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Abstract: Since 1969, Lunar Laser Ranging (LLR) data have been collected by various observa-
tories and analysed by different analysis groups. In the recent years, observations with bigger
telescopes (APOLLO) and at infra-red wavelength (OCA) are carried out, resulting in a better
distribution of precise LLR data over the lunar orbit and the observed retro-reflectors on the
Moon. This is a great advantage for various investigations in the LLR analysis. The aim of this
study is to evaluate the benefit of the new LLR data for the determination of relativistic parame-
ters. Here, we show current results for relativistic parameters like a possible temporal variation
of the gravitational constant Ġ/G0 = (−5.0± 9.6) × 10−15 yr−1, the equivalence principle with
∆
(
mg/mi

)
EM = (−2.1± 2.4)× 10−14, and the PPN parameters β − 1 = (6.2 ± 7.2) × 10−5 and

γ − 1 = (1.7 ± 1.6) × 10−4. The results show a significant improvement in the accuracy of the
various parameters, mainly due to better coverage of the lunar orbit, better distribution of measure-
ments over the lunar retro-reflectors, and last but not least, higher accuracy of the data. Within the
estimated accuracies, no violation of Einstein’s theory is found and the results set improved limits
for the different effects.

Keywords: lunar laser ranging; gravitational constant; equivalence principle; PPN parameters

1. Introduction

It was 20 July 1969 when the astronauts of the Apollo 11 crew landed in the south-
ern part of Mare Tranquillitatis on the Moon. They deployed the Apollo Lunar Surface
Experiments Package, where the retro-reflector for Lunar Laser Ranging (LLR) is now the
last operating part of the experiment. Until 1973, four further reflectors were deployed
on the lunar surface: two reflectors by the astronauts of the Apollo 14 and 15 missions,
and two reflectors mounted on the unmanned Soviet Lunokhod rovers. For more than
50 years there has been continuous measuring of the distance between observatories on
the Earth and retro-reflectors on the Moon. The measurement of round trip travel times
between Earth and Moon with short laser pulses is challenging. The average number
of returning photons is less than one per laser pulse [1,2], mainly because of the beam
divergence of the laser pulses due to the atmospheric turbulence and diffraction effects of
the reflectors [3]. Further signal loss occurs in the paths of the transmitting and detection
optics, in the atmosphere and due to the reflectivity of the retro-reflectors [4]. A series of
single measurements over 5–15 min is used to calculate a so-called normal point (NP) [5]
which is the observable in the LLR analysis. More details about the measured Earth–Moon
distance are given in Section 2.

The observatories on the Earth, that were, or are, capable to range to the Moon are
the Observatoire de la Côte d’Azur (OCA) in France, the McDonald observatory (MLRS)
and the Apache Point Lunar Laser-ranging Operation (APOLLO) in the USA, the Lunar
Ranging Experiment (LURE) of the Haleakala observatory on Hawaii, the Matera Laser
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Ranging Observatory (MLRO) in Italy, and the Wettzell Laser Ranging System (WLRS) in
Germany. From the end of the eighties, OCA started to investigate the measurement of
laser round trip travel times from the observatory to the Moon and back with laser emitting
in the infrared (IR) at a wavelength λ = 1.064 nm, but the precision level of the detector at
that time for IR measurements was insufficient for the detection of photon returns from the
Moon [6]. In 2014, that problem was solved and OCA is now able to use IR and green laser
light for the regular measurements. After technical renewals and improvements WLRS
is also able to measure the Earth–Moon distance with IR wavelength starting in 2018 [7].
With the new technique measurements close to the new Moon and full Moon are possible.
Furthermore, ranging to the retro-reflectors at lower elevation angles is possible and a
better distribution of the measurements over the reflectors is achieved [1]. All that results
in an improved coverage of the lunar orbit and is a big benefit in the analysis of the data
and for the determination of various parameters. First tests of the universality of free-fall
with IR data are promising [8].

In Germany, from the early 1980s on, the software package LUNAR (LUNar laser
ranging Analysis softwaRe) has been developed to study the Earth–Moon system and to
determine several related model parameters [9–12]. Research covered physical libration
and orbit of the Moon, coordinates of observatories and retro-reflectors, Earth orienta-
tion parameters. With special modifications of the model and software it is possible to
investigate Einstein’s theory of relativity by the determination of various parameters.
Here, hard constraints for a possible violation of Einstein’s theory are given by LLR re-
sults, like the equivalence principle, variation of the gravitational constant G, and the
parametrized post-Newtonian (PPN) parameters β and γ [8,13,14]. By including the new
high-precision NP measured with IR wavelength into the LLR analysis, improvements for
various parameters are expected. The benefit of that NP is investigated here in more detail
for the parameters related to testing Einstein’s theory. The results are compared with a
previous study published in [13]. This study is based on similar conditions, but less NP
in IR were evaluated in the former. In our recent study now, their effect can be addressed
in detail.

2. LLR Analysis

The analysis model used in LUNAR is based on Einstein’s theory of relativity. It
is fully relativistic and complete up to the first post-Newtonian (1/c2) level. To take
advantage of the high-precision NP that can be obtained with an accuracy of several
millimetres [2], the LUNAR software has been updated continuously [15,16]. Now, the
LLR analysis model takes into account, among other things, gravitational effects of the Sun
and planets with the Moon as extended body, the higher-order gravitational interaction
between Earth and Moon, as well as effects of the solid Earth tides on the lunar motion.
The basis for the modeled lunar rotation is a 2-layer core–mantle model according to the
DE430 ephemeris [17]. A recent overview of LUNAR is given in [13], a detailed description
can be found in [18].

The measured laser travel time τmeas from Earth to Moon and back gives, together
with the speed of light c, the length of the path (forth and back)

ρmeas = τmeas · c . (1)

Figure 1 shows the principle of LLR measurements in the moving Earth–Moon system.
In a weighted least-squares adjustment, the measured length of the light path is compared
with the modeled length computed as

ρmodel = ρ12 + ρ23 + ∆τ · c (2)

where ρ12 denotes the light path between the observatory at time t1 and the reflector at
time t2 with

ρ12 = |xEM(t1,2) + xref(t2)− xobs(t1)| (3)
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and the light path ρ23 between the reflector at time t2 and the observatory at time t3 with

ρ23 = |xME(t2,3)− xref(t2) + xobs(t3)| . (4)

∆τ of Equation (2) takes into account corrections of the light travel time, like the delay
due to the light propagation through the gravitational potential of Sun and Earth [19,20],
an atmospheric delay [21,22], a synodic modulation of the lunar orbit due to radiation
pressure [23], and some time- and station-dependent biases.
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Figure 1. Scheme of a Lunar Laser Ranging (LLR) measurement in the moving Earth–Moon system
with the solar system barycenter B, geocenter G, and selenocenter S, and the transmitting time t1,
reflection time t2, and detection time t3. The vectors are xE as the barycentric vector to the geocenter at
time t1, xM as the barycentric vector to the selenocenter at time t2, xEM = xM − xE as the Earth–Moon
vector of the outgoing light path, xobs as the vector from the geocenter to the observatory in the
barycentric system at the times t1 and t3, xref as vector the selenocenter-reflector in the barycentric
system at the time t2. ρ12, ρ23 as the length of outgoing and incoming light path. x, y, z indicate the
different reference systems of the bodies and the solar system [13].

For the calculation of Equations (3) and (4), the positions of the observatories and
retro-reflectors are needed in an inertial reference system; here, the barycentric celestial
reference system (BCRS) with the barycentric dynamical time (TDB) is selected. Therefore,
in a first step, effects at the coordinates of the observatories and retro-reflectors will
be considered according to the work in [24], e.g., tidal effects due to the atmosphere,
ocean, and solid Earth, and the tectonic movement in the respective body-fixed reference
system. In a second step, the transformations from the body-fixed systems to the BCRS
are carried out. Here, the needed rotation of the Earth is modelled as defined in [15,24],
the rotation of the Moon is computed simultaneously with the translation corresponding
to [17]. The barycentric position and velocity vectors of Earth and Moon are derived from
an ephemeris computation of the solar system bodies (all planets, the Moon and the largest
asteroids). Initial values for the computation are taken from the DE430 ephemeris [17].

The measured NP serve as observations in the analysis. They are treated as un-
correlated for the stochastic model of the least squares adjustment and are weighted
according to their accuracy. The adjustment is done in a Gauss–Markov model where up to
250 unknown parameters can be determined with their uncertainties. They are divided in
two groups. The first group consists of the so-called Newtonian parameters, e.g., initial
position, velocity, and physical libration of the Moon; parameters of the lunar interior;
coordinates of LLR observatories and retro-reflectors; mass of the Earth–Moon system;
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precession rate; and the lunar tidal acceleration. The second group of parameters is used
to perform LLR tests of the general theory of relativity. More details for those parameters
are given in Section 4. As another result of the analysis one gets the post-fit residuals, of
which the weighted root mean square (wrms) is given in Figure 2 for each year. Beginning
in 1970 with a wrms of more than 25 cm, improvements in the measurement system lead to
a decreasing wrms. Since 2006, it is about 2 cm or less.
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Figure 2. Annual weighted rms (wrms) of the one-way post-fit residuals for 27,485 NP for the time
span April 1970 to April 2020.

3. Distribution of the Normal Points

The distribution of LLR NP has a big impact on the determination of various parame-
ters. Furthermore, non-uniform data distribution is one reason for correlations between
solution parameters [25]. Therefore, the distribution of the LLR data is investigated in
more detail below with respect to each of the observatories, retro-reflectors, and synodic
angle. For the current study, NP for the period April 1970 to April 2020 were used. In
a pre-analysis, all were checked for possible outliers. Outliers are defined as NP whose
residuals for the Earth–Moon distance exceed a limit of a few decimetres. Where the limit
lies is determined differently for each observatory because they observe with different ac-
curacies. Sometimes NP of one or more nights are shifted by the same amount, e.g., due to
calibration problems during the measurement. Then, a correction value is introduced into
the analysis for this period. Furthermore, the standardized normal distribution is used
for the evaluation of the outliers. If this distribution exceeds a certain value, the NP is
also classified as an outlier and not included in the further analysis. After the pre-analysis,
17 NP of the current data set were identified as outliers. Thus, 27,485 NP for the period
April 1970 to April 2020 are included in the investigation, 22,021 measured with green and
5464 with IR laser light.

Figure 3 shows the temporal distribution of the measured NP over the last 50 years.
One can see in the legend that more than 60% of the NP were observed by OCA (42% with
green and 20% with IR laser light). In the last years, only OCA and APOLLO provided
regular NP, some NP also came from MLRO and WLRS. For the year 2019, 90% of the NP
were measured by OCA in IR. It is clear that, with this distribution of NP, the analysis
is dominated by the OCA NP. Looking at the distribution of the NP according to the
respective reflectors, Figure 4 shows it for the whole time span in the left pie. Here, the
clear domination of Apollo 15 is obvious. Because Apollo 15 gives the strongest reflected
signal due to its large size, it was more often tracked by the observatories in the past. This
was not beneficial for the data analysis. In recent years and with IR NP the situation has
improved considerably. For 2019 (shown in Figure 4, right pie) all retro-reflectors were
measured approximately equally often, because of the advantage of IR laser light [1]. That is
also a big advantage for the analysis, especially for the determination of the lunar libration.
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Figure 3. Distribution of the 27,485 normal points over the the time span April 1970–April 2020. In
the legend the percentages of the contribution of the respective observatories are given. The three
observatories McDonald, MLRS1 and MLRS2 are linked in the analysis and listed here as MLRS.

With the better performance of the measurements now also ranging near new and full
Moon is possible [1] for OCA and WLRS. This leads to a better coverage of the lunar orbit
over the synodic month. The synodic month is the time span, when Sun, Earth, and Moon
are in the same constellation again. To illustrate the better coverage, Figure 5 shows the
percentage of the NP measured for a specific angle of the synodic month. Indicated in green
are the measurements with green laser light, and in red the measurements with IR laser
light are given. In the past, when using only green NP there were gaps in the phases of
new and full Moon. Now there are many more observations in IR and the advantage of it
is obvious. The more equal distribution of the NP over the synodic month leads to a better
coverage of the lunar orbit and is a big benefit for the determination of various parameters.
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Figure 4. Distribution of all NP as measurement to the respective reflectors for the whole data span
of LLR (left) and for the year 2019 (right).
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Figure 5. Distrubution of the NP over the synodic month. Given are the percentage of NP of the total
number of measurements with the specific laser color. Full and new Moon indicates the phases of
the Moon.

4. Relativistic Parameters

The analysis of LLR observations is based on Einstein’s theory of relativity. Thus,
the Einstein–Infeld–Hoffmann equations, the signal propagation in the gravitational field
of Earth and Sun, the temporal and spatial reference systems as well as their respec-
tive transformations are formulated relativistically up to the first post-Newtonian (1/c2)
level [18]. By modifying the Einstein–Infeld–Hoffmann equations for the ephemeris calcu-
lation and extending it to include certain relativistic parameters, it is possible to determine
and study more closely the effect of these parameters in the parameter calculation. Recent
results, e.g., on the equivalence principle, Yukawa term, metric parameters, and geodetic
precession, can be found in publications [8,13,14,26]. As opposed, the authors of [27–29]
used the standard-model extension (SME) with general relativistic equations of motion,
fitted parameters of the SME to LLR data and tested the Lorentz symmetry.

The various relativistic model contributions cause significant periodic variations,
e.g., annual and monthly, linked to the node of the moon and combined periods in the
Earth–Moon distance, through which it is possible to distinguish them from each other [30].
Due to the large distance between Earth and Moon and the effect of the bodies in the
solar system, the relativistic effects in the measured Earth-Moon distance are larger than,
e.g., in distance measurements to satellites (SLR) [31]. This is a great advantage of LLR.
Moreover the long time span of LLR data (>50 years) is very beneficial to determine and
decorrelate certain relativistic parameters.

To determine relativistic parameters in the LLR analysis, a two-step strategy is ap-
plied. In the first step, the non-relativistic Newtonian parameters of the LUNAR model
are calculated in a so called standard solution. Here, the relativistic parameters are fixed
to their values of Einstein’s theory. The second step then allows the estimation of indi-
vidual relativistic parameters together with the Newtonian ones. If unrealistically high
correlations between Newtonian and relativistic parameters are obtained in a first calcula-
tion, the corresponding Newtonian parameters can be fixed to the values of the standard
solution in the further determination of the relativistic parameters.

In the following subsections, different relativistic effects are investigated, e.g., the
equivalence principle, the temporal variation of the gravitational constant, and the PPN
parameters γ and β. The aim is to find out to what extent the higher precision IR NP
have an impact on the estimation of the related parameters compared to the results of [13].
The analysis model in the current study and in [13] is the same, the major difference is that
a shorter time span (April 1070–January 2015) with 20,856 NP and much less IR NP were
used there. Due to the similar design of the two studies, the effect of the IR NP is directly
visible. Table 1 gives an overview with the results in [13] and those of the current study.
The basics of estimating the relativistic parameters are already given in [13] and are only
briefly discussed here.
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Table 1. Values for relativistic parameters from two different estimations. In the middle column
results of [13], in the right column results of the current estimation.

Parameter Hofmann and Müller [13] Current Analysis

∆ mg
mi

(−3.0± 5.0)× 10−14 (−2.1± 2.4)× 10−14

Ġ/G (7.1± 7.6)× 10−14 y−1 (−5.0± 9.6)× 10−15 y−1

G̈/G (1.6± 2.0)× 10−15 y−2 (1.6± 2.0)× 10−16 y−2

γ− 1 (−1.2± 1.2)× 10−4 (1.7± 1.6)× 10−4

β− 1 (−8.7± 9.0)× 10−5 (6.2± 7.2)× 10−5

4.1. Equivalence Principle

The equivalence principle (EP) dates back to the 17th century when Galileo Galilei
studied the acceleration of two bodies in free fall and found that in the same gravitational
field it is independent of their shape, mass, and composition [32]. The second axiom of
Isaac Newton states that the force F results from the multiplication of an acceleration a
and the inertial mass mi as F = mi ∗ a. In the gravitational field of the Earth, Newton’s
law of gravitation is F = mg ∗ g. That leads to the equivalence of the inertial mass mi and
the gravitational mass mg. If the equivalence principle is valid, the ratio mi/mg, which is
called the weak equivalence principle (WEP), is equal to 1. The comparison of the free-fall
accelerations of two bodies (a1, a2) leads to the test of the equivalence principle as

∆a
a

=
2(a1 − a2)

a1 + a2
=

(mg/mi)1 − (mg/mi)2

[(mg/mi)1 + (mg/mi)2]/2
≈

(
mg

mi

)
1
−

(
mg

mi

)
2
= ∆

mg

mi
. (5)

A violation would lead to a different acceleration of the bodies in the same grav-
itational field. To investigate the WEP on Earth, sensitive torsion balances and test
bodies made of different compositions like beryllium and titan [33], and rubidium and
potassium [34] are used. Recent results from the MICROSCOPE satellite mission confirmed
the WEP at the level of ∆mg/mi = (4± 12)× 10−15 [35]. From the analysis of LLR data
between 1969 and 2017, the authors of [8] estimated ∆mg/mi = (−3.8± 7.1)× 10−14.

In Einstein’s gravitational theory, the WEP is extended to the strong equivalence
principle (SEP) due to the gravitational self-energy U of the bodies. For bodies with
astronomical sizes, like Earth and Moon, the SEP can be tested [36] and parameterized with
the Nordtvedt parameter η by

mg

mi
= 1 + η

U
Mc2 (6)

with self energy U and mass M for the respective body and the speed of light c. In Einstein’s
theory, it holds that η = 0. By analyzing the LLR data a combined test of the SEP and WEP
is possible. Here, Earth and Moon are test bodies in the gravitational field of the Sun with
gravitational self-energies and different composition. A violation of the EP would cause an
additional acceleration of the Moon into the direction of the Sun.

For the investigation of a possible violation of the EP with LLR data there are, accord-
ing to the authors of [13], two different way which leads to similar results. Here, the focus
is on the determination via an additional acceleration of the Moon ẍmgmi with the relative
coordinates between Sun and Moon xSM and the distance rSM to the Sun, where the largest
perturbation is given by

ẍmgmi = ∆
(

mg

mi

)
EM

GMSun
xSM

r3
SM

. (7)

GMSun denotes the gravitational constant times the mass of the Sun. That method
keeps the interaction with all other forces in the calculation of the ephemeris.
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The result of [13] for the EP test was

∆
(

mg

mi

)
EM

= (−3.0± 5.0)× 10−14

with correlations of up to 60% with GMEM because of the dependence on the synodic
angle [37]. There are also correlations of up to 60% with the X-components of the reflector
coordinates. Compared to the result of this study with

∆
(

mg

mi

)
EM

= (−2.1± 2.4)× 10−14

the accuracy was improved and the correlations to GMEM and the reflector coordinates
decreased to 40%. Here the better coverage of the LLR NP over the synodic angle, shown in
Figure 5, is a clear benefit for the determination of the EP parameter.

The authors of [14] investigated a possible violation of the EP due to assumed dark
matter in the galactic center which would cause an Earth–Moon range oscillation with
a sidereal month period. The amplitude for such an oscillation, determined from LLR
post-fit residuals, was found to be A = 0.6± 1.0 mm. The investigation also shows that
a good orbit coverage with high precision data is more relevant for the EP test than the
overall number of LLR data or a long time span. This underlines the improved values and
correlations for the EP test, which shows no violation of Einstein’s theory within the given
error bars.

4.2. Temporal Variation of the Gravitational Constant

From Einstein’s general theory of relativity, it follows that the gravitational constant
G is a temporally and spatially invariable quantity [38]. According to the investigations
of [39,40], however, the existence of alternative theories is possible, which allow a variation
of the gravitational constant. One of the best known is the Brans–Dicke theory, a scalar-
tensor theory. It is an extension of Einstein’s theory with additional scalar fields [39]. Recent
studies in [41,42] confirm the considerations that a temporal variation of the gravitational
constant in the range from Ġ/G0 = 10−11 yr−1 to Ġ/G0 = −10−14 yr−1 might be possible.
According to the remarks in [43], there are also theories which admit so-called preferred
reference systems. Furthermore, in such systems, a time dependence of G would be
possible. The recent upper bounds for a non-zero value of Ġ by using LLR data come from
the analysis of the ephemeris of the solar system bodies with Ġ/G0 = 7× 10−14 yr−1 [44]
and Ġ/G0 = 2× 10−13 yr−1 [45]. From the analysis of MESSENGER data, the authors
of [46] get an upper limit for Ġ/G0 < 4× 10−14 yr−1.

The estimation of a linear and quadratic part of the gravitational constant as a function
of time is done in the analysis of LLR data with

G(t) = G0

(
1 +

Ġ
G0

∆t +
1
2

G̈
G0

∆t2
)

(8)

as part of the ephemeris calculation. In the standard solution, Ġ = G̈ = 0 is valid.
The time difference ∆t results from the current calculation time and the beginning of the
LLR measurements. The partial derivatives of Ġ and G̈ needed for the adjustment in
the Gauss–Markov model are calculated by numerical differentiation of the geocentric
lunar ephemeris.
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The results of [13] for the temporal and quadratic variation were estimated as separate
parameters in two fits (where the respective other parameter was fixed to the Einsteinian
value) as

Ġ
G0

= (7.1± 7.6)× 10−14 yr−1 ,

G̈
G0

= (1.6± 2.0)× 10−15 yr−2 .

For this results, the initial values of the lunar core rotation vector ωc were fixed to
their estimated standard solution values because of the high correlation of up to 94% with
Ġ and G̈. High correlations of up to 83% with some components of the station coordinates
were reduced by introducing constraints on the estimated station coordinates.

The determination of Ġ and G̈ with more NP including a high number of IR NP from
OCA resulted in

Ġ
G0

= (−5.0± 9.6)× 10−15 yr−1 ,

G̈
G0

= (1.6± 2.0)× 10−16 yr−2

for the separate calculation of the two parts of G. In the current calculation, the correlations
with parts of the core rotation vector ωc were up to 70% and decreased compared to [13].
However, they were high enough to affect the determination of Ġ and G̈, therefore they
were fixed to their estimated standard solution values. The correlations with station
coordinates could be reduced to up to 20% compared to [13] and no constraints were used
in the calculation. Moreover, correlations with other parameters of the Earth-Moon system
significantly decreased and are now at most 40% with the Z-component of the initial values
of the lunar orbit. Here, the benefit of the longer data span with accurate NP leads to the
improvement and a better and independent determination of the linear and quadratic part
of G.

For the determination of the linear and quadratic part of G together in one parameter
fit the values are

Ġ
G0

= (0.2± 1.3)× 10−14 yr−1 ,

G̈
G0

= (2.0± 2.8)× 10−16 yr−2 .

The parameters are correlated to each other with 70%. The correlations to other
parameters were also higher than in the separate estimation. This leads to a less accurate
determination of Ġ and G̈. Nevertheless, the accuracies are in a similar range as for
the separate estimation and the results underline the validity of Einstein’s theory in the
given limits.

4.3. PPN Parameters β and γ

In the framework of the parameterized post-Newtonian (PPN) approximation of
Einstein’s theory, the parameter β indicates the nonlinearity of gravity and γ the size of
space curvature [43]. Both values are equal to 1 in this theory.

Recent analysis of MESSENGER data [46] gives a value for β− 1 = (−1.6± 1.8)× 10−5.
From the analysis of solar system ephemeris there are values at the level of 7 × 10−5

for β − 1 and 5 × 10−5 for γ − 1. [45,47] get values of β − 1 = (−2 ± 3) × 10−5 and
γ− 1 = (4± 6)× 10−5.
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From the analysis of LLR data, the authors of [13] get values for the determination of
β− 1 and γ− 1 via the Einstein–Infeld–Hoffmann equations of motion as

β− 1 =(−8.7± 9.0)× 10−5 ,

γ− 1 =(−1.2± 1.2)× 10−4 .

Both values show high correlations of up to 82% to station coordinates and the Z-
component of the lunar initial velocity. Further correlations are to additional rotations
between the Earth-fixed and space-fixed reference systems of up to 47%. For this reasons,
the additional rotation was fixed to the values of the standard solution and the station
coordinates were constraint.

In the current analysis the PPN parameters were determined to

β− 1 =(6.2± 7.2)× 10−5 ,

γ− 1 =(1.7± 1.6)× 10−4 .

The correlations to the station coordinates now are up to 60%, to the Z-component of
the lunar initial velocity 40% and to the additional rotation 30%. All of them were reduced
significantly. To make the results more comparable with those of [13], the additional
rotations were nevertheless fixed to the values of the standard solution. The remaining
correlations are now up to 40% with the previously mentioned parameters. Compared to
the results of [13], the values of β improved slightly, γ is on a similar level. The longer time
span and IR NP are not as beneficial for the estimation of PPN parameters as for the other
relativistic parameters shown, but the correlations decreased and there is still no violation
of Einstein’s theory.

5. Summary and Outlook

The aim of this study was the investigation of the benefit of high-precision IR LLR
measurements for determining relativistic parameters in comparison to the results of [13].
The model of the Earth–Moon system remained the same between the two calculations of
relativistic parameters. The only major changes come from the longer time span of the LLR
data and from many more measurements in the IR. From the previous discussions, it is
clear that the IR data provide a major advantage for the LLR analysis. The accuracies of the
relativistic parameters could be improved due to the better coverage of the lunar orbit and
the accuracy of the data itself. Another advantage is the decorrelation of the relativistic
parameters with other parameters of the Earth–Moon system. A summary of the results
can be found in Table 1. So far, from the analysis of the LLR data, the assumptions of
Einstein’s theory of relativity have been confirmed, now with improved limits.

An expanded network of single corner-cube retro-reflectors (CCRs) to be placed on
the lunar surface near the limbs and poles from the year 2022 on will improve the existing
geometry of the reflectors on the lunar surface and allows a better determination of the
libration and rotation of the Moon. Such CCRs are also beneficial in terms of thermal
resilience and increased return signal strength. This will improve the ranging accuracy and
the resultant scientific parameters by a factor of 10 to 100 [48].

With the construction of the new LLR facility at Table Mountain Observatory (JPL’s
Optical Communication Testbed Laboratory (OCTL)) in California, for the first time, it will
be possible to conduct differential LLR (DLLR) with an expected range precision of less
than 30 micrometers, a factor of 200 better than the current accuracy [49]. This opens new
possibilities for improved analysis of the whole LLR parameter set. It is expected that the
accuracy for relativistic parameters determined from DLLR data will improve by one order
of magnitude, which should lead to accuracies similar to those expected from the Bepi
Colombo mission [50], especially for the PPN parameters γ and β.

The improvements on the technical side and further measurements in IR will make it
possible, for example, to investigate effects related to the deep lunar interior and rotation
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and to determine relativistic parameters with higher accuracy. Together with improved
modeling of the lunar interior and rotation in the LUNAR software, this will significantly
improve many parameters determined from the analysis of the LLR data.
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