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Abstract: In industrial applications, the shafting components with high stress are easily damaged due
to cyclic loads if there is no surface treatment. With the use of ultrasonic cavitation peening, the resid-
ual compressive stress and the surface hardness of these components can be improved. While tradi-
tional longitudinal vibration transducers are used to treat cylindrical workpieces, the treated areas
are limited, and the treatment period is relatively long. To solve these problems, we designed a novel
configuration of the piezoelectric transducer as a type of the combination of rod and ring. During
ultrasonic cavitation peening, we placed the cylindrical workpieces in the ring tool to improve the
limitation. However, the treated surface properties were largely influenced by the input parameters
(driving voltage and rod diameters). In this investigation, the cylindrical workpieces, which were
covered with aluminum foils, were first treated by ultrasonic cavitation peening to detect the intensity
and distribution of the cavitation bubbles on the treated surface. Then, the sonochemiluminescence
method was utilized as an additional way to find the optimal operation parameters (190 V and
16 mm). Finally, the ultrasonic cavitation process was conducted with the optimal parameters. The
treatment results showed that the surface hardness increased by about 36% without significant
increase of the surface roughness.

Keywords: ultrasonic cavitation; sonochemiluminescence; roughness; micro-hardness

1. Introduction

In modern industrial applications, cylindrical components, such as shafts, bearings,
and screws, are widely used in aerospace, ship, marine, and automotive industries [1,2].
Due to the influence of high cycle fatigue and cyclic stress, these components have to
retain a long service life to reduce the replacement frequency and cost. Therefore, a surface
enhancement process is required after manufacturing. One of the often-used processes is
the peening process, which is a physical method [3]. In the traditional method, sand pills
and iron pills are typically used [4]. They are ejected with high speed and collide with
the workpiece surfaces to improve the fatigue strength and change the surface properties
of metal materials by generating surface compressive residual stresses. The traditional
method is a simple way to treat the surfaces of metallic rods. Sakamoto [5] found that the
cylindrical workpieces of annealed medium carbon steel were peened with 140–2300%
coverage by the traditional process and that the fatigue limits increased 14–25% compared
to the non-peened workpieces. However, the traditional peening process tends to increase
the surface roughness, causing a certain damage and limiting the improvement of surface
properties.

Ultrasonic needle peening is another method to peen cylindrical workpieces. An
actuator is used to generate oscillation, which leads to a relative movement between the
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sonotrode and the workpiece surface [6]. The sonotrode end is excited with a high frequency
(more than 20 kHz) and directly impacts the workpiece surface. Utilizing this method to
peen the cylindrical workpieces of Ti-6Al-4V, researchers showed in their experimental
results that the 108 cycles fatigue strength can improve by 11.7% [7]. The compressive
residual stress and the surface hardness increased as well. The solid steel pin is modeled as
a rigid material [8]. The simulation results showed that the surface roughness magnitude
depends on the correlation of the vertical and lateral load components. In this process, a
rotated equipment is required for the rotation of the cylindrical specimen. Otherwise, the
treating area is relatively small.

During water peening process, water cavitation jet goes through a peening nozzle
with high speed [9]. When the bubbles are injected with a flow on a metal workpiece
surface, a plastic deformation can be developed. Water cavitation jet peening utilizes this
deformation. A Ti-6Al-4V rod with a diameter of 5 mm was investigated using this process
and it was found that the depth of the introduced compressive residual stress increased
up to 230 µm at a processing time per unit length of 10 s/mm [10]. The laser peening
process uses high-energy pulsed laser to generate shock waves on the surfaces of the treated
surfaces [11]. Yang et al. [12] investigated the effects of laser peening on residual stresses in
7050-T7451 aluminum alloy rods. The results showed that the geometrical effects of the
curved target surface greatly influenced residual stress fields.

Compared to the traditional shot peening and ultrasonic needle peening, the men-
tioned shotless peening methods (water cavitation peening and laser peening) require
skilled operators as well as expensive and complicated equipment. In order to achieve
good surface properties with simple equipment, ultrasonic cavitation peening has been
developed in recent decades [13–15]. During ultrasonic cavitation peening, a piezoelectric
transducer is utilized and the sonotrode is partially immersed in a liquid. The results
showed that the hardness and the residual compressive stress were significantly improved
but the surface roughness was not obviously increased. Using a piezoelectric transducer
has many advantages: simple equipment, compact structure, as well as a high output
power [16]. Due to the vibration of the transducer sonotrode, cavitation bubbles are gener-
ated and then collapsed on the treated surfaces, which introduces the compressive residual
stress and increases the surface hardness. When the ultrasonic cavitation peening is com-
pleted, the remaining material in water, such as metal and metal oxide particles, can easily
be collected and recycled [17]. In addition to this advantage, this surface treatment process
is inexpensive [18].

However, previous researchers mostly focused on metallic specimens with flat surfaces.
The current work reports a novel configuration of the piezoelectric transducer, which is
designed as a type of the combination of rod and ring. Utilizing this kind of transducer, the
efficiency for peening cylindrical workpieces can be increased compared to the experiments
using longitudinal vibration transducer. In this paper, the simulations of the new transducer
and the sound field are first described. Then, the results of experiments on the cavitation
field and the peening process are shown.

2. The Novel Transducer

A novel configuration of the piezoelectric transducer was designed and manufac-
tured at the Institute of Dynamics and Vibration Research (Leibniz University Hannover,
Germany). The transducer consisted of one set of piezoelectric elements, an Al alloy cover
part, a horn part, and a ring sonotrode. The ring sonotrode was made of Al alloy and
the diameter of inner ring was 21.5 mm. The PZT (lead zirconate titanate ceramic) plates
were assembled between the cover and the horn to excite longitudinal vibration, achieving
the elliptical vibration of the ring sonotrode. The harmonic simulation result is shown in
Figure 1. The resonance frequency of the transducer was about 21,034 Hz. Low-frequency
ultrasound, such as 21 kHz, can introduce more violent cavitation at the same vibration
amplitude compared to high-frequency ultrasound. The reason is that at low-frequency
ultrasound, the bubble growth period becomes longer, resulting in higher bubble energy



Appl. Sci. 2021, 11, 94 3 of 10

accumulation. As shown in Figure 1, when the ring sonotrode vibrates, there are four small
areas with high vibration amplitude, which leads to the generation of stronger cavitation
near the four areas. Thus, there are four areas of the workpiece surface that can be peened
when they are put into the center of the ring sonotrode. In this way, the efficiency of the
ultrasonic cavitation peening for cylindrical workpieces is improved four times over the
traditional longitudinal vibration transducer.

Figure 1. The harmonic simulation result at about 21 kHz.

In order to verify the real vibration shape and resonance frequency of the ring
sonotrode, we built a measurement setup using a 3D Laser Doppler vibrometer (MSA-100-
3D, Ploytec Company, Waldbronn, Germany). The laser head of the vibrometer can move
in the Z direction and the XY positioning stage can achieve the two-dimensional motion in
the horizontal plane. The transducer was placed on two support blocks to make the plane
of circular ring horizontal, and then they were fixed on a XY positioning stage for obtaining
vibration characteristics of all points on the vibrating system. The number of the points on
the edge of the ring was set to 80. During the experimentations, the Langevin transducer
and the circular ring were tested with the excitation signals of 1 V. As shown in Figure 2, the
resonance frequency was 21,025 Hz, which is very close to the simulation results. It also can
be seen that the vibration amplitude of the ring sonotrode in the x direction was almost the
same as that in the y direction. At the resonance frequency, a relationship of approximately
0.012 µm/V existed between the vibration amplitude and the driving voltage in the range
of 0 V and 400 V according to the measurements.

Figure 2. The measured frequency–amplitude curves of the ring sonotrode.

3. Cavitation Experiments

In this part, three different kinds of experiments were carried out to detect cavitation
areas, cavitation intensity, and the properties of the peened surfaces. If the metallic rods
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are directly treated and then measured, it will be very time-consuming, involving tedious
steps. To avoid this, we pasted the aluminum foil around the metallic rod to evaluate
the cavitation treatment areas, and then the sonochemiluminescence (SCL) experiments
were used to obtain the cavitation intensity. Finally, the surface treatment experiments
were carried out to evaluate the surface properties utilizing this novel method. According
to previous investigations [19], working distances are very sensitive to the results of the
ultrasonic cavitation peening. It is important to study the effects of working distances on
the cavitation areas. Hence, the diameters of the metallic rods in these experiments were
13, 14, 15, 16, 17, and 18 mm. The driving voltages were 110, 130, 150, 170, and 190 V. The
experimental block scheme is shown in Figure 3.

Figure 3. The block scheme for cavitation experiments.

The experimental setup is shown in Figure 4. The function generator (Agilent 33210A,
Santa Clara, CA, USA) was used to prove the sinusoidal signals (Vp-p: 5 V). A power
amplifier (QSC RMX 4050HD, Costa Mesa, CA, USA) was used to amplify the driving
voltages, and the oscilloscope (Tektronix DPO 3014, Beaverton, OR, USA) recorded the
signals on the transducer. A current probe (Tektronix P6139A, Beaverton, OR, USA) and
a voltage probe (Tektronix P5205, Beaverton, OR, USA) were used to measure the output
current and voltage, respectively. A tube with a transparent bottom was attached to one
side of the ring sonotrode, which can make the inner volume of the sonotrode fill with
water. The metallic rod with the aluminum foil was fixed at the center of the sonotrode by
a fixture. Each sample was treated for 60 s. Tap water was used and the temperature was
22 ± 1 ◦C during cavitation experiments. After each treatment, the water was replaced to
ensure a small change in in the range of 1 ◦C. The damaged foils were pasted on a flat plate
and then scanned by a microscope (Alicona InfiniteFocus SL-2, Raaba, Austria).

For sonochemiluminescence (SCL) experiments, the experimental solution was made
of luminol (C8H7N3O2) (0.004 mol/L), NaOH (0.1 mol/L), and water. SCL is a phenomenon
of light emission that is produced by the OH− and the sonochemically oxidized luminal.
Thus, the spatial distribution of cavitation bubbles in an aqueous solution can be indirectly
shown by the SCL method. SCL images were captured by the camera (18–250 mm/f3.5–6.3,
ISO400, focal length 262 mm) with an exposure time of 90 s. Since the light caused by SCL
is weak and cannot be seen by the naked eye, a long exposure time is necessary to obtain
a high-quality photo. All of the experiments were carried out in a dark room. Since the
sonotrode is cylindrical, the available area of the SCL photo is a circular region.
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Figure 4. The experimental setup of cavitation processing for cylindrical workpieces.

The cavitation processing time for the cylindrical working pieces was 240 s. For the
measurements of the surface properties, we used a hardness tester as per reference [20].
The material of the rod samples was made of Al alloy. The surface roughness was measured
by an Alicona microscope. The microscope was used to capture the aluminum foil with a
magnification of 5× after treatments.

When the ring sonotrode was filing with water, the damping on the transducer
changed, resulting in the changing of resonance frequency. The damping was related to the
vapor volume fraction of the water and the tension of water between walls. With different
driving voltages, the intensity of cavitation changed due to the change of vibration am-
plitude of the ring sonotrode. The cavitation intensity was directly related to the vapor
volume fraction of the water. Thus, the driving voltage and the working distance affected
the resonance frequency of the transducer. The measured resonance frequencies at different
experimental conditions are listed in Table 1.

Table 1. The resonant frequencies after filling with water at different conditions.

Diameter (mm)
Voltage (V)

110 130 150 170 190

13 20,650 20,650 20,650 20,670 20,670
14 20,640 20,640 20,640 20,660 20,660
15 20,570 20,570 20,570 20,600 20,620
16 20,540 20,540 20,540 20,560 20,570
17 20,340 20,340 20,340 20,360 20,360
18 20,300 20,300 20,300 20,330 20,330

4. Results

After treating the metallic rods with aluminum foil with 60 s, we observed four
separated damaged areas on each foil. The four damaged areas corresponded to the
locations of the maximum amplitudes of the ring sonotrode, as shown in Figure 1. After a
long period of cavitation processing, the areas where the cavitation bubbles occurred were
considered potential damaged areas, which are shown surrounded by red lines in Figure 5.
The damaged foil with a diameter of 14 mm at the driving voltage of 190 V is shown as an
example in this figure.
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Figure 5. Scanned surfaces of the aluminum foils at the driving voltage of 190 V and at the diameter
of 14 mm.

All damaged areas in different experimental conditions are plotted in Figure 6. It can
be seen that the increase of the damaged areas corresponded to the increase of the diameter
of the rods. At the driving voltage of 110 V, the difference between the maximum and
minimum damaged area was about 8 mm2, but the difference increased to about 14 mm2.
Thus, the higher driving voltage caused the larger damaged area. A smaller driving voltage
had less effect on the damaged area.

Figure 6. The damaged area of aluminum foils around the metallic rods at different experimental
conditions.

After the experiments of the damaged aluminum foils, we carried out the SCL experi-
ments. The intensity of cavitation can be reflected by the relative blue light intensity in the
photos of the SCL experiments. Thus, by analyzing the blue light intensity of the photos,
we were able to obtain the spatial distribution of the cavitation field. In order to reduce the
distraction of other light from the surroundings, we subtracted the relative light intensity
by the background light intensity. For every photo, the surrounding light intensities in four
different areas beyond the available area were calculated as the average value. Figure 7
shows the distribution of the blue value at the diameter of 13 mm at the driving voltage
of 190 V as an example. From this image, it can be clearly seen that there were four areas
with strong light intensity, which is similar to the results from the experiments on the
damaged aluminum foils. It can also be seen that the light intensity of the four areas was
slightly different, which was caused by the differences in the vibration amplitude of the
sonotrode and the location of the rod, resulting in the distribution of the sound field during
the experiments.
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Figure 7. The distribution of the blue value at the diameter of 13 mm at the driving voltage of 190 V.

Figure 8 shows the value of average light intensities for metallic rods with different
diameters. The impedance of the transducer was about 95 Ω during cavitation processing.
Thus, the powers were 127, 178, 237, 304, and 380 W at the driving voltages of 110, 130, 150,
170, and 190 V, respectively.

Figure 8. The average light intensities with metallic rods at different conditions.

From the experiments described, we can confirm that the condition of the diameter of
16 mm and the driving voltage of 190 V was optimal in our experimental conditions. One
of the ultrasonic cavitation peening experiments was carried out in this case. The other one
was carried out at a diameter of 15 mm in order to have a reference. Before the experiments,
the surfaces were polished, and the surface roughness was as low as 0.1 µm. For each of
the experiments, six workpieces were treated for 240 s. After treatment, surface roughness
was measured in four areas, with five points randomly selected in each area, and then all
the measured values were averaged. The results are shown in Table 2. It can be seen that
the value of the surface roughness increased to about 2.2 µm, but the roughness in the two
types of experiments showed little difference. It was deduced that the change in diameter
had less effect on the surface roughness after treatments.



Appl. Sci. 2021, 11, 94 8 of 10

Table 2. The average surface roughness after ultrasonic cavitation peening.

Diameter Average Ra (µm)

15 mm 2.24 ± 0.56
16 mm 2.86 ± 0.68

The hardness of the samples after treatment was measured as well. Surface hardness
was measured in four areas, with five points randomly selected in each area, and then all
the measured values were averaged. The average values are shown in Table 3. The original
hardness was about HV 41. After treatment, the hardness increased to HV 50 and HV 56 at
the diameters of 15 and 16 mm, respectively. The hardness with the diameter of 16 mm
increased by about 36%. Compared to the measured roughness, the hardness obviously
changed in the two kinds of experiments. This was due to the advantage of the ultrasonic
cavitation peening.

Table 3. The micro hardness of the surface rods before and after cavitation peening.

Diameter Original Micro Hardness (HV) Average Micro Hardness (HV)

15 mm 40.05 ± 2.56 50.43 ± 3.53
16 mm 41.45 ± 2.68 56.46 ± 4.32

5. Discussion

From the aluminum foil experiments, it can be seen that the higher driving voltage
caused the larger damaged area. The reason was that the higher driving voltage resulted in
a higher output power, leading to the generation of more cavitation bubbles on the inner
wall of the ring sonotrode. Meanwhile, more cavitation bubbles were generated on the
surface of the metallic rod. On the other side, between the driving voltages of 150 and
190 V, the damaged area increased first to a threshold and then decreased. The maximum
damaged area corresponding to the diameter of 16 mm was obviously larger than that at
other diameters. At the diameter of 16 mm, the gap between the ring sonotrode and the
metallic rod was 2.75 mm. At this gap, most of the cavitation bubbles were generated on
the rod surface, even at different driving voltages. At large gaps (smaller rod diameter),
although the number of the generated cavitation bubbles were the same as the gap of
2.75 mm, the number of the available cavitation bubbles on the rod surface was smaller.
This was because the attenuation of the sound pressure increased due to the bubble liquid
and there was not enough sound pressure to generate more cavitation bubbles on the
surfaces of the rods. At a larger rod diameter, the small gaps limited the dynamics of
cavitation bubbles, leading to the change of impacts on the treated surfaces compared to
the collapse of bubbles without limitation. When the gap became smaller, the cavitation
bubble was no longer spherical if other operation conditions were not changed. Due to this
limitation, the impact amplitude on the treated surfaces was reduced.

The average light intensity increased with the increase of the driving voltage, since
more power caused more violent cavitation intensity. The strongest light intensity occurred
at a diameter of 16 mm. Similar to the descriptions in the experiments of damaged
aluminum foils, at the optimal working gap, there was a boundary point between the atten-
uation of the sound pressure and the limitation of the bubble growth and collapse. Hence,
for this novel ultrasonic cavitation peening process, the working gap of about 2.75 mm can
be said to be optimal for the treatment of the cylindrical workpieces. Thus, the rod diameter
of 16 mm and the driving voltage of 190 V were selected as a set of optimal parameters for
the cavitation processing. After treatments, the hardness with the diameter of 16 mm in-
creased by about 36% without significant increase of the surface roughness. From previous
investigations [13,14], we can deduce that the residual compressive increased as well.
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6. Conclusions

In this paper, the surface enhancement effects of ultrasonic cavitation peening on
cylindrical workpieces were investigated utilizing a novel configuration of the piezoelectric
transducer with a ring sonotrode. The transducer was designed with a resonance frequency
of about 21 kHz and the measured results met the expectation. Since the working gap and
the driving voltage play an important role in the properties of the cylindrical workpieces
after ultrasonic cavitation peening, we carried out three different kinds of experiments
in order to detect cavitation areas, cavitation intensity, and the properties of the peened
surfaces. Utilizing the aluminum foil method, we evaluated the cavitation areas on the
surfaces of the cylindrical workpieces. The results show that the working gap of 2.75 mm
and the driving voltage of 190 V created the largest damaged area on the aluminum foils.
In the same case, the SCL experiments showed that the strongest cavitation occurred on
the surfaces of the cylindrical workpieces as well. Subsequently, the workpieces were
treated in the same condition. After treatment, the surface hardness increased by about
36% without significant increase of the surface roughness. In the previous investigations
using the longitudinal transducers [14,20], the hardness increased by about 32% and 44%,
respectively. Thus, this novel method has the same effect as a longitudinal transducer and
shows potential to improve the efficiency of ultrasonic cavitation peening.
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