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Abstract
This paper covers a numerical analysis of a novel approach to increasing the crashworthiness of double hull ships. As
proposed in Schöttelndreyer (Füllstoffe in der Konstruktion: ein Konzept zur Verstärkung vonSchiffsseitenhüllen, Technische
Uni-versitt Hamburg, Hamburg, 2015), it involves the usage of granular materials in the cavity of the double hull ship. For the
modeling of this problem, the discrete element method (DEM) is used for the granules while the finite element method is used
for the ship’s structure. In order to account for the structural damage caused by collision, a gradient-enhanced ductile damage
model is implemented. In addition to avoid locking, an enhanced strain-based formulation is used. For large-scale problems
such as the one in the current study, modeling of all granules with realistic size can be computationally expensive. A two-scale
model based on the work of Wellmann and Wriggers (Comput Methods Appl Mech Eng 205:46–58, 2012) is applied—and
the region of significant localization is modeled with the DEM, while a continuum model is used for the other regions. The
coupling of both discretization schemes is based on the Arlequin method. Numerical homogenization is used to estimate the
material parameters of the continuum region with the granules. This involves the usage of meshless interpolation functions
for the projection of particle displacement and stress onto a background mesh. Later, the volume-averaged stress and strain
within the representative volume element is used to estimate thematerial parameters. At the end, the results from the combined
numerical model are compared with the results from the experiments given in Woitzik and Düster (Ships Offshore Struct
1–12, 2020). This validates both the accuracy of the numerical model and the proposed idea of increasing the crashworthiness
of double hull vessels with the granular materials.

Keywords Multiscale DEM–FEM coupled model · Homogenization · Gradient enhanced ductile damage · Crashworthiness
of ship

1 Introduction

Today, the transport of cargo by sea constitutes almost 90%
of world trade. According to a recent report [1], the amount
of total cargo transported by ship has increased by almost
300% over the last two decades. With the increase in ship
traffic, the risk of ship collisions has increased as well. Sev-
eral strategies regarding increased ship safety and improved
risk analysis are presented in [2]. Furthermore, several design
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approaches to increase the crashworthiness of double hull
ship are investigated in [3,4]. Recently, Schöttelndreyer [5]
proposed a design that helps to increase the potential crash
energy absorption of a double hull ship by filling the com-
partment between the inner and the outer hull of the ship
with lightweight granular materials. In [6,7], the properties
and bulk behavior of suitable granular materials, namely
expanded glass granules, are investigated in detail. As men-
tioned in [8], the granular material should be able to increase
the crashworthiness of ship, but should not increase itsweight
too much. Therefore, its usage is recommended in critical
region only rather than whole ship. Based on the study car-
ried out in the aforementioned work, a detailed analysis of
a side structure of a particle-filled double hull vessel will
be performed here. In [8], several experiments were car-
ried out to investigate the suitability of granular materials
as crash energy absorbing medium. In the current work, a
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detailed numerical analysis of the particle-filled double hull
ship together with the comparison between the results and
the experiments, as shown in [8,9], is performed.

For the modeling of granular materials, the discrete
element method (DEM) will be used. This method was intro-
duced by Cundall and Strack (1979) for the modeling of
many rigid bodies. Here, the bodies are assumed to be rigid,
interacting through the contact forces. The contact forces are
obtained from the overlap of the interacting particles. For a
detailed study regarding the specific contact laws used for
the expanded glass granules, the reader is referred to [6,7].
For the modeling of the ship’s structure, the finite element
method (FEM) will be used. For the collision problem, spe-
cial attention will be paid to the material constitutive law,
which undergoes degradation and damage.

A special highlight of the current work is the usage of
a concurrent two-scale model. A model in which only the
DEM is used for the modeling with the realistic size of the
granules will involvemillions of particles. In the experiments
carried out in [8], it was observed that the granular materi-
als directly in the vicinity of the colliding indenter undergo
significant crushing or large displacement, see Sect. 7. In
the region further away, however, significant deformation or
crushingof particles is not observed.This allows for the usage
of a concurrent two-scale model, which can help to circum-
vent the computationally expensive approach of modeling
all particles with the DEM. Within this concept, the region
exhibiting considerable granule deformation ismodeledwith
the DEM while the region where deformation is not signif-
icant is modeled with the FEM. The coupling based on the
Arlequin method covers the interaction between these two
regions, as presented in [10–12]. In addition to the concur-
rent two-scale model, coarse graining of the particles is also
used in the current work. This allows for a computationally
efficient numerical model where the accuracy, by represen-
tation of particles with the DEM in the critical region, is not
compromised.At the end, the numerical results are compared
with the experiments given in [8]. This allows to validate the
accuracy of the model and the assumptions made in the cur-
rent work.

This paper is structured as follows: Sect. 2 gives a descrip-
tion of the homogenization approach, which is used for the
material parameter estimation of the continuummodel for the
granular materials. Section 4 covers the FEM-based model-
ing of the ship’s structure. In Sect. 5, theArlequinmethod and
the concept of the concurrent two-scale model is explained.
Section 6 offers a brief description of the experiments regard-
ing the collision of the representative region of ship’s side
structure. In Sect. 7, several numerical examples and their
comparison with the experiments are performed. Finally, the
results are summarized in Sect. 8.

2 Homogenization approach

In the context of the two-scale model, the region represented
by a continuum material model is based on the averaged
response of the granular materials, see [12] and Fig. 2. In
this section, the concept of numerical homogenization will
be explained, which is later used to estimate the material
parameters for the Mohr–Coulomb model. In the context of
numerical homogenization of non-cohesive granular mate-
rials, the literature offers several strategies. One approach
is based on the definition of a representative volume ele-
ment (RVE) as a periodic sample where periodic boundary
conditions are enforced. This approach has been used con-
sidering a cubical- and cylindrical-shaped RVE as shown in
[12–14].Within this scheme, all particles are forced to remain
in the initially defined domain. Consequently, particles leav-
ing from one side of the RVE during its deformation will
reenter from the opposite side. For the enforcement of peri-
odic boundary conditions and a duplication of contact forces
on the opposite sides of the RVE, ghost particles are intro-
duced. A detailed description of this model can be found in
[12]. Another approach is based on defining a RVE as a sub-
domain within a region of particles, see [15,16]. Within this
scheme, defining the boundary of the RVE in terms of parti-
cles can be challenging. In [15], the boundary particles of the
RVE are used to construct the triangular mesh. The displace-
ment of such a triangular mesh is used to calculate the strain,
assuming a constant strain within the mesh. In case of signif-
icant movement of particles within the RVE, the boundary
particles have to be updated and the assumption of constant
strain for triangulated boundary particles may not be appli-
cable.

In this work, the homogenization approach is based on
a projection of the particle kinematics and stress applying
meshless functions. This method was also used in [17] to
calculate the strain of particle aggregates. The algorithm
presented in [15,18] used a fixed mesh that was based on
coordinates of the particles. Asmentioned earlier, such a geo-
metric constraint can lead to erroneous results —especially
in the case of extensive particle movement, which results in a
large distortion of the mesh. In the case of meshless interpo-
lation, there is no requirement of elements, and only particle
nodal coordinates and associated fields are needed. The cur-
rent strategy is based on projecting fields associated with
the particle onto a background mesh which is later used for
post-processing. This results in non-local projection of data,
without being constrained by the mesh. It must be pointed
out that in the current work, a meshless method is used for
the projection purpose. No simulation based on this method
is performed.

The main idea of the method is sketched in Fig. 1. The fig-
ure shows a pictorial representation of the calculation of the
continuum field based on discrete information of particles.
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Fig. 1 Graphical representation of meshless interpolation of particle
data in the DEM

A background mesh is introduced for the continuum-based
representation of discrete fields associated with DEM. The
displacement field at any nodal pointwithin themesh is based
on the contribution from the displacement of particles that lie
within its compact support. The region of compact support
can be of arbitrary shape—but it is usually represented as
a circular region in two-dimensional cases, or as a spheri-
cal region in three-dimensional cases. In the current work,
both displacement and stress fields are interpolated by this
scheme.

For the calculation of the displacement field at an arbi-
trary position within the particle-filled domain, the following
interpolation function is used.

u(x) ≈
Np∑

i=1

Kp(x − xi , x)u(xi )�Vi (1)

Themeshfree interpolant in Eq. (1) is given in terms of the
displacement of particles and is based on the reproducing ker-
nel particle method (RKPM), see [19]. Here, Np represents
the number of particles whose region of influence includes
the point x. The first term on the right-hand side of Eq. (1)
can be further expanded as

Kp(x − xi , x) = Cρ(x − xi , x)�ρ(x − xi , x). (2)

In Eq. (2),Cρ represents the correction function while�ρ

represents the kernel function defined as

�ρ = 1

ρ3�

(
x
ρ

)
. (3)

Here ρ represents the size of the kernel function. The ker-
nel function is defined as a cubic spline function:

�(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
6 (x + 2)3 − 2 ≤ x ≤ −1
2
3 − x2(1 + x

2 ) − 1 ≤ x ≤ 0
2
3 − x2(1 − x

2 ) 0 ≤ x ≤ 1
1
6 (x − 2)3 1 ≤ x ≤ 2

0 otherwise

(4)

In the three-dimensional case, ρ is defined in terms of the
radius of the particle, ρ = 2r , and the kernel function is
defined as

�(x, y, z) = �(x)�(y)�(z). (5)

In [19], the calculation of the correction function is based
on solving a set ofmoment equations.However, solving these
equations can be computationally expensive. Here, a simple
condition as proposed in [17] is used. It is based on enforcing
a simplified form of partition of unity at an arbitrary position
x inside the domain in order to determine Cρ(x − xi , x).

Np∑

i=1

Cρ(x − xi , x)�ρ(x)�Vi = 1 (6)

In Eq. (6), �Vi represents the nodal weight, which is associ-
atedwith the coordinates of the particle. For the calculation of
the weight, a tetrahedral mesh based on particle coordinates
is generated and calculated as

�Vi = 1

Nv

NT∑

k=1

��k . (7)

Here, NT represents all tetrahedral elements that share the
particle center k as their vertex, and�k represents the volume
of tetrahedron k. Nv represents the number of vertices of the
polygon, which in the case of a tetrahedron is 4. The mesh
generation is based on numerical library CGAL, [20].

2.1 Effective stress and strain

The calculation of effective stress is based on a two-step
averaging procedure.Within the first step, the averaged stress
for a single particle as shown in [21,22] is calculated, see Eq.
(10). Afterward, it is homogenized over the RVE of interest.
This averaging procedure can be written as

〈σ 〉 = 1

VT

NE∑

i=1

V i σ̄ i
P . (8)
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Here, 〈σ 〉 denotes the effective stress for the RVE, VT the
total volume for the RVE, NE the total number of elements
within the volume of averaging, V i the volume of the element
i within the RVE, and σ̄ i

P the projected preaveraged stress
within an element i—while it is represented by σ̄ i before
projection. The starting point for calculating the stress tensor
σ̄ i is the following identity

σ T = div(x ⊗ σ ) − x ⊗ divσ (9)

By using Eq. (9), the averaged stress σ̄ i can be calculated as
given

σ̄ i T = 1

V i,p

∫

V i
div(x ⊗ σ

′
) dV

= 1

V i,p

∫

∂V i
div(x ⊗ σ

′
) · n dS

= 1

V i,p

∫

∂V i
(x ⊗ t

′
) dS. (10)

Here,σ
′
represents the stress at a particle coordinate x. σ̄ i T is

the transposed form of σ̄ i , and V i,p represents the volume of
particle i . In addition, the local formof equilibriumdivσ

′ = 0
togetherwithGauss theorem is also applied. Furthermore, the
third part of the equation results from the Cauchy theorem
t
′ = σ

′
n, where n represents the outward unit normal. The

infinitesimal surface element dS can be written in terms of
the contact area dsc at the contact point c as follows

dS =
Nc∑

c=1

δ(|x − xc|)dsc (11)

By integrating the delta function given in Eq. (11) together
with the relation of the contact force f c with stress vector
tc = f c/ds

c, Eq. (10) can be rewritten as

σ̄ i T = 1

V i,p

Nc∑

i=1

xc ⊗ f c

or σ̄ i = 1

V i,p

Nc∑

i=1

f c ⊗ xc (12)

where Nc represents the total number of particles in contact
with particle i . The projection of the stress is based on the
formulation given in Eq. (1), where the stress field is used
instead of the displacement field. Furthermore, the calcu-
lation of the current volume V i is based on the following
well-known identity

V i = J V0 where J = det(F). (13)

For the calculation of the deformation gradient F, a hexahe-
dral element-shaped background mesh is used. The first step

for the calculation of F involves a projection of the particle
displacement onto the background mesh, as given by Eq. (1).
Afterward, the projected displacement field, together with
standard isoparametric shape functions, is used to calculate
the deformation gradient. Once F is known, it can be further
utilized for the calculation of a strain, which in this case is the
Green-Lagrange strain E1. Its calculation for each element
inside the RVE is based on

E = 1

2
(FT F − I). (14)

Finally, the calculation of the volume averaged strain is based
on

〈E〉 = 1

VT

NE∑

i=1

V i Ei
P . (15)

Here, Ei
P denotes the Green–Lagrange strain, which is cal-

culated from the projected particle displacement.

3 Coarse graining

In this section, the methodology for the coarse graining of
particles will be explained. This procedure is quite exten-
sively used in molecular dynamics (MD) simulations, where
molecules are used for modeling instead of all-atom repre-
sentations. In comparison with MD, research in the area of
coarse graining in the scope of the DEM is limited. Among
others, it includes propositions by [23,24], where several par-
ticles are represented with a coarse representative particle. In
order to ensure that themechanical response is not affected by
such coarsening, they used appropriate scaling laws. How-
ever, such a procedure will not be accurate if the system
response depends on the size of the particles. In [25], adap-
tive coarse grainingwas used,with particles thatwere divided
into actual and coarse scale. Actual-sized particles were used
in the critical region, and coarse graining was applied to the
other regions. This scheme was used for a dynamic problem,
where the discharge of a silo was examined. Also, scaling
laws were used to accurately represent the coarsely grained
particles.

In the current work, coarse graining based on the work
of [26] is applied. The basic idea proposed therein is to
use particle scale-independent contact constitutive laws. For
upscaling/coarse graining, it was proposed that the sys-
tem must satisfy three similarity principles. These include
mechanical, geometric, and dynamic similarity. For the

1 For the fitting of parameters, a small deformation of RVE is consid-
ered. In this case, the quadratic term in E can be neglected and it can
be assumed that E ≈ ε
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imposition of mechanical similarity, particle strain εp and
stress σp are defined as

εp ∝ u p/L p; σp ∝ Fp/Ap, (16)

where

L p = 2Rp; Ap = L2
p; Vp = L3

p. (17)

Here, Fp is the resultant force acting on a particle due to
interaction with neighbor particles and is a function of the
overlapped distance u p. L p, Ap, and Vp are the represen-
tative length, area, and volume, respectively. For a similar
mechanical behavior, the following conditions are imposed

εp = εm; σp = σm, (18)

where quantities with a subscript m represent its value in
a coarse-grained system, while p represent its value in the
physical/actual system. Equation (18) implies the following
conditions:

um
u p

= Lm

L p
= Rm

Rp
= h; Fm

Fp
= Am

Ap
= h2 (19)

Here, h represents the ratio which can be defined in terms
of the ratio of the radius of the coarse-grained particle to the
actual sized particle. The first condition in Eq. (19) repre-
sents the scaling of the size of the particles with the ratio
h, while the second condition—which is more important—
implies the particle-size-independent contact law. Since the
Hertz contact law is used in the current work, it will be elab-
orated on in more detail. The normal contact force can be
written as

F = 4E∗

3
(Ru3)1/2. (20)

From this, the stress–strain relation can be obtained as

σ(R, ε) = 4E∗

3
√
2
ε3/2. (21)

It can be seen that theHertz contact law for normal interaction
is scale-independent. A similar approach can be applied for
tangential contact. The case of dynamic similarity becomes
more relevant when the inertial forces have to be taken
into account. Since the current problem is quasi-static, this
condition can be relaxed. An important aspect of upscal-
ing is geometric similarity. For an accurate reproduction of
response with the coarse-grained particles, it must follow the
scaling of particle’s size which is equivalent to h. This is
accompanied with the scaling of the characteristic length of
the domain. Scaling of the characteristic domainwill result in
the same number of coarse grained particles as in the actual

model and will not result in any computational advantage.
No scaling of the domain is performed in this work—and
coarse graining is only applied in a region where the system
response does not depend on the size of the particles. With
this, the possible error due to relaxation of enforcement of
exact scaling laws is minimized. An overview of discussions
on exact scaling laws and relaxation in the context of coarse
graining for the sake of computational efficiency is given in
[27].

4 Finite element model

As mentioned earlier, the modeling of the ship’s structure is
based on the FEM. This method requires that the constitu-
tive material model along with the contact constraint during
indentation is correctly implemented. In the literature, there
are well-established theories regarding the phenomenologi-
calmodeling of finite deformation of steel ormetal in general,
see [28,29], which will be also used in the current work.
During deformation, the structure undergoes an irreversible
process which is referred to as plasticity. In order to model
this behavior, the total deformation gradient is split into an
elastic and a plastic part

F = FeF p. (22)

For the integration of the evolution equations of the plasticity
model, a classical return mapping algorithm is applied. For
the current model, a von Mises yield criterion together with
linear hardening,

φ = √
s · s −

√
2

2
(Y0 + H α) (23)

is used. Here s represents the deviatoric part of the Kirch-
hoff stress tensor, Y0 represents the initial yield stress, H is
the hardening variable, and α denotes the total accumulated
plastic strain. Furthermore, the elastic strain energy function
is based on a Neo-Hookean material model. For more details
regarding this model, the reader is referred to [28]. During
deformationbeyond a certain limit, the steel structure is prone
to degradation or rupture. This degradation is accounted for
by considering a gradient-enhanced damage model. With the
gradient enhancement, the problem of mesh-dependent solu-
tion is circumvented. The model in the current study is based
on the work of [30]. The gradient enhancement is introduced
with the inclusion of an additional field variable, z̄. The dam-
age driving force is represented by a local variable z. The
variable z̄ is related to the local part z with the Helmholtz
type equation

z̄ − l2∇2 z̄ = z, (24)
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where l represents the material-dependent length parameter
and controls the localization region while ∇2 is the Laplace
operator.

The evolution of z is based on

zn+1 = zn + �α < 1 + A
τh

τeq
> αB, (25)

where τh represents the hydrostatic part of the Kirchhoff
stress tensor, while τeq represents its deviatoric part. A and B
are fitting parameters which control the evolution of damage.
The damage variable given here contributes to the degrada-
tion of both the elastic strain energy and the yield criterion.
This approach was also used in [31] for a phase-field model
based crack propagation.

Due to the thin structure of the ship’s hull—and due to the
fact that isochoric plastic deformation is considered—usage
of a standard low-order hexahedral element formulation can
result in volumetric and shear locking. In order to circumvent
this problem, an enhanced assumed strain (EAS)-based for-
mulation is used. The element formulation used in the current
work is related to the work of Korelc et al. [32]. It is based
on the introduction of incompatible parameters αe, which
are defined at the element level and are discontinuous across
elements. This results in a modified displacement gradient

H = Hc + Hu + F0 H̄ (26)

and an additional set of incompatible shape functions. Here,
Hc represents the constant part of the compatible displace-
ment gradient while Hu represents its variable part. H̄
represents the variable part of the incompatible displacement
gradient. Further details and a comparisonwith other element
formulations can be found in [32].

The definition of the FEM model is completed by intro-
ducing the computational contact model. Within the weak
form of the FEM problem definition, a contact constraint is
introduced by adding

Gc =
∫

∂cB
tc · (η2c − η1c) da, (27)

where tc represents the contact stress vector, while η2c and
η1c represent the test functions corresponding to body 2 and
body 1 in contact, respectively. Themortar method, as imple-
mented in [33], serves to solve this contact problem. Due to
the robustness of this method in the case of large deforma-
tion and sliding, it is to be favored over other techniques. In
contrast to strong coupling of node pairs, the contact con-
straints are enforced in a weak sense. Here, the calculation
of kinematic contact quantities of a slave node is based on
averaging them over the adjacent slave elements.

5 Arlequinmethod

The prominent feature of our concurrent two-scale model
is the Arlequin method based coupling of the FEM and the
DEM domain. The domain �FE and �DE representing the
continuum and the discrete element model can be discretized
with well-established numerical methods. However, special
care must be taken where the domains of these two methods
overlap. For the overlapping domain �A, weight functions
w(x) as described in [12] are used. These functions must
satisfy the following conditions:

Fig. 2 Representation of the two-scale model

w(x) =

⎧
⎪⎨

⎪⎩

0 ∀ x ∈ �FE \ �DE

1 ∀ x ∈ �DE \ �FE

[0, 1] ∀ x ∈ �A

(28)

Consequently, by using appropriate weights, an interpola-
tion between the FEMand theDEM is used for thematerial in
the overlapping domain �A. By applying the weights given
in Eq. (28), the weighted virtual work can be written as fol-
lows:

δW = δWFE + δWDE

(29)

δWFE =
∫

�FE

(1 − w)[σ · δε + ρ(ẍ − b) · δu]dv −
∫

FE

(1 − w) t̂ · δuds

(30)

δWDE =
nP∑

α=1

δWα =
nP∑

α=1

[∫

�A

wρ(ẍ − b) · δuαdv

]
−
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nP∑

α=1

⎡

⎣
nα∑

β=1

wαβ f αβ · δuα

⎤

⎦

(31)

Equation (30) represents the weighted virtual work of the
finite element part, while Eq. (31) represents the weighted
virtual work of the rigid body/DEM. Here, δu(x) repre-
sents the virtual displacement of the deformable body, while
δuα(x) is the virtual displacement of the rigid body α, nP

denotes the total number of particles, and nα represents the
total particles in contact with the particle Pα . In addition,
f αβ denotes the contact force of particle Pβ on particle Pα .
The term wαβ represents the weight factor at the point of
contact of particle Pα and Pβ . Equation (30) can be extended
to include the weighted continuum-based contact force. For
simplicity, it is assumed that the contact contribution in Eq.
(27) is weighted by the value of w at the nodes of the contact
element.

5.1 Kinematic constraint

Within the Arlequin framework, the interaction of non-
cohesive granular materials and the continuum model is
enforced by using kinematic constraints. As mentioned in
[12], the constraints must be enforced in such a way that
they do not completely constrain the particle’s displacement
to the nodal displacement of the finite elements within the
overlapping domain �A. For the accuracy of the modeling
of non-cohesive behavior of particles, it is necessary to allow
relative motion of the particles. As described in [34], such a
behavior can be incorporated by using a split of the total dis-
placement of particles uDE into a coarse ucDE and a fine-scale

u f
DE component

uDE = u f
DE + ucDE. (32)

The coarse-scale part in �A is represented by con-
tinuous interpolation functions, which are based on the
finite-element-based ansatz functions. It can be written as

ucDE(x) =
∑

I∈NC

NI (x)ucI ,DE (33)

where NI represents FE-based shape functions andNC rep-
resents the set of nodes which belong to the elements within
which particle center reside.

The calculation of ucI ,DE is based on the requirement that it
minimizes the volume-weighted squared difference between
the total and coarse-scale displacement as given below:

min
ucI ,DE

∑

α∈PC

Vα‖uα − ucDE(cα)‖2 (34)

Here cα represents the central coordinates of the parti-
cles. Byminimizing the equation above with regard to ucI ,DE,
these unknown components can be obtained, see [12]. Once
the nodal displacement components ucI ,DE are known, inter-
action of particles with FE nodes within �A is enforced by
a penalty-based constraint

C = ε

2

∫

�A
‖ucDE − uFE‖2dv, (35)

where ε is the penalty parameter. For the calculation of the
nodal f Cα and particle f CI coupling forces, the variational
form of the constraint term given in Eq. (35) is written as
follows

δC = −
∑

α∈PC

δuα ·
⎛

⎝−
∑

I∈NC

�Iα f CI

⎞

⎠

︸ ︷︷ ︸
f Cα

−
∑

I∈NC

δuFEI · f CI (36)

where � represents the projection matrix, which is obtained
by solving Eq. (34). In the case of an implicit method, the
variational form for coupling has to be linearized. The lin-
earized term for Eq. (36) can be written as

�δC =
∑

I∈NC

δuFEI · ε
∑

J∈N c

∫

�A
NI NJdv�uFE (37)

6 Experiments

For the validation of the numerical framework discussed
before, the results are compared with experiments. In this
section, a description of the experiments will be given. The
first experiment is a common test in geomechanics, namely
a triaxial test. In this test, a cylindrical probe will be com-
pressed under a fixed radial pressure. The second experiment
shown here concerns a ship collision, regarding the ques-
tion how suitable granules are as a crash-absorbing material.
There, a bulbous bow is driven into a simplified double hull
structure filled with granular material. The determination of
the material properties of the granules is described in detail
in [6].

6.1 Triaxial test

The triaxial compression test is based on DIN 18137-D. On
the one hand, it can be used to determine the parameters for
the Mohr–Coulomb material model by using the obtained
Mohr circles from the test results. On the other hand, the test
results can be used to validate the approach applied for the
numerical homogenization, which will be shown in a later
section. The setup of this test is shown in Fig. 3.
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Fig. 3 Test setup of a triaxial cell (from [8])

A cylindrical probe with a diameter of 50 mm and a
height of 120 mm is placed in a triaxial cell. The probe is
contained by a membrane and surrounded with a cell fluid
that can apply different levels of radial pressure. In addi-
tion, the pressure inside the specimen can be controlled.
In the conducted experiments, the pore pressure valve is
open—guaranteeing atmospheric pressure inside the speci-
men, which corresponds to the intended use case of the inside
of a ship structure.

After applying the radial pressure, the specimen is given
some time for consolidation before it is compressed in axial
direction. For this, a constant strain rate is applied. Then, the
values for the force anddisplacement aswell as the changes in
pressure and volume in the cell and specimen are measured.
The latter values are used to cover effects such as dilatancy
in the grain structure.

Due to the geomechanical properties of the granules, the
compression can be performedwith a relatively high velocity
of 1 mm/min, compared to the soil experiments [35]. How-
ever, the crushing of the particles limits the radial pressure
to a level of 400 kPa. In doing so, we still observe marginal
crushing for higher loads. Thus, we consider lower radial
pressures in this paper for comparison. Figure 4 shows a plot
of principle stress ratio against axial strain for different con-
fining pressures for expanded glass granules.

6.2 Simplified side hull structure

To investigate the effects of the granules as crash-absorbing
material, a simplified side hull structure is considered. A
detailed description regarding this is given in [8]. The exper-
imental setup shown here is adopted from the setup shown
in [36]. Here, the structure is scaled down by a factor of 3. In
order to keep the experiment as simple as possible, stiffening
elements, such as stringers and stiffeners, are not taken into
account to determine the influence of the granules.

The simplified side hull structure is shown in Fig. 5. The
inner and outer hull of the ship is representedwith steel plates

Fig. 4 Principle stress ratio versus axial strain for different confining
pressures

with a thickness of 3 mm. The distance between the hulls is
280 mm. The edges of the steel plates are welded to a rigid
frame, which can be reused and is placed on force sensors.
To contain the granules, a rectangular box is welded between
the two plates, with the dimensions shown in Fig. 5. The
granules are poured into the structure via small openings at
the corners, which are closed after filling the box. In order
to obtain a compact packing, the box is intermittently moved
during the pouring process. This packing procedure without
usage of a compaction device ensures a similar filling process
as would be applied in reality.

For the modeling of a bulbous bow of a colliding ship,
a half sphere comprising of solid steel with a diameter of
270 mm is considered. This indenter is driven into the sim-
plified double hull structure with a velocity of 0.2 mm/s.
The applied force and the displacement of the indenter are
measured throughout the indentation process. Besides sev-
eral other measured quantities, see [8], we will focus on the
applied force and displacement of the box containing the
granules. In [8], four experiments with two different bound-
ary conditions were conducted in total—but we will focus on
two of these experiments. For these experiments, movement
of the rigid frame is blocked in the direction perpendicular
to the axis of the indenter. The first experiment serves as a
reference without granules inside the box. This allows us to
examine the improvements due to the filling with granules in
the second experiment.

6.2.1 Reference experiment

The first experiment is used as a reference experiment to
determine the improvements in crash-worthiness when using
granules. Figure 6 shows the force–displacement curve. The
two plates can be clearly identified. The outer hull withstands
a maximum force of 400 kN and ruptures at an indention
depth of approximately 150 mm. After this, the indenter
comes into contact with the inner hull at a total displacement
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Fig. 5 Dimensions of the simplified side hull structure. The granules
are contained inside the black box

Fig. 6 Force–displacement curve for experiment 1

Fig. 7 Force–displacement curve for Experiment 2

of 280 mm. Then, the indenter pushes through the inner hull
until it ruptures at 415 mm with a slightly lower force. The
unloading/loading during this transition is due to the instal-
lation of an extension for the bulbous bow.

6.2.2 Experiment with filled structure

The second experiment shown in this paper is conductedwith
granules inside the box. The resulting force–displacement
curve is shown in Fig. 7.

Fig. 8 Clamped outer hull between the indenter and the inner hull plus
granules [from [8]]

Fig. 9 Dissipated energy during experiment 1 and experiment 2

The curve related to the penetration of the outer hull is
a bit steeper. The outer hull ruptures at an indentation of
160 mm—resulting in a force of 520 kN. After rupture of
the outer hull, the resultingmetal flap is clamped between the
indenter and the granules, as can be seen in Fig. 8. This, in
addition to the extra resistance due to the granules, results in a
plateau in the force–displacement curve. After an indentation
of 260 mm, we observe an increase in force. At this position,
the granules are highly compacted and some of the force is
transferred to the inner hull. At 300 mm, the flap is ripped off
from the outer hull, resulting in the drop in force level. Until
the rupture of the inner hull, we can observe an increase in
force.

6.2.3 Comparison of the experiments

The improvement due to the granules can be measured in
different ways. Here, we compare the dissipated energy until
the inner hull ruptures. The resulting curves can be seen in
Fig. 9. The later rupture of the filled hull and the increased
resistance due to the granules result in a significant increase
of 146%. Compared to the experiments shown in [8], the
increase in the resistance is probably overestimated in Fig. 9.

A realistic estimation—based on a similar rupture behav-
ior for all considered steel sheets, as well on numerical
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simulations— indicates an increase around 60%, see [8].
There, a second experiment was conducted with slightly dif-
ferent steel parameters, resulting in an increase of only 22%,
which was mainly caused by a late rupture of the inner hull
in the reference experiment. Thus, more experiments could
help to obtain a statistically more representative result, but
the observed rupture behavior already shows that inserting a
filling material is a promising means to increase the crash-
worthiness of double hull ships.

7 Numerical results and comparison

7.1 Parameter identification for numerical
homogenization

This section focuses on the estimation of the parameters for
theMohr–Coulombmaterial model. For this material model,
five parameters will be calibrated and the procedure for their
identificationwill be explained in the later part of this section.
For the calculation of these parameters, an averaged response
of the RVEs will be considered. The generation of an RVE
is based on considering it as a subdomain within the finite
domain, which consists of a particle-filled cylindrical region
enclosed by a flexible membrane. This finite domain was
also used for a triaxial test in [7]. For the homogenization,
this test will be reconsidered and similar boundary conditions
will be applied, see Fig. 10. However, instead of a cumulative
response of all particles, only the response of particles within
the RVE will be studied, see Fig. 10 (right). Here, the RVE
is represented as a cylindrical-shaped region with a certain
radius R andheight H . In order to avoid anyboundary effects,
the radius R of theRVE is chosen to be smaller than the radius
of the triaxial domain. The hexahedral elements within the
background mesh are used to define the the domain of the
RVE, and the averaged projected response of the particles on
this domain is used for the parameter estimation.

7.1.1 Validation

A comparison is carried out in order to validate whether the
results from the homogenization are comparable to the results
of the experiment. In Fig. 11, a comparison of the experimen-
tal results with the result from the volume averaged stress of
RVE is performed. Here, the ratio of axial stress σ33 to the
transverse stress σ11 along with the axial strain is plotted. For
the comparison, a confining pressure of 75kPa and 100kPa is
used. It can be seen fromFig. 11 that the initial response of the
RVE is not as stiff as the bulk response from the experiment.
However, after nearly 2% axial strain, the response from the
RVE becomes stiffer than the bulk response. Furthermore,
the peak stress ratio is reached earlier for both RVEs in com-

Fig. 10 Triaxial test for the particles with the introduction of the back-
ground mesh (left). Example of a RVE chosen within the assembly of
particles (right)

Fig. 11 Comparison of experimental and simulation results for triaxial
test

parison with the experimental results. The ensemble of the
particles within the RVE tends to shear earlier.

It must be considered that the response of the RVE repre-
sents the localized behavior of the particleswithin its domain.
It does not include the bulk response of thewhole ensemble of
particles. Therefore, this localized region can exhibit a behav-
ior that cannot be compared exactly to the bulk response of
all granular particleswithin the experimental setup.However,
within 10% strain, the response from the RVE is significantly
close to the experimental results.

7.1.2 RVE size

For homogenization, the size of the RVE should be large
enough to effectively represent the heterogeneities within the
granular system. Also, it should be small enough to repre-
sent a volume element for its continuum representation. In
this section, the effect of the size of the RVE on its resultant
behavior is studied. For the cylindrical shape of the RVE, its
radius R and height H are the two parameters that can be
changed to enforce variations in its shape. When determin-
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Fig. 12 Resultant behavior of different RVEs with different radius R
and height H

ing these parameters, it is important to make sure that the
boundary effects do not influence the results. A variation in
the range of 14–20mm is considered for the radius, while a
variation in the range of 22–30mm is chosen for the height of
the RVE. The total dimensions of the numerical experiment
for the triaxial test are based on a value of radius of 25mm
and a height of 120mm, see Fig. 10.

It can be seen from Fig. 12 that within radius range of
17–20mm, on average, the shearing of samples starts at a
maximumstress ratio of approximately 4.4. This corresponds
to the strain value of 5%. The effect of the variation of height
(17–20mm radius) on the resultant behavior of the samples is
not significant. The overall standard deviation for this range
is acceptable. However, for samples with a radius of 14mm,
the deviation in results is more significant. It has a maximum
stress ratio of 4.4 corresponding to a height of 22mm—and
a minimum stress ratio of 4.1 corresponding to height of
30mm. In addition, the shearing of samples for this size also
occurs at different strain values,which ranges fromnearly 4.5
to 5.2%.As can be seen fromFig. 12, the overall deviation for
the aforementioned size of the RVEs is within an acceptable
range.

7.1.3 Parameter identification

The non-associative Mohr–Coulomb material model, which
will be used for a continuum representation of granular
material in Sect. 7.3, requires five parameters. This includes
Young’s modulus E , Poisson ratio ν, friction angle φ, dilata-
tion angle �, and cohesion parameter c. The response from
the RVEs will be used for the identification of these param-
eters. For the calculation of Young’s modulus and Poisson’s
ratio, the initial response of the RVEs is used. It is assumed
that the initial response of the granular material is elastic and

that the onset of inelastic behavior starts in a later part of the
deformation of the RVEs.

For the calculation of the Young’s modulus, the stress
strain curve σ3 versus ε3% is used. As can be seen in Fig. 13
and also observed in [12], the initial elastic response of RVEs
is dependent on the lateral pressure used to confine the gran-
ular materials in the triaxial setup. The mean pressure serves
to estimate an average value of Young’s modulus. From the
initial response, a value of E=15MPa is estimated—and the
initial response from the εv versus ε3 curve is used to calcu-
late Poisson’s ratio. Its calculation is based on

ν = 1

2

(
1 − �εV

�ε1

)
(38)

as given in [37]. For the calculation of the dilatation angle
�, the following equation

sin(�) = �εv/�εa

�εv/�εa − 2
(39)

as given in [38] is used. Here, εa represents the axial strain of
the RVE, which in this case is ε3. The shearG and bulk mod-
ulus K can also be calculated in terms of Young’s modulus
and Poisson’s ratio :

G = E

2(1 + ν)
, K = E

3(1 − 2ν)
(40)

The calculation of � is also based on the average response
of the RVEs. Finally, in order to calculate the friction angle
φ and cohesion parameter c, the Mohr circles as shown in
Fig. 13c are used. The friction angle φ is calculated from the
tangent to the Mohr circles and the cohesion parameter is
calculated from the y-intercept of the tangent line.

7.2 Example of ductile damagemodel with EAS
element

In this example, an indentation of a thin steel sheet is per-
formed. The main purpose of this example is to show the
effectiveness of the EAS element for predicting the damage
behavior.Asmentioned earlier, standard lower-order hexahe-
dral element formulations for thin structures are prone to the
problem of shear locking. In addition, the incompressibility
constraint due to the plastic deformation can lead to volu-
metric locking. Considering these shortcomings, the finite
element solution for thin structures undergoing damage can
be erroneous. Since the example that will be considered in
Sect. 7.3 is based on a thin steel structure, it is imperative
to use a finite element formulation that is free of locking
effects. Therefore, we apply the enhanced strain element for-
mulation. The geometry of the problem that is considered
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(a) (b)

(c) (d)

Fig. 13 Estimation of Mohr–Coulomb parameters; a estimation of Young’s modulus from σ3 versus ε3 curve, b estimation of average value of
dilation angle, c estimation of Poisson’s ratio from initial response of RVE, d calculation of friction angle and cohesion parameter from Mohr
circles

Fig. 14 Representation of
geometry of the plate
undergoing indentation

Table 1 Material properties of a thin plate subjected to indentation

E ν lc Y0 H A B

200 GPa 0.23 0.6 mm 0.475 GPa 1.047 GPa 15 10

here is shown in Fig. 14 and the material properties are given
in Table 1.

The metal sheet has a thickness of 3mm and the indenter
has a diameter of 270mm. The metal sheet is clamped at all

edges and a punch is used for the indentation. The punch is
driven by applying the displacement boundary conditions at
its top surface.Amortar contact-based formulation is used for
the interaction between the punch and the plate. The resultant
behavior is shown in Fig. 15.

In addition, a comparison between a standard 8-noded
lower-order hexahedral and an EAS element is carried out.
From Fig. 16, it can clearly be seen that, in comparison to the
EAS element, the response of the standard element is rather
stiff and initiation of damage occurs quite earlier. In the case
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Fig. 15 Reaction force during
indentation of thin sheet with
ductile damage along with EAS
element formulation

Fig. 16 Comparison of reaction
force during indentation for
standard hexahedral and EAS
element

Fig. 17 Close view of state of granules after indentation

of the EAS, the softening of the material and the decrease in
reaction force occurred at almost 145mmdisplacement of the
indenter–and at 80mm for the standard hexahedral element.
Furthermore, the peak value of reaction force in the case of
the EAS is almost 400kN. For the standard element, it is
12.6MN. Therefore, a new element formulation is necessary
to get an accurate response of the ship structure.

7.3 Two-scale model with punch test

Asmentioned earlier, numerical modeling of the entire gran-
ular medium with the DEM, as shown in experiments in
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Fig. 18 Geometry of the model for two-scale problems (top-all dimen-
sions inmm). Discretized box for FEM-based solution of indentation
(bottom)

Sect. 6, can be computationally expensive. A model with
a realistic granule size would require approximately 2.5
million particles for the simulation. Considering particle
modeling with the DEM together with a highly nonlinear
FEM model, this approach can have severe limitations in
terms of computation time. For a computationally efficient
numerical model, usage of a two- scale model as described
in Sect. 5 is imperative. Considering the configuration of
particles as shown in Fig. 17, it can clearly be seen that sig-
nificant crushing of particles occurred in the vicinity of the
punch rather than in the region further away. This provides
an opportunity for the usage of the continuum model in the
region further away.

Figure 18 shows a geometric representation of the numer-
ical model used for the indentation of the box.

In this figure, the FEM-based region consists of two differ-
entmaterials. RegionAbelongs to thewalls of the box,which
consists of steel. For this region an elasto-plastic material
model is used. For the current work, the material proper-
ties for the steel together with the damage parameters are
shown in Table 2 while some of the material properties and
parameters for the granular material are shown in Tables 3
and 4. From the experiments, a variation in the strength and
Young’s modulus of the granules was observed, see Table 3
and [7]. Such a variation is also included in the current DEM
model. In Table 4, μpar−par represents the coefficient of fric-
tion between particles and μpar−rig represents the coefficient
of friction between particles and steel. Reader is referred to
[7] for further details and parameters used for the current
DEM model.

Table 2 Material properties of steel used for indentation problem

E ν ρ Y0 H A B

220 GPa 0.3 7850 kg/m3 0.250 GPa 0.5 GPa 12 7

Table 3 Experimental results for crushing force and Young’s modulus
of expanded glass granules (2–4mm) and its fractions as reported in
[6]

Fraction Diameter Cr. force Y-modulus
(mm) (mm) (N) (N/mm2)

2.0 − 2.5 2.16 ± 0.15 14.81 ± 5.19 564.26 ± 260.60

2.5 − 3.125 2.68 ± 0.18 17.88 ± 5.45 453.79 ± 158.65

3.125 − 4.0 3.28 ± 0.22 21.62 ± 6.82 364.84 ± 127.85

Table 4 Material properties of particles

ν ρ μpar−rig μpar−par

0.23 220kg/m3 0.6 0.9

The initial yield strength and the Young’s modulus are
derived from the experiments as shown in [8]. In order to
determine the hardening modulus, the experimental results
from an unfilled hollow box were used for the calibration.
Here, a linear hardening-based plasticity model is assumed.
Later, these parameters are also used for the particle-filled
box. For the modeling of the ductile damage, the constants
for the damage model, as shown in Sect. 4, are also cali-
brated using the experimental results from the indentation
of the box. This includes the determination of the value of
κi , which represents the value at which initiation of dam-
age occurs. The shape of the curve, which corresponds to the
decrease in the reaction force, is determined by the parameter
β, as shown by the damage model in Sect. 4. The cali-
bration of this parameter is based on the evolution of the
crack from the experimental results. Considering the thick-
ness of the steel wall and the incompressibility constraint
due to the plasticity model, an enhanced strain-based ele-
ment formulation as described in Korelc et al. [32] is used.
Region A consists of 4212 elements. The region labeled as
B is based on the Mohr–Coulomb material model and repre-
sents the effective behavior of the granules. The parameters
for this material model are taken from the homogenization
technique explained in Sect. 7.1.3. This region is based on
the standard hexahedral 8-noded element formulation, where
960 elements are used. A mortar-contact-based model, as
described in Weißenfels [33], captures the interaction of the
elements in regions A and B and the indenter. The enforce-
ment of the contact constraint is based on the penaltymethod.
The coefficient of friction between the indenter and the sur-
face of the hollow box is taken as μ =0.45. This parameter
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Fig. 19 Representation of
coarse- and actual-scale
particles

is taken from the work presented in [39]. For the contact,
multi-surface contact constraints are enforced. It consists of
the contact surface between the indenter and the top surface
of the box and additionally, contact due to the inner surface
of the box and the outer surface of the region B, see Fig. 18.

Figure 19 shows an FEM-based region together with the
configuration of particles. For the enforcement of the cou-
pling between FEM and DEM, a projection matrix based
on a lumping strategy is used, see [12]. The figure shows
coarse-grained (in red) and realistically sized particles (in
blue). A total number of 99,634 particles were used for the
coarse-grained region. Since a significant crushing of parti-
cles will not occur in this region, the crushing model will
not be used. However, the inelastic behavior of these parti-
cles is still taken into account. It is expected that during the
application of external load, elastic behavior of the particles
throughout the indentation will not be valid. The approxima-
tion of such behavior is accounted for by including inelastic
behavior as described inChaudry et al. (2018) [7]. A crushing
model as presented in [40] is used for realistically sized parti-
cles that lie in the vicinity of the indenter. For the simulation,
the behavior until the rupture of the outer hull is considered.

Figure 20 shows different instances of the particles and
the mesh during the indentation process. Here, for the prepa-
ration of the particles packing, an algorithm as described in
[12] is used. First, a geometric scheme is used to generate
the particles. Afterward, these particles are allowed to set-
tle under gravity so that a natural configuration of granular
matter is achieved. In order to achieve a close packing as
in the case of the experiment, they are slightly compressed
and allowed to relax. After packing, the simulation phase of
the particles starts. Figure 20a shows the configuration of the
particles during the initial phase. Afterward, the indentation
of the box initiates. Figure 20b–d shows different instances
of the particles during indentation. Depending on the particle
strength, gradual crushing of the particles during indentation
occurred. In this model, particle crushing is only enforced up
to a limit radius of the particles. As mentioned in Chaudry
et al. [7], this strategy has often been used by researchers for

the DEM-based simulations of crushing, see [41]. Figure 21
(left) shows the initial configuration of the particles before
crushing, and Fig. 21 (right) shows the crushed particles at
the end of the simulation. At the beginning of the simulation,
therewere 300,800 particles—compared to 523,601 particles
at the end of the simulation, due to crushing. Here, an explicit
time integration scheme is used for the DEM model, and an
implicit time integration scheme is applied to the FEM prob-
lem. Since it is possible to use a larger critical time step for
the implicit solver in the FEM problem, a subcycling scheme
with a different time step for theDEMandFEM is also imple-
mented for the current problem. The time step for the FEM
model is almost 114 times the critical time step of the DEM
model. This also increases the speed up of the computation.

In Fig. 22, a comparison of the results from the experi-
ments and simulation is performed. In the case of the empty
box, the initial response of the material is elastic. After a
20mm displacement of the indenter, the initial yield strength
limit is exceeded, and the plastic response for the metal
sheet directly in contact with the indenter is initiated. Since
the indenter is rigid and does not deform during the whole
process, a linear elastic material with small deformation is
assumed for it. From the experimental results, it can be
observed that the fracture of the outer wall initiated at almost
145mm displacement of the indenter. After that, there is a
sudden decrease in the reaction force due to propagation
of the fracture, see Fig. 22. For the particles, a significant
crushing also occurred at around 145mm. In the case of the
filled box, however, the fracture initiated at a displacement
of almost 160mm.

The simulation for the filled box and for the empty box
showed that propagation of the fracture occurred almost at
the same displacement of the indenter. In the experimental
results, there is a slight difference in the value of the dis-
placement, where the decrease in load–displacement curve
occurred. However, this difference is not significant. As
can be seen in Fig. 22, the good agreement between the
experimental and the simulation results shows that using the
two-scale model does not compromise the accuracy of the
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Fig. 20 Representation of different stages of indentation of particle-filled box

Table 5 Simulation details for
the indentation of the box

Particles (start) Particles (end) Elements �tFEM �tDEM Comp. time Cores

300,800 523,601 5172 8.0e-5 7.0e-7 510 h 8

Fig. 21 Particles at the beginning (left) and at the end of simulation (right)

numerical, but it still allows a computationally efficient sim-
ulation. In the context of an implicit FEM-based solution,
as the value of damage D approaches a value of 1, it creates
problems regarding convergence. Therefore, the results from
the simulation are not compared with the experiments for the
entire duration of indentation.

In [8], digital image correlation (DIC) was used for the
punch test in order to monitor the value of the strain of the
box. Figure 23 (left) shows the experimental value of the
strain as calculated based on DIC. To allow for a qualitative
comparison, the total accumulated plastic strain for the inden-
tation is shown as well. The region with the maximum strain
in DIC corresponds to the regionwheremaximum equivalent
plastic strain was observed during the simulation.

An important outcome of this experiment is the energy
absorbed by the granular materials during the indentation
process. The difference in area under both curves in Fig. 22
shows that the granular materials are able to absorb the
energy. Therefore, it can be safely concluded that the par-
ticles, which act as sandwiched medium, are able to absorb
impact energy and increase the crashworthiness of the ship.

8 Conclusion

The current work covers the numerical analysis of a novel
idea for the increase in crashworthiness of double hull ship.
Here, a detailed analysis of granular materials as crash
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Fig. 22 Comparison of
experiment and numerical
results for the collision of the
particle- filled box

Fig. 23 Result obtained from DIC for the strain on the surface of the box (left). Figure for computed accumulated plastic strain (right)

absorbing material is carried out. For the modeling, granular
materials weremodeled with the DEM,while the structure of
the shipwasmodeledwith the FEM.For the structure, numer-
ical experiment revealed that the response from the standard
hexahedral element formulation is stiff and cannot be used
for accurate modeling of damage. An enhanced assumed
strain-based element formulation together with the gradient
enhanced damage model was able to circumvent this prob-
lem. The experiments in [8] revealed that the displacement
and crushing of particles in region further from the inden-
ter is not significant. This allowed the usage of concurrent
two-scale model for a computationally efficient numerical
simulation. Here, the accuracy of modeling of the region
with significant localization of granules was ensured by the
DEM, while a continuum-based model was used for the
other regions. The continuum- based region was treated with
the Mohr–Coulomb material model, for which the material
parameters were determined by numerical homogenization.

For homogenization, meshless shape functions allowed con-
tinuum representation of discrete fields of particles. The
comparison of the stress–strain curve from homogenization
with the triaxial tests showed the suitability of the model. For
final investigation, a representative region inside the structure
of the ship was considered. Here, granular materials were
able to dissipate energy by transfer of load from the outer to
the inner hull together with the crushing in the vicinity of the
indenter. The complete numerical model for the indentation
of the particle filled boxwas compared with the experimental
results given in [8], where a good agreement was achieved.

Although the model presented in current work is able to
reproduce the effects observed in the experiments, there are
certain aspects of this model that could be improved. For
instance, for a realistic representation of the crushed parti-
cles, each spherical particle could be represented as a clump
of bonded particles, see [42]. The limitation associated with
the computation time of this approach can be overcome with
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the GPU- or MPI-based parallelization of the code. Further-
more, as mentioned in [12], rather than the Mohr–Coulomb
materialmodel, amodel that includes the pressure-dependent
behavior can further improve the accuracy. Finally, an adap-
tive scheme for the refinement of the DEM–FEM region can
be used. With regard to the motion of the particles, the adap-
tive definition of both regions has advantages in terms of
accuracy and overall speed-up of the model.
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