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Abstract

This dissertation contains three essays on distinguishing between structural breaks under long

memory, testing for fractional cointegration relationship between the financial markets and de-

veloping optimal forecast methods under long memory in the presence of a discrete structural

break. Chapter 1 introduces the concepts of long memory, fractional cointegration and briefly

describes the rest of the chapters.

Chapter 2 suggests a testing procedure to discriminate between stationarity, a break in the

mean and a break in persistence in a time series that may exhibit long memory is introduced.

The asymptotic properties of test statistics based on the CUSUM statistic are studied. In a Monte

Carlo study we further analyze the finite sample properties of the procedure. An application to

inflation rates shows the potential of our procedure for future research.

Chapter 3 revisits the question whether volatilities of different markets and trading zones

have a long-run equilibrium in the sense that they are fractionally cointegrated. We consider

the U.S., Japanese and German stock, bond and foreign exchange markets to see whether there

is fractional cointegration between the markets in one trading zone or for one market across

trading zones. Also the other combinations of different markets in different trading zones are

considered. Applying a purely semiparametric approach through the whole analysis shows

fractional cointegration can only be found for a small minority of different cases. Investigating

further we find that all volatility series show persistence breaks during the observation period

which may be a reason for different findings in previous studies.

Finally, we develop methods in Chapter 4 to obtain optimal forecast under long memory in

the presence of a discrete structural break based on different weighting schemes for the observa-
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tions. We observe significant changes in the forecasts when long-range dependence is taken into

account. Using Monte Carlo simulations, we confirm that our methods substantially improve

the forecasting performance under long memory. We further present an empirical application to

inflation rates that emphasizes the importance of our methods.

Keywords: Long Memory, Changing Persistence, High-frequency Data, Semiparametric Esti-

mation, Fractional Cointegration, Realized Volatility, Structural Break, ARFIMA Model
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CHAPTER 1

Introduction

The concept of long memory plays a vital role in modelling and forecasting of macroeconomic

variables. In many fields of study such as econometrics and statistics, it is well known that time

series exhibit long memory, for instance inflation rates (Hsu 2005), interest rates (Tsay 2000),

volatilities (Lu and Perron 2010) or trading volumes (Fleming and Kirby 2011). Long memory

can be described by an hyperbolic decay of the autocorrelation function or spectral density that

is unbounded and characterised by a pole in the periodogram at Fourier frequencies close to

zero. Loosely speaking, the time series is said to possess long-range dependence if the level of

statistical dependence remains significant between very distant points. Moreover, long memory

time series usually coupled with fractional integration was first introduced by C. W. Granger

1980 and C. W. Granger and Joyeux 1980 to provide a theoretical explanation for the hyperbolic

decay of sample correlograms in certain empirical contexts.

In the multivariate case, the natural extension of fractional integration is the concept of

fractional cointegration. Fractional cointegration is a generalization of standard cointegration,

which allows the order of integration to take fractional values. Engle and C. W. J. Granger

1987 suggested that the two series are fractionally cointegrated if both processes are fractional

integrated and there exists a linear combination of them such that the cointegrating residual is

fractional integrated with a lower order.
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The main contribution in this dissertation is to introduce the new procedure in Chapter 2

that discriminate the two forms of a break and later emphasizes the importance of detecting the

structural breaks under long memory in the last two chapters. First, in Chapter 3, we consider an

intensive investigation of fractional cointegration relationships between different financial mar-

kets and asset classes, where the estimation methods adopted through the whole analysis applies

a purely semiparametric approach, in addition changes in persistence is taken into account in

the analysis to avoid spurious fractional cointegration. Then, in Chapter 4, we develop methods

to obtain optimal forecast under long memory in the presence of a discrete structural break and

we confirm that the proposed methods substantially improve the forecasting performance. This

dissertation presents the three self-contained chapters that appear to be connected.

Chapter 2 introduces a novel procedure to discriminate between no structural break, a break

in the mean or a break in persistence. To detect structural breaks in time series, we devise to

use the most popular CUSUM-based test statistics as inspired by (Aue, Hörmann, et al. 2009;

Aue and Horváth 2013; Shao and Zhang 2010). These test statistics are based on functionals

of the partial sums of fractionally integrated processes that satisfy the functional central limit

theorem. The procedure consists of two steps: First, we detect whether or not the structural

break exists at all. After having detected a break in mean or a break in persistence in the first

step. Afterwards in a second step we distinguish these two forms of a break. The test procedure

in this essay is inspired by Aue, Horváth, et al. 2009. We examine the finite sample properties

of the test in a Monte Carlo study. We further illustrate the potential of our procedure with an

application to inflation rates.

Chapter 3 reexamines the paper by A. Clements et al. 2016 to determine whether the

volatilities of different markets and trading zones have a long-run equilibrium in the sense

that they are fractionally cointegrated. This essay believes that the results by A. Clements

et al. 2016 are driven by the combination of a semiparametric estimation of the memory pa-

rameters and a parametric modelling of the fractional cointegration relation. For this reason,

we apply a purely semiparametric approach throughout the whole analysis. First, we start our

analysis by estimating the order of fractional integration for each series using the exact lo-

cal Whittle (ELW) estimator of Shimotsu 2010 with bandwidth m = T δ , where δ = 0.75 that

allow consistent estimation in presence of low frequency contaminations. We find that the es-
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timated memory parameters of all series is in stationary region which makes the concept of

fractional cointegration questionable for these asset classes. This is in line with the findings

in Wenger et al. 2018. This contradicts the results by A. Clements et al. 2016, may be due to

accounting for low frequency contaminations which leads to an upward bias in the memory esti-

mates. In addition, Nguyen et al. 2020 found different memory parameters in different markets.

We therefore test for the equality of the memory parameter between the series as suggested

by Robinson and Yajima 2002 and thus rejects the null hypothesis of a common memory pa-

rameter in most cases. This will exclude fractional cointegration, since the equality of the

memory parameters is the fundamental assumption of fractional cointegration.

Then, we proceed to testing for fractional cointegration on the remaining cases using the

semiparametric tests for fractional cointegration, namely (Chen and Hurvich 2006; Souza et al.

2018; Wang et al. 2015) and find that the null hypothesis of no fractional cointegration is re-

jected in few cases. These findings are in contrast with A. Clements et al. 2016, who found

fractional cointegration between different markets and trading zones in all cases. Finally, we

extend further our analysis of fractional cointegration by investigating the existence of breaks

in persistence since many studies have focused on the impact of financial crises on the volatility

spillover. We therefore test for structural breaks by performing the regression-based Lagrange

Multiplier test introduced by Martins and Rodrigues 2014 and find evidence of a break in per-

sistence for all series during the global financial crisis and European debt crisis. The majority

of the shifts suggest a decrease in persistence following the breakpoint. We, then, apply rolling

window regressions to gain further insights into the dynamics of volatility persistence among

the financial series and the respective trading zones. Therefore, we re-apply the persistence test-

ing according to the estimated breakpoints and observe shifts in the order of integration during

different periods. A possible reason for different findings in previous studies are presence of

persistence breaks around global financial crisis. We therefore commit to taking into account

the frequent changes in persistence over time to avoid spurious fractional cointegration in the

analysis.

Chapter 4 develops methods to obtain optimal forecast under long memory in the presence

of a discrete structural break based on different weighing schemes for the observations. This

essay adapts different forecasting methods discussed in M. H. Pesaran, Pick, et al. 2013 by
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introducing long memory in such a setting. This develops the existence of variance and covari-

ance terms of an error that depends solely on the long memory parameter d. Involvement of

such terms in the theoretical forecasting procedures are substantially important, as they modify

the MSFEs, where through minimization an increase of the pre-break weight, a decrease in the

post-break weight and an increase in the optimal window size is observed. We, then, confirm

that our proposed methods substantially improve the forecasting performance under long mem-

ory by using Monte Carlo simulations. We further present an empirical application to inflation

rates that emphasizes the importance of our methods.
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CHAPTER 4

Optimal forecasts in the presence of discrete structural

breaks under long memory

Co-authored with Philipp Sibbertsen.

Under revision in Journal of Forecasting.

4.1 Introduction

Forecasting is among the most prominent areas of time-series analysis. It has drawn particular

interest in macroeconomics and finance, although imprecise and unreliable forecasts might be

produced in the presence of structural breaks due to instabilities. A reason for this instability

is that the usual forecasting strategy when there are structural breaks in the series would be to

estimate the break point and use the post-break data for forecasting. This strategy leads on the

one hand to only a short time period used for forecasting and on the other hand to neglecting

available information given by the dependence structure of the time series. Many studies (see

M. P. Clements and Hendry 2000; Rossi 2013; M. P. Clements and Hendry 2000; Rossi 2013;

Giacomini and Rossi 2009; Inoue and Rossi 2011; Stock and Watson 1996; Paye and Tim-

mermann 2006) provide evidence of such instabilities. However, Bayesian models have been

proposed by M. H. Pesaran, Pettenuzzo, et al. 2006, Koop and Potter 2007, Maheu and Gordon
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2008 and Maheu and McCurdy 2009 to address this issue.

In addition to this instability of forecasts structural breaks can also increase estimates of the

long-run variance which is used for normalization in tests to evaluate the forecast performance

such as the Diebold-Mariano test. Such an increase in the long-run variance estimate leads to

serious power problems for these tests as recently pointed out by Casini 2021 and Casini et al.

2021.

To overcome the aforementioned instabilities the problem of forecasting under discrete

structural breaks can be addressed based on weighted observations to obtain optimal forecasts

through minimization of the mean-square forecast error (MSFE). The most prominent element

of refining the forecasting performance is the one-step-ahead forecast assumption, which plays

an important role in improving the precision of forecasts within a variety of methods that pro-

pose different weighting observations. For instance, M. H. Pesaran, Pick, et al. 2013 suggest

defining optimal weights for each pre-break and post-break observation. However, M. H. Pe-

saran and Timmermann 2007 propose an optimal window in which equal weights are given to

observations within the window and zero weights given to those elsewhere. And, also defining a

post-break window allows equal weights to be applied to observations within the window after

the break, as the name suggests. Lastly, M. H. Pesaran and Timmermann 2007 use average fore-

casts across estimation windows (AveW) when time and size of the break is uncertain, which

as H. Pesaran and Pick 2011 shows to improve forecasts; this method has the advantage of not

relying on estimated break dates and sizes.

There is a growing literature showing that processes with structural breaks can empirically

mimic long-memory behaviour in the sense of an observationally equivalent autocovariance

function or spectral density. Examples for this literature include among others C. W. Granger

and Ding 1996, C. W. Granger and Hyung 2004, Diebold and Inoue 2001, Mikosch and Stărică

2004 or Casini et al. 2021. Hou and Perron 2014 and Qu 2011 show that the two phenomena

are distinct though and lead to different asymptotic behaviours. A test for long memory against
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structural breaks can be found in Qu 2011 or a multivariate extension is Sibbertsen, Leschinski,

et al. 2018.

A study by Sibbertsen and Kruse 2009 points out that forecasting precision is substantially

reduced if a break in persistence is ignored. Likewise, we might experience the same problem

if we apply the theoretical forecasting procedures in M. H. Pesaran, Pick, et al. 2013 under

discrete structural breaks, ignoring possible long-range dependencies, to obtain the optimal

forecast of a time series exhibiting long memory. In this paper, we adapt the different fore-

casting methods discussed in M. H. Pesaran, Pick, et al. 2013 by introducing long memory in

such a setting. This develops the existence of variance and covariance terms of an error, which

depends solely on the long memory parameter d. Involvement of such terms in the theoretical

forecasting procedures are substantially important, as they modify the MSFEs, which results

in an increase of the pre-break weight, a decrease in the post-break weight and an increase in

the optimal window size. Consequently, the approaches in M. H. Pesaran, Pick, et al. 2013 are

no longer robust when long memory is present in the time series. The main reason for this is

that the optimal forecast error is driven by the autocovariance function of the underlying time

series process which is in our case only hyperbolically decaying and dependent on the memory

parameter d.

In practice, the dates and size of the break and the memory parameters must be estimated

since they are unknown. A method for estimating the break dates under long memory has

been considered in Lavielle and Moulines 2000 extending results of Bai and Perron 1998, and

conditional on these estimates, we obtain the break size estimate. We use the modified lo-

cal Whittle (LW) estimator of Hou and Perron 2014 that accounts for possible low frequency

contaminations with bandwidth m = T δ , where δ ∈ (0,1) to estimate the memory parameters.

Nevertheless, the problem of imprecise estimates deteriorating the forecasting performance re-

mains.

We conduct Monte Carlo experiments to compare the forecasting performance of the pro-
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posed methods with the ones discussed in M. H. Pesaran, Pick, et al. 2013. We generally observe

that under discrete breaks, with larger breaks, one can obtain more precisely estimated values

and, hence, an improved forecasting performance in terms of optimal weight forecasts, post-

break forecasts and optimal window forecasts. Apart from this, we observe that under different

estimates of the break size, memory parameters and break dates, the MSFE is in many cases

much lower under the proposed methods than those discussed in M. H. Pesaran, Pick, et al.

2013. However, the elements of the proposed methods displaying the most significant changes

in the MSFE are the estimated optimal weights and estimated optimal window, while the rest of

the elements show no change.

We apply different forecasting methods, to both proposed methods in this paper and the

ones discussed in M. H. Pesaran, Pick, et al. 2013 for comparison, to forecast the real inflation

rates for Germany and Australia covering the period from January 1967 to December 2017. The

general findings, similar to the Monte Carlo results, are that the methods proposed in this paper

outperform the ones discussed in M. H. Pesaran, Pick, et al. 2013 in most cases.

A related though somehow different problem is the question of the out-of-sample stability

of forecasts. This problem is discussed in Casini 2018 and Perron and Yamamoto 2021. How-

ever, this problem needs a different methodology and is therefore not discussed in this paper.

The rest of the paper is organized as follows. Section 4.2 sets up the model and derives

the forecasting procedures of the proposed methods, with the error assumed to be an innovation

process with long memory parameter d. Section 4.3 conduct Monte Carlo experiments that

compares the forecasting performance of different proposed methods with the ones discussed

in M. H. Pesaran, Pick, et al. 2013. The results and discussion of the empirical application of

our findings are presented in section 4.4. Section 4.5 concludes. All proofs are gathered in the

appendix.
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4.2 A Single, Discrete Break in a Simple Regression Model

Consider the linear regression model:

yt = βt +σε εt , t = 1, . . . ,T +1 (4.1)

where βt describes the mean or slope parameter, σ2
ε describes the scalar error variance

subject to a single break, and εt is the innovation process associated with long memory.

Now, we assume that βt is subject to a single, discrete break at Tb, 1 < Tb < T :

βt =

β1 for t ≤ Tb

β2 for Tb < t ≤ T +1
(4.2)

Let εt be a long memory process generated according to the ARFIMA(p,d,q) model as

proposed by C. W. Granger and Joyeux 1980:

Φ(L)(1−L)d
εt = Ψ(L)ηt , as t = 1, . . . ,T,

where ηt is i.i.d. white noise with mean 0, variance σ2
η = 1 and E|ηt |2+δ < ∞ for some

δ > 0. The AR and MA polynomials, i.e., Φ(L) and Ψ(L), respectively, are assumed to have

all roots outside the unit circle.

Now, we simply write εt ∼ ARFIMA(0,d,0) because of the power-like behavior of its

covariance function, where εt has mean E[εt ] = 0, the covariance is given by:
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Cov[εt ,εt+k] = E[εt ,εt+k] = γ(k) = σ
2
ε

(−1)k Γ(1−2d)
Γ(1+ k−d)Γ(1− k−d)

, t = 1, . . . ,T, (4.3)

and the variance as:

Var[εt ] = E[ε2
t ] = γ(0) = σ

2
ε

Γ(1−2d)
Γ2(1−d)

, t = 1, . . . ,T, (4.4)

as defined by Beran et al. 2016, where Γ(.) denotes the gamma function. The above as-

sumption is chosen only to simplify the derivations mechanism, but does not affect the validity

of the proofs in general.

The basic concept of this section is to first derive a general expression for the mean squared

forecasting error in our model and derive as a baseline the MSFE if the forecasting weights are

assumed to be equal. This simple model serves as a competitor for comparison with a choice

of weights taking the long-memory structure of the underlying process into account. We then

in a next step derive the MSFE with constant breaks before and different constant weights after

the break. Afterwards we introduce optimal forecasting windows and derive first post break

window forecasts, afterwards forecasts when the window contains the break. Last, an average

across the estimation windows is considered.

Now we turn to considering different methods for weighting past observations wt , when

estimating the regression coefficient. In this case β̂T (w) as suggested by M. H. Pesaran, Pick,
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et al. 2013 is given by:

β̂T (w) =
T

∑
t=1

wt yt , (4.5)

subject to the restriction ∑
T
t=1 wt = 1, such that the resulting MSFE of the one-step-ahead fore-

cast, ŷT+1 = β̂T (w), is minimized.

As we state in the following theorem, we consider the weights of past observations to be

used in the estimation, β̂T (w), and thereby obtain the resulting general MSFE of the one-step-

ahead forecast.

Theorem 1. In the linear regression model (4.1), the scaled MSFE of the one-step-ahead fore-

cast is generally computed as

E
[
σ
−2
ε e2

T+1(w)
]
=A+λ

2

(
Tb

∑
t=1

wt

)2

+A
T

∑
t=1

w2
t +2

T

∑
s=2

T

∑
t=s

ws−1 wt γ(t− s+1), (4.6)

where k = t− s+1, A = σ2
ε

Γ(1−2d)
Γ2(1−d)

, γ(k) =
(−1)k Γ(1−2d)

Γ(1+ k−d)Γ(1− k−d)
, λ = (β1−β2)/σε

and eT+1(w) = yT+1− ŷT+1 describes the forecast error.

The above result is derived by using equations (4.1), (4.2) and (4.5) to obtain the expres-

sion of the forecast error, and then the error is squared, divided by σ2
ε and the expected value is

applied to obtain the derivation of the MSFE scaled by the error variance.
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By using equations (4.1), (4.2) and (4.5), we obtain the simplified expression as

β̂T (w)−βT = (β1−β2)
Tb

∑
t=1

wt +σε

T

∑
t=1

wt εt ,

Then, the expression of forecast error is given by

eT+1(w) =yT+1− ŷT+1,

=yT+1− β̂T (w),

=σε εT+1− (β1−β2)
Tb

∑
t=1

wt−σε

T

∑
t=1

wt εt ,

and lastly the MSFE scaled by the error variance is

E
[
σ
−2
ε e2

T+1(w)
]
=A+λ

2

(
Tb

∑
t=1

wt

)2

+A
T

∑
t=1

w2
t +2

T

∑
s=2

T

∑
t=s

ws−1 wt γ(t− s+1),

Next, we construct the baseline against which all other forecasting methods are compared

by suggesting equal weights to be used in the estimation β̂T (w), yielding the MSFE of the one-

step-ahead forecast, which is taken as a reference.

Theorem 2. Under the conditions of Theorem 1, where the equal weights wequal
t = 1/T is

suggested, then the scaled MSFE of the one-step-ahead forecast is computed as

E
[
σ
−2
ε e2

T+1|w
equal
t

]
=A+λ

2 b2 +
A
T
+

2
T 2

T

∑
s=2

T

∑
t=s

γ(t− s+1), (4.7)

where b = Tb/T , k = t − s+ 1, A = σ2
ε

Γ(1−2d)
Γ2(1−d)

, γ(k) =
(−1)k Γ(1−2d)

Γ(1+ k−d)Γ(1− k−d)
and
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λ = (β1−β2)/σε .

Using equation (4.6), we replace the weights by wt = 1/T , and we obtain the scaled MSFE

for the equal weights.

Remark 1. It is obvious that forecasts using equal weights to observations will have the largest

MSFEs among all forecasting methods. This is why we need different methods for weighting

observations while minimizing the MSFE of the one-step-ahead forecast.

4.2.1 Optimal weights in a model with a single, discrete break

Now, we derive the optimal weights to be used in the estimation of the regression parameter to

minimize the MSFE of the one-step-ahead forecast.

By using equation (4.6), we obtain the optimal weights by minimizing the equation subject

to ∑
T
t=1 wt = 1. The first derivatives are:

For t ≤ Tb

2λ
2

Tb

∑
t=1

wt +2Awt +2
t

∑
s=2

ws−1 γ(t− s+1)+2
T

∑
s=t+2

ws−1 γ(s− t−1)+θ =0,

For Tb < t ≤ T

2Awt +2
t

∑
s=2

ws−1 γ(t− s+1)+2
T

∑
s=t+2

ws−1 γ(s− t−1)+θ =0,

where θ is the Lagrange multiplier associated with ∑
T
t=1 wt .
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Hence, as the weights for each pre-break and post-break observation, we obtain:

wt =



w1 = −λ 2

A

Tb
∑

t=1
wt− 1

A

[
t
∑

s=2
ws−1 γ(t− s+1)+

T
∑

s=t+2
ws−1 γ(s− t−1)

]
− θ

2A

for 1 < t ≤ Tb

w2 = −1
A

[
t
∑

s=2
ws−1 γ(t− s+1)+

T
∑

s=t+2
ws−1 γ(s− t−1)

]
− θ

2A for Tb < t ≤ T +1

and w2−w1 = λ 2

A ∑
Tb
t=1 wt =

λ 2

A Tb w1. Then, we substitute ∑
T
t=1 wt = Tb w1+(T−Tb)w2 =

1 to yield the optimal weights:

For t ≤ Tb

w1 =
1
T

A
T b(1−b)λ 2 +A

, (4.8)

For Tb < t ≤ T

w2 =
1
T

T bλ 2 +A
T b(1−b)λ 2 +A

, (4.9)

Remark 2. In comparison to M. H. Pesaran, Pick, et al. 2013, we introduce the variance and

covariance terms of an error that depends on the long memory parameter d, which results to

the equation (4.6) and through minimization leads to an increase in the prebreak weight and

decrease in the postbreak weight obtained in equation (4.8) and equation (4.9), respectively.

Intuitively, this is due to the strong correlation structure of the long-memory process and the
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slowly decaying correlation function leading to higher weights for observations further in the

past.

The following theorem is obtained by using equations (4.8) and (4.9) in equation (4.6), in

which the reduced form of the scaled MSFE for the optimal weights is obtained.

Theorem 3. Under the conditions of Theorem 1, we assume that the weights are constant for

each pre-break observation as w1 and those for each post-break observation as w2, then the

scaled MSFE of the one-step-ahead forecast is computed as

E
[
σ
−2
ε e2

T+1|w1,w2
]
= A+(Tb λ w1)

2 +Tb Aw2
1 +(T −Tb)Aw2

2 +2
T

∑
s=2

T

∑
t=s

ws−1 wt γ(t− s+1).

Using equations (4.8) and (4.9), we obtain the reduced form of scaled MSFE for the optimal

weights:

E
[
σ
−2
ε e2

T+1|w1,w2
]
=A+(T 2

b λ
2 +Tb A)w2

1 +(T −Tb)Aw2
2 +2

Tb

∑
s=2

Tb

∑
t=s

ws−1 wt γ(t− s+1)

+2
T

∑
s=Tb+1

T

∑
t=s

ws−1 wt γ(t− s+1),

=A
[

1+
1
T

T bλ 2 +A
T b(1−b)λ 2 +A

]
+2w2

1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)

+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A(1+w2)+2

[
w2

1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+w2
2

T

∑
s=T b+1

T

∑
t=s

γ(t− s+1)

]
,

(4.10)

Now, we compare the MSFEs of the forecasts from the equal weights to that of the optimal
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weights. So, we compute the difference between equations (4.7) and (4.10) as:

E
[
σ
−2
ε e2

T+1|w
equal
t

]
−E

[
σ
−2
ε e2

T+1|w1,w2
]

=A+λ
2 b2 +

A
T
+

2
T 2

T

∑
s=2

T

∑
t=s

γ(t− s+1)−A− A
T

T bλ 2 +A
T b(1−b)λ 2 +A

− 2
T 2

A2

[T b(1−b)λ 2 +A]2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)− 2
T 2

[
T bλ 2 +A

]2
[T b(1−b)λ 2 +A]2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=λ
2 b2− Ab2 λ 2

T b(1−b)λ 2 +A
+

2
T 2

Tb

∑
s=2

T

∑
t=s

γ(t− s+1),

+
2

T 2

T b2 λ 2 [T b2 λ 2−2
(
T bλ 2 +A

)]
[T b(1−b)λ 2 +A]2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1)− 2
T 2

A2

[T b(1−b)λ 2 +A]2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1),

First, we consider

λ
2 b2− Ab2 λ 2

T b(1−b)λ 2 +A
=

T b(1−b)b2 λ 4 +Ab2 λ 2−Ab2 λ 2

T b(1−b)λ 2 +A
,

=
T b3 (1−b)λ 4

T b(1−b)λ 2 +A
≥ 0 ,

Next, we have

2
T 2

Tb

∑
s=2

T

∑
t=s

γ(t− s+1)≥ 2
T 2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1) ,
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and

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1) ≥
T

∑
s=Tb+1

Tb

∑
t=s

γ(t− s+1) ,

=
T

∑
s=2

Tb

∑
t=s

γ(t− s+1)−
Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1),

≥ −
Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1),

Thus

2
T 2

Tb

∑
s=2

T

∑
t=s

γ(t− s+1)+
2

T 2

T b2 λ 2 [T b2 λ 2−2
(
T bλ 2 +A

)]
[T b(1−b)λ 2 +A]2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1)

− 2
T 2

A2

[T b(1−b)λ 2 +A]2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1),

≥ 2
T 2

[
1−

T b2 λ 2 [T b2 λ 2−2
(
T bλ 2 +A

)]
[T b(1−b)λ 2 +A]2

− A2

[T b(1−b)λ 2 +A]2

]
Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)≥ 0 ,

because

T b2 λ 2 [T b2 λ 2−2
(
T bλ 2 +A

)]
+A2

[T b(1−b)λ 2 +A]2

=
T 2 b4 λ 4−2T 2 b3 λ 4−2T b2 λ 2 A+A2

T 2 b4 λ 4−2T 2 b3 λ 4−2T b2 λ 2 A+A2 +T 2 b2 λ 4 +2T bλ 2 A
≤ 1
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For this reason, we have

E
[
σ
−2
ε e2

T+1|w
equal
t

]
−E

[
σ
−2
ε e2

T+1|w1,w2
]

=λ
2 b2− Ab2 λ 2

T b(1−b)λ 2 +A
+

2
T 2

Tb

∑
s=2

T

∑
t=s

γ(t− s+1),

+
2

T 2

T b2 λ 2 [T b2 λ 2−2
(
T bλ 2 +A

)]
[T b(1−b)λ 2 +A]2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

− 2
T 2

A2

[T b(1−b)λ 2 +A]2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)≥ 0 ,

Remark 3. It can be seen that the forecasts based on optimal weights have a lower MSFE than

that applying equal weights to the observations.

4.2.2 Optimal window and post break window forecasts

As proposed in M. H. Pesaran and Timmermann 2007, an optimal window is chosen in which

equal weights are used for the observations within the window and zero weights to the remaining

observations.

wt =


0, for t < Tv

1
T −Tv +1

, for Tv ≤ t < T +1.
(4.11)

Suppose that the optimal window size, v, contains observations from Tv to T (inclusive),

where v = (T −Tv +1)/T such that Tv = T (1− v)+1.



4.2. A Single, Discrete Break in a Simple Regression Model 21

Now, we consider the model (4.1), where βt is subject to a single, discrete break at Tb,

βt =

β1 for Tv ≤ t ≤ Tb

β2 for Tb < t ≤ T +1.
(4.12)

Based on the above considerations, we now mainly focus on the choice of the window size

rather than the weighting of observations. Henceforth, the following theorem is obtained by

using equations (4.5), (4.11) and (4.12), in which the general scaled MSFE is derived.

Theorem 4. In the linear regression model (4.1), we assume that there is equal weights within

the window and zero weights to preceding observations according to equation (4.11), then the

general scaled MSFE of the one-step-ahead forecast is computed as

E
[
σ
−2
ε e2

T+1
]
=A+λ

2
[

1− (1−b)
v

]2

I(v− (1−b))+
A

T v
+

2
T 2 v2

T

∑
s=Tv+1

T

∑
t=s

γ(t− s+1),

(4.13)

where λ = (β2−β1)/σε , b = Tb/T and I(v− (1−b)) is an indicator function introduced

to allow flexibility in cases whether the window contain a break or not, and equals to 1 if

v > (1−b) and 0 otherwise.

First, we obtain the simplified form of one-step-ahead forecast as

ŷT+1 = β̂T (w),

=β2{1− I(v− (1−b))}+ I(v− (1−b))
[

β2 (1−b)+β1 (v− (1−b)
v

]
+

σε

T v

T

∑
t=Tv

εt ,



4.2. A Single, Discrete Break in a Simple Regression Model 22

Next, the expression of forecast error is given by

eT+1 =yT+1− ŷT+1,

=I(v− (1−b))(β2−β1)

[
1− (1−b)

v

]
+σε εT+1−

σε

T v

T

∑
t=Tv

εt ,

and finally the MSFE scaled by the error variance is

E
[
σ
−2
ε e2

T+1
]
=A+λ

2
[

1− (1−b)
v

]2

I(v− (1−b))+
A

T v
+

2
T 2 v2

T

∑
s=Tv+1

T

∑
t=s

γ(t− s+1),

If we consider the window that contains the break so that I(v− (1−b)) = 1 and minimize

the MSFE obtained in equation (4.13), the optimal window size, v0, is:

v0 =


(1−b)+ 4

2λ 2 (1−b)T 2

T
∑

s=Tv+1

T
∑

t=s
γ(t− s+1)

1− A
2λ 2 (1−b)T

, if λ 2 ≥ AT
2(T−Tb)Tb

1, if λ 2 < AT
2(T−Tb)Tb

.

(4.14)

Remark 4. Again compared with M. H. Pesaran, Pick, et al. 2013, we introduce the variance

and covariance terms of an error that depends on the long memory parameter d, which results

to the equation (4.13) and through minimization leads to an increase in the optimal window size

obtained in equation (4.14). Again this is intuitively due to the stronger correlation structure

using more information from observations further in the past.

We now consider the window that contains the break, so we substitute equation (4.14) into

equation (4.13), and henceforth, the resulting MSFE for the optimal window observations is

stated in the theorem below.

Theorem 5. In the linear regression model (4.1), we assume that there is equal weights within
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the window and zero weights to preceding observations but now the window contains the break,

then the scaled MSFE of the one-step-ahead forecast is computed as

E
[
σ
−2
ε e2

T+1|v0
v>(1−b)

]
=A+

A
T (1−b)

− A2

4λ 2 (1−b)2 T 2


1+

4
λ 2 (1−b)T 2

T
∑

s=Tv+1

T
∑

t=s
γ(t− s+1)(

1+
4

2λ 2 (1−b)T 2

T
∑

s=Tv+1

T
∑

t=s
γ(t− s+1)

)2

 ,
(4.15)

where λ = (β2−β1)/σε .

Next, we consider the windows that contain no break (I(v−(1−b)) = 0), so we substitute

the size of the windows with no break, v0
v≤(1−b) = (1−b), into equation (4.13), and henceforth,

the resulting MSFE for the post-break window observations is stated in the below theorem.

Theorem 6. In the linear regression model (4.1), we assume that there is equal weights within

the window and zero weights to preceding observations but now the window contains no break,

then the scaled MSFE of the one-step-ahead forecast is computed as

E
[
σ
−2
ε e2

T+1|v = (1−b)
]
=A

[
1+

1
T (1−b)

]
+

2
T 2 (1−b)2

T

∑
s=Tv+1

T

∑
t=s

γ(t− s+1), (4.16)

where b = Tb/T .
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4.2.3 Averaging across estimation windows

The theoretical properties of the average across estimation windows (AveW) are discussed in

H. Pesaran and Pick 2011. Using the model (4.1), the one-step-ahead forecast for the AveW is:

ŷT+1 =
1
m

m

∑
i=1

ŷT+1(v(i)), (4.17)

where

ŷT+1(v(i)) =
1

T −Tv(i) +1

T

∑
t=Tv(i)

yt .

Here, we take the average over m different estimation windows containing breaks so that

I(v− (1− b)) = 1, while given uncertainty over the break dates, we begin with the minimum

window, vmin = 0.05. Then, we set v(i) = (T −Tv(i) + 1)/T such that Tv(i) = T (1− v(i))+ 1,

and using equations (4.1), (4.5), (4.11), (4.12) and (4.17), the resulting MSFE for the AveW

forecast is stated in the following theorem.

Theorem 7. In the linear regression model (4.1), we assume the average over m different es-

timation windows containing breaks, then the scaled MSFE of the one-step-ahead forecast is
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computed as

E
[
σ
−2
ε e2

T+1|vmin
]
=A+

[
λ

m

m

∑
i=1

v(i)− (1−b)
v(i)

I(v(i)− (1−b))

]2

+
A

m2

m

∑
i=1

1+2(i−1)
T v(i)

+
2

m2

m

∑
i=1

1
T 2 v2

(i)

T

∑
s=Tv(i)+1

T

∑
t=s

γ(t− s+1), (4.18)

where λ = (β2−β1)/σε , b = Tb/T , vmin = 0.05 and m is the number of windows.

First, we proceed with the one-step-ahead forecast for AveW

ŷT+1 =
1
m

m

∑
i=1

ŷT+1(v(i)),

=β2 +
β2 (1−b)

m

m

∑
i=1

1
v(i)

I(v(i)− (1−b))− β1 (1−b)
m

m

∑
i=1

1
v(i)

I(v(i)− (1−b))

+
β1

m

m

∑
i=1

I(v(i)− (1−b))− β2

m

m

∑
i=1

I(v(i)− (1−b))+
σε

m

m

∑
i=1

1
T v(i)

T

∑
t=Tv(i)

εt ,

Using the result above, the one-step-ahead forecast error for AveW is

eT+1 =yT+1− ŷT+1,

=σε εT+1 +
(β2−β1)

m

m

∑
i=1

v(i)− (1−b)
v(i)

I(v(i)− (1−b))− σε

m

m

∑
i=1

1
T v(i)

T

∑
t=Tv(i)

εt ,
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and finally the MSFE for AveW forecast is

E
[
σ
−2
ε e2

T+1|vmin
]
=A+

[
λ

m

m

∑
i=1

v(i)− (1−b)
v(i)

I(v(i)− (1−b))

]2

+
A

m2

m

∑
i=1

1+2(i−1)
T v(i)

+
2

m2

m

∑
i=1

1
T 2 v2

(i)

T

∑
s=Tv(i)+1

T

∑
t=s

γ(t− s+1),
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4.3 Simulation Results

In this section we provide a Monte Carlo simulation study of the forecasting performance of

the different optimal methods proposed in this paper and compare them to the ones discussed

in M. H. Pesaran, Pick, et al. 2013. We examine the simulation results for a long memory time

series with a single, discrete break based on the simple linear regression model (4.1) applied to

different forecasting methods.

Initially, we simulate a fractionally integrated time series and choose stationary long mem-

ory parameters d ∈ {0.1; 0.2; 0.3; 0.4}, standard break dates b ∈ {0.1; 0.2}, break sizes λ ∈

{0.5; 1 ; 2} and sample sizes T ∈ {250; 300; 500; 1000}. Next, we use the simulated fraction-

ally integrated time series to obtain the modified LW estimator of the memory parameters d̂

as in Hou and Perron 2014 with bandwidth m = T δ , where δ = 0.75. We report the chosen

bandwidth that is said to be MSE-optimal in estimating the long memory parameters although

the results are robust to other smaller bandwidths, e.g. δ = 0.75. We also estimate the break

dates b̂ as suggested by Lavielle and Moulines 2000, and conditional on these estimates, we

obtain the break size estimates λ̂ .

Then, we use these estimates in a simple linear regression model (4.1) with d̂, b̂ and λ̂ in

place of d, b and λ to compute feasible forecasts and report the MSFE results for N = 10,000

replications.

In Table 4.1, we generally observe that in all cases, the forecasting performance of the

estimated optimal weight and estimated optimal window methods proposed in this paper (II)

outperform the ones discussed in M. H. Pesaran, Pick, et al. 2013 (I), with the exception of a

few cases. However, in Table 4.2, Table 4.3 and Table 4.4, we observe a decrease in the effi-

ciency of the proposed methods due to the decrease in sample size T .

Moreover, we observe a significant decrease in the efficiency of the proposed methods due
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to the increase in the modified LW estimates, d̂. In conclusion, accurate estimation of the long

memory parameter d̂ should be taken into account to obtain more precise forecast results.

Incorrect estimation of the break dates can markedly affect the forecast results. We observe

in Table 4.5 that the proposed methods perform well due to the increase in the actual break date,

b = 0.2. Therefore, accurate estimation of the break point b̂ is extremely necessary to obtain

more precise forecast results.

4.4 Inflation Rate Forecasts

In this section, the performance of inflation rate forecasting is considered. Hyung et al. 2006 and

Bos et al. 2002 investigate out-of-sample forecasting of US inflation rates and find evidence of

long memory; their findings are the inspiration for this study. Moreover, these authors explore

the possibility of developing a single model that captures both occasional structural breaks and

all long memory components. Likewise, Hassler and Wolters 1995 use a model with fractional

integration allowing for long memory and show evidence of long memory in monthly inflation

rates across all countries. Additionally, Gadea et al. 2004 and Hsu 2005 illustrate the risks of

neglecting the presence of structural breaks in the modeling of inflation rates.

We collect data from the OECD1 and use the monthly CPI series for Germany and Aus-

tralia covering the period from January 1967 to December 2017. First, we deseasonalize the

data and then transform the inflation rates to πt by taking their log differences, i.e., πt =

log(CPIt)− log(CPIt−1), which is common in the literature.

In our case, we observe a single break in the mean for both countries after obtaining the

residual sum of squares estimator considered in Lavielle and Moulines 2000, and we apply the

modified LW estimator of Hou and Perron 2014 with bandwidth m = T 3/4 to estimate the mem-

ory parameter of the inflation series.
1Dataset from https://data.oecd.org/price/inflation-cpi.htm.
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In Table 4.6, we show that stationary long memory exists in both series under considera-

tion.

We apply the estimated values of break date, break size and memory parameter to obtain

the MSFE results under different optimal forecast methods; clearly, those obtained under the

methods proposed in this paper (II) outperform the ones discussed in M. H. Pesaran, Pick, et

al. 2013 (I) in most cases. In this paper, we observe that the estimated optimal window and

estimated AveW methods provide the best forecasts of the inflation rates of Germany and Aus-

tralia, respectively. In contrast, the estimated post-break window performs poorly, displaying

the highest MSFEs among all methods in both cases.

Figure 4.1 presents the series of inflation rates for Germany and Australia, respectively,

where the red vertical lines represent their corresponding estimated break points, T̂ G
b = 185

and T̂ A
b = 206. As before, we obtain the memory parameter estimate d̂ as in Hou and Perron

2014 based on the bandwidth parameter δ = 0.75. We also obtain the break date estimate b̂

as suggested by Lavielle and Moulines 2000, and conditional on these estimates, we obtain the

break size estimate λ̂ .

4.5 Conclusion

This paper shows the advantages of incorporating long-range dependencies to obtain optimal

forecasts, whenever long memory is present in the time series. In addition to M. H. Pesaran,

Pick, et al. 2013, the methods proposed in this paper incorporate the variance and covariance

terms of an error, where the error term is the innovation process associated with long memory.

This results to some improvements in the MSFEs, where through minimization an increase in

the pre-break weight, a decrease in the post-break weight and an increase in the optimal window

size is obtained. For that reason, there are changes in the optimal weight and optimal window

methods in comparison to M. H. Pesaran, Pick, et al. 2013, while the rest of the methods seem
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to yield no changes.

Our methods, in comparison to the ones discussed in M. H. Pesaran, Pick, et al. 2013,

provide superior inflation rate forecasts by incorporating adjustments based on long memory.

The findings are interesting because they reveal important improvements in the minimization of

the MSFE, which is our ultimate goal.
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4.6 Appendix

Appendix A - Proofs

Proof of Theorem 1

Proof. In this case, the forecast is ŷT+1 = β̂T (w) where β̂T (w) = ∑
T
t=1 wt yt then we obtain the

derivation of the simplified expression below

β̂T (w)−βT = β̂T (w)−β2,

=
T

∑
t=1

wt yt−β2

T

∑
t=1

wt ,

=
T

∑
t=1

wt (βt +σε εt)−β2

T

∑
t=1

wt ,

=
T

∑
t=1

wt βt +σε

T

∑
t=1

wt εt−β2

T

∑
t=1

wt ,

=
Tb

∑
t=1

wt β1 +
T

∑
t=Tb+1

wt β2 +σε

T

∑
t=1

wt εt−β2

T

∑
t=1

wt ,

=β1

Tb

∑
t=1

wt +β2

T

∑
t=Tb+1

wt−β2

T

∑
t=1

wt +σε

T

∑
t=1

wt εt ,

=β1

Tb

∑
t=1

wt−β2

(
T

∑
t=1

wt−
T

∑
t=Tb+1

wt

)
+σε

T

∑
t=1

wt εt ,

=β1

Tb

∑
t=1

wt−β2

Tb

∑
t=1

wt +σε

T

∑
t=1

wt εt ,

= (β1−β2)
Tb

∑
t=1

wt +σε

T

∑
t=1

wt εt ,



4.6. Appendix 32

Using the result above, we simply obtain the expression of the forecast error as follows:

eT+1(w) =yT+1− ŷT+1,

=yT+1− β̂T (w),

=βT+1 +σε εT+1− β̂T (w),

=σε εT+1− (β1−β2)
Tb

∑
t=1

wt−σε

T

∑
t=1

wt εt ,

Thereafter, square the forecast error above and divide the result by σ2
ε and apply the ex-

pected value then we obtain the derivation of the MSFE scaled by the error variance:

E
[
σ
−2
ε e2

T+1(w))
]
=E

[
ε

2
T+1)

]
+E

(β1−β2

σε

)2
(

Tb

∑
t=1

wt

)2
+E

( T

∑
t=1

wt εt

)2
 ,

=A+λ
2

(
Tb

∑
t=1

wt

)2

+A
T

∑
t=1

w2
t +2

T

∑
s=2

T

∑
t=s

ws−1 wt E(εs−1 εt),

=A+λ
2

(
Tb

∑
t=1

wt

)2

+A
T

∑
t=1

w2
t +2

T

∑
s=2

T

∑
t=s

ws−1 wt γ(t− s+1), (4.19)

where k = t− s+1, A =
Γ(1−2d)
Γ2(1−d)

, γ(k) =
(−1)k Γ(1−2d)

Γ(1+ k−d)Γ(1− k−d)
and λ =

β1−β2

σε

.
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Proof of Theorem 2

Proof. Using equation 4.19, we replace the weights by wequal
t =

1
T

, then we obtain the deriva-

tion of the scaled MSFE for the equal weights:

E
[
σ
−2
ε e2

T+1|w
equal
t

]
=A+λ

2

(
Tb

∑
t=1

1
T

)2

+A
T

∑
t=1

1
T 2 +2

T

∑
s=2

T

∑
t=s

1
T 2 γ(t− s+1),

=A+λ
2
(

Tb

T

)2

+A
T
T 2 +

2
T 2

T

∑
s=2

T

∑
t=s

γ(t− s+1),

=A+λ
2
(

Tb

T

)2

+A
T
T 2 +

2
T 2

T

∑
s=2

T

∑
t=s

γ(t− s+1),

=A+λ
2 b2 +

A
T
+

2
T 2

T

∑
s=2

T

∑
t=s

γ(t− s+1), (4.20)

where b = Tb/T .
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Proof of Theorem 3

Now, we derive the optimal weights to be used in the estimation of the regression parameter to

minimize the MSFE of the one-step-ahead forecast.

By using equation (4.19), we obtain the optimal weights by minimizing the equation sub-

ject to ∑
T
t=1 wt = 1. The first derivatives are:

For t ≤ Tb

2λ
2

Tb

∑
t=1

wt +2Awt +2
t

∑
s=2

ws−1 γ(t− s+1)+2
T

∑
s=t+2

ws−1 γ(s− t−1)+θ =0,

For Tb < t ≤ T

2Awt +2
t

∑
s=2

ws−1 γ(t− s+1)+2
T

∑
s=t+2

ws−1 γ(s− t−1)+θ =0,

where θ is the Lagrange multiplier associated with ∑
T
t=1 wt .

Hence, as the weights for each pre-break and post-break observation, we obtain:

wt =



w1 = −λ 2

A

Tb
∑

t=1
wt− 1

A

[
t
∑

s=2
ws−1 γ(t− s+1)+

T
∑

s=t+2
ws−1 γ(s− t−1)

]
− θ

2A

for 1 < t ≤ Tb

w2 = −1
A

[
t
∑

s=2
ws−1 γ(t− s+1)+

T
∑

s=t+2
ws−1 γ(s− t−1)

]
− θ

2A for Tb < t ≤ T +1
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and w2−w1 = λ 2

A ∑
Tb
t=1 wt =

λ 2

A Tb w1. Then, we substitute ∑
T
t=1 wt = Tb w1+(T−Tb)w2 =

1 to yield the optimal weights:

For t ≤ Tb

w1 =
1
T

A
T b(1−b)λ 2 +A

, (4.21)

For Tb < t ≤ T

w2 =
1
T

T bλ 2 +A
T b(1−b)λ 2 +A

, (4.22)

Proof. Here, we assume that the weights are constant within both pre-break observations and

post-break observations in equation (4.19) to obtain the scaled MSFE:

E
[
σ
−2
ε e2

T+1|w1,w2
]
= A+(Tb λ w1)

2 +Tb w2
1 A+(T −Tb)w2

2 A+2
T

∑
s=2

T

∑
t=s

ws−1 wt γ(t− s+1).

(4.23)

We substitute equations (4.21) and (4.22) into equation (4.23) to obtain the derivation of

the reduced form of scaled MSFE for the optimal weights:
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E
[
σ
−2
ε e2

T+1|w1,w2
]
=A+T 2

b λ
2 w2

1 +Tb w2
1 A+(T −Tb)w2

2 A+2
T

∑
s=2

T

∑
t=s

ws−1 wt γ(t− s+1),

=A+(T 2
b λ

2 +Tb A)w2
1 +(T −Tb)Aw2

2 +2
Tb

∑
s=2

Tb

∑
t=s

ws−1 wt γ(t− s+1)

+2
T

∑
s=Tb+1

T

∑
t=s

ws−1 wt γ(t− s+1),

=A+
(T 2

b λ 2 +Tb A)A2

[T (T b(1−b)λ 2 +A)]2
+

(T A−T bA)
(
T bλ 2 +A

)2

[T (T b(1−b)λ 2 +A)]2

+2w2
1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A

[
1+

(T 2 b2 λ 2 +T bA)A

[T (T b(1−b)λ 2 +A)]2
+

(T −T b)
(
T bλ 2 +A

)2

[T (T b(1−b)λ 2 +A)]2

]

+2w2
1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A

[
1+

(T 2 b2 λ 2 +T bA)A+(T −T b)
(
T bλ 2 +A

)2

[T (T b(1−b)λ 2 +A)]2

]

+2w2
1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A

[
1+

T 2 b2 λ 2 A+T bA2 +(T −T b)
(
T 2 b2 λ 4 +A2 +2T bλ 2 A

)
[T (T b(1−b)λ 2 +A)]2

]

+2w2
1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),
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=A

1+

T 2 b2 λ 2 A+T bA2 +T 3 b2 λ 4 +T A2 +2T 2 bλ 2 A
−T 3 b3 λ 4−T bA2−2T 2 b2 λ 2 A

[T (T b(1−b)λ 2 +A)]2



+2w2
1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A

[
1+

T 3 b2 λ 4 +T A2 +2T 2 bλ 2 A−T 3 b3 λ 4− T 2 b2 λ 2 A

[T (T b(1−b)λ 2 +A)]2

]

+2w2
1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A

1+

T 3 b2 λ 4 +T A2 +2T 2 bλ 2 A−T 3 b3 λ 4− T 2 b2 λ 2 A−T 3 b3 λ 4

−T 2 b2 λ 2 A+T 3 b4 λ 4 +T 3 b3 λ 4 +T 2 b2 λ 2 A−T 3 b4 λ 4

[T (T b(1−b)λ 2 +A)]2



+2w2
1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A

1+

T 3 b2 λ 4−2T 3 b3 λ 4 +T 3 b4 λ 4 +T A2 +2T 2 bλ 2 A
−2T 2 b2 λ 2 A+T 3 b3 λ 4 + T 2 b2 λ 2 A−T 3 b4 λ 4

[T (T b(1−b)λ 2 +A)]2



+2w2
1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A

[
1+

T (T b(1−b)λ 2 +A)2 +T (T b(1−b)λ 2 +A)(T b2 λ 2)

[T (T b(1−b)λ 2 +A)]2

]

+2w2
1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A

[
1+

[
T (T b(1−b)λ 2 +A)

]
(T b(1−b)λ 2 +A+T b2 λ 2)

[T (T b(1−b)λ 2 +A)]2

]

+2w2
1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),
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=A

[
1+

[
T (T b(1−b)λ 2 +A)

]
(T bλ 2 +A)

[T (T b(1−b)λ 2 +A)]2

]
+2w2

1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A
[

1+
1
T

T bλ 2 +A
T b(1−b)λ 2 +A

]
+2w2

1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+2w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=A(1+w2)+2

[
w2

1

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)+w2
2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1)

]
, (4.24)
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Now, we compare the MSFEs of the forecasts from the equal weights to that of the optimal

weights. So, we compute the difference between equations (4.20) and (4.24) as:

E
[
σ
−2
ε e2

T+1|w
equal
t

]
−E

[
σ
−2
ε e2

T+1|w1,w2
]

=A+λ
2 b2 +

A
T
+

2
T 2

T

∑
s=2

T

∑
t=s

γ(t− s+1)−A− A
T

T bλ 2 +A
T b(1−b)λ 2 +A

− 2
T 2

A2

[T b(1−b)λ 2 +A]2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)− 2
T 2

[
T bλ 2 +A

]2
[T b(1−b)λ 2 +A]2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

=λ
2 b2 +

A
T

[
1− T bλ 2 +A

T b(1−b)λ 2 +A

]
+

2
T 2

[
1−

[
T bλ 2 +A

]2
[T b(1−b)λ 2 +A]2

]
T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1)

+
2

T 2

Tb

∑
s=2

T

∑
t=s

γ(t− s+1)− 2
T 2

A2

[T b(1−b)λ 2 +A]2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1),

=λ
2 b2 +

A
T

[
T bλ 2−T b2 λ 2 +A−T bλ 2−A

T b(1−b)λ 2 +A

]
,

+
2

T 2


T 2 b2 λ 4 +2T 2 b3 λ 4 +T 2 b4 λ 4 +2AT bλ 2

−2AT b2 λ 2−T 2 b2 λ 4−2AT bλ 2

[T b(1−b)λ 2 +A]2

 T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

+
2

T 2

Tb

∑
s=2

T

∑
t=s

γ(t− s+1)− 2
T 2

A2

[T b(1−b)λ 2 +A]2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1),

=λ
2 b2− Ab2 λ 2

T b(1−b)λ 2 +A
+

2
T 2

Tb

∑
s=2

T

∑
t=s

γ(t− s+1),

+
2

T 2

T b2 λ 2 [T b2 λ 2−2
(
T bλ 2 +A

)]
[T b(1−b)λ 2 +A]2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1)− 2
T 2

A2

[T b(1−b)λ 2 +A]2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1),

First, we consider

λ
2 b2− Ab2 λ 2

T b(1−b)λ 2 +A
=

T b(1−b)b2 λ 4 +Ab2 λ 2−Ab2 λ 2

T b(1−b)λ 2 +A
,

=
T b3 (1−b)λ 4

T b(1−b)λ 2 +A
≥ 0 ,
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Next, we have

2
T 2

Tb

∑
s=2

T

∑
t=s

γ(t− s+1)≥ 2
T 2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1) ,

and

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1) ≥
T

∑
s=Tb+1

Tb

∑
t=s

γ(t− s+1) ,

=
T

∑
s=2

Tb

∑
t=s

γ(t− s+1)−
Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1),

≥ −
Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1),

Thus

2
T 2

Tb

∑
s=2

T

∑
t=s

γ(t− s+1)+
2

T 2

T b2 λ 2 [T b2 λ 2−2
(
T bλ 2 +A

)]
[T b(1−b)λ 2 +A]2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1)

− 2
T 2

A2

[T b(1−b)λ 2 +A]2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1),

≥ 2
T 2

[
1−

T b2 λ 2 [T b2 λ 2−2
(
T bλ 2 +A

)]
[T b(1−b)λ 2 +A]2

− A2

[T b(1−b)λ 2 +A]2

]
Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)≥ 0 ,

because

T b2 λ 2 [T b2 λ 2−2
(
T bλ 2 +A

)]
+A2

[T b(1−b)λ 2 +A]2

=
T 2 b4 λ 4−2T 2 b3 λ 4−2T b2 λ 2 A+A2

T 2 b4 λ 4−2T 2 b3 λ 4−2T b2 λ 2 A+A2 +T 2 b2 λ 4 +2T bλ 2 A
≤ 1
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For this reason, we have

E
[
σ
−2
ε e2

T+1|w
equal
t

]
−E

[
σ
−2
ε e2

T+1|w1,w2
]

=λ
2 b2− Ab2 λ 2

T b(1−b)λ 2 +A
+

2
T 2

Tb

∑
s=2

T

∑
t=s

γ(t− s+1),

+
2

T 2

T b2 λ 2 [T b2 λ 2−2
(
T bλ 2 +A

)]
[T b(1−b)λ 2 +A]2

T

∑
s=Tb+1

T

∑
t=s

γ(t− s+1),

− 2
T 2

A2

[T b(1−b)λ 2 +A]2

Tb

∑
s=2

Tb

∑
t=s

γ(t− s+1)≥ 0 ,

Proof of Theorem 4

Proof. Using the given linear regression model, we derive the one-step-ahead forecast as:

ŷT+1 = β̂T (w),

=
T

∑
t=Tv

wt yt ,

=
1

T −Tv +1

T

∑
t=Tv

yt ,

=
1

T −Tv +1

T

∑
t=Tv

(βt +σε εt),

=
1

T −Tv +1

[
Tb

∑
t=Tv

β1 +
T

∑
t=Tb+1

β2 +σε

T

∑
t=Tv

εt

]
,

=
1

T −Tv +1

[
β1 (Tb−Tv +1)+β2 (T −Tb)+σε

T

∑
t=Tv

εt

]
,

Let us set v =
T −Tv +1

T
, such that Tv = T (1− v)+ 1 and Tb = T b, then we obtain a
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simplified form of the above expression:

ŷT+1 =
1

T v

[
β1 (T b− (T (1− v)+1)+1)+β2 (T −T b)+σε

T

∑
t=Tv

εt

]
,

=
1

T v

[
β1 (T b−T +T v)+β2 (T −T b)+σε

T

∑
t=Tv

εt

]
,

=
β1 (b−1+ v)+β2 (1−b)

v
+

σε

T v

T

∑
t=Tv

εt ,

=
β2 (1−b)+β1 (v− (1−b)

v
+

σε

T v

T

∑
t=Tv

εt ,

=β2{1− I(v− (1−b))}+ I(v− (1−b))
[

β2 (1−b)+β1 (v− (1−b)
v

]
+

σε

T v

T

∑
t=Tv

εt ,

(4.25)

where I is an indicator function introduced to allow flexibility in cases whether the window

contain a break or not, and equals to 1 if c > 0 and 0 otherwise.
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Using the equation (4.25), the one-step-ahead forecast error is:

êT+1 =yT+1− ŷT+1,

=βT+1 +σε εT+1−β2{1− I(v− (1−b))}− I(v− (1−b))
[

β2 (1−b)+β1 (v− (1−b)
v

]
− σε

T v

T

∑
t=Tv

εt ,

=β2 +σε εT+1−β2{1− I(v− (1−b))}− I(v− (1−b))
[

β2 (1−b)+β1 (v− (1−b)
v

]
− σε

T v

T

∑
t=Tv

εt ,

=I(v− (1−b))β2− I(v− (1−b))
[

β2 (1−b)+β1 (v− (1−b)
v

]
+σε εT+1−

σε

T v

T

∑
t=Tv

εt ,

=I(v− (1−b))
[

β2−
β2 (1−b)+β1 (v− (1−b)

v

]
+σε εT+1−

σε

T v

T

∑
t=Tv

εt ,

=I(v− (1−b))
[

β2 v−β2 (1−b)−β1 (v− (1−b)
v

]
+σε εT+1−

σε

T v

T

∑
t=Tv

εt ,

=I(v− (1−b))
[

β2 (v− (1−b))−β1 (v− (1−b)
v

]
+σε εT+1−

σε

T v

T

∑
t=Tv

εt ,

=I(v− (1−b))(β2−β1)

[
v− (1−b)

v

]
+σε εT+1−

σε

T v

T

∑
t=Tv

εt ,

=I(v− (1−b))(β2−β1)

[
1− (1−b)

v

]
+σε εT+1−

σε
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Next, the expected squared forecast error normalized by σ2
ε is:
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(4.27)

where λ =
β2−β1

σε

and b = Tb/T .

Proof of Theorem 5

Proof. If we consider the window that contains the break so that I(v−(1−b)) = 1, the optimal

window size, v0, is:

v0 =


(1−b)+ 4

2λ 2 (1−b)T 2

T
∑

s=Tv+1

T
∑

t=s
γ(t− s+1)

1− A
2λ 2 (1−b)T

, if λ 2 ≥ AT
2(T−Tb)Tb

1, if λ 2 < AT
2(T−Tb)Tb

.

(4.28)
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Now, we substitute equation (4.28) into equation (4.27) to obtain the derivation of the scaled

MSFE for the optimal window observations:
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where λ = (β2−β1)/σε .

Proof of Theorem 6

Proof. If we consider the windows that contain no break so that I(v− (1− b)) = 0, so we

substitute the size of the windows with no break, v0
v≤(1−b) = (1−b), into equation (4.27) and

then we obtain the derivation of the scaled MSFE for the post-break window observations:
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Proof of Theorem 7

Proof. Using the given linear regression model, the one-step-ahead forecast for AveW is:
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We set v(i) = (T − Tv(i) + 1)/T such that Tv(i) = T (1− v(i)) + 1 and Tb = T b, then we
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obtain a simplified form of the above expression:
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By using equation (4.31), we proceed with the one-step-ahead forecast for AveW:
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Using the result above, the one-step-ahead forecast error for AveW is:
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=βT+1 +σε εT+1−β2−
(β2−β1)(1−b)

m

m

∑
i=1

1
v(i)

I(v(i)− (1−b))

+
(β2−β1)

m

m

∑
i=1

I(v(i)− (1−b))− σε

m

m

∑
i=1

1
T v(i)

T

∑
t=Tv(i)

εt ,

=β2 +σε εT+1−β2−
(β2−β1)(1−b)

m

m

∑
i=1

1
v(i)

I(v(i)− (1−b))

+
(β2−β1)

m

m

∑
i=1

I(v(i)− (1−b))− σε

m

m

∑
i=1

1
T v(i)

T

∑
t=Tv(i)

εt ,

=σε εT+1−
(β2−β1)(1−b)

m

m

∑
i=1

1
v(i)

I(v(i)− (1−b))

+
(β2−β1)

m

m

∑
i=1

I(v(i)− (1−b))− σε

m

m

∑
i=1

1
T v(i)

T

∑
t=Tv(i)

εt ,

=σε εT+1 +
(β2−β1)

m

m

∑
i=1

(
1− (1−b)

v(i)

)
I(v(i)− (1−b))− σε

m

m

∑
i=1

1
T v(i)

T

∑
t=Tv(i)

εt ,

=σε εT+1 +
(β2−β1)

m

m

∑
i=1

v(i)− (1−b)
v(i)

I(v(i)− (1−b))− σε

m

m

∑
i=1

1
T v(i)

T

∑
t=Tv(i)

εt , (4.33)



4.6. Appendix 52

Next, the MSFE for AveW forecast is:
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where λ =
β2−β1

σε

, b = Tb/T and m is the number of windows.

Appendix B - Tables

These tables present the forecasting performance of different estimated optimal forecasting

methods; both, those obtained under the methods proposed in this paper (II) and the ones dis-

cussed in M. H. Pesaran, Pick, et al. 2013 (I). We use the simulated fractionally integrated time

series to estimate the memory parameters with the modified LW estimator of Hou and Perron

2014 with bandwidth m = T δ , where δ = 0.75. We also estimate the break dates b̂ as sug-

gested by Lavielle and Moulines 2000, and conditional on these estimates, we obtain the break

size estimates λ̂ . We report the MSFE results under different optimal forecasting methods with

different estimated values of the break date, break size and memory parameter. We generally

observe that the forecast of the estimated equal weight method provides the largest MSFEs

among all forecasting methods. This is always true for most cases.

However, in Table 4.2, Table 4.3 and Table 4.4, we observe that in most cases, there is an

decrease in efficiency of the proposed methods due to the decrease in the sample size T .

Morever, in Table 4.5, we observe that in most cases, the forecasting performance of the

optimal proposed methods perform better than those in Table 4.1, due to the increase in the

actual break date, b = 0.2 for the time period T = 1000.
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λ 0.5 — 1 — 2

T = 1000

b = 0.1

Estimated Equal weight

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.08 0.35 0.12 0.9769 0.9769 — 0.21 1.07 0.10 0.9892 0.9892 — 0.32 2.16 0.1 1.2218 1.2218

0.23 0.61 0.10 1.2573 1.2573 — 0.28 1.20 0.08 1.1759 1.1759 — 0.30 1.65 0.1 1.2407 1.2407

0.28 1.16 0.05 1.5774 1.5774 — 0.29 0.86 0.07 1.5287 1.5287 — 0.44 2.60 0.1 1.5092 1.5092

0.46 1.75 0.02 2.5214 2.5214 — 0.39 1.48 0.12 2.3473 2.3473 — 0.52 2.24 0.1 2.0668 2.0668

Estimated Optimal weight

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.08 0.35 0.12 0.9515 0.9513 — 0.21 1.07 0.10 0.9275 0.9266 — 0.32 2.16 0.1 1.0114 1.0109

0.23 0.61 0.10 1.1242 1.1233 — 0.28 1.20 0.08 1.1125 1.1118 — 0.30 1.65 0.1 1.07127 1.07118

0.28 1.16 0.05 1.1638 1.1621 — 0.29 0.86 0.07 1.2954 1.2948 — 0.44 2.60 0.1 1.3813 1.3808

0.46 1.75 0.02 1.5410 1.5341 — 0.39 1.48 0.12 1.5769 1.5756 — 0.52 2.24 0.1 1.5442 1.5438

Estimated Post-break window

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.08 0.35 0.12 0.9575 0.9575 — 0.21 1.07 0.10 0.9275 0.9275 — 0.32 2.16 0.1 1.0115 1.0115

0.23 0.61 0.10 1.1326 1.1326 — 0.28 1.20 0.08 1.1128 1.1128 — 0.30 1.65 0.1 1.0712 1.0712

0.28 1.16 0.05 1.1699 1.1699 — 0.29 0.86 0.07 1.2945 1.2945 — 0.44 2.60 0.1 1.3812 1.3812

0.46 1.75 0.02 1.5442 1.5442 — 0.39 1.48 0.12 1.5796 1.5796 — 0.52 2.24 0.1 1.5446 1.5446

Estimated Optimal window

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.08 0.35 0.12 0.9399 0.9391 — 0.21 1.07 0.10 0.9274 0.9265 — 0.32 2.16 0.1 1.0114 1.0106

0.23 0.61 0.10 1.1318 1.1289 — 0.28 1.20 0.08 1.1104 1.1097 — 0.30 1.65 0.1 1.0712 1.0705

0.28 1.16 0.05 1.1920 1.1812 — 0.29 0.86 0.07 1.3287 1.3233 — 0.44 2.60 0.1 1.3813 1.3805

0.46 1.75 0.02 1.5704 1.5396 — 0.39 1.48 0.12 1.6054 1.5710 — 0.52 2.24 0.1 1.5487 1.5459

Estimated AveW

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.08 0.35 0.12 0.9417 0.9417 — 0.21 1.07 0.10 0.9266 0.9266 — 0.32 2.16 0.1 1.0059 1.0059

0.23 0.61 0.10 1.1869 1.1869 — 0.28 1.20 0.08 1.1053 1.1053 — 0.30 1.65 0.1 1.0642 1.0642

0.28 1.16 0.05 1.3345 1.3345 — 0.29 0.86 0.07 1.3681 1.3681 — 0.44 2.60 0.1 1.3357 1.3357

0.46 1.75 0.02 1.9106 1.9106 — 0.39 1.48 0.12 1.8258 1.8258 — 0.52 2.24 0.1 1.5669 1.5669

Table 4.1: Simulation results of the MSFEs of each method applied on fractionally integrated
time series for the time period T = 1000 and break date b = 0.1 with different break date
estimates b̂, break size estimates λ̂ and modified LW estimates d̂ based on bandwidth m= T 0.75

in a single, discrete break in a simple regression model.
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λ 0.5 — 1 — 2

T = 500

b = 0.1

Estimated Equal weight

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.16 0.64 0.09 1.0929 1.0929 — 0.23 1.04 0.10 0.9735 0.9735 — 0.31 1.80 0.1 1.1066 1.1066

0.24 0.35 0.55 1.2916 1.2916 — 0.29 0.98 0.05 1.2887 1.2887 — 0.32 1.83 0.1 1.2364 1.2364

0.35 0.83 0.86 1.7357 1.7357 — 0.35 -0.44 0.55 1.5216 1.5216 — 0.41 2.00 0.1 1.4437 1.4437

0.35 0.49 0.54 2.4612 2.4612 — 0.37 0.82 0.47 2.4005 2.4005 — 0.44 2.51 0.1 2.1195 2.1195

Estimated Optimal weight

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.16 0.64 0.09 1.0613 1.0607 — 0.23 1.04 0.10 0.9263 0.9243 — 0.31 1.80 0.1 0.9838 0.9826

0.24 0.35 0.55 1.0167 1.0153 — 0.29 0.98 0.05 1.2208 1.2196 — 0.32 1.83 0.1 1.0700 1.0691

0.35 0.83 0.86 1.2555 1.2523 — 0.35 -0.44 0.55 1.2752 1.2727 — 0.41 2.00 0.1 1.2365 1.2435

0.35 0.49 0.54 1.4593 1.4576 — 0.37 0.82 0.47 1.5224 1.5211 — 0.44 2.51 0.1 1.5720 1.5713

Estimated Post-break window

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.16 0.64 0.09 1.0773 1.0773 — 0.23 1.04 0.10 0.9265 0.9265 — 0.31 1.80 0.1 0.9837 0.9837

0.24 0.35 0.55 1.0335 1.0335 — 0.29 0.98 0.05 1.2239 1.2239 — 0.32 1.83 0.1 1.0702 1.0702

0.35 0.83 0.86 1.2655 1.2655 — 0.35 -0.44 0.55 1.2794 1.2794 — 0.41 2.00 0.1 1.2366 1.2366

0.35 0.49 0.54 1.4687 1.4687 — 0.37 0.82 0.47 1.5273 1.5273 — 0.44 2.51 0.1 1.5726 1.5726

Estimated Optimal window

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.16 0.64 0.09 1.0701 1.0670 — 0.23 1.04 0.10 0.9263 0.9255 — 0.31 1.80 0.1 0.9839 0.9826

0.24 0.35 0.55 1.0994 1.0880 — 0.29 0.98 0.05 1.2137 1.2104 — 0.32 1.83 0.1 1.0702 1.0691

0.35 0.83 0.86 1.2655 1.2464 — 0.35 -0.44 0.55 1.2808 1.2635 — 0.41 2.00 0.1 1.2369 1.2220

0.35 0.49 0.54 1.4731 1.4675 — 0.37 0.82 0.47 1.5667 1.5536 — 0.44 2.51 0.1 1.5724 1.4844

Estimated AveW

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.16 0.64 0.09 1.0743 1.0743 — 0.23 1.04 0.10 0.9168 0.9168 — 0.31 1.80 0.1 0.9831 0.9831

0.24 0.35 0.55 1.1867 1.1867 — 0.29 0.98 0.05 1.2110 1.2110 — 0.32 1.83 0.1 1.0538 1.0538

0.35 0.83 0.86 1.4582 1.4582 — 0.35 -0.44 0.55 1.3099 1.3099 — 0.41 2.00 0.1 1.2068 1.2068

0.35 0.49 0.54 1.7956 1.7956 — 0.37 0.82 0.47 1.7945 1.7945 — 0.44 2.51 0.1 1.5721 1.5721

Table 4.2: Simulation results of the MSFEs of each method applied on fractionally integrated
time series for the time period T = 500 and break date b = 0.1 with different break date
estimates b̂, break size estimates λ̂ and modified LW estimates d̂ based on bandwidth m= T 0.75

in a single, discrete break in a simple regression model.
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λ 0.5 — 1 — 2

T = 300

b = 0.1

Estimated Equal weight

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

-0.005 0.82 0.03 1.2139 1.2139 — 0.20 0.96 0.11 1.1315 1.1315 — 0.34 2.27 0.1 1.1146 1.1146

0.20 -1.11 0.03 1.3890 1.3890 — 0.26 0.48 0.15 1.2940 1.2940 — 0.39 1.93 0.1 1.2672 1.2672

0.28 1.17 0.89 1.8776 1.8776 — 0.28 0.84 0.87 1.7887 1.7887 — 0.40 1.81 0.23 1.5750 1.5750

0.54 -1.51 0.21 2.4709 2.4709 — 0.36 -0.95 0.89 2.2586 2.2586 — 0.49 1.59 0.12 2.0250 2.0250

Estimated Optimal weight

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

-0.005 0.82 0.03 1.0587 1.0575 — 0.20 0.96 0.11 1.0626 1.0619 — 0.34 2.27 0.1 1.0053 1.0047

0.20 -1.11 0.03 1.0713 1.0679 — 0.26 0.48 0.15 1.0899 1.0886 — 0.39 1.93 0.1 1.1302 1.1285

0.28 1.17 0.89 1.2764 1.2655 — 0.28 0.84 0.87 1.2943 1.2939 — 0.40 1.81 0.23 1.2519 1.2504

0.54 -1.51 0.21 1.3664 2.3654 — 0.36 -0.95 0.89 1.4770 1.4686 — 0.49 1.59 0.12 1.5662 1.5649

Estimated Post-break window

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

-0.005 0.82 0.03 1.1004 1.1004 — 0.20 0.96 0.11 1.0642 1.0642 — 0.34 2.27 0.1 1.0051 1.0051

0.20 -1.11 0.03 1.1024 1.1024 — 0.26 0.48 0.15 1.0957 1.0957 — 0.39 1.93 0.1 1.1305 1.1305

0.28 1.17 0.89 1.2968 1.2968 — 0.28 0.84 0.87 1.3010 1.3010 — 0.40 1.81 0.23 1.2521 1.2521

0.54 -1.51 0.21 1.3844 1.3844 — 0.36 -0.95 0.89 1.4850 1.4850 — 0.49 1.59 0.12 1.5685 1.5685

Estimated Optimal window

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

-0.005 0.82 0.03 1.0716 1.0678 — 0.20 0.96 0.11 1.0663 1.0645 — 0.34 2.27 0.1 1.0056 1.0047

0.20 -1.11 0.03 1.1129 1.0961 — 0.26 0.48 0.15 1.1051 1.0999 — 0.39 1.93 0.1 1.1308 1.1296

0.28 1.17 0.89 1.3022 1.3015 — 0.28 0.84 0.87 1.3210 1.3185 — 0.40 1.81 0.23 1.2528 1.2488

0.54 -1.51 0.21 1.4223 1.6459 — 0.36 -0.95 0.89 1.5207 1.6989 — 0.49 1.59 0.12 1.5686 2.8876

Estimated AveW

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

-0.005 0.82 0.03 1.1541 1.1541 — 0.20 0.96 0.11 1.0846 1.0846 — 0.34 2.27 0.1 1.0010 1.0010

0.20 -1.11 0.03 1.2512 1.2512 — 0.26 0.48 0.15 1.1572 1.1572 — 0.39 1.93 0.1 1.1240 1.1240

0.28 1.17 0.89 1.5395 1.5395 — 0.28 0.84 0.87 1.4705 1.4705 — 0.44 2.60 0.1 1.2397 1.2397

0.54 -1.51 0.21 1.8127 1.8127 — 0.36 -0.95 0.89 1.6772 1.6772 — 0.49 1.59 0.12 1.5202 1.5202

Table 4.3: Simulation results of the MSFEs of each method applied on fractionally integrated
time series for the time period T = 300 and break date b = 0.1 with different break date
estimates b̂, break size estimates λ̂ and modified LW estimates d̂ based on bandwidth m= T 0.75

in a single, discrete break in a simple regression model.
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λ 0.5 — 1 — 2

T = 250

b = 0.1

Estimated Equal weight

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.19 2.20 0.02 1.2761 1.2761 — 0.18 0.72 0.18 1.1282 1.1282 — 0.38 1.67 0.1 1.2459 1.2459

0.26 0.46 0.16 1.5771 1.5771 — 0.27 0.75 0.42 1.3069 1.3069 — 0.41 2.10 0.1 1.2617 1.2617

0.31 -0.58 0.74 1.7819 1.7819 — 0.33 -0.93 0.81 1.6537 1.6537 — 0.47 1.28 0.65 1.4395 1.4395

0.51 2.12 0.06 2.3493 2.3493 — 0.32 -0.56 0.44 2.4064 2.4064 — 0.52 1.78 0.20 2.3062 2.3062

Estimated Optimal weight

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.19 2.20 0.02 1.0697 1.0686 — 0.18 0.72 0.18 1.0370 1.0366 — 0.38 1.67 0.1 1.1039 1.1016

0.26 0.46 0.16 1.1242 1.1198 — 0.27 0.75 0.42 1.1310 1.1278 — 0.41 2.10 0.1 1.1391 1.1378

0.31 -0.58 0.74 1.2114 1.2085 — 0.33 -0.93 0.81 1.2969 1.2942 — 0.47 1.28 0.65 1.1181 1.1174

0.51 2.12 0.06 1.4205 1.4188 — 0.32 -0.56 0.44 1.5360 1.4932 — 0.52 1.78 0.20 1.5655 1.5647

Estimated Post-break window

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.19 2.20 0.02 1.1117 1.1117 — 0.18 0.72 0.18 1.0432 1.0432 — 0.38 1.67 0.1 1.1037 1.1037

0.26 0.46 0.16 1.1762 1.1762 — 0.27 0.75 0.42 1.1512 1.1512 — 0.41 2.10 0.1 1.1386 1.1386

0.31 -0.58 0.74 1.2344 1.2344 — 0.33 -0.93 0.81 1.3141 1.3141 — 0.47 1.28 0.65 1.1193 1.1193

0.51 2.12 0.06 1.4323 1.4323 — 0.32 -0.56 0.44 1.5495 1.5495 — 0.52 1.78 0.20 1.5684 1.5684

Estimated Optimal window

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.19 2.20 0.02 1.1012 1.0917 — 0.18 0.72 0.18 1.0318 1.0287 — 0.38 1.67 0.1 1.1042 1.1028

0.26 0.46 0.16 1.1791 1.1630 — 0.27 0.75 0.42 1.1580 1.1386 — 0.41 2.10 0.1 1.1394 1.1386

0.31 -0.58 0.74 1.2147 1.2123 — 0.33 -0.93 0.81 1.3057 1.2890 — 0.47 1.28 0.65 1.1290 1.1276

0.51 2.12 0.06 1.4593 1.4582 — 0.32 -0.56 0.44 1.5361 1.5356 — 0.52 1.78 0.20 1.5696 1.5685

Estimated AveW

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.19 2.20 0.02 1.2014 1.2014 — 0.18 0.72 0.18 1.0641 1.0641 — 0.38 1.67 0.1 1.1008 1.1008

0.26 0.46 0.16 1.3876 1.3876 — 0.27 0.75 0.42 1.1833 1.1833 — 0.41 2.10 0.1 1.1276 1.1276

0.31 -0.58 0.74 1.4570 1.4570 — 0.33 -0.93 0.81 1.3763 1.3763 — 0.47 1.28 0.65 1.1025 1.1025

0.51 2.12 0.06 1.7313 1.7313 — 0.32 -0.56 0.44 1.6892 1.6892 — 0.52 1.78 0.20 1.6088 1.6088

Table 4.4: Simulation results of the MSFEs of each method applied on fractionally integrated
time series for the time period T = 250 and break date b = 0.1 with different break date
estimates b̂, break size estimates λ̂ and modified LW estimates d̂ based on bandwidth m= T 0.75

in a single, discrete break in a simple regression model.
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λ 0.5 — 1 — 2

T = 1000

b = 0.2

Estimated Equal weight

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.12 0.44 0.19 1.0135 1.0135 — 0.23 0.99 0.20 1.1300 1.1300 — 0.36 2.12 0.20 1.7511 1.7511

0.22 0.56 0.10 1.2620 1.2620 — 0.31 1.15 0.21 1.3152 1.3152 — 0.36 1.75 0.20 1.7334 1.7334

0.28 1.11 0.05 1.5825 1.5825 — 0.30 0.66 0.23 1.5740 1.5740 — 0.46 2.65 0.20 1.9435 1.9435

0.46 1.70 0.02 2.5184 2.5184 — 0.41 1.44 0.19 2.3341 2.3341 — 0.50 1.86 0.18 2.4768 2.4768

Estimated Optimal weight

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.12 0.44 0.19 0.9323 0.9316 — 0.23 0.99 0.20 0.9271 0.9263 — 0.36 2.12 0.20 1.0108 1.0093

0.22 0.56 0.10 1.1027 1.1019 — 0.31 1.15 0.21 1.1105 1.1093 — 0.36 1.75 0.20 1.0690 1.0682

0.28 1.11 0.05 1.1562 1.1554 — 0.30 0.66 0.23 1.3129 1.3117 — 0.46 2.65 0.20 1.3752 1.3747

0.46 1.70 0.02 1.5483 1.5477 — 0.41 1.44 0.19 1.5886 1.5871 — 0.50 1.86 0.18 1.5590 1.5583

Estimated Post-break window

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.12 0.44 0.19 0.9316 0.9316 — 0.23 0.99 0.20 0.9268 0.9268 — 0.36 2.12 0.20 1.0109 1.0109

0.22 0.56 0.10 1.1046 1.1046 — 0.31 1.15 0.21 1.1104 1.1104 — 0.36 1.75 0.20 1.0692 1.0692

0.28 1.11 0.05 1.1594 1.1594 — 0.30 0.66 0.23 1.3133 1.3133 — 0.46 2.65 0.20 1.3751 1.3751

0.46 1.70 0.02 1.5523 1.5523 — 0.41 1.44 0.19 1.5908 1.5908 — 0.50 1.86 0.18 1.5589 1.5589

Estimated Optimal window

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.12 0.44 0.19 0.9354 0.9348 — 0.23 0.99 0.20 0.9270 0.9264 — 0.36 2.12 0.20 1.0108 1.0094

0.22 0.56 0.10 1.1188 1.1186 — 0.31 1.15 0.21 1.1105 1.1094 — 0.36 1.75 0.20 1.0691 1.0683

0.28 1.11 0.05 1.1770 1.1716 — 0.30 0.66 0.23 1.3194 1.3169 — 0.46 2.65 0.20 1.3753 1.3747

0.46 1.70 0.02 1.5857 1.5566 — 0.41 1.44 0.19 1.6030 1.5854 — 0.50 1.86 0.18 1.5592 1.5587

Estimated AveW

d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II — d̂ λ̂ b̂ I II

0.12 0.44 0.19 0.9418 0.9418 — 0.23 0.99 0.20 0.9316 0.9316 — 0.36 2.12 0.20 1.0200 1.0200

0.22 0.56 0.10 1.1623 1.1623 — 0.31 1.15 0.21 1.1090 1.1090 — 0.36 1.75 0.20 1.0730 1.0730

0.28 1.11 0.05 1.3036 1.3036 — 0.30 0.66 0.23 1.3171 1.3171 — 0.46 2.65 0.20 1.3312 1.3312

0.46 1.70 0.02 1.8949 1.8949 — 0.41 1.44 0.19 1.7572 1.7572 — 0.50 1.86 0.18 1.5316 1.5316

Table 4.5: Simulation results of the MSFEs of each method applied on fractionally integrated
time series for the time period T = 1000 and break date b = 0.2 with different break date
estimates b̂, break size estimates λ̂ and modified LW estimates d̂ based on bandwidth m= T 0.75

in a single, discrete break in a simple regression model.
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This table presents the empirical application to inflation rates forecasting in Germany and

Australia. We observe that the estimated optimal window and estimated AveW methods provide

the best forecasts of the inflation rates of Germany and Australia, respectively. In contrast, the

estimated post-break window performs poorly, displaying the highest MSFEs among all meth-

ods in both cases.

Methods Estimate Values Optimal Weight Postbreak Window Optimal Window AveW

d̂ λ̂ b̂ I II I II I II I II

DEU 0.2504−0.2222 0.3033 0.1047 0.1028 0.1168 0.1168 0.1077 0.0694 0.1111 0.1111

AUT 0.1092−0.2711 0.3377 0.0374 0.0373 0.0441 0.0441 0.0391 0.0361 0.0331 0.0331

Table 4.6: MSFE results for inflation rates under different forecast optimal methods, with a
single, discrete break and sample size T = 610, break date estimates b̂, break size estimates
λ̂ , and modified LW estimates d̂ based on bandwidth m = T 3/4 in a simple regression model.
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Appendix C - Figures

This figure presents the series of inflation rates for Germany and Australia, respectively, where

the red vertical lines represent their corresponding estimated break points, T̂ G
b = 185 and T̂ A

b =

206.

Germany

Australia

Figure 4.1: Inflation Rates for Germany and Australia with their respective memory estimate
d̂, break size estimate λ̂ and break date estimate b̂. The red vertical line indicate the break
point estimate.
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