalent of a SAM file. In it, the same data
is stored in a compressed binary representation. The BAM format utilizes
BGZF23, which implements block compression on top of the gzip file
format [Deu96]. Basically, a BGZF file—and hence a BAM file—is a series
of concatenated BGZF blocks, where each block is itself compliant to the
gzip file format specification. BGZF files support non-sequential access
through the so-called BAM file index24, which is essentially a collection
of offsets into the BGZF file.

2.4 data compression

Data compression is the science of representing data in a compact form.
The term compression always refers to two processes: compression and
decompression, where decompression is also referred to as reconstruc-
tion. In the compression process, input data X is transformed into a
compressed data representation Xc that is more compact than X, i.e., it
requires fewer bits (when stored in a binary form). In the decompression
process, the compressed data representation Xc is used to generate a re-
construction Y of the data X. In lossless compression the reconstruction Y

is identical to X; in lossy compression the reconstruction Y is allowed to
be different from X.

23 BGZF is specified in the SAM/BAM specification [The21].
24 Commonly the BAM file index is stored in a separate file with the extension “.bai”, and it is

usually stored along the associated BAM file.
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The amount of achieved compression is expressed by the compression
ratio, which is defined as

Compression Ratio =
Uncompressed Size

Compressed Size
. (2.2)

Occasionally, compression ratios are written explicit ratios. For example,
a compression ratio of 5 may be notated as 5:1; i.e., the compressed data
is five times smaller than the uncompressed data.

The input data can be of any type. It could for example be image data,
video data, audio data, or DNA sequencing data. Compact representation
of such data is achieved by identifying structures in the data, and by
exploiting the knowledge about these structures. In the first place, the goal
of compression is to reduce, and optimally to eliminate, all redundant
information that is contained in the input data.

Regarding redundancy reduction, compression can be divided into two
stages: modeling and coding. In the first stage, redundant information
is described in the form of a mathematical model. The data is then
expressed in terms of a difference—the residual—between the data and
the model. In the coding stage, the residual is actually compressed
by representing every residual element with as few bits as possible.
Redundancy reduction does not involve the loss of information. The
methods used to generate appropriate models and to efficiently code the
data are therefore referred to as lossless compression techniques.

Data may also contain information that is considered to be irrelevant.
For example, in the case of audio data intended for consumption by
humans, data pertaining to frequencies outside of the human-audible
frequency range do not need to be maintained and can simply be dropped.
In other cases, for example in the case of chrominance25 subsampling
in video coding, chrominance information is represented using a lower
resolution. Visual quality, however, is maintained because the human
vision system has a finer spatial sensitivity to luminance differences
than chrominance differences. In general, the techniques for irrelevancy
reduction can be summarized by the term quantization. In all cases, a
trade-off must be made between the amount of distortion that can be
accepted after reconstruction of the data, and the compression that can
be achieved by dropping parts of the data. In contrast to redundancy
reduction, irrelevancy reduction does involve the loss of information.
Quantization techniques are therefore referred to as lossy compression
techniques.

The performance of different compression methods can be analyzed
across three different dimensions: i) effectiveness: the compression (and

25 In video systems, the chrominance signal conveys the color information. It is paired with the
luminance signal, which conveys the brightness (or “black-and-white”) information.
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distortion, in the case of lossy techniques) achieved by the method; ii) effi-
ciency: the computational complexity; and iii) functionality: the additional
features associated to the method, e.g., non-sequential access, etc. De-
pending on the specific usage scenario, priority can be shifted toward
specific dimensions. For example, in a scenario where for example se-
quencing data is archived for long periods of time, effectiveness will
have priority over efficiency; and in a scenario where sequencing data is
supposed to be streamed over the internet, efficiency and functionality
will have priority over effectiveness (if, of course, sufficient bandwidth is
available).

In what follows we first introduce mathematical preliminaries for com-
pression in Section 2.4.1. The basics concepts of information theory are
then presented in Section 2.4.2. Subsequently, we detail the redundancy
reduction stages modeling and coding in Sections 2.4.3 and 2.4.4. Fi-
nally, we present basics about quantization, i.e., irrelevancy reduction, in
Section 2.4.5.

2.4.1 Mathematical Preliminaries

We introduce a few mathematical preliminaries necessary for the under-
standing of the concepts presented in this dissertation. These preliminar-
ies include probability (Section 2.4.1.1), random variables (Section 2.4.1.2),
probability distributions (Section 2.4.1.3), the concepts of marginal and
conditional probability (Sections 2.4.1.4 and 2.4.1.5, respectively), and
independence (Section 2.4.1.6), as well as expectation, variance, and co-
variance (Section 2.4.1.7).

2.4.1.1 Probability

We introduce the probability P = P(e) of some elementary event e, i.e.,
an event which contains only a single outcome in the sample space26, in
the sense of the axiomatic definition by Kolmogorov [Kol33]. P(e) is a
real number between 0 and 1, inclusive:

0 6 P(e) 6 1. (2.3)

The probability of the entire sample space is equal to 1, i.e., the proba-
bilities P(e) are normalized: ∑

e

P(e) = 1. (2.4)

26 The sample space is the set of all possible outcomes of an experiment in the context of
probability theory.
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Also, any two mutually exclusive elementary events e1 and e2 satisfy:

P(e1 + e2) = P(e1) + P(e2). (2.5)

In what follows, we extend this basic concept of probability.

2.4.1.2 Random Variables

A variable that can take on different values randomly is called a random
variable. We give random variables lowercase names and write them in
roman type, e.g., x, to distinguish them from “ordinary” scalars (that are
written in italics, e.g., x). To discriminate the random variable itself from
the values, i.e., states, it can take on, we write those states in italics, as
we do for scalars. For example, x1 and x2 might be two possible values
that the random variable x can take on.

A random variable only describes possible states; it must be coupled
with a probability distribution that specifies how likely the occurrence of
each of the states is. Also, random variables may be discrete or continuous.
A discrete random variable has a finite number of states27. A continuous
random variable has an infinite number of states, where the states are
associated to the real numbers.

2.4.1.3 Probability Distributions

A probability distribution is coupled to a random variable or to a set of
random variables. It indicates how likely it is that the random variable
(or set of random variables) is to take on each of its states.

A probability distribution over discrete random variables is called
PMF. PMFs are denoted with an uppercase P. The probability that a
random variable x takes on state x is denoted as P(x = x). We sometimes
shorten this to P(x). Sometimes we need to further disambiguate the
probability distribution that a random variable follows. When then use
the ∼ notation: x ∼ P.

Probability distributions can also act on many random variables si-
multaneously. Such probability distribution are called joint probability
distributions. The probability that random variable x takes on state x
and that random variable y takes on state y at the same time is denoted
as P(x = x, y = y).

A probability distribution over continuous random variables is called
PDF. PDFs are denoted with a lowercase p. A PDF does not give the
probability of specific state directly. It must be integrated to find the

27 Note that the states do not have to be integers; they can also be named states.
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actual probability that x lies in a certain interval, e.g.,
∫
[a,b] p(x)dx in the

case of a PDF coupled to a single random variable.
As an example for a PDF we consider a uniform probability distribution

on a real interval [a,b] with b > a. This distribution is given by u(x;a,b).
The “;” notation means “parametrized by”, i.e., x is the function argument,
and a and b are parameters that define the function. To ensure that u is
normalized we set u(x;a,b) = 0 ∀ x /∈ [a,b] and u(x;a,b) = 1

b−a ∀ x ∈
[a,b].

2.4.1.4 Marginal Probability

Given a joint probability distribution over a set of random variables it
is possible to calculate the probability distribution over a subset of the
random variables. Such a probability distribution over the subset is called
marginal probability distribution.

In the case of a joint probability distribution over two discrete random
variables x and y, P(x, y), the probability distribution P(x) over the single
variable x can be computed as

∑
y P(x, y = y).

For continuous random variables integration is used instead of sum-
mation: p(x) =

∫
y p(x,y)dy.

2.4.1.5 Conditional Probability

Let us now consider that an event depends on another event. The con-
ditional probability that x = x given y = y is denoted as P(x |y), in the
case of discrete random variables x and y. The joint probability P(x,y)
can be expressed using the conditional probability and vice versa:

P(x,y) = P(x |y) · P(y)⇔ P(x |y) =
P(x,y)
P(y)

. (2.6)

The formulation for continuous random variables is analogous.
Note that we can infer Bayes’ theorem directly from Equation 2.6:

P(x |y) =
P(y | x) · P(x)

P(y)
. (2.7)

2.4.1.6 Independence

Two discrete random variables x and y coupled to the probability distri-
butions Px(x) and Py(x), respectively, are identically distributed if and
only if

Px(x) = Py(x)⇔ Py(y) = Px(y). (2.8)
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Also, the occurrence of events described by x can be independent (i.e.,
not related) to the occurrence of events described by y. In this case the
joint probability distribution Px,y(x, y) of both x and y can be expressed
as a product of two probability distributions, where one only involves x
and one only involves y. More specifically, x and y are independent if
and only if

Px,y(x, y) = Px(x) · Py(y). (2.9)

The formulations for continuous random variables are analogous.
In general, a collection of random variables is independent and identi-

cally distributed if each random variable is coupled to the same probabil-
ity distribution as the others, and if all random variables are mutually
independent.

2.4.1.7 Expectation, Variance, and Covariance

The expectation of some function f(x) with respect to a probability distri-
bution P(x) is the mean value that f takes on when x is drawn from the
probability distribution. For discrete random variables the expectation is
defined as

Ex∼P[f(x)] =
∑
x

f(x)P(x). (2.10)

For continuous random variables the expectation is computed with an
integral:

Ex∼p[f(x)] =

∫
x
f(x)p(x)dx. (2.11)

The expectation of the function f(x) = xn with n ∈N \ 0 is referred to
as n-th moment

Mn = Ex∼P[x
n]. (2.12)

The first moment M1 is known as the linear mean mx. With the linear
mean we can define the n-th central moment

Cn = Ex∼P [(x−mx)
n] . (2.13)

The second central moment C2 is known as variance var(x). Its positive
square root is the standard deviation σx.

The covariance provides information about the extent to which two
values are linearly related to each other, as well as about the scale:

cov(x,y) = Ex∼Px,y∼Py [(x−mx) · (y−my)] . (2.14)

High absolute values of the covariance mean that the values change a lot
and at the same time are far from their mean values. If the sign of the
covariance is positive, both random variables tend to take on relatively
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high values simultaneously. If the sign of the covariance is negative,
then one random variable tends to take on a relatively high value at
the times that the other takes on a relatively low value and vice versa.
Other measures such as correlation—as measured for example by the
PCC—normalize the contribution of each random variable to measure
only how much the variables are related, rather than also being affected
by their scales.

The PCC, expressing the strength of the linear relationship between x
and y can be expressed using the covariance cov(x,y) and the standard
deviations σx and σy:

ρxy =
cov(x,y)
σx · σy

. (2.15)

If x and y are uncorrelated, then ρxy = 0. If |ρxy| = 1, then x and y are
linearly dependent.

Note that correlation and independence (see Section 2.4.1.6) are related
but distinct concepts. If two random variables x and y are indepen-
dent, then they are uncorrelated, i.e., they exhibit zero covariance. Also,
two variables x and y that have nonzero covariance are dependent. In-
dependence, however, is a distinct property from covariance. For two
variables to have a covariance of zero, there must be no linear depen-
dence between them. Independence is a stronger requirement than zero
covariance, because independence also excludes nonlinear relationships.
Nevertheless, correlation is an indicator for a predictive relationship that
can be exploited in practice, e.g., in the modeling stage of a compression
technique.

2.4.2 Information Theory

Information theory is based on the observation that knowing that a likely
event has occurred is less informative than knowing that an unlikely
event has occurred. A quantification of information should have the
following properties:

1. Likely events should have a low information content, and events
that are certain to occur should have no information content at all.
Less likely events should have a higher information content.

2. Independent events should have additive information content.

Satisfying property 1 could easily be achieved by defining the infor-
mation content of an event x as −P(x). We can use the logarithm (with
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respect to an arbitrary base) to satisfy property 2. The self-information of
an event x is hence defined as

I(x) = − logP(x). (2.16)

By using the base-2 logarithm, the unit of self-information is bit. Hence,
one bit is the amount of information gained by observing an event of
probability 1

2 . The use of other bases is of course possible28. For example,
in machine learning the logarithm with base e is frequently used; in this
case the unit of self-information is “nats”.

Self-information deals only with a single event x. By computing the
expectation of the self-information with respect to the entire probability
distribution P(x) we obtain the entropy

H(x) = Ex∼P[I(x)] = −Ex∼P[logP(x)] = −
∑
x

P(x) logP(x). (2.17)

The entropy gives the average information that is expected in an event x
drawn from probability distribution P(x). Distributions close to the Dirac
delta distribution29 have low entropy; distributions close to the uniform
distribution have high entropy. We illustrate this by by showing the
entropy of a binary random variable in Figure 2.7.

We can also compute the conditional entropy of a conditional proba-
bility distribution P(x |y) of two discrete random variables30 x and y by
averaging the self-information I(x |y) = − logP(x |y):

H(x |y) = −
∑
x

∑
y

P(x,y) logP(x |y). (2.18)

It can be shown (see [Mus02] for a proof) that the conditional entropy
is always smaller or equal to the (unconditional) entropy,

H(x |y) 6 H(x), (2.19)

where equality holds if and only if x and y are independent (see Sec-
tion 2.4.1.6). This can be exploited during coding, such as higher-order
arithmetic coding (see Section 2.4.4.4).

28 As all logarithms are proportional, e.g., log2(x) =
loge(x)
loge(2)

, it does not matter which logarithm
is used.

29 The Dirac delta distribution is defined by

δ(x) =

{∞, if x = 0,
0, otherwise,

constrained by
∫
x δ(x)dx = 1.

30 The conditional entropy can be generalized to include conditional probability distributions
involving conditioning on an arbitrary number of random variables.
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Figure 2.7: Entropy of a binary random variable. We show a plot of the entropy of
the probability distribution P(x = x) with x ∈ {0,1} and P(x = 0) =
1−p and P(x = 1) = p, respectively. The entropy is given byH(x) =
−
∑
x P(x) logP(x) = −(1− p) · log2(1− p) − p · log2 p (using

the base-2 logarithm). In the case that p = 0.5, i.e., P(x) is a uniform
probability distribution, the entropy is maximal. In the cases that p = 0
or p = 1, the entropy is minimal.

Analogously, we can also define the joint entropy31

H(x, y) = −
∑
x

∑
y

P(x,y) logP(x,y). (2.20)

It can be shown (again, see [Mus02] for a proof) that the joint entropy
is always smaller or equal to sum of individual entropies,

H(x, y) 6 H(x) +H(y), (2.21)

where equality holds if and only if x and y are independent (see Sec-
tion 2.4.1.6).

2.4.3 Modeling

In modeling, redundant information is described in the form of a mathe-
matical model. The data is then expressed in terms of a difference—the
residual—between the data and the model. In the coding stage, the resid-
ual is then actually compressed by representing every residual element

31 Again, we use two random variables for illustration. Of course, the joint entropy can also
be generalized to joint probability distributions involving an arbitrary number of random
variables.



34 preliminaries

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

i

m
i

Figure 2.8: Plot of a vector of mapping positions. The data seems to fall on a
straight line.

with as few bits as possible. Good models lead to more efficient compres-
sion algorithms. There are various strategies to creating mathematical
models.

For example, consider the example of a set of reads that are aligned
to a reference sequence. In this process a so-called mapping position
is assigned to each read. Usually, reads and mapping position are sub-
sequently sorted. Consider the following vector of mapping positions:

m = (1 3 4 4 5 6 6 8)T . (2.22)

The vector contains six distinct values; and using a very naïve binary
code, each value could be represented by

⌈
log2 6

⌉
= 3 bit.

However, by plotting m over its indices i we can explore the data and
exploit its structure. The plotted data is shown in Figure 2.8. We see that
the data seems to fall on a straight line. Therefore, a model for the data
could be a straight line. Evaluating the straight line at the indices i gives
the prediction of the model:

m̂ = (1 2 3 4 5 6 7 8)T . (2.23)

We can now express the data in terms of a difference d, i.e., residual,
with respect to the model:

d = m− m̂ = (0 1 1 0 0 0 −1 0)T . (2.24)

The residual vector d contains only three distinct values. Using the same
naïve code, each value can now be represented using only

⌈
log2 3

⌉
=

2 bit.
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In general, mathematical models can be classified into physical models
(detailed in Section 2.4.3.1) and probability models (detailed in Sec-
tion 2.4.3.2). However, in many applications, it is not easy to use a single
model to describe the data. In such situations, we can use a combination
of several models—a composite model32—where only one model is active
at any given time.

2.4.3.1 Physical Models

Knowledge about the physics of the data generation process can be used
to construct an efficient model. For example, in Chapter 4 we devise a
mathematical method that, in short, predicts the “importance” of quality
scores that map to a specific locus. This “importance” is subsequently
used to control the quantization of said quality scores. If the mathematical
model always predicts the “importance” correctly, then it is possible
to achieve an optimum in the equilibrium of rate and distortion (see
Section 2.4.5). As can be seen from this example, models may not only
serve the purpose of computing a residual; they can also serve as “proxy”
models for controlling other parts of the compression process, such as
quantization.

In many cases, however, the physics of data generation might be too
complicated to be used to develop a model. If the physics of the problem
is too complicated, we can build a model based on empirical observation
of the statistics of the data.

2.4.3.2 Probability Models

Let us assume that a source generates symbols from an alphabet A =

{a0,a1, . . . ,aK−1} with cardinality |A| = K. The symbols can be rep-
resented by a discrete random variable x that can take on the values
in A.

The simplest mathematical model is to assume that each symbol gener-
ated by the source is independent of every other symbol, and that each
symbol occurs with the same probability. Following our assumption, we
couple the alphabet with probabilities P(ak) = 1

K ∀ k ∈ {0, 1, . . . ,K− 1}.
The next level of complexity is to retain the assumption of indepen-

dence, but remove the assumption of equal probability and assign each
symbol its own probability of occurrence.

Given a probability model under the independence assumption we
can compute the entropy of the source using Equation 2.17. It is also

32 The composite model is an exceptionally rich concept: there are myriad ways of controlling the
model selection process; e.g., the model selection might be based on the statistical properties
of already processed data.
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possible to construct efficient codes that approach the entropy. However,
these codes are only efficient if the independence assumption and the
probability model are in accordance with reality.

In the case that the assumption of independence is not consistent with
the observed data, it is generally possible to find better compression
schemes by rejecting this assumption. One of the most popular tech-
niques for representing dependencies in the data is through the use of
Markov models33 [Say06]. Let x = (x0 x1 · · · xN−1)

T be a symbol vector
of length N, where each symbol is drawn from the alphabet A. This
vector is said to follow an m-th order Markov process if

P(xN−1 | xN−2, . . . , xN−m−1) = P(xN−1 | xN−2, . . . , x0). (2.25)

Of course, m must be constrained to 1 6 m 6 N− 1. In other words,
knowledge of the past m symbols is equivalent to the knowledge of all
past symbols. The values taken on by xN−2, . . . , xN−m−1 are called the
states of the process. The sequence xN−2, . . . , xN−m−1 is also known as
context. Given the alphabet size K the number of states is hence Km.

Equation 2.25 indicates the existence of dependence between symbols.
It does however not describe the details of the dependence; describing
those details is an inherent part of the process to devise an appropriate
model that efficiently describes the data.

Markov models are limited in the sense that the number of states Km

grows exponentially with m. A workaround is to estimate the involved
conditional probabilities (rather than to empirically compute them using
past data), e.g., using a neural network [Goy+20].

2.4.4 Coding

The term coding—or entropy coding—summarizes methods for the com-
pression of data by representing it with as few bits34 as possible. In coding,
codes must satisfy the requirement of unique decodability, i.e., that indi-
vidual code words can be recognized unambiguously. For fixed-length
codes this is a trivial requirement. For variable-length codes unique de-
codability can be achieved by the use of prefix codes35. Coding methods
can be grouped into different classes.

Static coding methods, such as Elias gamma coding [Eli75], Fibonacci
coding, and Golomb coding [Gol66] (including Rice coding [RP71]) pro-

33 Here we use a specific type of Markov model called a discrete time Markov process.
34 In general, coding includes the generation of codes that are made up of an arbitrary numbers

of code symbols. However, here, we focus on binary codes which are constructed using two
code symbols, usually 0 and 1. We refer the reader to [Mus02] for the respective generalized
formulations involving an arbitrary number of code symbols.

35 In a prefix code, no code word is a prefix of any other code word.
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vide fixed, i.e., static, mappings of input symbols to variable-length code
words. The computation of such mappings is independent from the actual
input symbols to be compressed. However, if the statistical properties
of the source are known in advance, the use of static coding methods is
perfectly fine and can even be optimal. For example, if it is known that
the input symbols follow a geometric probability distribution, then it can
be shown that Golomb coding provides an optimal prefix code in this
case [GV75].

Non-static coding methods, such as Huffman coding [Huf52], also map
input symbols to variable-length code words. However, here, the codes
are computed using the statistical properties of the source.

Arithmetic coding methods in turn, such as arithmetic coding [WNC87],
range coding, and CABAC [MSW03], encode an entire message into a
single interval which is represented by two numbers.

Most recently, the ANS family of coding methods has shown notable
performance: ANS methods achieve the compression of arithmetic coding
at a better computational performance than arithmetic coding [Dud14].
Similar to arithmetic coding methods, ANS methods encode an entire
message into a single number (not an interval). Both arithmetic coding
and ANS can be seen as numeral systems, i.e., systems for express-
ing numbers. Whereas “ordinary” numeral systems are optimized for
expressing numbers following a uniform distribution, both arithmetic
coding and ANS optimize for the specific distributions of the source.

For more detailed descriptions of various coding methods we refer the
reader to [Say06].

In what follows, we first revisit the source coding theorem in Sec-
tion 2.4.4.1. Subsequently, in Section 2.4.4.2, we briefly elaborate on the
construction of Huffman codes. Then, in Section 2.4.4.3, we describe
arithmetic coding in detail because range coding, a specialization of arith-
metic coding, is used in our contributions TSC (see Chapter 3) and CALQ
(see Chapter 4). Finally, in Section 2.4.4.4, we revisit CABAC, as our
contribution GABAC (see Chapter 5) is built around a CABAC “core”.

2.4.4.1 The Source Coding Theorem

In coding we consider a source that emits symbols. A source in its
simplest form can be modeled by a discrete random variable x that takes
on states x, and that is coupled to a probability distribution P(x). In the
context of coding we denote the set of states as alphabet A. The symbols
are the actual states the random variable takes on.

Suppose a source emitting symbols x with entropy H(x). Further sup-
pose that every symbol xk is assigned a binary code word ck ∈ {0, 1}nk
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from a (variable-length) prefix code, where nk is the length of code
word ck. The mean code word length36 of the entire code can then be
computed as

n̄ =
∑
k

P(xk)nk. (2.26)

It can be shown (we refer the reader to [Mus02] for a proof) that the
mean code word length satisfies the inequality

H(x) 6 n̄ < H(x) + 1, (2.27)

which is known as source coding theorem. The difference

r = n̄−H(x) (2.28)

is known as code redundancy. Among the group of variable-length prefix
codes, those codes constructed using Huffman coding (see Section 2.4.4.2)
yield the lowest code redundancy. However, here, the minimum code
word length is one bit. Hence, symbols whose occurrence is overly proba-
ble (i.e., P(x) > 0.5) can not be coded efficiently, i.e., in such a way that r
becomes zero. To circumvent this issue, a fixed number of subsequent
symbols can be combined into “supersymbol” blocks of length L. Under
the assumption that all symbols are independent, the joint entropy of a
block can be computed as the sum of individual entropies

∑
lH(xl) (see

Equation 2.21). The source coding theorem can now be rewritten as∑
l

H(xl) 6 L · n̄ <
∑
l

H(xl) + 1. (2.29)

Incorporating the assumption that all symbols are identically distributed
leads to

L ·H(xl) 6 L · n̄ < L ·H(xl) + 1, (2.30)
which can finally be rewritten as

H(xl) 6 n̄ < H(xl) +
1

L
. (2.31)

Hence, as the block size L approaches infinity, Huffman coding theoreti-
cally approaches the entropy limit, i.e., zero code redundancy. However,
the blocking of arbitrarily large groups of symbols is impractical because
the complexity of a Huffman code is linear in the number of possibilities
to be encoded. This number grows exponentially with the block size,
limiting the scope of blocking in practice.

Other coding methods, such as arithmetic coding or ANS methods
do not produce codes for single symbols (or supersymbols); they rather
encode an entire message. Hence, the codes produced by these methods
always approach zero code redundancy.

36 Note that the code word lengths must satisfy Kraft’s inequality
∑
k 2

−nk 6 1 for the entire
code to be a prefix code.
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Figure 2.9: Construction of a Huffman code. Source symbol probabilities are shown
in squared boxes. Probabilities of equivalent symbols are shown in
circles.

2.4.4.2 Huffman Coding

As elaborated in Section 2.4.4.1, among the group of variable-length prefix
codes, those codes constructed using Huffman coding [Huf52] yield the
lowest code redundancy.

We briefly explain the construction of a Huffman code using the ex-
ample shown in Figure 2.9. We assume a source generating symbols x ∈
{x1, x2, x3, x4} with probabilities P(x1) = 0.4,P(x2) = 0.35,P(x3) =

0.2,P(x4) = 0.05. First, a binary tree is generated from the bottom up,
taking the two least probable symbols and merging them into another
equivalent symbol whose probability is equal to the sum of the two
symbols. The process is repeated until there is only one symbol left (with
probability 1). Second, the tree is read backwards, i.e., from top to bottom,
assigning different bits to different branches37. The final Huffman code
is shown in Table 2.2.

Note that the entropy of the source is approximately 1.74 bit per symbol,
but that the mean code word length is 1.85 bit per symbol. The Huffman
code still exhibits a code redundancy of around 0.11 bit per symbol. This
is because the symbol probabilities are different from negative powers of
two.

37 In our example, we assign ones to the “left” branches and zeros to the “right” branches.
However, this assignment (left-1/right-0 or left-0/right-1) is arbitrary (as is the labeling of the
branches using “left” and “right”).
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Table 2.2: Construction of a Huffman code. The corresponding binary tree is shown
in Figure 2.9.

Symbol Probability Code Word

x1 0.4 1

x2 0.35 01

x3 0.2 001

x4 0.05 000

0 0.5 0.7 0.9 1

0 0.25 0.35 0.45 0.5

0.25 0.3 0.32 0.34 0.35

Figure 2.10: Arithmetic coding example. The decoding of the number 0.33 is
shown.

2.4.4.3 Arithmetic Coding

In contrast to coding methods such as Huffman coding, where input
symbols are mapped to variable-length codes, in arithmetic coding an
entire message is encoded into a single number a with 0 6 a < 1. This
number a lies in an interval, which is defined by two numbers. It is this
interval that contains the message information, i.e., any number in it
would represent the same message. In particular, it is only necessary to
transmit enough digits (in whatever base) of a so that all numbers that
begin with those digits fall into said interval. The key in arithmetic coding
lies in that the interval can also be represented by repeated subdivision
of the interval [0, 1).

We briefly explain the working of arithmetic coding at the example
decoding process shown in Figure 2.10, which shows said repeated
subdivision process. For detailed descriptions of the encoding we refer
the reader to [Mus02] and [Say06].
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Consider the message m = (A B C)T , and let us assume that P(A) =

0.5, P(B) = 0.2, P(C) = 0.2, and P(D) = 0.1. Also, let the message be en-
coded in the number 0.33. (Here we are using the decimal representation
for clarity, instead of the binary representation. We also assume that there
are only as many digits as needed to decode the message.)

The decoding begins with the same interval used by the encoder, [0, 1).
The decoding of the number 0.33 is now performed by repeated subdivi-
sion of this interval, according to the symbol probabilities. More specif-
ically, the interval [0, 1) is divided into the four sub-intervals [0,P(A)),
[P(A),P(A) + P(B)), [P(B),P(A) + P(B) + P(C)), as well as [P(A) + P(B) +
P(C), 1). As can be seen at the top of Figure 2.10, the number 0.33 falls
into the interval [0, 0.5); hence, the first symbol must be A. Next, the in-
terval [0, 0.5) is divided into sub-intervals. Each sub-intervals constitutes
a fraction of the current interval, which is proportional to the probability
of the respective symbol in the current context38. The number 0.33 falls
in the interval [0.25, 0.35); hence, the second symbol must be B. After
another interval subdivision (where again each sub-interval represents a
fraction of the current interval proportional to the probability of that sym-
bol in the current context) we find that 0.33 falls in the interval [0.32, 0.34);
hence we know that the third symbol must be C. Because the message
length is known, decoding stops here. (In the case that the message
length is not known, an additional “end-of-data symbol” must be used
alternatively.)

One advantage of arithmetic coding over other compression methods
is the possibility to employ adaptive probability models. This can be
achieved by using the same initial probability model both at the encoder
and at the decoder, and by adapting it equally and continuously on both
sides.

The use of more sophisticated probability models is also possible. For
example, arithmetic coding is often combined with Markov models (see
Section 2.4.3.2). When using such higher-order modeling, current symbol
probabilities are estimated using knowledge about preceding symbols.
Here, the set of preceding symbols is referred to as the context.

2.4.4.4 Context-Adaptive Binary Arithmetic Coding

In arithmetic coding, in general, arbitrary interval subdivisions are used.
Restricting the subdivisions to binary subdivisions is a method known as
binary arithmetic coding. Using, in addition, an adaptive higher-order

38 The wording “in the current context” means that the probabilities might be adapted (depend-
ing on the current context) at each sub-interval division stage.
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Figure 2.11: CABAC encoder block diagram (© 2003 IEEE [MSW03]).

probability model for the estimation of the current (binary) symbol
probability is a method known as CABAC [MSW03].

CABAC is mostly known for its use in the AVC/H.264 [Wie+03] and
HEVC/H.265 [Sul+12] standards. A block diagram of the CABAC en-
coder used in AVC/H.264 is shown in Figure 2.11.

The encoding process consists of at most three steps: binarization,
context modeling, and binary arithmetic coding.

In the first step, non-binary symbols are binarized, i.e., they are
uniquely mapped to binary sequences, so-called bin strings. For bi-
nary symbols, the binarization step is bypassed. The following steps
are repeated for each bin.

In the so-called bypass coding mode, no context modeling is used, and
every bin is encoded using binary arithmetic coding with a fixed probabil-
ity model. Often a probability model is used that assumes equiprobability
for all bins. The bypass coding mode allows for faster encoding and
decoding, at the expense of compression efficiency.

In the so-called regular coding mode a context model provides the
probability of each bin being 0 or 1. Context models can be selected from
a set of available models, depending on the statistics of recently coded
symbols. Binary arithmetic coding is used to encode each bin according to
the selected context model. Finally, the selected context model is updated.

Regarding the use of binary arithmetic coding, in contrast to m-ary
arithmetic coding, it is important to note that nothing is lost in terms
of modeling, as the individual (non-binary) symbol probabilities can be
recovered using the probabilities of the corresponding individual bins.
For an illustration of this aspect we refer the reader to [MSW03].

The use of CABAC in video coding has been very successful because
its structure has been heavily adapted to suit special video coding re-
quirements, such as low complexity. However, in Chapter 5 we show
that CABAC can also be applied to DNA sequencing data, providing
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an important addition to the array of coding methods used in DNA
sequencing data compression.

2.4.5 Quantization

Apart from redundancy, which is eliminated by the two-stage process of
modeling and coding, data may also contain information that is consid-
ered irrelevant. The techniques for irrelevancy reduction can be summa-
rized by the term quantization. For example, rounding a real number x
to the nearest integer value constitutes a very simple type of quantizer: a
uniform (mid-tread39) quantizer.

In general, quantization is the process of mapping input values from
a large set to a smaller set. Hence, this process involves the loss of
information. Quantization techniques are therefore referred to as lossy
compression techniques. This loss can be quantified using a distortion
function, which measures the cost of representing a symbol x by its
associated quantized symbol x̆. An oft-used function is for example the
squared-error distortion d(x, x̆) = (x− x̆)2.

In all cases, a trade-off must be made between the amount of distortion
that can be accepted after reconstruction of the data, and the compres-
sion that can be achieved by dropping parts of the data. In general,
coarser quantization, i.e., accepting a larger amount of distortion, leads to
better compression, i.e., a lower rate. These matters are discussed in rate-
distortion theory, which provides the theoretical foundations for lossy
compression. Here, we briefly explain quantization using the example of
a uniform quantizer; for a detailed review of rate-distortion theory we
refer the reader to [Mus02] and [Say06].

Because the set of possible output values of a quantizer is countable,
any quantizer can be decomposed into two distinct stages, which can
be referred to as the quantization stage and the reconstruction stage,
where the quantization stage maps the input value x to an integer quan-
tization index k and the reconstruction stage maps the index k to the
reconstruction value x̆k. For the example uniform quantizer described
above (rounding of a real number to the nearest integer), the quantization
stage can be expressed as

k =

⌊
x+

1

2

⌋
, (2.32)

and the reconstruction stage can be expressed as

x̆k = k. (2.33)

39 Mid-tread quantizers have a zero-valued reconstruction level around the value 0, while
mid-riser quantizers have a zero-valued classification threshold.
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The decomposition into a quantization and a reconstruction stage il-
lustrates how quantized data can be transferred over a communication
channel: at the source the quantization stage is performed and the index
information is then communicated to the sink, where the reconstruction
stage is performed to produce an approximation of the original input
data. In general, the quantization stage may use any function that maps
the input data to the integer space of quantization indices, and the recon-
struction stage can conceptually be a LUT mapping each quantization
index to a corresponding reconstruction value.



3
C O M P R E S S I O N O F A L I G N E D R E A D S

As outlined in Chapter 2, Section 2.4, data compression techniques consist,
in general, of the two stages modeling and entropy coding.

In the modeling stage, redundant information is described in the form
of a mathematical model. Mathematical models can be grouped into two
different types: physical models and probability models. In a physical
model, knowledge about the physics of the data generation process is
used to construct an efficient physical model (see Section 2.4.3.1). A more
generic model type, however, is the group of probability models (see
Section 2.4.3.2). These models use different levels of assumptions about
the statistics of the data. However, probability models can always only be
an approximation to the underlying physics of the data.

Given a mathematical model (of any type), next, the data is expressed
in terms of a difference—the residual—between the data and the model.
In the entropy coding stage, the residual is then actually compressed by
representing every residual element with as few bits as possible.

In this chapter, we introduce a physical model to describe aligned reads.
In contrast to the state of the art, our model is designed to exhibit a low
memory footprint, and to be able to operate without external reference
sequences. We couple our model with generic compression methods to
evaluate its performance with respect to the state of the art.

This chapter is organized as follows. First, in Section 3.1, we review
the state of the art, and we introduce our contribution TSC [VMO16]. In
Section 3.2, we present the architecture of TSC in more detail. Here, we
put special emphasis on the two main elements of TSC: the decoupling
of read and alignment information into so-called descriptor streams,
and the use of a “sliding window” to infer a so-called “local sliding
consensus reference” for the prediction of reads. The sliding window
and local sliding consensus reference elements have been adopted in
the ISO/IEC 23092 series. Hence, in Section 3.3, we show how exactly
these elements are integrated in ISO/IEC 23092-2:2020. To evaluate the
performance of TSC with respect to the state of the art, we make use of a

45
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previously published benchmark suite, that we co-authored. We detail
our complete experiment setup in Section 3.4, and we present and discuss
the results in Section 3.5. Finally, we conclude our findings in Section 3.6.

3.1 state of the art and contribution

Methods for the compression of nucleotide sequences can be grouped into
three categories: genome compression methods, read compression meth-
ods, and methods for the compression of aligned reads. We introduce
each of these categories in the following sections: genome compression is
introduced in Section 3.1.1, read compression is outlined in Section 3.1.2,
and the compression of aligned reads is presented in Section 3.1.3. Our
contribution, TSC, belongs to the group of compression methods for
aligned reads; hence, we introduce it in the corresponding Section 3.1.3.

3.1.1 Genome Compression

The first DNA-related compression tools aimed at the compression of en-
tire genomes. In the years up to 2007 the field of genome compression was
limited to compression tools that make use of dictionary-based methods.
These early compression tools were specifically tailored to the properties
(such as approximate repeats and palindromes) of genomes. Compres-
sion tools developed in this time span until 2007 include biocompress-21,
DNACompress [Che+02], and XM [Duc+07].

Starting in 2009, tools were developed that encode genomes with the
help of a reference genome, such as DNAzip [Chr+09], GRS [WZ11],
GReEn [PPG11], ERGC2 [SR15], and iDoComp [OHW15]. With these
reference-based tools it is possible to compress a single human genome
down to a few megabytes3. They are also particularly well-suited for the
compression of genome collections from the same species. This is for
example implemented in GDC [DG11b] and GDC 2 [DDN15].

3.1.2 Read Compression

The compression of reads differs significantly from the compression of
entire genomes, since a set of reads exhibits intrinsic redundancy, due to

1 https://hal.inria.fr/inria-00180949

2 The authors of GDC and iDoComp published a comment (see [Deo+15]) on ERGC. They show
that ERGC is, in general, outperformed by both GDC and iDoComp. This is in contrast to
what the ERGC authors report in their paper. ERGC wins only in the (very) special case when
one of the genomes (referential or target) contains mixed-cased letters.

3 For example, using iDoComp, the human genome assembly GRCh37, also known as hg19,
can be compressed down to almost only 1 MB.

https://hal.inria.fr/inria-00180949
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the coverage. In the literature, read compression is often referred to as
“FASTQ compression”, since the FASTQ format is the de-facto standard
for the representation of reads. All read compression tools that can be
found in the literature use FASTQ files as their encoder input, and their
decoders analogously output FASTQ files. Tools for the compression of
reads can be grouped into “classic” tools, that retain the ordering of reads,
“reordering” tools, that reorder reads with the goal of achieving better
compression, and “alignment” tools, that employ fast (approximate)
alignment techniques as preprocessing before the actual compression.
While read compression tools are focused on the efficient compression of
the actual reads, i.e., nucleotide sequences, all of them also compress the
read identifiers and the quality scores; however, for the read identifiers
and the quality scores mostly generic compressors such as gzip are used.

The group of classic tools includes DSRC [DG11a], DSRC 2 [RD14],
FQC [Dut+15], LFQC [NPR15], as well as Fqzcomp and Fastqz [BM13].
For an exhaustive review of these tools we refer the reader to [Num+16].

The group of reordering tools includes SCALCE [Hac+12], BEET-
L [Cox+12], ORCOM [GDR15], Mince [PK15], and FaStore [Rog+18],
as well as HARC [CTW18] and SPRING4 [Cha+19]. It is important to
point out that changing the order of reads is a legitimate approach, since
they constitute a set, as they are, in principle, randomly sampled frag-
ments from the underlying DNA molecules. Again, for an extensive
review of these tools we refer the reader to [Num+16].

Alignment tools include Quip [Jon+12], LEON [Ben+15], Kpath [KP15],
LW-FQZip [Zha+15], and KIC [Zha+16]. Again, for a review of these tools
we refer the reader to [Num+16], and to the associated literature.

3.1.3 Compression of Aligned Reads

As mentioned in Section 3.1.2, the compression of reads differs signifi-
cantly from the compression of entire genomes. The same is true for the
compression of aligned reads: techniques for their compression differ
again significantly from the compression of entire genomes, and also
from the compression of (unaligned) reads. Here, the redundancy in-
troduced by the coverage is already easily accessible for compression
algorithms, thanks to the alignment information. Moreover, aligned reads
are typically also sorted by their mapping positions, which additionally
eases the accessibility of the redundant information. In the literature, the
compression of aligned reads is often referred to as “SAM compression”,
since the SAM format is the de-facto standard for the representation of

4 Regarding the compression of actual reads, i.e., nucleotide sequences, SPRING is based on
HARC, with significant improvements and added support for variable-length reads.
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aligned reads. All tools for the compression of aligned reads that can be
found in the literature use SAM5 files as their encoder input, and their
decoders analogously output SAM files.

To address the compression of alignments, several specialized com-
pression tools have been proposed in the literature. Similar to the read
compression tools—that focus on efficient read, i.e., nucleotide sequence,
compression, but also encode the read identifiers and quality scores—the
tools for the compression of aligned reads are focused on the compres-
sion of reads and their alignment information. However, most of these
tools also include capabilities for the compression of read identifiers and
quality scores. Again, here, mostly generic compressors such as gzip are
used. These tools for the compression of alignments can be classified into
reference-based tools and variation-sensitive tools.

Reference-based tools mainly include those tools that implement a
version of the CRAM format specification6. CRAMTools7 is an imple-
mentation of the CRAM 2.0 format. It decouples the different SAM fields
into separate streams and applies a variety of compression techniques
to each stream. For example, mapping positions are encoded using a
combination of delta coding and Golomb coding [Gol66]. The actual read
information is encoded in a reference-based manner. Scramble [Bon14],
in turn, is an implementation of the CRAM 3.0 format, focused on an
optimized implementation in the C language. Scramble estimates, already
during encoding, the best compression technique for each stream, based
on the corresponding statistics. Unlike CRAMTools, Scramble can also
operate in a non-reference-based mode, where the reference sequence
is re-generated from the alignment data and stored alongside the other
compressed information.

The only variation-sensitive tool that can be found in the literature
is DeeZ [HNS14], which is primarily a reference-based tool. However,
additionally, it performs a local assembly of the reads, with the goal of
modifying the corresponding reference sequence, such that it matches
the actual read set to be compressed. This way, common small variations
need to be encoded only once.

The state of the art in compression of aligned reads is primarily based
on the availability of external reference sequences. (Note that Scramble
can also operate in a non-reference-based mode.) In contrast to the state
of the art, our contribution, TSC [VMO16], is designed with the goals
of achieving a low memory footprint and operating without external

5 Most compression tools use HTSlib (https://www.htslib.org) for accessing SAM files. Hence,
most of them are also able to accept BAM files as input (and to output BAM files).

6 The most recent version, specifying the CRAM 3.0 format, is available at https://samtools.
github.io/hts-specs/CRAMv3.pdf.

7 https://github.com/enasequence/cramtools

https://www.htslib.org
https://samtools.github.io/hts-specs/CRAMv3.pdf
https://samtools.github.io/hts-specs/CRAMv3.pdf
https://github.com/enasequence/cramtools
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reference sequences. TSC utilizes a sliding window (i.e., a permanently
updated short-time memory) to track recent reads. The information
residing in the sliding window is then used to infer a so-called “local
sliding consensus reference”, i.e., an implicitly assembled local part of
the underlying DNA sequence, for the prediction of reads. Because the
local sliding consensus reference is directly generated from the subject
reads, TSC can be classified, along with DeeZ, as a variation-sensitive
tool.

3.2 tsc architecture

TSC is built around two main elements: the decoupling of read and
alignment information into so-called descriptor streams, and the use of a
sliding window to infer a so-called local sliding consensus reference for
the prediction of reads. We start explaining these elements by describing
the TSC architecture from the encoder point of view.

As input, TSC requires reads, i.e., nucleotide sequences, and their
alignment information, sorted by mapping position. Similar to the tools
for the compression of aligned reads that can be found in the literature,
TSC uses files in the SAM format as encoder input and decoder output.
In the SAM format (see Section 2.3.3), the alignment information for a
specific read, i.e., nucleotide sequence (referred to with the mnemonic
“SEQ”), is composed by the corresponding reference sequence identifier
(“RNAME”), the mapping position (“POS”), and the so-called CIGAR
string (“CIGAR”), which contains a specially encoded version of the edit
operations that are necessary to transform the read into the portion of the
reference sequence that it maps to. Note that the TSC encoding algorithm
does not require the reference sequence itself.

In the first step, the TSC encoder transforms each read, along with
its alignment information, into an equivalent representation. This equiv-
alent representation consists of a set of “descriptors” that convey the
same information that is present in the RNAME, POS, CIGAR, and SEQ
columns of the SAM format, but in a form that allows for more efficient
compression.

In TSC, there are two different equivalent representation types: so-
called “I-records” and “P-records”. In analogy to I-frames in video coding,
the I-records serve as starting points for sequences of predicted P-records.
Hence, I-records are used for the first alignment in a block, and also
in a few special cases, where the prediction is unfeasible (e.g., because
there does not exist any overlap between the current read and the local
sliding consensus reference) or not beneficial (e.g., because there are
too many modifications in the current read with respect to the local
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sliding consensus reference). In TSC, blocks have a defined maximum
size, nb,max. Upon reaching the maximum size, a new I-record is inserted.

An I-record consists of the following set of descriptors (we use mnemon-
ics, such as “exs” for “expanded nucleotide sequence” to be able to
efficiently refer to specific descriptors): rname, pos, cigar, and exs. These
descriptors exhibit the following semantics:

• rname: This descriptor contains the reference sequence identifier.
It contains the same information that is present in the RNAME
column of the SAM format.

• pos: This descriptor contains the mapping position. It contains the
same information that is present in the POS column of the SAM
format.

• cigar: This descriptor contains the CIGAR string. It contains the
same information that is present in the CIGAR column of the SAM
format.

• exs: This descriptor contains the so-called “expanded” nucleotide
sequence. The expanded nucleotide sequence is generated from the
original nucleotide sequence (SAM column “SEQ”) by removing
from it nucleotides that are inserted with respect to the reference se-
quence; and padding it with an auxiliary symbol8 where it exhibits
deletions with respect to the reference sequence. (The information
about insertions and deletions is available in the corresponding
CIGAR string.)

• inserts: This descriptor contains the inserted nucleotides that have
been removed from the original nucleotide sequence.

Once an I-record has been generated, its descriptors pos and exs are
pushed to the sliding window, which can be thought of as fixed-size
circular buffer. For each subsequent alignment, the two descriptors pos

and exs are also pushed to the circular buffer. The circular buffer is
configured to have a defined maximum capacity nc,max, measured in
number of I- and P-records. If this threshold is reached, oldest descriptors
are removed from it to make room for new descriptors.

To encode subsequent alignments, a so-called “local sliding consensus
reference” is built from the information in the circular buffer. Assume
that the circular buffer operates at its maximum capacity. (In practice, for
example, we use a maximum capacity of nc,max = 10, i.e., a maximum of

8 In TSC the symbol “?” is used at those positions; however, the specific symbol is not of
relevance.
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ten pos-exs pairs is kept in the circular buffer.) Then, for each position,
a consensus nucleotide is derived by majority vote9 from the expanded
nucleotide sequences in the circular buffer. This yields the local sliding
consensus reference which now can be used to encode subsequent reads.

The encoding of subsequent reads works as follows. First, the original
nucleotide sequence is expanded again. Then, the expanded nucleotide
sequence is encoded differentially with respect to the local sliding con-
sensus reference. This encoding yields a P-record that consists of the
following descriptors: posoff, cigar, inserts, modcnt, modpos, modbases,
and trail. These descriptors exhibit the following semantics:

• posoff: This descriptor contains the offset of the mapping position
of the current nucleotide sequence with respect to the most recent
mapping position that resides in the circular buffer (recall that
TSC assumes that the input data is sorted ascending by mapping
position).

• cigar: This descriptor contains the current CIGAR string. It is the
same descriptor as used for I-records.

• inserts: This descriptor contains the inserted nucleotides that have
been removed from the original nucleotide sequence. It is the same
descriptor as used for I-records.

• modcnt: The number of modified nucleotides with respect to the
local sliding consensus reference.

• modpos: The positions of the modified nucleotides, relative to the
current mapping position.

• modbases: The actual modified nucleotides.

• trail: Those nucleotide that are not covered by the local sliding
consensus reference. Recall that TSC best operates on data that is
sorted ascending by mapping position10. Hence, eventually, new
reads will extend on the “right” with regard to prior reads. Eventu-
ally, the trail descriptor will contain something that looks similar
to a reference sequence.

Finally, a special descriptor is needed to be able to distinguish between
I-records and P-records (because the descriptors cigar and inserts are
shared by both types of records). This is the ctrl descriptor, which signals

9 The original implementation of TSC used a special policy to select expanded nucleotide
sequences from the sliding window; for the details we refer the reader to [VMO16].

10 Still, if the algorithm encounters a violation of this requirement, new I-records may be inserted.
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either an I-record or a P-record. Note that, to handle inconsistencies in
the input SAM file (which are produced by aligners), and to provide
a generic fallback solution, TSC also implements so-called M-records,
which are virtually a copy of the corresponding SAM fields RNAME,
POS, CIGAR, and SEQ. In general, compared to the proportion of I- and
P-records, the proportion of M-records is negligible. For example11, in
the case of item 16 (see Table 3.1) TSC generates 1,390 I-records (0.0105%),
13,174,289 P-records (99.9885%), and only 131 M-records (0.0010%).

Note that, as the TSC technology was submitted to the standardization
process of the ISO/IEC 23092 series, the semantics of some TSC descrip-
tors overlap with some descriptors specified in ISO/IEC 23092-2:2020. In
particular, the TSC descriptors modpos and modbases correspond semanti-
cally to the ISO/IEC 23092-2:2020 descriptors “mmpos” and “mmtype”.

Finally, each stream of descriptors is subject to entropy coding. Here, we
make the assumption that statistical dependencies between the different
descriptors are negligible. Hence, we encode each descriptor stream
separately. Except for the numerical posoff, modcnt, and modpos streams,
which are encoded using range coding, all descriptor streams are encoded
using zlib [Deu96]. Here, the actual compression is based on the LZ77

algorithm [ZL77] and Huffman coding [Huf52].
In summary, we devised a physical model to describe aligned reads.

This physical model consists of the sliding window, and of the local
sliding consensus reference that is built from it. The residual—the differ-
ence between the data and the model—takes the form of the descriptor
streams, which are finally subject to entropy coding.

3.3 integration of tsc in mpeg-g

The TSC technology was submitted to the standardization process of the
ISO/IEC 23092 series, and it is now integrated in its part 2 as “local as-
sembly” reference computation algorithm. To illustrate this, we show and
explain the two relevant decoding processes from ISO/IEC 23092-2:2020.
The first decoding process (“process for adding a decoded aligned read
to the list crBuf”) specifies the sliding window mechanism. The second
decoding process (“process for the construction of the reference”) speci-
fies the building of the local sliding consensus reference from the data
maintained in the sliding window.

Figure 3.1 shows the first decoding process, the “process for adding a
decoded aligned read to the list crBuf”, as specified in Clause 11.3.5.2 of
ISO/IEC 23092-2:2020. This process specifies the sliding window mecha-

11 As in Section 3.4, we use the empirically derived parameters nb,max = 10000 and nc,max =
10 (see [VMO16]).



3.3 integration of tsc in mpeg-g 53

The inputs to this process is an array crBuf[][] which contains cr-
BufNumReads reads of size in bytes equal to crBufSize.The output of
this process is the updated array crBuf[][] and the updated variables
crBufNumReads and crBufSize.

This process consists of the following steps:

1. If the variable crBufSize plus the length in bases of the already
decoded aligned read is greater than cr_buf_max_size, the
oldest reads are removed from the array crBuf[][] until crBufSize
plus the size of the already decoded aligned read is smaller
than or equal to cr_buf_max_size.

2. The last decoded read is added to the array crBuf[][] as newest
read.

Figure 3.1: ISO/IEC 23092-2:2020, Clause 11.3.5.2, “Process for adding a decoded
aligned read to the list crBuf”.

nism. The contents of the sliding window are stored in the array named
“crBuf” (which stands for “computed reference buffer”). More specifically,
the array crBuf contains multiple decoded nucleotide sequences. The
number of nucleotide sequences maintained in the array crBuf is stored
in the variable named “crBufNumReads”. The size in bytes of the array
crBuf is recorded in the variable named “crBufSize”. Old data is ejected
from the array crBuf based on it reaching a maximal size in bytes, given
by the encoding parameter cr_buf_max_size. This encoding parameter
is equivalent to the TSC parameter nc,max (see Section 3.2). However,
note that, where the TSC parameter nc,max specifies a maximum circu-
lar buffer capacity in a number of nucleotide sequences, the encoding
parameter cr_buf_max_size is given in bytes. By giving the size in bytes,
an encoder can better control the memory usage of the decoder, since
read lengths might be highly variable. This mechanism enables memory-
efficient encoding and decoding, as only the array crBuf needs to be kept
in memory (in comparison to keeping an entire reference sequence in
memory). What is more, as the maximal size of the array crBuf is defined
by an encoding parameter, the memory consumption of decoding can
already be defined during encoding.

Figure 3.2 shows the second decoding process, the “process for the
construction of the reference”, as specified in Clause 11.3.5.3 of ISO/
IEC 23092-2:2020. (Note that, here, dots indicate additional process parts
which are present in ISO/IEC 23092-2:2020, but which are not repeated
here for brevity.) Here, we need to point out that, to execute this second
decoding process, the position on the reference sequence of each nu-
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The input to this process is an array crBuf[][] containing at least
one aligned read and the position on the reference sequence of each
nucleotide.

The output of this process is an array refBuf[] containing a sequence
of consensus symbols.

For each position covered by aligned reads in the array crBuf[][], the
consensus symbol is derived as follows:

1. Collect all bases mapping to the current position.

2. Count the occurrences of each symbol.

3. If two symbols si, sj (...) have the same maximum number of
occurrences, then select si as consensus symbol.

4. Otherwise, select the symbol with the maximum number of
occurrences as consensus symbol.

5. Append the consensus symbol to the array refBuf[].

6. ...

The result of the decoding process described above is a reference
sequence contained in the array refBuf[] ...

Figure 3.2: ISO/IEC 23092-2:2020, Clause 11.3.5.3, “Process for the construction of
the reference”. Dots indicate additional process parts which are present
in ISO/IEC 23092-2:2020, but which are not repeated here for brevity.

cleotide in the array crBuf is required. This process specifies the building
of the local sliding consensus reference from the data which is main-
tained in the array crBuf, i.e., the sliding window. Via majority vote,
a consensus nucleotide is derived per position covered by nucleotide
sequences stored in the array crBuf. The result of this decoding pro-
cess is an array named “refBuf”—the incarnation of the local sliding
consensus reference—which is subsequently used to decode the next
ISO/IEC 23092-2 record. Note that the array refBuf is re-computed for
each decoded nucleotide sequence. Hence, this scheme introduces an ad-
ditional computational overhead, compared to the case where a reference
sequence can be held available in memory. However, this overhead can
be controlled by the encoding parameter cr_buf_max_size.

3.4 experiment setup

We evaluate the performance of TSC with respect to the state of the art. We
use the empirically derived parameters nb,max = 10000 and nc,max = 10
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for TSC (see [VMO16]). For this purpose, we used the benchmark suite12

published by Numanagić et al. [Num+16]. Because TSC is implemented
as a single-threaded software, we report only the single-threaded perfor-
mance of all tools here. (The benchmark suite is capable of performing
simulations involving different numbers of threads.) All experiments
were performed on a computer equipped with an Intel Core i9-9900K
CPU and 64 GiB of RAM, running openSUSE Leap 15.2.

The state of the art consists of the general-purpose compressors gzip13,
the reference-based alignment compressor Scramble (version 1.14.6), im-
plementing the CRAM 3.0 format, and the variation-sensitive alignment
compressor DeeZ (version v1.9-beta1). Although Scramble has been de-
signed as a reference-based tool, it can also be operated in a non-reference-
based mode.

The compressed output of each of the tools can be split unambiguously
into information pertaining to: i) nucleotide sequences and mapping
information; ii) quality scores; iii) read identifiers; and iv) auxiliary
fields. Here, we are only interested in the information pertaining to the
nucleotide sequences and mapping information, which is associated to
the SAM fields RNAME, POS, CIGAR, and SEQ; and these are the results
that we report in Section 3.5. We refer the reader to [Num+16] for an
exhaustive evaluation that includes the other categories.

We carefully selected representative test data from the MPEG-G Ge-
nomic Information Database [ISO20]. This database can be regarded as
statistically meaningful, since it contains an abundance of sequencing
data exhibiting a wide array of different characteristics. In particular, the
database includes sequencing data that was generated in different experi-
ment settings: it contains WGS data, metagenomic sequencing data, and
RNA sequencing data. Also, the database contains data that originates
from different species: Drosophila melanogaster, Homo sapiens, Theobroma
cacao, Saccharomyces cerevisiae, Escherichia coli, Pseudomonas aeruginosa, and
the virus ΦX174. Finally, the data was generated with various sequenc-
ing technologies such as sequencing by synthesis, SMRT sequencing,
nanopore sequencing, and ion semiconductor sequencing.

Because of the sheer size of the database, we selected a subset of
the data for our simulations, similar to [Num+16]. Notably, we only
selected WGS data, to be able to draw conclusions with respect to the
use of reference sequences. We also paid attention to select data that
is different in the other two data dimensions (species and sequencing

12 https://github.com/sfu-compbio/compression-benchmark
13 The benchmark suite actually uses pigz (https://zlib.net/pigz), version 2.3.3. However,

here, we are only evaluating the single-threaded performance, which lets pigz be equivalent
to gzip.

https://zlib.net/pigz
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Table 3.1: Selected test data from the MPEG-G Genomic Information Data-
base [ISO20]. Particular attention was paid to species and sequencing
technology diversity in the selection of test data.

Item Species Sequencing Technology Coverage

3 H. sapiens SMRT sequencing 15×
5 H. sapiens Sequencing by synthesis 2×
9 H. sapiens Ion semiconductor seq. 0.6×

16 E. coli Sequencing by synthesis 420×
19 D. melanogaster SMRT sequencing 75×
23 H. sapiens Sequencing by synthesis 30×

technology). Specifically, we selected items 3, 5, 9, 16, 19, and 23. These
items contain WGS data pertaining to the species Homo sapiens (items 3, 5,
9, 23), Escherichia coli (item 16), and Drosophila melanogaster (item 19). Also,
the data were produced using different sequencing technologies: items 3

and 19 were produced using SMRT sequencing, items 5, 16, and 23 were
produced using sequencing by synthesis, and item 9 was produced using
ion semiconductor sequencing.

What is more, each item exhibits some special characteristics, making
the entire set of items a good stress test for the selected set of codecs.
Item 3 is from the widely used NA12878 (Homo sapiens) sample, but this
time sequenced using SMRT sequencing technology. Item 5 exhibits a low
and extremely uniform coverage of 2×. Item 9 was produced using ion
semiconductor sequencing technology, which leads to large variations
in the sequencing depth (the major factor leading to the extremely low
coverage of 0.6×). Item 16 contains high-coverage data (420×) of a small
genome (Escherichia coli). Item 19 contains uncorrected variable-length
long reads with complex and lengthy CIGAR strings. Finally, item 23

exhibits a much higher degree of sequence variation than usual. Table 3.1
summarizes the details of the selected data.

3.5 results and discussion

Table 3.2 shows the compressed sizes that were achieved by all codecs
on all test items. As mentioned in Section 3.4, the compressed output of
each tool can be split unambiguously into information pertaining to, on
the one hand, reads and mapping information, as well as all remaining
information, such as quality scores, on the other hand. Here, we only
show the information pertaining to the reads, i.e., nucleotide sequences,
and mapping information. This is the information that is associated to the
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Table 3.2: Compressed sizes in MiB achieved by all codecs on all test items. The
compressed data contains the read, i.e., nucleotide sequence, and align-
ment information (i.e., the information corresponding to the SAM fields
RNAME, POS, CIGAR, and SEQ). At the bottom the compressed sizes
(gzip) of the corresponding reference sequences are shown.

Codec
Item

3 5 9 16 19 23

DeeZ 6,964 137 32 19 1,502 3,921

gzip 14,564 1,047 61 54 4,623 8,226

Samtools (BAM) 14,822 1,142 75 51 4,621 8,646

Scramble (CRAM 3.0) 6,440 129 36 17 1,303 3,882

—w/o ref. 14,852 929 92 48 4,747 7,235

TSC 14,522 1,079 43 24 2,288 8,205

Reference 905 905 905 1.4 43 905

SAM fields RNAME, POS, CIGAR, and SEQ. In the last row of Table 3.2
we also report the sizes of the corresponding reference sequences, as
obtained by compressing them with gzip. The reference sequence sizes
have to be taken into account when comparing the reference-based tools,
DeeZ and Scramble, to the non-reference-based tools gzip, Samtools,
Scramble (without reference), and TSC. Note that Samtools implements
the BAM format, and that Scramble implements the CRAM 3.0 format.

To be able to better interpret the data presented in Table 3.2, we first
normalized all compressed sizes with respect to the associated BAM
size. We use the BAM format as anchor because in the case of aligned
read compression we regard the BAM format as the de-facto standard.
Second, we plotted the compressed sizes in the form of a bar chart,
where bars are grouped by item. For the DeeZ and Scramble bars we
stack the corresponding compressed reference sizes on top, because the
compressed sizes of the non-reference-based tools already include some
kind of compressed representation of an associated reference sequence.
This visualization is shown in Figure 3.3. We discuss the results shown
in Figure 3.3 separately per item.

In the case of item 3, gzip, “Scramble w/o ref.”, and TSC achieve a
compressed size similar to the BAM size. For gzip this is expected: recall
that the BAM format utilizes BGZF, which implements block compres-
sion on top of the gzip file format [Deu96] (see Section 2.3.3). “Scramble
w/o ref.” and TSC both build some kind of reference sequence from
the available read data. Hence, in general, they are expected to exhibit
similar compression performances. However, here, in the case of item 3,
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Figure 3.3: Compressed sized, with respect to BAM, achieved by all codecs on all
test items. For the DeeZ and Scramble bars we stack the corresponding
compressed reference sizes on top, because the compressed sizes of the
non-reference-based tools already include some kind of compressed
representation of an associated reference sequence.

“Scramble w/o ref.” and TSC are in this case clearly outperformed by
DeeZ and Scramble (with reference), even taking into account the sizes of
the compressed references that are added to the DeeZ and Scramble (with
reference) results. We suspect that this behavior has its roots in the se-
quencing technology that was used to generate item 3: SMRT sequencing
technology. Reads produced using SMRT sequencing technology exhibit,
in general, high amounts of insertions. The coding methods implemented
in DeeZ and Scramble (with reference) seem to be better suited for this
task.

In the case of items 16, 19, and 23, compared to item 3, we observe
qualitatively similar results. However, for items 16 and 19, TSC clearly
outperforms “Scramble w/o ref.”, joining the group of the reference-
based tools. We can conclude that TSC better exploits the redundancy
present in the short and low-error reads of item 16, compared to “Scram-
ble w/o ref.”. Regarding item 19, things lie differently. Item 19 is again
produced using SMRT sequencing technology. Here, in contrast to item 3,
the coverage is 75× (item 3: 15×). Recall that in our experiments we con-
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figured TSC to use a sliding window size of nc,max = 10. This means that,
in principle, TSC should exhibit a similar performance on items 3 and 19.
However, the coverage is always only an average over the sequencing
depth at all loci. Hence, we can conclude that the sequencing depth for
both items (3 and 19) is slightly variable. In the case of item 19, however,
the coverage is throughout high enough for TSC to build efficient local
sliding consensus references.

Items 5 and 9 are two special cases. Item 5 exhibits a low and extremely
uniform coverage of 2×. Hence, one would expect that reference-based
and non-reference-based codecs achieve similar compressed sizes, and
this is what we can observe from Figure 3.3. Item 9 contains data with ex-
tremely large variations in the sequencing depth, leading to the extremely
low coverage of 0.6×. Here, taking into account the compressed sizes of
the associate reference sequences, we clearly see that the reference-based
tools are outperformed by the non-reference-based tools. In particular,
TSC is the best-performing codec.

TSC was designed to operate with an extremely low memory foot-
print. (Recall that in our experiments we use a sliding window size of
only nc,max = 10.) Hence, we also evaluate the memory usage of each
codec. Table 3.3 shows, for all codecs, the achieved compressed sizes with
respect to BAM, averaged over all items, as well as the maximum RSS14,
additionally averaged over encoding and decoding. From the table we
can see that the generic codecs gzip and Samtools have the lowest average
memory usage (10 MiB and 11 MiB, respectively). The reference-based
codecs operate with significantly higher memory usage: DeeZ requires a
maximum RSS of 6,774 MiB on average, and Scramble requires 1,166 MiB
on average. The non-reference-based mode of Scramble requires only
783 MiB on average. The lowest memory usage among the specialized
codecs is achieved by TSC, with only 563 MiB on average. Additionally,
compared to the non-reference-based mode of Scramble, TSC reaches an
average compressed size of 0.8305 with respect to BAM, where Scramble
(without reference) only reaches an average compressed size of 0.9976,
barely outperforming the anchor BAM.

3.6 conclusion

We introduced a physical model, TSC, to describe aligned reads. In
contrast to the state of the art, our model is designed to exhibit a low
memory footprint, and to be able to operate without external reference
sequences.

14 The resident set size (RSS) is the amount of memory occupied by a process that is in main
memory (RAM). The rest of the occupied memory is in the swap space or file system.
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Table 3.3: Compressed sizes with respect to BAM (without taking into account the
compressed sizes of the corresponding reference sequences), averaged
over all items, and maximum RSS, additionally averaged over encoding
and decoding. Note that the averages shown are not weighted. Hence,
they present an average over the different data types (not the specific
data items) that were used in the experiments.

Codec ∅ Size w.r.t. BAM ∅ Max. RSS / MiB

DeeZ 0.3655 6,774

gzip 0.9625 10

Samtools (BAM) 1 11

Scramble (CRAM 3.0) 0.3448 1,166

—w/o ref. 0.9976 783

TSC 0.8305 563

Our model consists of two main elements. The first main element is the
use of a sliding window to track recently encoded reads. The second main
element is to use the data tracked within the sliding window to infer a so-
called local sliding consensus reference for the prediction of subsequent
reads. These two elements have been adopted in the ISO/IEC 23092 series.
In Section 3.3 we have shown how exactly these elements are integrated
in ISO/IEC 23092-2:2020.

We coupled our model with generic compression methods to evaluate
its performance with respect to the state of the art. For our evalua-
tion, we made use of a previously published benchmark suite, that we
co-authored. Our results show that TSC provides the best trade-off of
memory usage and achieved compressed size. Among the specialized
codecs, TSC exhibits the lowest average memory consumption of 563 MiB.
At the same time, TSC reaches an average compressed size of 0.8305 with
respect to BAM, where the other specialized non-reference-based codec
(non-reference-based mode of Scramble) only reaches 0.9976.



4
C O M P R E S S I O N O F Q UA L I T Y S C O R E S

As outlined in Chapter 2, Section 2.4, the two-stage process of model-
ing and coding eliminates redundancy in the input data. However, the
input data may also contain information that is considered irrelevant.
This irrelevant information can be reduced by applying quantization.
Regarding quantization, in all cases a trade-off must be made between
the amount of loss that can be accepted after reconstruction of the data,
and the compression that can be achieved.

As also outlined in Chapter 2 (Section 2.4.3.1), models may not only
serve the purpose of redundancy reduction; they can also serve as proxy
models that control other parts of the compression process, such as
quantization.

Building on these two concepts (proxy models and quantization), in
this chapter, we present two mathematical models that are used to control
the quantization of quality scores: the genotype likelihood model and
the activity-based posterior model. The activity-based posterior model
is an extension of the genotype likelihood model. It therefore includes
the genotype likelihood model. In short, both models predict the “im-
portance” of each quality score. This importance is subsequently used to
control the “coarseness” of the quantization that is applied to the quality
scores.

This chapter is structured as follows. First, we review the state of the art
in Section 4.1. Here, we also introduce our contribution CALQ [VOH17;
VOH18]. In Section 4.2, we present the architecture of CALQ in full detail,
with special emphasis on the two conceived models. The CALQ technol-
ogy has been adopted in the ISO/IEC 23092 series. Hence, in Section 4.3,
we detail how exactly CALQ is integrated in ISO/IEC 23092-2:2020. Fol-
lowing precedence in the literature, we designed an extensive experiment
setup to quantify the impact of quality score quantization on down-
stream analyses, which we present in Section 4.4. We show and discuss
the results in Section 4.5. Finally, we conclude our findings in Section 4.6.

61
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4.1 state of the art and contribution

It has been shown that quality scores can take up to 80% of the lossless
compressed size [Och+17]. This is mainly due to the large quality score
alphabet that is usually used. For example, most Illumina sequencing
machines emit 42 different quality scores. Addressing the issue of quality
score compression, Illumina proposed a binning method to reduce the
number of difference quality scores from 42 to 8. With this proposal,
Illumina paved the way for lossy compression of quality scores.

The drawback of allowing lossy compression of quality scores is that
downstream analyses could be affected. However, Yu et al. [Yu+15], Ochoa
et al. [Och+17], as well as our own works [Alb+16; Her+17; Her+18]
showed that quality scores compressed using more sophisticated methods
may not only perform better than Illumina-binned quality scores in
downstream analyses, but in some cases may even perform better than
the original quality scores because these methods remove noise from
the data. These conclusions were made by conducting rate-distortion
analyses, where distortion metrics are applied that are specifically tailored
to downstream analyses.

The most advanced lossy quality score compression methods that can
be found in the literature are Crumble [BMD18], Quartz [Yu+15], and
QVZ2 [HOW16].

Crumble [BMD18] uses a simple heterozygous consensus algorithm
(taken from Gap5 [BW10]) to produce a consensus call for each locus,
coupled with a confidence. If the calls are highly confident then the
algorithm sets the corresponding quality scores to a fixed high or low
value, depending on whether they agree with the call. In the case that the
calls are not highly confident, the algorithm keeps the original quality
scores. Crumble is, besides CALQ, the only method that is also operating
on a per-locus basis, rather than on a per-read basis.

Quartz [Yu+15] quantizes quality scores by smoothing a large fraction
of them based on their k-mer neighborhood in the nucleotide sequences.
A prerequisite for the operation of Quartz is the creation of a dictionary
of common k-mers for each species. Then, for a given set of reads, Quartz
breaks these reads up into a set of overlapping so-called supporting
k-mers. After that, each position in a supporting k-mer that differs from
a dictionary k-mer is noted as a possible variant. Quartz assumes that
these divergent nucleotides correspond to sequencing errors or to SNPs,
respectively. The corresponding quality scores are preserved by Quartz,
and other quality scores are set to a predefined default value.

QVZ2 [HOW16] models the quality scores in each read as a Markov
process of order one. This approach is rooted in the finding that quality
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scores are highly correlated with their neighbors. The transition prob-
abilities of the Markov process are derived from the entire dataset to
be compressed. Subsequently, these transition probabilities are used to
compute a set of Lloyd-Max quantizers, indexed by the position within a
read as well as by the previously quantized value. Finally, an adaptive
arithmetic encoder is used to compress the quantized quality scores.

Our contribution to the field of compression of quality scores, CALQ,
is centered around two mathematical models that are used to control
the quantization of quality scores. The first model, the genotype likeli-
hood model, infers the likelihood distribution of the genotype for each
locus from the observable data, i.e., the read and alignment information,
using a statistical model. The likelihood distribution of the genotype
is further used to compute a “genotype uncertainty profile” over the
loci. The second model, the activity-based posterior model, builds on
the genotype likelihood model by adding a more realistic prior to infer
the posterior distribution of the genotype for each locus. Incorporating
further systematic assumptions, this posterior distribution of the geno-
type is used to eventually compute an “activity profile” over the loci. The
output of either model (genotype uncertainty profile or activity profile,
respectively) is used to determine the locus-wise acceptable level of dis-
tortion for the quality scores such that subsequent downstream analyses
are presumably not affected. Finally, the quality scores are quantized
accordingly. This way, high compression is achieved while at the same
time only a negligible impact on downstream analyses is permitted.

4.2 calq architecture

In this section, we describe the CALQ architecture from the encoder point
of view. The encoder input consists of alignments, i.e., reads, including
quality scores, as well as alignment information. The encoder output is a
compressed bitstream representing the quantized quality scores.

In a first step, CALQ uses either the genotype likelihood model or the
activity-based posterior model to determine the genotype uncertainty
profile or the activity profile, respectively, of which either is used in turn
to infer the locus-wise acceptable level of distortion for the quality scores.
More specifically, a quantizer index is computed for each locus. Each
quantizer index identifies a specific precomputed quantizer to be used
for the quantization of all quality scores at a specific locus.

In a second step, the quantizer indices are entropy-encoded and form
the first part of the compressed bitstream that represents the quantized
quality scores.



64 compression of quality scores

In a third step, the quality scores are quantized using the selected
quantizers. This process yields one quantization index per quality score.
Note that we make a distinction between quantizer indices (for the locus-
wise quantizer selection) and quantization indices (output of quality score
quantization). The quantization indices are also entropy-encoded and
form the second and final part of the compressed bitstream.

Using the alignment information, a decoder is able to reconstruct the
quantized quality scores using the quantizer indices (one for each locus)
and the quantization indices (one for each quantized quality score).

CALQ includes two models: the genotype likelihood model and the—
significantly more complex—activity-based posterior model. The basis in
both models is the inference of the posterior distribution of the genotype.

The genotype likelihood model infers the likelihood distribution of
the genotype for each locus from the observable data, i.e., the read and
alignment information. Here, the most simple model is assumed for the
prior distribution of the genotype (i.e., a “flat” prior). This leads to a direct
proportionality between the likelihood and the posterior distributions of
the genotype. The likelihood distribution of the genotype is further used
to compute a “genotype uncertainty profile” over the loci. The genotype
uncertainty profile is finally used to compute a quantizer index for each
locus.

The activity-based posterior model builds on the genotype likelihood
model by incorporating a more realistic model for the prior to infer the
posterior distribution of the genotype for each locus. Hence, here, the
posterior distribution of the genotype is used explicitly and referred to
as “raw” activity profile. This model also incorporates further systematic
assumptions to eventually compute a “smooth” activity profile over the
loci. More specifically, information about high-quality softclips is used to
refine the raw activity profile. Also, a low-pass filter is applied. Finally,
the smoothed activity profile is used to compute a quantizer index for
each locus. The activity-based posterior model draws inspiration from
the GATK HaplotypeCaller [McK+10; DeP+11; VO20], where an activity
profile is used to identify active regions that are subsequently screened
in more detail for variants.

In summary, comparing the two models, the activity-based posterior
model leads to a more conservative quantization of quality scores, which
in turn leads to a slightly higher rate for the compressed quality scores.
However, the hope here is that this more realistic model is able to min-
imize the impact of quantization on subsequent downstream analyses,
thus leading to a more favorable trade-off between rate and distortion.
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4.2.1 Genotype Likelihood Model

The first model, the genotype likelihood model, infers the likelihood
distribution of the genotype for each locus from the observable data,
i.e., the read and alignment information, using a statistical model. More
specifically, the observable data at a specific locus are the nucleotides
and the associated quality scores of all alignments that overlap the locus.
The likelihood distribution of the genotype is further used to compute
a “genotype uncertainty profile” over the loci. The genotype uncertainty
profile is finally used to compute a quantizer index for each locus.

More concretely, the genotype uncertainty at a specific locus can be
viewed as a metric that measures the probability that a unique genotype
is the correct one. Hence, the genotype uncertainty can be used to de-
termine the amount of loss that is acceptable in the quality scores at the
corresponding locus: if a unique genotype is very likely, then a high loss
in the quality scores might be acceptable, and vice versa.

We control the amount of introduced loss by using the genotype
uncertainty profile to compute a specific quantizer index r for each locus.
Each quantizer index r identifies a specific precomputed quantizer to be
used for the quantization of all quality scores at that specific locus. Here,
we use a set of seven uniform mid-tread quantizers with two to eight
quantization levels, i.e., r ∈ {2, 3, . . . , 8}.

Recall that a quantizer can be decomposed into two distinct stages,
which are referred to as the quantization stage and the reconstruction
stage (see Section 2.4.5). The quantization stage maps the input value
(here: quality score q) to an integer quantization index k. The reconstruc-
tion stage maps the quantization index k to the reconstructed quality
score q̆k.

In other words, the amount of introduced loss is parametrized by a
quantizer index r, which represents a quantizer with r quantization levels.
Specifically, if the genotype likelihood models infers that two or more
different genotypes are likely to be true, then the genotype uncertainty
will be high and hence, r will be high. However, if there is enough
evidence in the data that a particular genotype is likely the correct one,
then the genotype uncertainty will be low, and therefore r will be low.
Consequently, the achievable compression of the quality scores associated
to a particular locus is driven by the genotype uncertainty at that locus.

This idea is depicted in Figure 4.1. The figure shows at the top four
aligned nucleotides sequences, including the associated quality scores.
Recall that a quality score is a value that indicates the confidence in a
base call (see Section 2.3.2). Quality scores are logarithmically linked to
the base-calling error probability. Also, they are typically offset to be able
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Figure 4.1: Genotype uncertainty inference. The figure shows at the top four
aligned nucleotide sequences (yellow), including the associated quality
scores (light blue). The red and green colored bar in the middle rep-
resents the inferred genotype uncertainty at each locus. Dark green
represents low uncertainty, while dark red represents high uncertainty.
The numbers shown in the middle bar are the quantizer indices r
chosen for each locus. The value of r also indicates the number of
different quantization indices of its associated quantizer. Finally, the
figure shows at the bottom the reconstructed quality scores. This figure
was already presented in [VOH18].

to represent them with a single ASCII character. Hence, in Figure 4.1,
quality scores represented by special characters or digits correspond to
high uncertainties on the genotype (i.e., low qualities); quality scores rep-
resented by uppercase letters correspond to low genotype uncertainties
(i.e., high qualities). For simplicity, let us assume that the reads originate
from a haploid genome. The bar in the middle of the figure, immediately
below the reads, shows with colors the inferred genotype uncertainty
at each locus. Dark green represents low uncertainty, while dark red
represents high uncertainty. The genotype uncertainty is then used to
infer a quantizer index r, representing a quantizer with r quantization
levels. The corresponding quantizer indices are shown as numbers in
the middle bar. In other words, each number in the middle bar indicates
the number of quantization indices that will be used to represent the
quality scores at the corresponding locus. Recall that a large number is
associated with a high genotype uncertainty, and vice versa. Finally, the
figure shows at the bottom the reconstructed quality scores.

To illustrate the concept with an example, let us focus on the left-most
locus in Figure 4.1. At this locus there is not enough evidence in the
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data to support a particular genotype, because only two nucleotides
cover that locus, with one of them having a rather high quality score
(“F”), and the other one of them having a rather low quality score (“+”).
Therefore, a large quantizer index r will be inferred, namely r = 8 in
this example. Conversely, Figure 4.1 contains a number of loci with low
genotype uncertainty (dark green parts of the bar in the middle). Here,
only r = 2 quantization indices will be used to represent all quality
scores at these loci. Finally, note that at the fifth locus all nucleotides
align perfectly. (Recall that we assume a haploid genome.) However, since
half of the corresponding quality scores at that particular locus are low,
the genotype uncertainty is high, resulting in r = 6 quantization indices
to be used.

The result of the encoding algorithm is a series of quantizer indices
(one quantizer index per locus), and, for each alignment, a vector of quan-
tization indices. Both types of information undergo entropy encoding.

In the following sections, we elaborate in more detail on the inference
of the genotype uncertainty (Section 4.2.1.1) and the quantizer design
(Section 4.2.1.2).

4.2.1.1 Inference of the Genotype Uncertainty

For any particular locus, we represent the genotype by a discrete random
variable g drawn from the genotype alphabet G. We express the genotype
as vector of alleles, which we also represent using discrete random
variables, i.e., g = (a0a1 · · · aH−1)

T , where each allele is drawn from the
allele alphabet A. The number of alleles that make up a genotype, H, is
the ploidy of the species.

We can derive the number of possible genotypes, i.e., the cardinality
of the genotype alphabet, by computing all possible allele combinations
with repetitions:

|G| =

(
|A| +H− 1

|A| − 1

)
. (4.1)

As an example, for the allele alphabet A = {A, C, G, T} with cardinal-
ity |A| = 4 and the case of a diploid organism with H = 2 this would
result in |G| = 10 possible genotypes.

Recalling the example of Figure 4.1, let us consider a set of sorted and
aligned nucleotide sequences, including the associated quality scores. We
denote by D the number of nucleotides covering a particular locus, i.e.,
the depth of the pileup. (D is also the number of quality scores covering
the locus.) Let nd be the nucleotide from the d-th nucleotide sequence
covering the locus, and let qd be the value of the corresponding Phred
quality score, i.e., without offset (see Equation 2.1).
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The goal here is to compute the relative posterior distribution of the
genotype g given the evidence, i.e., the observable nucleotides

n = (n0n1 · · ·nd · · ·nD−1)
T , (4.2)

parametrized by the observable quality scores

q = (q0q1 · · ·qd · · ·qD−1)
T . (4.3)

The absolute posterior distribution of the genotype g is defined as

P(g = g |n;q) =
P(n |g = g;q) · P(g = g)

P(n)
. (4.4)

The model evidence P(n) is the same for all possible genotypes. There-
fore, this factor need not be considered when determining the relative
posterior distribution of the genotype. The relative posterior distribution
is therefore proportional to the likelihood times the prior:

P(g = g |n;q) ∝ P(n |g = g;q) · P(g = g). (4.5)

In the genotype likelihood model, we use the most simple prior, i.e., a
“flat” prior. We assume that all genotypes are equally probable:

P(g = g) =
1

|G|
∀ g. (4.6)

Therefore, the posterior is directly proportional to the likelihood:

P(g = g |n;q) ∝ P(n |g = g;q). (4.7)

Consequently, in the genotype likelihood model, it is sufficient to
compute the likelihood distribution of the genotype, which is given by

P(n |g = g;q) =
D−1∏
d=0

P(nd |g = g;qd), (4.8)

where P(nd |g = g;qd) is the likelihood of having observed nd given
that the genotype was g. Recall that the genotype is expressed as vector
of alleles. Now note that each nucleotide nd was drawn from the alleles.
Without further information we hence assign to all alleles an equal
probability of being the one from which the nucleotide nd was drawn.
Therefore, the likelihood of having observed nd given that the genotype
was g is given by

P(nd |g = g;qd) =
H−1∑
h=0

P(nd | ah = ah;qd)
H

, (4.9)
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where P(nd | ah = ah;qd) is the likelihood of having observed nd given
the assumption that the true nucleotide was the allele ah, parametrized
by qd. This probability is given by

P(nd | ah = ah;qd) =

1− 10
−
qd
10 , nd = ah,

10−
qd
10

|A|−1
, nd 6= ah.

(4.10)

Finally, given the likelihood P(n |g = g;q), the genotype uncertainty u
is calculated by applying a metric m:

u = m (P(n |g = g;q)) . (4.11)

We elect m to be one minus the difference between the maximum
likelihood and the second largest likelihood:

m = 1− (Pmax − P2), (4.12)

with
Pmax = max

g
P(n |g = g;q) (4.13)

and
P2 = max

g,g6=gmax

P(n |g = g;q) (4.14)

with
gmax = argmax

g
P(n |g = g;q). (4.15)

Note that any other metric, such as the entropy (see Equation 2.17),
could also be used. However, we chose the metric shown in Equation 4.12,
because it provides more meaningful results when the likelihood consists
of only a few approximately equally likely genotypes.

4.2.1.2 Quantizer Design

The genotype uncertainty u is used to compute the quantizer index r as

r = f(u), (4.16)

where f is a monotonous increasing function. It maps the possible geno-
type uncertainty values to an integer set of quantizer indices. Each quan-
tizer index identifies a specific precomputed quantizer to be used for the
quantization of all quality scores at the current locus. Here, we use a set
of seven uniform mid-tread quantizers with two to eight quantization
levels, i.e., r ∈ {2, 3, . . . , 8}. Hence, we configure f to also be a uniform
mid-tread quantizer that outputs integer values in the set {2, 3, . . . , 8}.
Figure 4.2 depicts the characteristic of f.
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Figure 4.2: Mapping of genotype uncertainty to quantizer index.

We opted for two quantization indices for the “coarsest” quantizer, as
this binary decision is well qualified for loci with low genotype uncer-
tainty. Given the trend to downscale the quality score resolution, we chose
eight quantization indices for the “finest” quantizer to mimic Illumina’s
8-binning. In other words, we use the 8-binning scheme as a baseline.
At the same time we leave room for improvements of both the resulting
compression as well as the downstream analysis performance by selecting
quantizers with fewer quantization indices when appropriate.

4.2.2 Activity-Based Posterior Model

The second model, the activity-based posterior model, builds on the
genotype likelihood model by adding a more realistic prior to infer the
relative posterior distribution of the genotype for each locus. Incorporat-
ing further systematic assumptions, this relative posterior distribution of
the genotype is used to eventually compute an “activity profile” over the
loci.

As the first step, we define the raw activity profile—using the relative
posterior distribution of the genotype for all loci—as follows:

araw(l) :=

(
1− max

g
P(g = g |n;q)

) ∣∣∣∣
l

∀ l. (4.17)

In the case that at a specific locus l the maximum relative posterior prob-
ability is low, then there will be a high activity. In turn, if the maximum
relative posterior probability is high, then the activity will be low.
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4.2.2.1 Reference-Based Model for the Genotype Prior

Recall that the relative posterior distribution is proportional to the likeli-
hood times the prior (see Equation 4.5). In the genotype likelihood model
a flat prior was used (see Equation 4.6). Here, in the activity-based poste-
rior model, to define a more realistic prior, we make use of an external
reference sequence. For this purpose, we group the possible genotypes
into H+ 1 groups. Recall that we express the genotype as a vector-valued
random variable g = (a0a1 · · · aH−1)

T consisting of H alleles.
The first group γ0 contains the single genotype in which all alleles

match the reference. We refer to group γ0 as the homozygous-reference
group. The next groups γη, with η ∈N \ {0} and η < H, contain all those
genotypes in which η alleles do not match the reference. We refer to
the groups γη as the heterozygous-variant groups. The last group γH
contains all those genotypes in which none of the alleles match the
reference. We refer to group γH as the homozygous-variant group.

As an example, consider the allele alphabet A = {A, C, G, T} with
cardinality |A| = 4 and the case of a diploid organism with H = 2.
Consequently, the genotype alphabet G consists of the following |G| =(|A|+H−1

|A|−1

)
= 10 genotypes1:

G = {g0,g1,g2,g3,g4,g5,g6,g7,g8,g9}
= {(A, A), (A, C), (A, G), (A, T), (C, C),

(C, G), (C, T), (G, G), (G, T), (T, T)}.
(4.18)

Let us assume that the reference contains the symbol A at the locus under
consideration. The homozygous-reference group γ0 hence consists of
genotype g0 = (A, A):

γ0 = {g0} = {(A, A)}. (4.19)

In this example, because we considered a ploidy of H = 2, there is
only one heterozygous-variant group, the group γ1, containing those
genotypes in which exactly one allele does not match the reference:

γ1 = {g1,g2,g3}. (4.20)

The third and last group γ2—the homozygous-variant group—contains
all those genotypes where none of the alleles match the reference. In this
example, these are all those genotypes that are not already assigned to γ0
or γ1:

γ2 = G \ (γ0 ∪ γ1) = {g4, . . . ,g9}. (4.21)

1 See Equation 4.1 for the definition of the genotype alphabet cardinality.
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In summary, our prior model consists of the (H + 1) · |A| group
probabilities. (The (H + 1) group probabilities need to be computed
for each possible reference allele.) Each group probability is computed
as the sum of the individual genotype probabilities that correspond
to each group. In the example above, the model would hence consist
of (H+ 1) · |A| = (2+ 1) · 4 = 12 probabilities.

To actually determine the group probabilities, we assume that a variant
occurs every 1,000 loci, according to [DeP+11]. Hence, the probability for
exactly one deviation from the reference is:

P1 =
1

1000
. (4.22)

Furthermore, also according to [DeP+11], we assume that the probability
for v > 1 deviations from the reference is:

Pv =
P1
v

. (4.23)

Finally, the probability that all alleles match the reference can be com-
puted as complementary probability to P1 and all Pv:

P0 = 1−

(
P1 +

H∑
v=2

P1
v

)
= 1−

H∑
v=1

P1
v

. (4.24)

4.2.2.2 Impact of High-Quality Softclips

In general, a high abundance of high-quality softclips is an indication for
misalignments. Hence, the idea here is to increase the raw activity profile
(see Equation 4.17) at loci that are surrounded by high-quality softclips.

Let sd be the number of high-quality softclips in read d. Similar
to [DeP+11], we define high-quality softclips as those softclips that are
associated to Phred quality scores q > qHQ with qHQ = 29.

The average number of high-quality softclips in all reads covering
locus l is:

s̄(l) =
1

D

D−1∑
d=0

sd. (4.25)

If a locus l is associated to a high average number s̄thresh of high-quality
softclips, then it is considered to be particularly active, and then l is added
to the set S of active high-quality softclip loci. In analogy to [DeP+11],
we use s̄thresh = 7.

Next, we need to infer for a specific locus λ the subset S
∣∣
λ

of high-
quality softclips that impact the activity profile at this locus. We do this
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by relating the average number of high-quality softclips to the distance
from the locus under consideration:

S
∣∣
λ
: {l ∈ S | s̄(l) > |l− λ| }. (4.26)

Given the raw activity profile araw(l)
∣∣
l=λ at locus λ and the set S

∣∣
λ

of
active high-quality softclip loci with an impact on locus λ, we can finally
compute the softclip-adjusted activity profile value at locus λ as

asc(λ) = araw(l)
∣∣
l=λ +

∑
l∈S|λ

araw(l). (4.27)

Consequently, we obtain the entire softclip-adjusted activity profile as

asc(l) := asc(λ)
∣∣
λ=l ∀ l. (4.28)

4.2.2.3 Normalization of the Softclip-Adjusted Activity Profile

Recall that the raw activity profile is defined using the maximum of
the relative posterior distribution of the genotype for all loci (see Equa-
tion 4.17). The particular genotype that is associated to the maximum at
a specific locus is defined as

gmax = argmax
g

P(g = g |n;q). (4.29)

Further, we can in general write the raw activity profile as being
parametrized by the genotype: araw(l; g).

We can also discern that the raw activity profile contains probabilities,
i.e.,

araw(l; g)
∣∣
g=gmax

+ araw(l; g)
∣∣
g=¬gmax

= 1. (4.30)

However, in contrast to the raw activity profile, the softclip-adjusted
activity profile asc(l)—which we can also write as being parametrized by
the genotype as asc(l; g)—does not contain probabilities, because of the
addition of raw activities from near high-quality softclip loci. Hence,

asc(l; g)
∣∣
g=gmax

+ asc(l; g)
∣∣
g=¬gmax

6= 1. (4.31)

In the following text we will abbreviate araw(l; g)
∣∣
g=gmax

as araw(l)
∣∣
gmax

.

We will abbreviate araw(l; g)
∣∣
g=¬gmax

, asc(l; g)
∣∣
g=gmax

, asc(l; g)
∣∣
g=¬gmax

analogously as araw(l)
∣∣
¬gmax

, asc(l)
∣∣
gmax

, asc(l)
∣∣
¬gmax

.
A usual method to normalize signals such as the softclip-adjusted

activity profile is the use of the softmax function. However, the softmax
function would excessively distort the softclip-adjusted activity profile.
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Instead, we use the observation that, by adding raw activities from near
high-quality softclip loci, only araw(l)

∣∣
gmax

can grow, but araw(l)
∣∣
¬gmax

cannot. Hence, we can conclude that

asc(l)
∣∣
¬gmax

= araw(l)
∣∣
¬gmax

. (4.32)

We can therefore normalize the softclip-adjusted activities using the
sum asc(l)

∣∣
gmax

+ araw(l)
∣∣
¬gmax

:

asc(l)
∣∣
gmax

asc(l)
∣∣
gmax

+ araw(l)
∣∣
¬gmax

+
araw(l)

∣∣
¬gmax

asc(l)
∣∣
gmax

+ araw(l)
∣∣
¬gmax

= 1. (4.33)

Finally, we can define the normalized activity profile:

anorm(l) :=
asc(l)

∣∣
gmax

asc(l)
∣∣
gmax

+ araw(l)
∣∣
¬gmax

. (4.34)

As an example, consider the flat raw activity profile

araw(l)
∣∣
gmax

= araw(l)
∣∣
¬gmax

= âraw =
1

2
∀ l. (4.35)

We can now write the softclip-adjusted activity profile, parametrized by
the number n of active high-quality softclips with an impact on locus l,
as

asc(l;n) = âraw +n · âraw. (4.36)

We can then write the normalized activity profile as

anorm(l;n) =
asc(l;n)

asc(l;n) + araw(l)
∣∣
¬gmax

(4.37)

=
âraw +n · âraw

âraw +n · âraw + âraw
(4.38)

=
1+n

2+n
= anorm(n) ∀ l. (4.39)

Figure 4.3 visualizes this example normalized activity profile. The
figure shows that activities that have not been impacted by high-quality
softclips remain unaffected (n = 0). High-quality softclips increase the
activity, but the activity is constrained such that it never becomes 1.
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Figure 4.3: Visualization of parametrized normalized activity.

4.2.2.4 Filtering the Normalized Activity Profile

As a last step, the normalized activity profile anorm(l) is smoothed by
applying a Gaussian filter. In other words, the normalized activity pro-
file anorm(l) is convolved with the Gaussian function, parametrized by
its standard deviation σ, to obtain the filtered activity profile

afiltered(l;σ) := g(l;σ) ∗ anorm(l), (4.40)

with
g(x;σ) =

1√
2πσ

e
− x2

2σ2 . (4.41)

To filter the normalized activity profile, which exhibits a discrete domain,
we use a sampled Gaussian kernel that is produced by sampling points
from the continuous Gaussian function. Moreover, convolution with the
Gaussian function theoretically requires an infinite window length. Since
the Gaussian function decays swiftly, it is reasonable to truncate the filter
window. Here we use a filter window size of W + 1 and compute the
filtered activity profile as:

afiltered(l;σ) =
W∑

i=−W

anorm(l− i) · g(i;σ). (4.42)

Specifically, we use W = 23. This value was derived by using the
standard deviation σ = 17, the default value used in GATK, and the
value δ = 0.01, specifying the value of the Gaussian function that is
deemed negligible:

δ <
1√
2πσ

e
−W2

2σ2 ⇒W >

√
−2σ2 · ln

(
δ
√
2πσ

)
. (4.43)
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Figure 4.4: Original and scaled quantizer characteristics.

4.2.2.5 Quantizer Design

The quantizer design for the activity-based posterior model is analo-
gous to the quantizer design in the genotype likelihood model (see
Section 4.2.1.2). However, here, two modifications are applied.

In the genotype likelihood model, the genotype uncertainty is used
to compute the quantizer index (see Equation 4.16). In contrast, here,
the filtered activity profile afiltered(l;σ) is used to compute the quantizer
index r as

r = f
(
afiltered(l;σ)

∣∣
σ=σ∗

)
, (4.44)

for fixed values σ∗ of σ.
Also, in the genotype likelihood model, f is configured to be a uniform

mid-tread quantizer that outputs integer values in the set {2, 3, . . . , 8} (see
Figure 4.2). However, here, the filtering of the normalized activity profile
“spreads” the filtered activity profile. As a consequence, high quantizer
indices are not reached anymore. Consider for example the filtering
with σ = 1. In this case, the highest possible value of afiltered(l;σ)

∣∣
σ=1

is 1√
2π

. As revealed in Figure 4.4a, the quantizer indices k = 6 to k = 8

would not be used. As a solution, we re-scale the quantizer characteristic
using 1√

2πσ
. Figure 4.4b shows the resulting scaled quantizer character-

istic pertaining to the example.

4.2.3 Entropy Coding

The result of the encoding algorithm (using either model) is a vector of
quantizer indices (one quantizer index per locus) and, for each align-



4.3 integration of calq in mpeg-g 77

ment, a vector of quantization indices, where each quantization index
corresponds to a particular quality score.

First, the quantizer index vector is entropy-encoded using a range
coder. Recall that range coding is a special case of arithmetic coding (see
Section 2.4.4.3).

Second, and finally, the quantization indices are regrouped into seven
groups, where each group corresponds to a specific quantizer from the
set of precomputed quantizers [VOa; VOb]. Each group of quantization
indices is then entropy-encoded using a separate range coder for each
group2. The regrouping facilitates a more efficient entropy encoding of
the quantization indices, since the alphabets exhibit more non-uniform
distributions. For example, the first group of quantization indices, cor-
responding to the quantizer with r = 2 quantization levels, will only
contain two quantization indices.

Note that the decoder is agnostic to how the quantizer index vector
is generated. This renders the CALQ architecture generic, i.e., arbitrary
models (other than the genotype likelihood model or the activity-based
posterior model) may be used for the generation of the quantizer index
vector. We illustrate the generic decoder design and its integration into
ISO/IEC 23092-2:2020 in Section 4.3.

4.3 integration of calq in mpeg-g

The CALQ technology was submitted to the standardization process of
the ISO/IEC 23092 series, and it is now integrated in its part 2. To illus-
trate this, we show and explain parts of the relevant decoding processes
specified in ISO/IEC 23092-2:2020.

Figure 4.5 shows the top-level quality score decoding process, as speci-
fied in Clause 10.4.16.2 of ISO/IEC 23092-2:2020. This top-level process
specifies the decoding of all quality scores belonging to a specific ISO/
IEC 23092-2 record.

First, the top-level quality score decoding process decodes codebook in-
dices (i.e., quantizer indices) by calling another decoding process (line 3).
Figure 4.6 shows this quality score codebook index decoding process, as
specified in Clause 10.4.1.3 of ISO/IEC 23092-2:2020. It is quite straight-
forward and needs no further explanation.

Second, and finally, the top-level quality score decoding process (Fig-
ure 4.5) decodes the actual quality scores (lines 6–18). An ISO/IEC 23092-2
record may, in general, contain multiple segments. For example, in the
case of paired reads, each ISO/IEC 23092-2 record would contain two

2 It is also possible to use a single range coder, of which the internal model is reset for the
encoding of each group.
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1 decode_quality_values() {
2 if (qvCodebookIndexesLoadFlag == 1) {
3 decode_qv_codebook_indexes()
4 qvCodebookIndexesLoadFlag = 0
5 }
6 for (tSeg = 0; tSeg < numberOfRecordSegments; tSeg++) {
7 for (qs = 0; qs < qv_depth; qs++) {
8 ...
9 if (qvPresentFlag == 1) {

10 decode_qvs()
11 qvString = ""
12 ...
13 qualityValues[tSeg][qs] = qvString
14 } else {
15 qualityValues[tSeg][qs] = ""
16 }
17 }
18 }
19 }

Figure 4.5: Top-level quality score decoding process as specified in Clause 10.4.16.2
of ISO/IEC 23092-2:2020. Note that the term “quality value” is used
instead of “quality score”. The dots in lines 8 and 12 indicate additional
process parts, which are present in ISO/IEC 23092-2:2020, but which
are not repeated here for brevity.

segments. Also, in an ISO/IEC 23092-2 record, each nucleotide may be as-
sociated to multiple quality scores3. Hence, the top-level quality score de-
coding process loops over the segments (line 6), as well as over the differ-
ent associated quality scores (line 7). According to ISO/IEC 23092-2:2020,
including quality scores in ISO/IEC 23092-2 records is optional. Hence,
next, the decoding process checks whether quality scores are present in
the subject ISO/IEC 23092-2 record (line 9). Then, in the case that quality
scores are present, the actual quality score decoding process is called
(line 10).

Figure 4.7 shows the quality score decoding process, as specified in
Clause 10.4.1.3 of ISO/IEC 23092-2:2020.

The quality score decoding process loops over all nucleotides (bases) in
a segment (line 2). First, for each nucleotide, the codebook to be used is
identified. This, i.e., the retrieval of the respective codebook identifier (i.e.,
quantizer index) is shown in lines 3–11. There are a few special cases4

3 In the case that, for example, a recalibration of quality scores is applied to a set of alignments,
the non-recalibrated quality scores may be preserved using this mechanism.

4 For example, classes I and HM may contain unaligned nucleotides, for which ISO/
IEC 23092-2:2020 specifies the use of the “last” codebook (see line 4 in Figure 4.7).
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1 decode_qv_codebook_indexes() {
2 if (qvNumCodebooksAligned > 1) {
3 pos = 0
4 for (j14,1 = 0; j14,1 < Size(subsequence1[]); j14,1++) {
5 qvCodebookIds[pos] = subsequence1[j14,1]
6 pos++
7 }
8 }
9 }

Figure 4.6: Quality score codebook index decoding process as specified in
Clause 10.4.1.3 of ISO/IEC 23092-2:2020.

that need to be taken care of in order to retrieve the correct codebook
identifier for a particular nucleotide. However, in the case of aligned
data, there is a general case, which is shown in line 8. Here, an auxiliary
array named “basePos” is used. Its objective is to map intra-segment
base indices (represented by the variable named “baseIdx”) to mapping
positions (relative to the access unit start position). The actual quality
score is then decoded (i.e., reconstructed5) in line 16, using the selected
codebook.

4.4 experiment setup

Since we are discussing the quantization of quality scores, the recon-
structed quality scores can be different from the original ones. Hence,
it is of primary importance to assess the effect that this loss has on
downstream applications. We elect variant calling as a representative
downstream application here because it is critical to clinical decision
making and therefore widely used.

Specifically, we selected three different variant calling pipelines for our
evaluation. The first pipeline is composed according to the GATK best
practices workflow for germline short variant discovery [DeP+11]. The
last step of this pipeline consists of filtering the called variants to remove
false positives. The GATK best practices workflow specifies the use of
VQSR; however, here we also consider the more basic “hard filtering”
as the second pipeline. The third pipeline involves the variant caller

5 This is an implementation of the reconstruction stage, introduced in Section 2.4.5, where an
index k (here: the variable named “qvIndex”) is mapped to the corresponding reconstruction
value x̆k (here: the variable named “qualityValues”) using a LUT (here: the encoding
parameter named “qv_recon”) which maps each index to a corresponding reconstruction
value.
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1 decode_qvs() {
2 for (baseIdx = 0; baseIdx < numBases; baseIdx++) {
3 if ((classId == CLASS_I || classId == CLASS_HM) && !isAligned(

↪→ baseIdx)) {
4 qvCodeBookId = qv_num_codebooks_total - 1
5 } else if (classId == CLASS_U) {
6 qvCodeBookId = 0
7 } else if (qvNumCodebooksAligned > 1) {
8 qvCodeBookId = qvCodeBookIds[basePos[baseIdx]]
9 } else {

10 qvCodeBookId = 0
11 }
12 qvCodeBookSubSeq = qvCodeBookId + 2
13 j = j14,qvCodeBookSubSeq
14 j14,qvCodeBookSubSeq++
15 qvIndex = decoded_symbols[14][qvCodeBookSubSeq][j]
16 qualityValues[tSeq][qs][baseIdx] = qv_recon[qvCodeBookId][

↪→ qvIndex]
17 }
18 }

Figure 4.7: Quality score decoding process as specified in Clause 10.4.1.3 of ISO/
IEC 23092-2:2020.

Platypus [Rim+14]. For further details on these pipelines we refer the
reader to [VOH18].

After each run of each pipeline, a set of variant calls (“call set”) is
obtained, which is ultimately compared to a consensus variant call set
(“consensus set”). Note that when using the first pipeline (GATK with
VQSR), each variant is annotated with a VQSLOD score that provides
an estimate of the probability that the variant is true. When using this
pipeline, we use the VQSLOD score to further filter the call set. The
filtering is done by first specifying a filter level, given as a percentage,
e.g., 99.9%. Second, the filtering process then determines the value of the
VQSLOD score above which 99.9% of the variants in the consensus set
are included in the call set. Third, and finally, the determined VQSLOD
score value is used as a threshold to filter the call set, where all variants
below the threshold are discarded. Specifically, and similar to [Och+17]
as well as [Alb+16], we have chosen to use four different levels of filtering,
namely 90%, 99%, 99.9%, and 100%.

The outputs of all pipelines are analyzed with the Haplotype Compari-
son Tools6 to benchmark the call sets obtained by each pipeline against a
consensus set [Kru+19]. Note that, to make the benchmark more mean-

6 https://github.com/Illumina/hap.py

https://github.com/Illumina/hap.py
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ingful, the comparison is restricted to the high-confidence regions of the
consensus set. Again, for more details on these pipelines we refer the
reader to [VOH18]. Note that in a few cases7 (1.7%) the variant calling
was not successful, due to unidentifiable reasons.

The comparison of the call set to the consensus set yields the following
values:

• True Positives (TP): All those variants that are both in the consensus
set and in the call set.

• False Positives (FP): All those variants that are in the call set but
not in the consensus set.

• False Negatives (FN): All those variants that are in the consensus
set but not in the call set.

• Non-assessed calls: All those variants that fall outside of the high-
confidence regions of the consensus set. Note that previous works
([Mal+15; OHW15; Alb+16; Yu+15]) did not consider this distinc-
tion. In these previous works, all those variants were accounted
as positives, and they were therefore inflating the false positives
metric. This could be the cause for the weak performance of the
variant callers in the aforementioned works.

These values are used to compute the precision P, i.e., the proportion of
called consensus variants with respect to all called variants,

P =
TP

(TP + FP)
, (4.45)

as well the recall R, i.e., the proportion of called consensus variants
with respect to all consensus variants,

R =
TP

(TP + FN)
. (4.46)

To measure the overall accuracy of each call set, we use the F1 score,
which is defined as the harmonic mean of precision and recall:

F1 = 2 · P · R
P+ R

. (4.47)

The sequencing data used for this analysis pertains to the same indi-
vidual, namely NA12878. The reason behind this choice is that the NIST
has released a consensus set of variants for this individual [Zoo+14].
Table 4.1 shows the details of the selected data. Following the approach
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of [Och+17] we consider chromosomes 11 and 20. In addition, to broaden
our test set, we also consider chromosome 3.

We compare our genotype likelihood model (“CALQ G”) and our
activity-based posterior model (“CALQ A-σ”) to the state-of-the-art lossy
quality score compressors Crumble, Quartz, and QVZ2. Also, we compare
the models to Illumina’s 8-level binning (“IL8B”).

We evaluate the activity-based posterior model for three different
filtering configurations, i.e., we filter the normalized activity profile
using σ = 10 (“CALQ A-10”), σ = 17 (“CALQ A-17”), and σ = 25

(“CALQ A-25”).
In the case of Crumble, we first performed the quantization using

the Crumble software8, version 0.5. Second, the resulting BAM file was
compressed using Scramble, version 1.14.6. The compressed size of the
quality scores in the resulting CRAM files was determined using the
tool cram_size which is included in Scramble. We used Crumble in two
different modes, “Crumble -1” and “Crumble -9”, where the latter mode
uses a more aggressive binning strategy.

We used Quartz, version 0.2.29. For the working of Quartz, a sequence
dictionary10 is necessary. First, we quantized the quality scores using
Quartz. Second, we extracted the quality scores from the resulting FASTQ
file. Third, and finally, as recommended by the Quartz authors, we applied
bzip2 on the modified quality scores.

In the case of QVZ2 we used the version available with commit
hash d5383c6

11. In the case of the QVZ2 software, the actual compression
is already included, in contrast to Crumble and Quartz. With QVZ2 we
performed the compression for the target MSE distortions 1 (“QVZ2 T1”),
2 (“QVZ2 T2”), 4 (“QVZ2 T4”), and 8 (“QVZ2 T8”).

We used DSRC 2 [RD14] to mimic the 8-level binning introduced
by Illumina. The specific mapping performed by DSRC 2 might differ
slightly from the actual Illumina binning, as the latter might depend on
the actual sequencing device. We compress the binned quality scores
with gzip.

In summary, we evaluate 12 tool configurations on 3 chromosomes
from 3 items. We conduct this evaluation using 6 different pipeline
configurations. Hence, per item, we obtain 12 · 3 · 6 = 216 rates and F1

score values.

7 These few cases are mainly pertaining to the compressors “Crumble -9” and “IL8B”.
8 https://github.com/jkbonfield/crumble

9 https://github.com/yunwilliamyu/quartz

10 The sequence dictionary used here is “dec200.bin.sorted”, downloaded from https://giant.
csail.mit.edu/quartz/dec200.bin.sorted.gz.

11 https://github.com/mikelhernaez/qvz2

https://github.com/jkbonfield/crumble
https://github.com/yunwilliamyu/quartz
https://giant.csail.mit.edu/quartz/dec200.bin.sorted.gz
https://giant.csail.mit.edu/quartz/dec200.bin.sorted.gz
https://github.com/mikelhernaez/qvz2
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Figure 4.8: F1 score difference versus rate per QS, item 1. Here, the general-purpose
compressor gzip [Deu96] achieves a rate of 3.05 bit per QS.

4.5 results and discussion

As stated above, using our experiment setup, we obtain 216 rates and F1

score values per data item. For a concise12 visualization of these results,
we average the rates and F1 score values over the chromosomes as well
as over the variant calling pipeline configurations. Figure 4.8, Figure 4.9,
and Figure 4.10 show the (averaged) F1 score differences, with respect
to the original quality scores, versus the (averaged) rates per QS for all
tools.

Figure 4.8 shows the results for item 1. This item contains quality
scores of the “Illumina 1.8+” type, exhibiting an alphabet size of 42

(see Table 4.1). As an anchor, here, the general-purpose compressor
gzip [Deu96] achieves a rate of 3.05 bit per QS.

First, we investigate the results achieved by the Illumina 8-level binning
(IL8B). This binning allows for more efficient compression, achieving a
rate of 0.94 bit per QS. The impact on the F1 score difference (-0.00011) is
negligible.

Next, we investigate the results achieved by QVZ2. The quantization
of quality scores in QVZ2 is controlled by a target MSE distortion. Larger
target MSE distortions allow for a more coarse quantization and therefore

12 In addition to the concise visualization presented here we provide an extended set of figures
in the appendix, where we average the rates and F1 score values only over the chromosomes.
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lead to lower rates. This observation is supported by the results shown
in Figure 4.8. A target MSE distortion of 1 (QVZ2 T1) has a negligible
impact on the F1 score difference, and it leads to a rate of 0.73 bit per QS.
Higher target MSE distortions (2, 4, and 8, respectively) impact the F1

score difference (-0.00029, -0.00063, and -0.00412, respectively), but also
allow for a more efficient compression (0.39 bit per QS, 0.14 bit per QS,
and 0.04 bit per QS, respectively).

We can observe a similar behavior for our activity-based posterior
model. Recall that we evaluated the activity-based posterior model for
three different filtering configurations, i.e., we filter the normalized activ-
ity profile using σ = 10 (CALQ A-10), σ = 17 (CALQ A-17), and σ = 25

(CALQ A-25). Here, a higher value of σ leads to larger regions that are
getting quantized with a higher resolution. Hence, we expect higher rates
with growing σ. At the same time the hope is that we achieve a bene-
ficial trade-off between rate and F1 score difference. The results shown
in Figure 4.8 corroborate our expectations. CALQ A-10 achieves a rate
of 0.19 bit per QS, while at the same time exhibiting a minimal impact
on the F1 score difference (-0.00005). Filtering the normalized activity
profile more cautiously (CALQ A-17 and CALQ A-25, respectively) leads
to a slight increase in the rates (0.20 bit per QS and 0.23 bit per QS,
respectively) as well as in the F1 score difference (0.00027 and 0.00038,
respectively). However, here we observe a positive F1 score difference, i.e.,
the quantized quality scores lead to more accurate variant calls. Hence,
we conclude that our quantization approach removes noise from the orig-
inal quality scores. We also can conclude that the activity-based posterior
model behaves as expected with regard to the chosen distortion metric,
i.e., the F1 score difference.

Next, we investigate the results obtained by our genotype likelihood
model (CALQ G). With respect to the activity-based posterior model, we
expect a lower rate for the genotype likelihood model, since in the latter
only singular loci are quantized with higher resolutions, compared to en-
tire regions (whose sizes depend on σ) in the former. The results shown
in Figure 4.8 support our expectation. CALQ G achieves an average
rate of 0.15 bit per QS. However, unexpectedly, the genotype likelihood
model achieves an average F1 score difference of 0.00397, which is supe-
rior compared to the activity-based posterior model. This observation
is not further supported by the results that we obtained on items 11

and 12. Hence, we must conclude that the genotype likelihood model is
unexpectedly overfitting on the specific data from item 1.

The first Crumble mode (Crumble -1) achieves a rate of 0.38 bit per
QS at an F1 score difference of 0.00039. Similar to our models, this tool
also seems to be able to reduce the noise that is present in the quality
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Figure 4.9: F1 score difference versus rate per QS, item 11. Here, the general-
purpose compressor gzip [Deu96] achieves a rate of 4.04 bit per QS.

scores. The second Crumble mode (Crumble -9), using a more aggressive
binning strategy, achieves (as expected) a lower rate of 0.21 bit per QS at
an F1 score difference of 0.00061.

Similar to our models, and to Crumble, Quartz seems also to be able
to remove noise from the data: it achieves a rate of 0.42 bit per QS at an
F1 score difference of 0.00106.

Figure 4.9 shows the results for item 11. This item contains quality
scores of the “Sanger” type, exhibiting an alphabet size of 41 (see Ta-
ble 4.1). As an anchor, here, the general-purpose compressor gzip [Deu96]
achieves a rate of 4.04 bit per QS.

First, we investigate the results achieved by the Illumina 8-level binning
(IL8B). As expected, it allows for more efficient compression, achieving a
rate of 1.86 bit per QS. However, the impact on the F1 score difference
(-0.01830) is not negligible in this case, i.e., with regard to “Sanger” quality
scores. This results was somehow expected, since the Illumina 8-level
binning is tailored to Illumina data.

Next, we investigate the results achieved by QVZ2. Also, here, com-
pared to item 1, higher target MSE distortions allow for a more efficient
compression. However, in contrast to the results for item 1, higher target
MSE distortions seem to not retainably affect the variant calling accuracy.

In the case of our activity-based posterior model we expect higher
rates and more favorable F1 score differences with growing σ. The results
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shown in Figure 4.9 fully support our expectations. CALQ A-10, CALQ A-
17, and CALQ A-25 achieve rates of 0.57 bit per QS, 0.61 bit per QS, and
0.66 bit per QS, respectively. At the same time we can observe growing
F1 score differences (0.00345, 0.00738, and 0.00858, respectively). As in
the case of item 1, we observe positive F1 score differences. Hence, we
can take the same conclusion that our quantization approach removes
noise from the original quality scores. Also, importantly, we can again
conclude that the activity-based posterior model behaves as expected
with regard to the chosen distortion metric, i.e., the F1 score difference.

Next, we investigate the results obtained by our genotype likelihood
model (CALQ G). Again, with respect to the activity-based posterior
model, we expect a lower rate for the genotype likelihood model. Also,
we expect a degradation in variant calling accuracy. The results shown in
Figure 4.9 support our expectations. CALQ G achieves an average rate of
0.56 bit per QS at an F1 score difference of -0.00377.

On item 11, Crumble achieves qualitatively similar results as on item 1.
The first Crumble mode (Crumble -1) achieves a rate of 3.67 bit per QS at
an F1 score difference of 0.00137. Again, Crumble appears to be capable of
reducing noise that is present in the quality scores. The second Crumble
mode (Crumble -9), using a more aggressive binning strategy, achieves
(as expected) a lower rate of 3.25 bit per QS at an F1 score difference
of 0.00534.

Similar to the results for item 1, and similar to our models as well as to
Crumble, Quartz again seems to be able to remove noise from the data: it
achieves a rate of 1.38 bit per QS at an F1 score difference of 0.00615.

Figure 4.10 shows the results for item 12. This item contains quality
scores of the “Illumina Reduced” type, i.e., Illumina’s 8-level binning is
applied as default. As an anchor, here, the general-purpose compressor
gzip [Deu96] achieves a rate of 1.67 bit per QS.

First, we investigate the results achieved by QVZ2. Similar to the results
obtained for item 1 and item 11, higher target MSE distortions allow for
a more efficient compression. Similar to the results for item 11, and in
contrast to the results for item 1, higher target MSE distortions seem to
not retainably affect the variant calling accuracy.

Recall that in the case of our activity-based posterior model we expect
higher rates and more favorable F1 score differences with growing σ.
Similar to the results for item 11, the results shown in Figure 4.10 fully
support our expectations. CALQ A-10, CALQ A-17, and CALQ A-25

achieve rates of 0.51 bit per QS, 0.54 bit per QS, and 0.57 bit per QS, re-
spectively. At the same time we can observe growing F1 score differences
(-0.00003, 0.00065, and 0.00068, respectively). Similar to the results for
the other two items, we observe positive F1 score differences. Hence, we
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Figure 4.10: F1 score difference versus rate per QS, item 12. Here, the general-
purpose compressor gzip [Deu96] achieves a rate of 1.67 bit per QS.
Note that the quality scores were generated with an Illumina HiSeq X
Ten instrument (see Table 4.1). Hence, Illumina’s 8-binning is applied
as default. We therefore do not include the IL8B results in the plot.

can finally conclude that our quantization approach removes noise from
the original quality scores. Moreover, we can finally conclude that the
activity-based posterior model behaves as expected with regard to the
chosen distortion metric, i.e., the F1 score difference.

With respect to the activity-based posterior model, in the case of the
genotype likelihood model (CALQ G), again, we expect a lower rate
for the genotype likelihood model, and a degradation in variant calling
accuracy. The results shown in Figure 4.10 support our expectations.
CALQ G achieves an average rate of 0.46 bit per QS at an F1 score
difference of -0.00144.

Crumble achieves qualitatively similar results as on the other two items.
The first Crumble mode (Crumble -1) achieves a rate of 0.37 bit per QS at
an F1 score difference of -0.00019. The second Crumble mode (Crumble
-9), using a more aggressive binning strategy, achieves (as expected) a
lower rate of 0.27 bit per QS at an F1 score difference of 0.00095.

Quartz again seems to be able to remove noise from the data: it achieves
a rate of 0.73 bit per QS at an F1 score difference of 0.00523. This F1 score
difference is a positive outlier, compared to the results for the other tools.
We hence conclude that the Quartz model is overfitting on the “Illumina
Reduced” quality scores.
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4.6 conclusion

In this chapter, we investigated the compression of quality scores. We
reviewed the state of the art, and we introduced our contribution CALQ.
Besides the actual quality score quantization and entropy coding, CALQ
consists of two proxy models, i.e., models that do not serve the purpose
of redundancy reduction but that serve the purpose of controlling other
parts of the compression process, in this case quantization.

The first proxy model is the genotype likelihood model, which infers
the likelihood distribution of the genotype for each locus from the ob-
servable data, i.e., the read and alignment information, using a statistical
model. The likelihood distribution of the genotype is further used to com-
pute a “genotype uncertainty profile” over the loci, which is finally used
to compute a quantizer index for each locus. The second proxy model is
the activity-based posterior model, which builds on the genotype like-
lihood model. It contains a more realistic prior to infer the posterior
distribution of the genotype for each locus. Note that we make use of an
external reference sequence here. Also, further systematic assumptions
are taken into account, to eventually compute an “activity profile” over
the loci, which is also finally used to compute a quantizer index for each
locus.

Each quantizer index (inferred using either model) identifies a specific
precomputed quantizer to be used for the quantization of all quality
scores at the current locus. Finally, the quality scores are quantized
accordingly, and the quantizer indices as well as the quantized quality
scores are encoded using entropy encoders. This way, high compression is
achieved, while at the same time only a negligible impact on downstream
analyses is observed.

The core of CALQ is the concept of locus-wise quantizer selection. This
concept can be captured in a relatively simple decoding process syntax,
where the specific model to be used for the inference of the quantizer
indices is left open to the encoder design. Hence, the CALQ technology
is a perfect fit for the incorporation into a compression standard, i.e., a
decoding specification. Consequently, the CALQ technology was submit-
ted to the standardization process of the ISO/IEC 23092 series, and it is
now integrated in its part 2. In this chapter, we illustrated this integration
in full detail.

In the evaluation of CALQ, it is of primary importance to assess the
effect of the applied quantization on downstream applications. We elected
variant calling as a representative downstream application here because
it is critical to clinical decision making and therefore widely used. Build-
ing on previous works, we conceived an exhaustive experiment setup
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consisting of different variant calling pipelines in various configurations.
For CALQ and its competitors, we run each pipeline configuration with
the quantized quality scores, and obtain a set of variant calls. We conduct
a binary classification of each variant call set with regard to a truth set.
As a measure of variant calling accuracy, we compute the F1 score dif-
ference with respect to the original data. The pair of achieved rate per
quality score and F1 score difference is used to evaluate CALQ and its
competitors.

From our results we can most importantly conclude that our models
behave as expected with regard to rate per quality score and F1 score
difference. The predictable behavior of our models is in contrast to all
competitors.

In summary, with CALQ, the quality scores can be compressed to an
average rate of 0.39–0.49 bit per QS at an average F1 score difference of
-0.00041–0.00322 (CALQ G–CALQ A-25). For the application of quality
score quantization in production scenarios, is it of high importance to
ensure that the call set does not degrade under the influence of quan-
tization. Our recommendation for such scenarios would be the use of
CALQ A-17, which, in our experiments, leads exclusively to positive F1

score differences at an average rate of 0.45 bit per QS.
A few competitors achieve better rates than CALQ (QVZ2 T4 and T8 on

item 1 and item 12, as well as Crumble -1 and -9 on item 12). However, the
results that we obtained for these competitors are not data-independent.
We can hence finally conclude that our contribution CALQ is the only
method available that can provide the best, as well as most reliable and
predictable, rate-distortion results for the compression of quality scores.
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5
E N T R O P Y C O D I N G O F D N A S E Q U E N C I N G D ATA

As detailed in Section 2.4, compression techniques can be divided into two
stages: modeling and entropy coding. In the modeling stage, redundant
information is described in the form of a mathematical model. The data
is then usually expressed in terms of a difference—the residual—between
the data and the model. In the entropy coding stage, the residual is
compressed, by representing every residual element with as few bits as
possible. As mentioned in Section 2.4, data may also contain information
that is considered irrelevant. Irrelevant information can be reduced by
employing various quantization techniques. From the point of view of
entropy coding, however, quantized data can simply be regarded as
specially modeled data.

In this chapter, we investigate entropy coding methods in the context of
compression of DNA sequencing data. First, we review the state of the art
in Section 5.1. Here, we also introduce our contribution GABAC [Par+19;
Vog+20], the premier implementation of an entropy codec compliant to
ISO/IEC 23092-2. In Section 5.2, we present the architecture of GABAC
in full detail. In principle, GABAC is a general-purpose codec. However,
here we lay the focus on the performance of GABAC in typical DNA
sequencing data compression scenarios. Therefore, to simulate such a
scenario, and to be able to analyze the performance of GABAC with
respect to the state of the art in DNA sequencing data compression,
we conceived a well-grounded experiment setup, which we lay out in
Section 5.3. We present and discuss the results in Section 5.4. Finally, we
conclude our findings in Section 5.5.

5.1 state of the art and contribution

In general, entropy coding methods can be grouped into different classes.
Static entropy coding methods, such as Elias gamma coding [Eli75],
Fibonacci coding, and Golomb coding [Gol66]—including Rice cod-
ing [RP71]—provide fixed, i.e., static, mappings of input symbols to

91
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variable-length code words. Non-static entropy coding methods, such
as Huffman coding [Huf52], also map input symbols to variable-length
code words; however, here, the codes are computed using the statistical
properties of the source. Arithmetic coding methods in turn, such as
arithmetic coding [WNC87], range coding, and CABAC [MSW03], en-
code an entire message into a single interval which is represented by two
numbers. Similar to arithmetic coding methods, the more recent family
of ANS methods encode an entire message into a single number (not an
interval).

In this chapter, we investigate entropy coding methods in the context of
compression of DNA sequencing data. State-of-the-art DNA sequencing
data compression frameworks1 employ all mentioned forms of entropy
coding: they utilize static and non-static entropy coding methods, as well
as arithmetic coding and ANS methods. For example, the BAM format
uses BGZF, a format built on top of the gzip file format [Deu96]. Here, the
actual compression is based on the LZ77 algorithm [ZL77] and Huffman
coding [Huf52]. The Quip [Jon+12] and DeeZ2 [HNS14] frameworks, in
turn, are based on arithmetic coding. The CRAM [Fri+11] framework
uses a collection of entropy coding methods, i.e., a mixture of experts
approach, comprising the general-purpose tools gzip, bzip2, and xz, as
well as a range variant of the family of ANS methods.

In this chapter, with regard to the state of the art, we focus on the
CRAM and DeeZ frameworks, the two best-performing frameworks in
the literature [Num+16]. The compression process implemented in both
frameworks can be divided into the two stages modeling and entropy
coding. However, in the respective modeling stages of both frameworks,
the data is not modeled in terms of a mathematical model. Rather, it
is merely split into a set of homogeneous descriptor streams, where
each descriptor stream contains one specific type of data, e.g., mapping
positions, quality scores, or mismatch information.

In contrast to the aforementioned frameworks, ISO/IEC 23092-2 speci-
fies a compression method built around CABAC [MSW03].

Our contribution, GABAC [Par+19; Vog+20], is the premier imple-
mentation of a codec compliant to ISO/IEC 23092-2. GABAC integrates
established technologies, such as CABAC [MSW03], binarization schemes,
and transformations, into a straightforward solution for the compres-
sion of DNA sequencing data. The development of GABAC overlapped
temporally with the development of ISO/IEC 23092-2. Hence, both de-
velopment processes mutually influenced each other, and the GABAC

1 We use the term “framework” to refer to the combination of a format (e.g., file format) and
compression technology.

2 After it publication, the DeeZ software has been modified to also use an ANS method.
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development consequently resulted in multiple NB comments that were
incorporated in ISO/IEC 23092-2. Although GABAC is intrinsically con-
nected to ISO/IEC 23092-2, in what follows we show that integrating
GABAC into the CRAM framework can lead to significant improvements.

5.2 gabac architecture

In principle, GABAC is a general-purpose codec, i.e., it may compress any
input byte stream. However, here we lay the focus on the performance of
GABAC in typical DNA sequencing data compression scenarios. Hence,
we assume that GABAC processes descriptor streams, as for example
provided by the CRAM and DeeZ frameworks, or by an ISO/IEC 23092-2
implementation. In what follows, we explain the GABAC design from
the encoder point of view. Accordingly, Figure 5.1 illustrates the GABAC
architecture with a block diagram of the GABAC encoder. Note that the
block diagram does not include the (trivial) input parsing stage.

Given an input descriptor stream (as a byte stream), the compression
process implemented by GABAC consists of a five-stage pipeline: input
parsing, (optional) 3-step transformation, binarization, context selection,
and CABAC. Strictly speaking, only the last three stages, binarization,
context selection, and CABAC, comprise an actual entropy coding tech-
nique. (The input parsing stage is a necessary preprocessing step, and
the 3-step transformation is a collection of general-purpose modeling
techniques.)

In the input parsing stage, the input byte stream is parsed into a stream
of symbols.

The symbol stream is next processed by the 3-step transformation
stage which converts the symbol stream into one or more transformed
sub-streams. In the first transformation step (“sequence transformation”)
the input symbols are processed using one of the following three trans-
formations (or no transformation, i.e., pass-through): i) equality coding,
in which a symbol is replaced by a flag indicating equality with its
predecessor and, if necessary, a correction symbol; ii) match coding, a
transformation similar to the LZ77 [ZL77] algorithm; and iii) run-length
coding, in which a repeated symbol is replaced by the symbol itself and
its run-length. In the second transformation step (“LUT transformation”),
a LUT transformation may be applied, where symbols are replaced using
a LUT. Finally, in the third transformation step (“differential transforma-
tion”) differential coding may be applied.

After the 3-step transformation stage, in the binarization and context
selection stages, a binarization algorithm (to convert each symbol into
a set of bits, called bin string) is selected along with a context selection
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algorithm for each transformed sub-stream. In the final stage, each bin is
combined with a context and both are processed using CABAC.

As elaborated above, the development of GABAC overlapped tem-
porally with the development of ISO/IEC 23092-2. Consequently, the
encoder architectures differ in a few points. To illustrate this, Figure 5.2
shows the architecture of the transformations and entropy coding stages
in ISO/IEC 23092-2.

A comparison of Figure 5.1 and Figure 5.2 shows that the terminology
that has finally been adopted in ISO/IEC 23092-2 is different from the
terminology used in GABAC. For example, “RL Coding” in GABAC
terminology becomes “RLE Coding” in ISO/IEC 23092-2 terminology.
Also, the figure comparison reveals that ISO/IEC 23092-2 provides an
additional (sub-)sequence transformation, “Merge Coding”. Moreover,
ISO/IEC 23092-2 provides additional binarizations. Finally, there are
three structural differences with respect to the general architecture. First,
in ISO/IEC 23092-2, symbols may be split after the subsequence transfor-
mation (depicted as box “Subsymbol Split” in Figure 5.2). For example,
a symbol may be split into a lower half comprising a number of least
significant bits, and into an upper half comprising the remaining most
significant bits. Subsymbols are processed separately and independently
from each other after the split. Second, in ISO/IEC 23092-2 it is only
possible to use either the “LUT Transform” or “Diff Coding”, whereas
in GABAC, both transformations might be applied. Third, according to
ISO/IEC 23092-2, the sign of symbols is split off and processed separately
(see dotted arrow “Sign Flag” in Figure 5.2). In summary, we regard
these architectural differences as minor, as the general architecture is
preserved.

The following sections detail every stage of the GABAC encoder sepa-
rately.

5.2.1 Input Parsing

In the input parsing stage, the input byte stream is parsed into a stream of
symbols. For example, a symbol might occupy two consecutive bytes. In
the input parsing stage these two bytes are interpreted as one symbol. The
resulting stream of symbols is then processed by the 3-step transformation
stage that converts the symbol stream into one or more transformed sub-
streams.
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5.2.2 3-Step Transformation

The 3-step transformation stage consists of the following steps: sequence
transformation (Section 5.2.2.1), LUT transformation (Section 5.2.2.2), and
differential transformation (Section 5.2.2.3). The goal of these transfor-
mations is to facilitate more efficient compression when using CABAC.
Hence, they can be regarded as a collection of general-purpose modeling
techniques. To achieve the goal of facilitating more efficient compression,
the 3-step transformation process converts the input symbol stream into
transformed sub-streams that typically exhibit: i) reduced numbers of
symbols, by exploiting redundancy; ii) smaller alphabets, by converting
the symbol stream into typically more homogeneous transformed sub-
streams; iii) adapted distributions, by replacing symbols, and as such
allowing for bin strings that are shorter and/or offer a higher predictabil-
ity; iv) or a combination of the aforementioned points.

An example of such a combination is match coding, followed by LUT
transformation. Match coding will typically reduce the number of sym-
bols (a set of multiple symbols can be replaced by two symbols). The
output transformed sub-streams of match coding usually each contain
rather homogeneous data which can be compressed more efficiently. Fur-
thermore, when LUT transformations are applied to these transformed
sub-streams, frequent symbols will be replaced by symbols that can be
represented by shorter bin strings, hence limiting the number of values
that have to be encoded by CABAC.

Finally, it should be noted that these transformations are optional.
Hence, they can be omitted if no coding efficiency is gained when apply-
ing them.

5.2.2.1 Sequence Transformation

In the first transformation step (depicted as box “Sequence Transfor-
mation” in Figure 5.1), one of three sequence transformations may be
applied. The sequence transformation can also be omitted. Each sequence
transformation creates two or three transformed sub-streams. In the fur-
ther steps of the GABAC encoding process, the transformed sub-streams
are processed separately (and separate encoding configurations may be
used per sub-stream). The three available sequence transformations are:
equality coding, match coding, and run-length coding.

equality coding The input symbol stream is transformed into two
transformed sub-streams. For each input symbol one or two output
symbols are generated. The first output symbol tEQ

1 represents an equality
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flag, indicating whether the input symbol is equal to the previous input
symbol (tEQ

1 = 1) or not (tEQ
1 = 0). In the case that the input symbol is

different from the previous input symbol the transformation will generate
a second output symbol tEQ

2 depending on the current input symbol sn
and its predecessor sn−1:

tEQ
2 =

{
sn − 1, if sn > sn−1,

sn, otherwise.

match coding The input symbol stream is transformed into three
transformed sub-streams. During match coding, a search window is main-
tained. For each new set of input symbols, the search window is scanned
for a matching block of symbols. Each set of input symbols is then re-
placed by two output symbols tMlength and tMdata. These two output symbols
are stored across three different transformed sub-streams. The first out-
put symbol tMlength represents the length of the match, where tMlength = 0

means that no match has been found. This output symbol is appended
to the first transformed sub-stream. The second output symbol tMdata can
contain one of two different types of information, depending on the value
of tMlength. If tMlength = 0 (i.e., no match has been found), tMdata contains
a raw symbol and is appended to the second transformed sub-stream.
If tMlength 6= 0, then tMdata contains a pointer to the position of the first sym-

bol of the match. In this case, tMdata is appended to the third transformed
sub-stream.

run-length coding The input symbol stream is transformed into
two transformed sub-streams. For each input symbol sn 6= sn−1, two
output symbols are generated. The first output symbol tRLE

1 represents
the input symbol sn−1. The second output symbol tRLE

2 represents the
number of repetitions of tRLE

1 in retrospect until the occurrence of a
different input symbol.

5.2.2.2 LUT Transformation

In the second transformation step (depicted as box “LUT Transformation”
in Figure 5.1), a LUT transformation may be applied, where each input
symbol is replaced by an output symbol from a LUT.

Depending on the properties of the input symbol stream the use of
a LUT can be of particular importance. The reason lies in the fact that,
eventually, each symbol value will be converted into a bin string in the
binarization stage (see Section 5.2.3). For this conversion, a set of pre-
defined binarization processes is available, that provide fixed mappings
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of symbols to bin strings. In general, less frequent symbols should get
associated to shorter bin strings and vice versa. To achieve this goal,
symbols can be shuffled using a LUT.

To illustrate this, let us assume that no sequence transformation (see
Section 5.2.2.1) and no differential transformation (see Section 5.2.2.3) is
used. Let us further assume that the input symbols follow a geometric
distribution. Hence, it is beneficial to use the EG binarization process.
However, let us also assume—as it is usually the case—that small input
symbols do not correspond to high symbol frequencies. Hence, we have
to employ a LUT that “correctly” maps symbols to new values according
to the symbol frequencies (i.e., the symbol with the highest frequency is
mapped to the value zero, etc.).

5.2.2.3 Differential Transformation

In the third transformation step, (depicted as box “Differential Trans-
formation” in Figure 5.1), a differential transformation may be applied,
where each input symbol is replaced by the arithmetic difference to its
predecessor.

5.2.3 Binarization

In the binarization stage (depicted as box “Binarization” in Figure 5.1),
the value of each symbol of each transformed sub-stream is converted
into a bin string. In GABAC, six3 binarization processes are available
for the mapping of symbols to bin strings: Binary (Section 5.2.3.1), TU
(Section 5.2.3.2), EG (Section 5.2.3.3), SEG (Section 5.2.3.4), TEG (Sec-
tion 5.2.3.5), and STEG (Section 5.2.3.6).

5.2.3.1 Binary Binarization

Each input value v is represented by its binary representation.

5.2.3.2 Truncated Unary Binarization

Each input value v is represented by v ones followed by a zero. If v is
equal to a defined maximal value4 the trailing zero is discarded.

3 In ISO/IEC 23092-2, four additional binarization processes are specified, which are not
implemented in GABAC. We are not aware of any other encoder making use of these
binarizations.

4 This maximal value is an encoding parameter. In Figure 5.1 it is carried by the “Binarization
Parameter” control signal.
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5.2.3.3 Exponential Golomb Binarization

Each input value v is represented by a prefix and a suffix. The suffix is
equal to the binary representation of v+ 1. The prefix is expressed by a
sequence of zeros whose length is equal to the length of the suffix minus
one.

5.2.3.4 Signed Exponential Golomb Binarization

Input values v 6 0 are mapped onto −2 · v. Input values v > 0 are mapped
onto 2 · v− 1. The resulting value is then converted into a bin string using
the EG binarization.

5.2.3.5 Truncated Exponential Golomb Binarization

Each input value v is represented by one or two bin strings. Input values
smaller than a given value vmax are represented by bin strings as per TU
binarization. Input values larger than or equal to vmax are represented by
bin string as per TU binarization of vmax, combined with the bin string
as per EG binarization of the input value minus vmax.

5.2.3.6 Signed Truncated Exponential Golomb Binarization

Each input value v is represented by the TEG representation of |v| , and
by a sign bit if v 6= 0.

5.2.4 Context Selection and CABAC

In parallel with the binarization stage, a context selection stage is per-
formed (depicted as box “Context Selection” in Figure 5.1). A context is
a number representing quantized probabilities. More specifically, it is a
number between 0 (representing a probability of 0) and 127 (represent-
ing a probability of 1). It is used to encode a specific bin with CABAC,
depicted as box “CABAC” in Figure 5.1 (see Section 2.4.4.4).

In GABAC, contexts are grouped into context sets. Each context set
holds the contexts required to encode a bin string (where a bin string
corresponds to a symbol).

GABAC provides four different modes of context selection. In the
first mode (bypass) no context selection is performed and all bins are
processed using contexts that assume equiprobability. Here, contexts are
not adapted. In the second mode (order-0 adaptive coding), there is one
context set for each symbol. Here, the contexts are adapted. In the third
(order-1 adaptive coding) and fourth mode (order-2 adaptive coding),
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context sets are selected based on the previously encoded symbol and
based on the two previous encoded symbols, respectively. Also, here, the
contexts are adapted.

5.3 experiment setup

In principle, GABAC is a general-purpose codec, i.e., it may compress
any input byte stream. However, here we lay the focus on the perfor-
mance of GABAC in typical DNA sequencing data compression scenarios.
Therefore, to simulate such a scenario, and to be able to analyze the perfor-
mance of GABAC with respect to the state of the art in DNA sequencing
data compression, we conceived a well-grounded experiment setup.

We assume that GABAC processes descriptor streams, as for example
provided by the CRAM and DeeZ frameworks, or by an ISO/IEC 23092-2
implementation. Hence, to analyze the performance of GABAC, we
modified the CRAM and DeeZ frameworks in such a way that they
output their internal data representations, such as mapping positions
and read pairing information, to separate descriptor stream files. Then,
we encode every descriptor stream file with the entropy coding methods
used in the CRAM framework: the general-purpose codecs gzip, bzip2,
and xz, as well as a range variant of the family of ANS methods (rANS).
Of course, we also encode every descriptor stream file with the GABAC
encoder. The set of entropy coding methods used in the CRAM framework
can safely be regarded as the state of the art, as other tools use a subset of
these methods or arithmetic coding, which can be regarded as equivalent
to rANS. In this way, we can evaluate the performance of GABAC against
the state of the art.

In Section 5.3.1, we briefly revisit the used entropy coding methods. In
Section 5.3.2, we detail our methodology for the generation of the CRAM
and DeeZ descriptor stream files.

5.3.1 Entropy Coding Methods

The performance of GABAC was compared to the entropy coding meth-
ods, referred to as codecs here for brevity, that are used in the CRAM
framework: the general-purpose codecs gzip, bzip2, and xz, as well as
rANS.

All experiments were performed on a computer equipped with two
Intel Xeon E5-2650 v3 CPUs and 128 GiB of RAM, running Ubuntu 14.04.
Execution times were monitored with GNU time 1.7.
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bzip2
5 uses various entropy coding techniques. The ones characterizing

bzip2 are the Burrows-Wheeler transform and Huffman coding [Huf52].
In our experiments we used the “-9” flag to favor compression over speed
as much as possible.

For GABAC, as depicted in Figure 5.1, various parameters may be used
to control the encoding. Hence, in our experiments, we first analyzed each
input descriptor stream file to infer the best possible set of parameters
by evaluating every possible parameter combination with respect to the
achieved compression. Then, in a second step, we conducted the actual
encoding.

Gzip6 is utilizing the LZ77 [ZL77] algorithm as well as Huffman cod-
ing [Huf52] for compression. In our experiments we used the “-9” flag to
favor compression over speed as much as possible.

rANS is an algorithm from the family of ANS methods. We use the
rANS implementation from HTSlib7. More specifically, we used rANS
in two modes: in the mode “rANS-0” it is assumed that one symbol
occupies a single byte; in the mode “rANS-1” it is assumed that one
symbol occupies two8 bytes.

xz is a command line application from the XZ Utils9. It provides an
implementation of LZMA, which is based on a variant of the LZ77 [ZL77]
algorithm and range coding. In our experiments we used the “-9” flag to
favor compression over speed as much as possible.

5.3.2 Test Data

To evaluate the performance of GABAC, we modified the CRAM and
DeeZ frameworks to output their internal data representations, such as
mapping positions and read pairing information, to distinct descriptor
stream files.

In a first step, to generate input for our modified versions of CRAM and
DeeZ, we selected initial data from the MPEG-G Genomic Information
Database [ISO20]. Specifically, we selected files pertaining to item 1

and item 2 from the MPEG-G Genomic Information Database [ISO20].
Table 5.1 shows the details of the selected files. Both items contain deep
WGS data for members of the CEPH family 1463.

5 http://www.bzip.org

6 https://www.gzip.org

7 https://www.htslib.org

8 Hence, in the mode rANS-1 it is expected that the joint entropy (see Equation 2.20) of
consecutive bytes is approached, i.e., it is expected that the mode rANS-1 is as least as efficient
as the mode rANS-0.

9 https://tukaani.org/xz

http://www.bzip.org
https://www.gzip.org
https://www.htslib.org
https://tukaani.org/xz
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For item 1, we decided to use the file pairs ERR174310 through
ERR174314, as shown in Table 5.1. Here, we concatenated all files end-
ing in “_1.fastq”, and all files ending in “_2.fastq”, respectively. Subse-
quently, we aligned the data following the GATK Best Practices10. The
following tool versions were used for the alignment: BWA 0.7.13 [LD09],
GATK 4.0.8.1 [McK+10; DeP+11; VO20], Picard 2.18.14

11, and Samtools 1.3
(built with HTSlib 1.3) [Li+09]. As reference we used the file “human_-
g1k_v37.fasta” from the GATK resource bundle version 2.812. The file
“NA12878_S1.sam” from item 2 is already aligned to another reference
(GRCh37, also known as hg19). Finally, we extracted chromosome 11

from both resulting files. The final BAM files occupy 6.9 GiB (item 1) and
4.2 GiB (item 2), respectively.

Next, to generate the descriptor stream files13, we processed both BAM
files with our modified versions of CRAM and DeeZ. The resulting set
of descriptor stream files contained some empty files which we removed
before further processing. Moreover, for the CRAM descriptor stream
files, we omitted14 all descriptor streams not listed in the CRAM specifi-
cation15. In summary, this process yielded: 28 CRAM descriptor stream
files pertaining to item 1, chromosome 11; 37 CRAM descriptor stream
files pertaining to item 2, chromosome 11; 39 DeeZ descriptor stream files
pertaining to item 1, chromosome 11; and 52 DeeZ descriptor stream files
pertaining to item 2, chromosome 11.

From these 65 CRAM descriptor stream files and 91 DeeZ descriptor
stream files we omitted 7 files and 20 files, respectively, because they were
too small (i.e., they contained only a few bytes) to provide reasonable
performance numbers. Finally, this process yielded a test data corpus
consisting of 58 CRAM descriptor stream files and 71 DeeZ descriptor
stream files. To reduce the total test data corpus footprint, all remaining
descriptor stream files were limited to 200 MiB. As a result, 18 files were
capped at 200 MiB. This approach allows the analysis of a richer test
data corpus while maintaining a reliable representation of compression
performance for each of the entropy coding methods compared. The
total size of the resulting test data corpus, consisting of 129 files, is
approximately 8.9 GiB.

10 https://gatk.broadinstitute.org

11 https://broadinstitute.github.io/picard

12 ftp://ftp.broadinstitute.org/bundle/b37

13 We refer the reader to [Vog+20] for details on the semantics of the CRAM and DeeZ descriptor
stream files.

14 We omitted all files with the following file name extensions: “.cram_raw”, “.DS_Cram_Info”,
“.DS_<3-letter code>”, “.DS_<number>”.

15 https://samtools.github.io/hts-specs/CRAMv3.pdf

https://gatk.broadinstitute.org
https://broadinstitute.github.io/picard
ftp://ftp.broadinstitute.org/bundle/b37
https://samtools.github.io/hts-specs/CRAMv3.pdf
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5.4 results and discussion

As elaborated in Section 5.3, when conceiving and designing our experi-
ment setup, we laid the focus on the performance of GABAC in typical
DNA sequencing data compression scenarios. Therefore, our experiment
is built around a specifically designed test data corpus, which consists
of 129 descriptor stream files, where each file is limited to 200 MiB. We
regard the compression of this set of descriptor stream files as a typical
DNA sequencing data compression scenario where the data is organized
in the form of descriptor streams, under the assumption that the splitting
into descriptor streams facilitates more efficient compression. Also, by
limiting each descriptor stream file to 200 MiB, we include the concept of
rather small access units (that may be decompressed independently16) in
our experiment.

In such a typical DNA sequencing data compression scenario, the
most important question is which entropy coding method is the best-
performing for every descriptor stream. Hence, we compute, for each
descriptor stream, the rankings of the different codecs. In Figure 5.3,
Figure 5.4, and Figure 5.5 we present, for each codec, the ranks achieved
for the different descriptor streams along the compression axis, along
the compression speed axis, and along the decompression speed axis,
respectively.

For Figure 5.3, Figure 5.4, and Figure 5.5 the following semantics apply.

• Dots were jittered for visual clarity.

• The x-axes show the item from which the descriptor streams were
generated.

• The y-axes show the actual ranks. Because we evaluate six codecs
(bzip2, GABAC, gzip, rANS-0, rANS-1, xz) ranks are between 1

and 6.

• Each dot depicts the rank that a codec achieved on one specific
descriptor stream.

• The boxes visualize the following statistics: the horizontal black
line denotes the median, the lower and upper hinges correspond
to the first and third quartiles, and the whiskers extend to the
smallest/largest values no further than 1.5 times the inter-quartile
range from the hinges.

16 Independently decompressible access units facilitate non-sequential access to the compressed
data.
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• The dotted lines denote the mean compression rank for each tool,
averaged over both test items.

To put the compression ranks presented in Figure 5.3 in perspective,
rANS-0 provides a “minimum anchor” for compression. Namely, if
descriptor streams were viewed as “one-byte-per-symbol streams”, then
it would be expected that rANS-0 yields bitstreams whose sizes approach
the (unconditional) entropy of the descriptor streams. Hence, one would
expect that all other (more sophisticated) codecs outperform rANS-0 in
all cases. In general, this behavior can be observed. However, it can be
observed from Figure 5.3 that rANS-0 ranks first twice. It also ranks
second twice, and it ranks third multiple times. These ranks are achieved
by rANS-0 only on a few special descriptor stream files that are either
very small or that contain extremely homogeneous data (such as a stream
of zeros). In such cases, the other codecs produce too much overhead and
are therefore outperformed by rANS-0.

In general, as it can be observed from Figure 5.3, GABAC obtains the
best average compression rank (dotted line). The second best average
compression rank is achieved by xz. To get an indication of the spread
between the ranks, we calculated the average compression ratios for the
group of first-ranked codecs (4.54) and the group of last-ranked codecs
(2.94).

In addition to the compression ranks, as presented in Figure 5.3, and
to provide another viewing angle at the results, Table 5.2 shows the
compression ratios, averaged over both sets of descriptor streams.

It can be observed from Table 5.2 that GABAC, achieving an average
compression ratio of 4.12, outperforms bzip2 (4.04), gzip (3.83), rANS-0
(3.01), and rANS-1 (3.76); it is itself only outperformed by xz (4.32).

Regarding the compression and decompression ranks, shown in Fig-
ure 5.4 and Figure 5.5, respectively, it should be noted that they were
calculated without the times used to find the best GABAC parameter
combination17. As it can be observed from Figure 5.4, GABAC is faster
than gzip and xz in terms of the mean compression speed rank. In terms
of the mean decompression speed rank GABAC is slower than the other
codecs. At this point it is important to note that GABAC is a more or less
straightforward implementation of the concepts presented in Section 5.2.
In particular, the implementation has not been optimized, neither in a
general way (e.g., loop unrolling), nor in particular ways (e.g., regarding
architecture-specific optimizations).

In addition to the compression and decompression speed ranks, as
presented in Figure 5.4 and Figure 5.5, respectively, Table 5.3 shows

17 Between 4,000 and 8,000 parameter combinations were evaluated per descriptor stream. Note
that the number of possible parameter combinations depends on the actual input data.
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the compression and decompression speeds, averaged over both sets
of descriptor streams. The compression speed is calculated as uncom-
pressed size divided by compression time, and the decompression speed
is calculated as compressed size divided by decompression time.

It can be observed from Table 5.3 that, in terms of average compression
speed, GABAC, operating at an average compression speed of 13.3 MiB/s,
outperforms gzip (10.2 MiB/s) and xz (2.3 Mib/s). It is itself only out-
performed by bzip2 (19.1 MiB/s), rANS-0 (45.5 MiB/s), and rANS-1
(38.3 MiB/s). In terms of decompression speed, GABAC operates at an
average decompression speed of 1.8 MiB/s, ranking last in comparison
to its competitors. Nonetheless, in a typical DNA sequencing data com-
pression scenario, data is processed in the form of atomic units. In such
a scenario the compression and decompression processes would very
likely be highly parallelized, and thus multiple codec instances would be
executed at the same time.

To further dissect the extent to which existing solutions can benefit
from the inclusion of GABAC, Table 5.4 shows the compressed sizes for
different codec sets, selecting for each descriptor stream the codec that
gives the best compression: the codec set used in CRAM, the codec set
used in CRAM plus GABAC, and the codec set used in CRAM plus
GABAC, with gzip and rANS-0 removed. Table 5.4 shows that adding
GABAC to the set of CRAM codecs further improves compression in
all cases. Removing gzip does not affect the compression. (Recall that
Figure 5.3 shows that gzip is never ranked first.) Removing rANS-0 has
only a minor effect (< 0.005%).

5.5 conclusion

In this chapter, we investigated entropy coding methods in the context of
compression of DNA sequencing data. We reviewed the state of the art,
and we introduced our contribution GABAC, the premier implementa-
tion of an entropy codec compliant to ISO/IEC 23092-2. GABAC provides
proven technologies, such as CABAC, binarization schemes, and trans-
formations, into a straightforward solution for the compression of DNA
sequencing data, as well as also other arbitrary data (i.e., GABAC can
be regarded as a general-purpose codec). The development of GABAC
overlapped temporally with the development of ISO/IEC 23092-2. Hence,
both development processes influenced each other, and the GABAC
development therefore resulted in multiple NB comments that were
incorporated in ISO/IEC 23092-2.

For the evaluation of GABAC, we conceived a well-grounded experi-
ment setup, in which we laid the focus on evaluating the performance in
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a typical DNA sequencing data compression scenario. The experiment
setup involves the generation of a test data corpus, consisting of a set of
DNA sequencing data descriptor streams that were produced with modi-
fied versions of the compression frameworks CRAM and DeeZ. Moreover,
the setup involves the comparison of GABAC to the competing codecs
bzip2, gzip, rANS (in two modes) and xz. In summary, our experiment
setup is designed to answer the question which entropy coding method
is the best-performing per descriptor stream.

With regard to the experiment setup, a remaining topic is the optimiza-
tion of the search of the best combination of GABAC parameters for a
given input descriptor stream. In our experiments we used an exhaustive
search. However, in a real-world scenario the search space could be lim-
ited to a set of reasonable combinations, and more efficient algorithms
for the search of the best combination might be employed. Alternatively,
parameter combinations could be preset for specific descriptor streams,
under the assumption that the statistical properties of the descriptor
streams do not change largely between different data sets.

Our results show that, in a per-descriptor-stream ranking of codecs,
GABAC obtains the best compression ranks on average. In conclusion,
we can state that the addition of GABAC as an entropy coding method
to CRAM and DeeZ would be advantageous in terms of both attainable
compression and speed.
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Figure 5.3: Compression ranks.
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Figure 5.4: Compression speed ranks.
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Figure 5.5: Decompression speed ranks.

Table 5.2: Compression ratios, averaged over both sets of descriptor streams.

Codec ∅ Compression Ratio

bzip2 4.04

GABAC 4.12

gzip 3.83

rANS-0 3.01

rANS-1 3.76

xz 4.32

Table 5.3: Compression and decompression speeds, averaged over both sets of
descriptor streams.

Codec ∅ Compression Speed ∅ Decompression Speed

bzip2 19.1 MiB/s 3.7 MiB/s
GABAC 13.3 MiB/s 1.8 MiB/s
gzip 10.2 MiB/s 11.6 MiB/s
rANS-0 45.5 MiB/s 12.0 MiB/s
rANS-1 38.3 MiB/s 7.7 MiB/s
xz 2.3 MiB/s 5.1 MiB/s
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6
S TA N D A R D S A N D I M P L E M E N TAT I O N S

The widely used FASTA format, the FASTQ format [Coc+10], and the
SAM/BAM format [Li+09] were designed when sequencing data was
scarce and precious. This becomes obvious by looking at their release
dates—1985 (FASTA), around 2000 (FASTQ), and 2009 (SAM/BAM)—or
by looking at their design. These formats are all (except the BAM format,
which is the binary equivalent of the SAM format, in which the same data
is stored in a compressed binary representation) human-readable textual
file formats that are designed to be easily processable by command-line
utilities such as awk, grep, and sed, which are featured on most Unix-like
operating systems. This allows to draw conclusions about the environ-
ment in which these file formats were developed: sequencing data was
generated in tiny amounts, compared to the amounts generated nowa-
days, and downstream processing was mainly conducted by specialized
scientists who used handcrafted workflows tailored to specific use cases.
In such settings, the properties of these file formats were highly beneficial.

However, the advent of HTS technologies prompted the need for more
sophisticated ways of storing, transporting, and handling sequencing
data. This demand catalyzed the creation of an abundance of specialized
compressors for sequencing data (see [Num+16] and [Her+19]). Most
of these compressors come with their own file format. In general, we
refer to the combination of format and compression technology as frame-
work. Most of these specialized frameworks are highly efficient, i.e., they
provide competitive compression performance, primarily in terms of
compression, but also regarding processing time and memory require-
ments. Some of them are well maintained1, and some even come with
a specification, which enables the creation of different implementations
of a framework. However, what all of them lack is the combination of
efficiency, a specification, and maintenance (in terms of integration of

1 Here, we refer to maintenance in terms of continuous adaption with regard to new technolo-
gies.
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new technologies). Only this combination is what renders a framework
truly usable.

In 2016, MPEG2 together with WG 5 “Data processing and integration”
of ISO TC 276 “Biotechnology” have started a standardization project
with the hope that the availability of a framework for the representation
of sequencing data that comes with a fully maintained specification
will facilitate the creation of an ecosystem of efficient applications. This
standardization project yielded the ISO/IEC 23092 series, which is also
referred to as MPEG-G.

Besides MPEG and TC 276 there are also other organizations targeting
the standardization of frameworks for the representation of sequencing
data. Most notably, the industry alliance GA4GH maintains the specifica-
tion of the CRAM framework [Fri+11], as well as other specifications for
the representation and handling of sequencing data.

In this chapter, we first provide an overview of the sequencing data
standardization landscape in Section 6.1. Next, we elaborate in detail
on the ISO/IEC 23092 series3 in Section 6.2. With regard to an introduc-
tion to the ISO/IEC 23092 series we also refer the reader to [Vog+21].
Most technologies presented in this dissertation were submitted to the
standardization process of the ISO/IEC 23092 series, and they are now
integrated in its part 2. Hence, in Section 6.2.2, we focus on part 2 (coding
of genomic information). We provide more brief descriptions of part 1

(transport and storage of genomic information) in Section 6.2.1, part 3

(metadata and APIs) in Section 6.2.3, and parts 4 and 5 (reference software
and conformance, respectively) in Section 6.2.4. Finally, in Section 6.3, we
describe our software Genie, the first open-source implementation of the
file format and compression technology specified in the ISO/IEC 23092

series.

2 MPEG is part of JTC 1 of ISO and IEC. Originally, it was a single WG (namely WG 11)
organized within SC 29 of JTC 1. In 2020, SC 29 was subject to a restructuring process in
which some subgroups of WG 11 became distinct WGs within SC 29. MPEG now comprises
three AGs and seven WGs. The activities related to the ISO/IEC 23092 series are coordinated
and conducted by WG 8 “MPEG Genomic Coding”.

3 We use the term “ISO/IEC 23092 series” when referring to the entire standard series, including
all its parts and editions. When referring to a particular part of the series, we usually use the
notation “ISO/IEC 23092-X”, where “X” is replaced by the respective part number. In the
case that it is unambiguous that we refer to the ISO/IEC 23092 series, we sometimes use the
shorter term “part X” (where “X” is again replaced by the respective part number) to refer
to specific part. In the case that we need to refer to a specific edition of a part we use its full
designation, e.g., ISO/IEC 23092-2:2020.
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6.1 the standardization landscape

As most technologies presented in this dissertation were submitted to
the standardization process of the ISO/IEC 23092 series, we focus in this
chapter on the ISO/IEC 23092 series, with a particular emphasis on its
part 2. However, ISO and IEC are not the only organizations standardizing
frameworks for the representation of sequencing data.

Most notable, founded in 2013, GA4GH is an international consortium
consisting of more than 600 members. It focuses on the development of
standards for storing, analyzing, and sharing genomic data. GA4GH is
maintained by three host institutions: Wellcome Sanger Institute4, Broad
Institute5, and OICR6. Among others, GA4GH maintains the specification
of the CRAM framework [Fri+11], detailing storage and compression
of sequencing data. Concerning its scope, the CRAM framework can
be compared to ISO/IEC 23092-1 (transport and storage of genomic
information) and ISO/IEC 23092-2 (coding of genomic information).
Also, GA4GH is maintaining the htsget [Kel+19] specification, which is
detailing a streaming protocol for sequencing data, and the refget [Yat+21]
specification, which is detailing APIs for accessing reference sequences.
Concerning the scope of the htsget and refget specifications, they can
loosely be compared to ISO/IEC 23092-3 (metadata and APIs).

Another international consortium is the Pistoia Alliance, which con-
sists of more than 100 members. It was founded in 2009 by AstraZeneca,
GlaxoSmithKline, Novartis, and Pfizer. It includes members from the
pharmaceutical industry as well as not-for-profit, academic, and gov-
ernment institutions, and individual members. The scope of the Pistoia
Alliance is very broad; its mission is to lower “barriers to R&D innovation
by providing a legal framework to enable straightforward and secure
pre-competitive collaboration”7 between its members. Concerning the
representation of sequencing data, in 2012, the Pistoia Alliance promoted
an initiative for the comparison of tools for sequencing data compression:
the SequenceSqueeze contest [BM13].

Furthermore, the WHO Expert Committee on Biological Standardiza-
tion has the task to “establish detailed recommendations and guidelines
for the manufacturing, licensing, and control of blood products, cell
regulators, vaccines and related in vitro diagnostic tests”8. The com-
mittee does not have specific activity in the field of standardization of
sequencing data representation.

4 https://www.sanger.ac.uk

5 https://www.broadinstitute.org

6 https://oicr.on.ca

7 https://www.pistoiaalliance.org

8 https://www.who.int/biologicals/expert_committee

https://www.sanger.ac.uk
https://www.broadinstitute.org
https://oicr.on.ca
https://www.pistoiaalliance.org
https://www.who.int/biologicals/expert_committee
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Also, within the ISO hierarchy there are several committees that have
a scope that is by some means connected to the activities of MPEG and
TC 276. Most prominent are TC 212 “Clinical laboratory testing and in
vitro diagnostic test systems” and TC 215 “Health informatics”, here in
particular SC 1 “Genomics Informatics”. However, although they exhibit,
in general, connections to the activities of MPEG and TC 276, these TCs
do not pursue standardization projects in the field of sequencing data
representation.

6.2 mpeg-g : the iso/iec 23092 series

The initial step of the standardization process of the ISO/IEC 23092 series
was to define a list of requirements, such as support for streaming of
compressed data and support for data protection [ISO15b]. This was done
in the time between the 109

th MPEG meeting in July 2014 and the 113
th

MPEG meeting in October 2015, where a public call for evidence [ISO15a],
subject to the collected requirements, was issued. The evaluation of the
responses to the call for evidence yielded promising results, and hence, a
public call for proposals [ISO16b] was issued at the 115

th MPEG meeting
in June 2016. At the 116

th MPEG meeting in October 2016, 10 responses
to the call for proposals were received [ISO16c].

The technologies in the responses to the call for proposals were evalu-
ated by judging their requirements coverage as well as their compression
performance, primarily in terms of the size of the compressed data repre-
sentation [ISO16a]. In a further ranking of proposals the computational
complexity was evaluated both theoretically and empirically (by evaluat-
ing the processing times and memory requirements on a test data set).
The most valuable technologies were combined, yielding an integrated
framework for the transport, storage, and coding of sequencing data.
As a result, the ISO/IEC 23092 series supports new features associated
with complex use cases, most of which are not supported by the FASTA,
FASTQ, and SAM/BAM formats.

Regarding the coding of sequencing data, the combination of the most
valuable technologies yielded a multiplicity of modeling and coding
modes. These modes facilitate the exploitation of the variety of statistical
properties of different sequencing data types. In the case of unaligned
nucleotide sequences, for instance, a model may be used where predic-
tions can be made with respect to common patterns built around clusters
of nucleotide sequences. In the case of alignments, for instance, reference
sequences may be used for predictive coding. In addition, a classification
system enables the grouping of alignments according to their alignment
results. Such classification might be beneficial in certain use cases, where
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for instance only perfectly matching reads are required. Also, such clas-
sification is expected to group data together that is expected to exhibit
similar statistical properties, thus potentially improving compression.
The integration of the most valuable technologies was achieved through
the definition of the concept of “descriptors”, structured in the form of
“descriptor streams”. These descriptor streams represent the sequencing
data in a form that is beneficial for achieving high compression.

In addition to a framework for the transport, storage, and coding of
sequencing data, the ISO/IEC 23092 series also includes the means, in
terms of a reference software and a specification for assessing confor-
mance, to verify that implementations comply with the different parts of
the series. More specifically, part 5, “Conformance”, specifies a set of test
procedures to verify that bitstreams9 and decoders meet the requirements
of parts 1 and 2. These essential procedures enable the development of
independent, yet compatible, implementations.

In summary, the ISO/IEC 23092 series currently consists of five parts,
ISO/IEC 23092-1 to -5.

Part 1, “Transport and Storage of Genomic Information”, specifies how
sequencing data may be structured as a transport stream for transmission
on a telecommunication network, or as a file for storage. Its main element
is the specification of a hierarchical arrangement of data structures that
may contain logically organized sequencing data. The two top-level data
structures are the dataset group and the dataset. Also, part 1 specifies
the make-up of metadata that may be attached to each dataset group or
dataset. Moreover, part 1 provides a mechanism enabling non-sequential
access inside each dataset: the MIT. Datasets are composed of various
access units, and an access unit constitutes the smallest data structure
that can be decoded by a decoder which is compliant to part 2. Hence,
the access unit is the data structure that represents the link between
part 1 and part 2. Part 1 also includes a reference process for converting
a transport stream to a file10.

Part 2, “Coding of Genomic Information”, specifies the data structures
to represent compressed sequencing data, as well as the associated de-
coding process. It encompasses the representation of (unaligned) reads
as well as alignments (i.e., aligned reads), including associated quality
scores and read identifiers. Part 2 also includes the representation of ref-
erence sequences. It is important to note that only the decoding process is

9 In the context of the ISO/IEC 23092 series, a bitstream is an ISO/IEC 23092-1 file, an ISO/
IEC 23092-1 transport stream, or a sequence of concatenated ISO/IEC 23092-2 data units.

10 The reverse process (to convert a file into a transport stream) can be unambiguously deducted
from the reference process.
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specified, while any encoding process can be used, as long as it produces
a bitstream that is compliant with this part.

Part 3, “Metadata and Application Programming Interfaces”, specifies
how metadata is attached to data structures. Here, the term “metadata”
must not be confused with quality scores and read identifiers, which are
contained in access units as specified in part 2. In the context of part 3,
metadata refers to information metadata, providing general information
(such as the information specified in the EGA11 or the SRA12 [Lei+11]),
and protection metadata, which is covering three main aspects of pro-
tection: encryption, privacy, and integrity. Other functionalities covered
by part 3 include the association of alignment metadata to compressed
content, mechanisms for backward compatibility with existing content in
the SAM format, and APIs.

Part 4, “Reference Software”, provides two main applications as sup-
port and guide for the implementation of parts 1 and 2: the part 1 decoder
application, referred to as decapsulator, and the part 2 decoder appli-
cation, referred to as decoder. The reference software is normative in
the sense that any complying implementation of the decapsulation or
decoding process that uses the same compressed bitstreams and the same
output data structures must output the same data.

Part 5, “Conformance”, provides the means to test and validate the
correct implementation of parts 1 and 2 to ensure full interoperability
among all systems.

6.2.1 Transport and Storage of Genomic Information

The ISO/IEC 23092 series specifies in its part 1 the transport format and
file format for the representation of sequencing data that is compressed
according to part 2.

More precisely, the format that is intended to be used for the transport
of packetized data on a telecommunication network is referred to as
transport format. The format used for storage on a physical medium
is referred to as file format. The actual incarnation of sequencing data
according to the transport format and file format is referred to as ISO/
IEC 23092-1 transport stream and ISO/IEC 23092-1 file, respectively.

These two formats are loosely based on the ISO/IEC base media
file format (ISO/IEC 14496-12), and they are fully reversible: an ISO/
IEC 23092-1 file can be converted into an ISO/IEC 23092-1 transport
stream, which, in turn, can be converted back into an ISO/IEC 23092-1
file. To illustrate this, the conversion from a transport stream into a file

11 https://ega-archive.org

12 https://trace.ncbi.nlm.nih.gov

https://ega-archive.org
https://trace.ncbi.nlm.nih.gov
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Figure 6.1: Key elements of the ISO/IEC 23092-1 file format. Multiple dataset
groups contain multiple datasets of sequencing data. Each dataset is
composed of access units. Each access unit contains blocks of coded
data.

mainly involves the update of parameters on the dataset level and the
compilation of the MIT (if present) from information residing in the
access unit headers. Because of the similarity of transport format and file
format, we focus in the following on the file format.

As shown in Figure 6.1, an ISO/IEC 23092-1 file is a hierarchical ar-
rangement of data structures that contain logically organized sequencing
data. At the top level, an ISO/IEC 23092-1 file is arranged into a file
header and one or more dataset groups. Each dataset group contains a
dataset group header as well as optional containers, and it encapsulates
one or more datasets. Each dataset is composed by a dataset header,
a dataset parameter set, and optional containers. It can also optionally
contain a MIT, which facilitates non-sequential access inside each dataset.
Each data set carries one or more access units. The access unit is the
actual data structure that contains the compressed sequencing data. It
constitutes the smallest data structure that can be decoded by a decoder
which is compliant to part 2. Hence, the access unit data structure rep-
resents the link between part 1 and part 2. In addition to an access unit
header and other optional containers, an access unit contains a collection
of blocks, and each block contains a portion of a descriptor stream.

Each data structure in an ISO/IEC 23092-1 file is also associated to
optional metadata (“information metadata”) specified in part 3. This
metadata provides general information about the data, such as the origin
of the biological sample, a log of the operations performed on the data,
and information associated to the preparation of the samples and the
sequencing process. In addition, protection information (“protection
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metadata”), which is also specified in part 3, can be associated to each
data structure, providing the support for different selective protection
approaches of the data.

The hierarchical design of an ISO/IEC 23092-1 file facilitates an abun-
dance of use cases. For instance, the file can simply contain the data from
a single sequencing run of a portion of a human chromosome. In another
scenario, with regard to WGS experiments, an ISO/IEC 23092-1 file could
be used to organize the storage of sequencing data for a trio of individuals
(father, mother, child) as follows: there would be three different dataset
groups, one for each individual in the trio. Each dataset group would
contain datasets related to sequencing runs for the same individual, per-
formed at different times. This example shows how ISO/IEC 23092-1 files
can be used in a broad range of use cases, from long-term archiving to
streaming scenarios.

6.2.2 Coding of Genomic Information

Part 2, “Coding of Genomic Information”, specifies the data structures to
represent compressed sequencing data. Most importantly, it also specifies
the associated decoding process. Although part 2 specifies the decoding
process, in this section, we present part 2 from the encoder perspective,
because the employed technology is usually much easier to explain (and
comprehend) when looking at it from the encoder side.

Figure 6.2 (page 129) shows the block diagram of the general ISO/
IEC 23092-2 encoding process. The encoding process consists of three
main stages: preprocessing, descriptor generation, as well as transforma-
tion and entropy coding. Each stage will be elaborated on separately in
Sections 6.2.2.1, 6.2.2.2, and 6.2.2.3, respectively.

6.2.2.1 Preprocessing

Unaligned sequencing data consists of the actual nucleotide sequences,
associated quality scores, and read identifiers. An incarnation of this
triplet is referred to as an unaligned genomic record. An aligned genomic
record contains alignment information and optional alignment metadata
in addition. Prior to encoding, a part 2 encoder implementation is free
to classify genomic records into six classes according to the result of the
alignment of their nucleotide sequences against one or more reference se-
quences. Unaligned genomic records have a dedicated class (U). Aligned
genomic records can be assigned to one of the other classes. All class
semantics are summarized in Table 6.1.



6.2 mpeg-g : the iso/iec 23092 series 121

Table 6.1: ISO/IEC 23092-2 data classes.

Class Name Semantics

P Reads perfectly matching to a reference sequence

N Reads containing mismatches with respect to a ref-
erence sequence, which are unknown nucleotides
only

M Reads containing, with respect to a reference se-
quence, at least one substitution, and possibly un-
known nucleotides, but no insertions, no deletions,
and no clipped nucleotides

I Reads containing, with respect to a reference se-
quence, at least one insertion, deletion or clipped
nucleotide, and possibly unknown nucleotides or
substitutions

HM Half-mapped read pairs where only one read is
mapped

U Unmapped reads

After the classification, as the final step of the preprocessing stage, and
before further processing, genomic records are split into their constituents:
nucleotide sequences, quality scores and read identifiers, as well as
alignment information and alignment metadata in the case of aligned
data.

6.2.2.2 Descriptor Generation

The input of the descriptor generation stage consists of nucleotide se-
quences, quality scores and read identifiers, as well as alignment infor-
mation and alignment metadata in the case of aligned genomic records.
These different types of data are processed separately. In what follows, the
encoding of nucleotide sequences (and alignment information), quality
scores, and read identifiers is presented in more detail. Further processing
of alignment metadata is specified in part 3, and it is out of scope at this
point.

coding modes for nucleotide sequences For the coding of
nucleotide sequences (and alignment information, in the case of aligned
data), an encoder is free to choose between four approaches:
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• External reference: a reference sequence is available as an external
resource (locally or remotely).

• Embedded reference: the reference sequence is embedded as a
dataset (in the same file).

• Computed reference: a reference sequence is computed from the
nucleotide sequences already processed.

• No reference: nucleotide sequences are, in principle, forwarded
verbatim to the transformation and entropy coding stage.

Each of these approaches yields a set of descriptor streams which
contain all information that is necessary to reconstruct the nucleotide
sequences (and alignment information, in the case of aligned data). The
goal in designing the descriptor streams was to ensure uncorrelation
among them, if possible. This approach ensures maximum compression
efficiency once the descriptor streams are fed through the transformation
and entropy coding stage.

When using a computed reference, the encoder can choose between
four reference computation algorithms:

• Reference transformation (“RefTransform”): An available external
reference is modified before encoding nucleotide sequences.

• Read concatenation (“PushIn”): The reference is created by straight-
forward concatenation of already encoded nucleotide sequences.

• Local assembly: A local assembly of the underlying nucleotide
sequence is built. This reference computation algorithm was con-
tributed by us, and we detail it in Chapter 3.

• Global assembly: Common patterns that are shared among sev-
eral nucleotide sequences are identified. The patterns are encoded
only once along with the nucleotides specific to each nucleotide
sequence.

The algorithms “PushIn” and “global assembly” can also be used to
encode unaligned data.

The selection of encoding techniques depends on the specific applica-
tion scenario requirements. From an application point of view, unaligned
data can for example be encoded according to different approaches, de-
pending on the actual scenario at hand. Here, we illustrate two such
application scenarios: a “low latency” scenario, in which the “no refer-
ence” approach is used, and a “high compression” scenario, in which
the “computed reference” approach with the “global assembly” reference
computation algorithm is used.
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• Low latency: In a streaming scenario, when low latency has higher
priority than compression, a high-throughput compression ap-
proach is desirable. In such case the “no reference” approach is
used: the descriptor generation stage is bypassed, and genomic
record are directly forwarded to the transformation and entropy
coding stage. This approach enables streaming scenarios, such as
a scenario in which the data needs to be transmitted to a remote
device “on-the-fly”.

• High compression: High compression is achieved by taking ad-
vantage of the high redundancy in the sequencing data, e.g., by
using the global assembly reference computation algorithm. This
approach achieves high compression. However, it requires the avail-
ability of the entire data, as well as some preprocessing steps that
may affect compression latency. It is suitable, for example, for
long-term storage. Preprocessing technologies which are suited for
this approach are for example ORCOM [GDR15], HARC [CTW18],
FaStore [Rog+18], and SPRING [Cha+19].

Also, aligned data can be encoded according to the actual application
scenario at hand. Here, we illustrate two such scenarios: a “clinical study”
scenario, in which a reference-based approach (i.e, “external reference” or
“embedded reference”) is used, and a “reference-free” scenario, in which
the “computed reference” approach with the ”local assembly” reference
computation algorithm is used.

• Clinical study: In this scenario, a multitude of human WGS ex-
periments is performed. Here, it it beneficial to represent reads
originating from different experiments by their differences with
respect to a single set of reference sequences (i.e., one sequence
per chromosome). In the case that the data of the sequencing of
multiple genomes is stored in multiple datasets within a single
ISO/IEC 23092-1 file, the reference sequences may be embedded
as additional datasets within the same ISO/IEC 23092-1 file. This
means that reference sequences can be shared among datasets. Also,
external reference sequences can be used, where the actual access
mechanisms are detailed in part 1.

• Reference-free: In this approach, reads are compressed without
referring to any reference sequence by applying the local assembly
reference computation algorithm. A local assembly of the underly-
ing sequence is built, and reference-based compression with respect
to the local assembly is performed. In this case, access to any refer-
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ence sequences is not needed at neither the encoder nor the decoder
side.

coding modes for quality scores As shown in Chapter 4, quan-
tization of quality scores can not only significantly reduce storage require-
ments, but also provide similar and sometimes even better performance
in variant calling compared to the uncompressed data. Therefore, accord-
ing to part 2, quality scores can be encoded either in a lossless manner or
in a quantized manner. When encoding quality scores losslessly, several
transformations can be applied (see Section 6.2.2.3). Quantization of qual-
ity scores, however, can lead to a dramatic increase in compression. To
minimize any quantization effects, part 2 provides several mechanisms
to allow a fine-grained selection of quantization schemes.

In the case of unaligned reads, an encoder is free to choose any ben-
eficial scalar quantization scheme. This includes quantization schemes
such as those presented in [GSR16; Och+13; Yu+15; Mal+15; HOW16].
The used representative values are signaled to the decoder by the means
of a so-called codebook. The quantized quality scores are signaled to a
decoder as indices into this codebook.

In the case of alignments, part 2 introduces an additional dimension
to fine-tune the quantization of quality scores: codebooks can be se-
lected per locus. As an illustrative example, an encoder could choose to
select codebooks per locus using a simple genotyping model, such as
in [VOH17], [VOH18], and [Och+19]. Before entropy coding, the indices
are split into separate streams per codebook. Note that an additional
stream for the locus-associated codebook identifiers is also required. Fi-
nally, an encoder is also allowed to tune the quantization by selecting
different codebooks per class as well as per access unit.

coding modes for read identifiers Read identifiers are divided
into a series of tokens which can be of three main types: strings, digits,
and single characters. A read identifier is represented as a set of differ-
ences and matches with respect to one of the previously encoded read
identifiers. This approach is not tailored to any specific implementation
of a sequencing manufacturer and simply assumes that the structure
of read identifiers is largely constant within the same sequencing run.
This method (or variants of it) has been used in compressors such as
Samcomp [BM13], DeeZ [HNS14], FaStore [Rog+18], and AliCo [Och+19].
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6.2.2.3 Transformation and Entropy Coding

Storing different types of data in separate (homogeneous) descriptor
streams allows for a significantly better compression efficiency as each
stream is usually likely to contain stationary data.

To compress the heterogeneous set of descriptors, part 2 specifies the
use of CABAC [MSW03], which is used in popular video coding stan-
dards such as AVC/H.264 [Wie+03] and HEVC/H.265 [Sul+12], as well as
the sequencing data compressors AFRESh [Par+17] and AQUa [Par+18].
By selecting CABAC, the implementation of compliant codecs is simpli-
fied significantly, as a wide range of implementations, both in hardware
and in software, is currently available.

Given an input descriptor stream13, the compression process consists
of two main stages: transformation and entropy coding. Each step of the
transformation stage is optional (except for the sign extraction as part of
the subsymbol transformation, in case that a transformed subsequence
contains signed symbols). The transformation stage comprises the fol-
lowing pipeline: subsequence transformation, subsymbol split (including
sign flag extraction), and subsymbol transformation. The (mandatory)
entropy coding stage consists of binarization, context modeling, and
CABAC. We presented our implementation of the transformation and
entropy coding process—GABAC—in Chapter 5.

6.2.2.4 Decoding Process

In addition to syntax and semantics of the compressed sequencing data,
part 2 also defines the decoding process.

The normative input of the decoding process is a concatenation of data
structures called data units. Data units can be of three types. A “raw
reference” data unit embodies the coded representation of one or more
reference sequences. A data unit can also contain parameters to be used
during the decoding process; it is then referred to as “parameter set”.
A data unit containing the coded representation of actual nucleotide
sequences and associated read identifiers, quality scores, etc. is referred
to as “access unit”. The block diagram of the general ISO/IEC 23092-2
encoding process shown in Figure 6.2 depicts in its bottom right corner
how these three types of data units are multiplexed into a single bitstream.

Raw references and parameter sets are used during the decoding
process of access units, but do not produce output. Figure 6.2 shows
analogously how raw references and parameter sets are fed into the
encoder as supplementary signals. It is the decoding process of access

13 In part 2 a descriptor stream is referred to as “descriptor subsequence”.
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units that produces a normative output in the form of so-called ISO/
IEC 23092-2 records.

6.2.3 Metadata and Application Programming Interfaces

Part 3, “Metadata and Application Programming Interfaces” has essen-
tially two goals: to specify the syntax and semantics of the metadata that
can be attached to data structures, and to specify an API that provides
interoperability between applications that are built on top of normative
decoders (see Section 6.2.4). Other functionalities covered by part 3 in-
clude the association of alignment metadata to compressed content and
mechanisms for backward compatibility with existing content in the SAM
format.

Two main types of metadata are specified: information metadata and
protection metadata. Information metadata is related to metadata as
specified in data repositories such as the EGA14 or the SRA15 [Lei+11].
It also includes metadata as stored in the header of SAM/BAM files.
This facilitates interoperability when converting metadata to and from
already existing databases. Note, that, to facilitate adaption to a multitude
of use cases, part 3 also details a mechanism for the extension of the
information metadata. Protection metadata is related to the protection
technology applied to access units (and descriptor streams), datasets, or
dataset groups. Part 3 covers three main aspects of protection: encryption,
privacy, and integrity. For more information on the specifics of these two
types of metadata we refer the reader to [Nar20].

Another important functionality provided in part 3 is the specification
of an API enabling standardized access to the data structures of part 1,
part 2, and part 3. API operations are applied to data structures that are
arranged in a hierarchy. Hence, the hierarchy level defines the scope of
an operation. The considered hierarchy levels are dataset group, dataset,
and access unit. Note that the content may be protected, i.e., whenever
the caller of API methods is not authorized to access the full content only
the content for which the caller is authorized is returned.

6.2.4 Reference Software and Conformance

The ISO/IEC 23092 series includes as its part 4 a reference software to
assess conformance to the requirements of parts 1 and 2. Also, in general,
reference software is useful in aiding users of a standard (series) to estab-

14 https://ega-archive.org

15 https://trace.ncbi.nlm.nih.gov

https://ega-archive.org
https://trace.ncbi.nlm.nih.gov
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lish and test conformance, and thus interoperability, and to demonstrate
the capabilities of a standard (series). More specifically, the reference
software comprises two main applications (which are written in the C
programming language): the part 1 decoder application, referred to as
decapsulator, and the part 2 decoder application, referred to as decoder.
The decapsulator accepts bitstreams that are the result of an encapsu-
lation according to part 1, and the decoder accepts bitstreams encoded
according to part 2. Both applications are compliant implementations of
parts 1 and 2, respectively: taking the same input and using the same
output format the applications will output the same content. It should be
emphasized that the reference software is not an optimized implementa-
tion. Complying implementations of part 1 or part 2 are not required nor
expected to follow the algorithms and programming techniques used in
the reference software. Hence, it should not be used as a benchmark of
computational performance.

Part 5, “Conformance”, specifies a set of test procedures to verify that
bitstreams and decapsulators as well as decoders meet the requirements
of parts 1 and 2. For this purpose, an exhaustive set of bitstreams was
generated. Every implementation claiming conformance to either part 1

or part 2 will have to demonstrate the correct decoding or decapsulation,
respectively, of the corresponding set of bitstreams.

6.3 an open-source mpeg-g codec

The main technologies presented in this dissertation—TSC (see Chap-
ter 3) and CALQ (see Chapter 4)—were submitted to the standardization
process of the ISO/IEC 23092 series, and they are now integrated in its
part 2. Also, the development of GABAC (see Chapter 5) overlapped
temporally with the development of the ISO/IEC 23092 series, and hence,
both development processes influenced each other.

Consequently, we undertook the effort to join the implementations of
TSC, CALQ, and GABAC. Eventually, this work resulted in our software
Genie16, the first open-source implementation of the file format and
compression technology specified in the ISO/IEC 23092 series.

In Section 6.2.4 we mentioned that the ISO/IEC 23092 series includes
as its part 4 a reference software. We want to clarify at this point that
Genie is a software which is orthogonal to the reference software. More
in detail, the reference software provides the implementation of the

16 https://github.com/mitogen/genie

https://github.com/mitogen/genie
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decoding processes17 that are specified in ISO/IEC 23092-1 and ISO/
IEC 23092-2. Genie, in turn, provides a possible, yet not exhaustive or
optimized, implementation of the encapsulation (ISO/IEC 23092-1) and
encoding processes (ISO/IEC 23092-2) that produce bitstreams which can
be decoded by the reference software. In addition to the encapsulation
and encoding processes, Genie also includes implementations of the
decapsulation and decoding processes; however, these (non-normative)
implementations are distinct from those in the reference software.

17 The specification of the decoding processes (in contrast to the specification of the encoding
processes) guarantees the interoperability of implementations of the ISO/IEC 23092 series,
while leaving the encoding processes open to improvements.
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7
C O N C L U S I O N S

With the release of the latest generations of sequencing machines, the cost
of sequencing a whole human genome has dropped to less than US$1,000.
The potential applications in several fields—such as precision medicine
and oncology—lead to the forecast that the amount of DNA sequencing
data will soon surpass the volume of other types of data, such as video
data. The costs related to storage, transmission, and processing of these
large volumes of DNA sequencing data are already comparable to the se-
quencing costs. Therefore, the overarching objective of this dissertation is
the development of data compression technologies that facilitate scalable
DNA sequencing data storage, transmission, and processing.

In Chapter 1, we laid out the motivation for this dissertation in more
detail, and we put our contributions in context to the state of the art.
Also, we provided an outline of the dissertation.

In Chapter 2, we introduced the foundations that are necessary for the
understanding of the methods that we present in this dissertation. These
foundations span multiple disciplines that range from molecular biology
over DNA sequencing and bioinformatics to data compression. With
regard to data compression, we put a special emphasis on the concepts
of modeling and coding, as we make extensive use of these concepts in
our contributions.

In Chapter 3, we investigated the compression of aligned reads. We re-
viewed the state of the start, and, making use of the concept of modeling,
introduced our contribution TSC for the modeling of aligned reads. In
contrast to the state of the art, TSC is designed to exhibit an extremely
low memory footprint, and to be able to operate without external ref-
erence sequences. TSC consists of two main elements. The first main
element is the use of a sliding window to track recently encoded reads.
The second main element is the use of the data tracked within the sliding
window to infer a so-called local sliding consensus reference for the
prediction of subsequent reads. These two elements have been adopted
in ISO/IEC 23092-2, and we showed how these elements are integrated
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in ISO/IEC 23092-2:2020. We coupled TSC with generic compression
methods to evaluate its performance with respect to the state of the art.
For our evaluation, we made use of a previously published benchmark
suite, that we co-authored. Our results show that TSC provides the best
trade-off of memory usage and achieved compressed size. Among the
codecs that are specialized on the compression of aligned reads, TSC
exhibits the lowest average memory consumption of 563 MiB. At the same
time, TSC reaches an average compressed size of 83.05% with respect to
the anchor BAM, where the other specialized non-reference-based codec
only reaches 99.76%.

In Chapter 4, we investigated the compression of quality scores. We
reviewed the state of the art, and, again making use of the concept of
modeling, introduced our contribution CALQ for the quantization and
compression of quality scores. Besides the actual quality score quanti-
zation and entropy coding, CALQ consists of two proxy models, i.e.,
models that do not serve the purpose of redundancy reduction, but that
serve the purpose of controlling other parts of the compression process,
in this case quantization. The first proxy model is the genotype likeli-
hood model, which infers the likelihood distribution of the genotype
for each locus from the observable data, i.e., the read and alignment
information, using a statistical model. The second proxy model is the
activity-based posterior model, which builds on the genotype likelihood
model by adding a more realistic prior for the inference of the posterior
distribution of the genotype for each locus, and by taking into account
further systematic assumptions. Either proxy model is used to infer a spe-
cific precomputed quantizer to be used for the quantization of all quality
scores at each locus. Finally, the quality scores are quantized accordingly,
and the quantizer indices as well as the quantized quality scores are
encoded using entropy encoders. This way, high compression is achieved,
while at the same time only a negligible impact on downstream analyses
is observed. This concept can be captured in a relatively simple decoding
process syntax, where the specific model to be used for the inference of
the quantizer indices is left open to the encoder design. Consequently,
the CALQ technology was submitted to the standardization process of
the ISO/IEC 23092 series, and it is now integrated in its part 2. Regarding
the evaluation of CALQ, it is of primary importance to assess the effect
of the applied quantization on downstream applications. We selected
variant calling as a representative downstream application. As a mea-
sure of variant calling accuracy under the impact of quantized quality
scores, we used the F1 score difference with respect to the original data.
Consequently, the pair of achieved rate per quality score and F1 score
difference is used to evaluate CALQ and its competitors. From our results
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we can most importantly conclude that, in general, our models behave as
expected with regard to rate per quality score and F1 score difference, i.e.,
a decrease in the rate per quality score is associated to a decrease in the
F1 score difference. This predictable behavior of our models is in contrast
to all competitors. In summary, with CALQ, using the different models,
the quality scores can be compressed to an average rate of 0.39–0.49 bit
per quality score at an average F1 score difference of -0.00041–0.00322.
In particular, we can recommend a particular parametrization for the
activity-based posterior model, which, in our experiments, leads to ex-
clusively positive F1 score differences. This parametrization results in an
average rate of 0.45 bit per quality score. This finding finally removes
the major obstacle—i.e., a possible degradation in the quality of the call
set—that hinders the wide-spread use of quality score quantization in
production scenarios. In summary, we can conclude that our contribu-
tion CALQ provides the best as well as most reliable and predictable
rate-distortion results for the compression of quality scores.

In Chapter 5, we investigated entropy coding methods in the context
of compression of DNA sequencing data. We reviewed the state of the
art, and we introduced our contribution GABAC, the premier imple-
mentation of an entropy codec compliant to ISO/IEC 23092-2. GABAC
combines proven technologies, such as CABAC, binarization schemes,
and transformations, into a straightforward solution for the compres-
sion of DNA sequencing data. The development of GABAC overlapped
temporally with the development of ISO/IEC 23092-2. Hence, both devel-
opment processes influenced each other, and GABAC was incorporated
in ISO/IEC 23092-2. For the evaluation of GABAC, we conceived a well-
grounded experiment setup, in which we laid the focus on evaluating
the performance in a typical DNA sequencing data compression scenario.
Our experiment setup is designed to answer the question which entropy
coding method is the best-performing for every type of DNA sequencing
data. Our results show that GABAC obtains the best compression ranks
on average. We can also conclude that adding GABAC as entropy cod-
ing method to the compression frameworks CRAM and DeeZ would be
beneficial both in terms of achievable compression and speed.

Finally, in Chapter 6, we provide an overview of the sequencing
data standardization landscape, and we elaborate in detail on the ISO/
IEC 23092 series. The main technologies presented in this dissertation—
TSC, CALQ, and GABAC—are now integrated in its part 2. Hence, in
our explanations of the ISO/IEC 23092 series, we put a special focus on
its part 2. Finally, we describe our software Genie, the first open-source
implementation of the file format and compression technology specified
in the ISO/IEC 23092 series.
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In summary, and in our view, the contributions presented in this dis-
sertation constitute major building blocks that can help create an entire
ecosystem of DNA sequencing data applications. To assist in achieving
this goal and to facilitate future research, the implementations of our
contributions are made available online to the scientific community1.
Specifically, regarding the compression of aligned reads, we view our
contribution TSC as one of the final methods in a line of methods that all
explore the compression performance space of compression, computa-
tional complexity, and functionality, where TSC focuses on a beneficial
trade-off between all three dimensions. Moreover, we regard our contri-
bution for the compression of quality scores, CALQ, as a method that
operates near the pareto frontier in the equilibrium of rate and distortion.
To put this in context, historically, the most successful quantization meth-
ods that approach the pareto frontier have been tailored to their respective
applications (e.g., by using psychoacoustic and psychovisual models in
audio as well as image and video coding). CALQ, being tailored towards
variant calling, is in line with these successful methods. As for entropy
coding of DNA sequencing data, most entropy coding approaches have
already been evaluated in the literature. Adding to this prior work, we
apply CABAC in our contribution GABAC, therefore opening the door
to hardware-based optimized entropy coding of DNA sequencing data.
Further research in the area of entropy coding of DNA sequencing data
may involve the application of the family of ANS methods, and work in
this direction is already underway. Finally, we hope that our contributions
will ultimately support the democratization of DNA sequencing data,
and help to realize its as yet undiscovered potential.

1 The respective URLs can be found in our publications [VMO16; VOH18; Vog+20].
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compression of quality scores—extended results

In the assessment of our contribution CALQ in Section 4.5, we evaluate 12

tool configurations on 3 chromosomes from 3 items using 6 different
variant calling pipeline configurations. Hence, per item, we obtain 12 ·
3 · 6 = 216 rates and F1 score values. We show a concise visualization
of these results by averaging the rates and F1 score values over the
chromosomes as well as over the variant calling pipeline configurations
(see Figure 4.8, Figure 4.9, and Figure 4.10).

Recall that we selected three different variant calling pipelines for our
evaluation, and that we use the first pipeline in four different configura-
tions; this yields six different pipeline configurations in total. The first
pipeline is composed according to the GATK best practices workflow
for germline short variant discovery [DeP+11]. Here, VQSR with four
different levels of filtering—90%, 99%, 99.9%, and 100%—is used to filter
the called variants to remove false positives (see Section 4.4 for a more
detailed description of this process). The second pipeline is also com-
posed according to the GATK best practices workflow, but using the more
basic hard filtering (HF) instead of VQSR. The third pipeline involves the
variant caller Platypus [Rim+14].

In addition to the concise visualization presented in Section 4.5 we
here provide an extended set of figures by averaging the rates and F1

score values only over the chromosomes.
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Figure A.1: F1 score difference versus rate per QS, item 1, GATK VQSR 90.0%.
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Figure A.2: F1 score difference versus rate per QS, item 1, GATK VQSR 99.0%.
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Figure A.3: F1 score difference versus rate per QS, item 1, GATK VQSR 99.9%.
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Figure A.4: F1 score difference versus rate per QS, item 1, GATK VQSR 100.0%.



138 appendix

−0.0050

−0.0025

0.0000

0.0025

0.00 0.25 0.50 0.75
Rate per QS / bit

∆F
1

CALQ A−10

CALQ A−17

CALQ A−25

CALQ G

Crumble −1

Crumble −9

IL8B

Quartz

QVZ2 T1

QVZ2 T2

QVZ2 T4

QVZ2 T8

Figure A.5: F1 score difference versus rate per QS, item 1, GATK HF.
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Figure A.6: F1 score difference versus rate per QS, item 1, Platypus.
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Figure A.7: F1 score difference versus rate per QS, item 11, GATK VQSR 90.0%.
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Figure A.8: F1 score difference versus rate per QS, item 11, GATK VQSR 99.0%.
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Figure A.9: F1 score difference versus rate per QS, item 11, GATK VQSR 99.9%.
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Figure A.10: F1 score difference versus rate per QS, item 11, GATK VQSR 100.0%.
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Figure A.11: F1 score difference versus rate per QS, item 11, GATK HF.
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Figure A.12: F1 score difference versus rate per QS, item 11, Platypus.
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Figure A.13: F1 score difference versus rate per QS, item 12, GATK VQSR 90.0%.

−0.002

−0.001

0.000

0.001

0.002

0.003

0.4 0.6 0.8 1.0
Rate per QS / bit

∆F
1

CALQ A−10

CALQ A−17

CALQ A−25

CALQ G

Crumble −1

Crumble −9

Quartz

QVZ2 T1

QVZ2 T2

QVZ2 T4

QVZ2 T8

Figure A.14: F1 score difference versus rate per QS, item 12, GATK VQSR 99.0%.
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Figure A.15: F1 score difference versus rate per QS, item 12, GATK VQSR 99.9%.

−3e−04

−2e−04

−1e−04

0e+00

0.4 0.6 0.8 1.0
Rate per QS / bit

∆F
1

CALQ A−10

CALQ A−17

CALQ A−25

CALQ G

Crumble −1

Crumble −9

Quartz

QVZ2 T1

QVZ2 T2

QVZ2 T4

QVZ2 T8

Figure A.16: F1 score difference versus rate per QS, item 12, GATK VQSR 100.0%.
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