
algorithms

Article

Capturing Protein Domain Structure and Function Using
Self-Supervision on Domain Architectures

Damianos P. Melidis 1,* and Wolfgang Nejdl 1,2

����������
�������

Citation: Melidis, D.P.; Nejdl, W.

Capturing Protein Domain Structure

and Function Using Self-Supervision

on Domain Architectures. Algorithms

2021, 14, 28. https://doi.org/

10.3390/a14010028

Received: 28 December 2020

Accepted: 15 January 2021

Published: 19 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 L3S Research Center, Leibniz University Hannover, 30167 Hannover, Germany
2 Knowledge-Based Systems Laboratory, Leibniz University Hannover, 30167 Hannover, Germany;

nejdl@kbs.uni-hannover.de
* Correspondence: melidis@l3s.uni-hannover.de; Tel.: +49-511-762-14848

Abstract: Predicting biological properties of unseen proteins is shown to be improved by the use of
protein sequence embeddings. However, these sequence embeddings have the caveat that biological
metadata do not exist for each amino acid, in order to measure the quality of each unique learned
embedding vector separately. Therefore, current sequence embedding cannot be intrinsically evalu-
ated on the degree of their captured biological information in a quantitative manner. We address
this drawback by our approach, dom2vec, by learning vector representation for protein domains
and not for each amino acid base, as biological metadata do exist for each domain separately. To
perform a reliable quantitative intrinsic evaluation in terms of biology knowledge, we selected the
metadata related to the most distinctive biological characteristics of a domain, which are its structure,
enzymatic, and molecular function. Notably, dom2vec obtains an adequate level of performance
in the intrinsic assessment—therefore, we can draw an analogy between the local linguistic features
in natural languages and the domain structure and function information in domain architectures.
Moreover, we demonstrate the dom2vec applicability on protein prediction tasks, by comparing
it with state-of-the-art sequence embeddings in three downstream tasks. We show that dom2vec
outperforms sequence embeddings for toxin and enzymatic function prediction and is comparable
with sequence embeddings in cellular location prediction.

Keywords: protein domain architectures; word embeddings; quantitative quality assessment; SCOPe
secondary structure class; enzymatic commission class

1. Introduction

A primary way in which proteins evolve is through rearrangement of their func-
tional/structural units, known as protein domains [1,2]. The domains are independent
folding and functional modules, and thus they exhibit conserved sequence segments. Pre-
diction algorithms exploited this information and used, as input features, the domain
composition of a protein for various tasks. For example, [3] classified the cellular location,
and [4,5] predicted the associated Gene Ontology (GO) terms. There exist two ways to
represent domains; either by the linear order in a protein, domain architectures [6], or by a
graph where nodes are domains and edges connect domains that co-exist in a protein [1,2].

Moreover, [7] investigated whether the domain architectures had grammar as a natural
spoken language. They compared the bi-gram entropy of domain architectures for Pfam
domains [8] to the respective entropy of the English language, showing that although
it was lower than the English language, it was significantly different from a language
produced after shuffling the domains. Prior to this result, methods had exploited the
domain architecture representation to various applications, such as fast homology search [9]
and retrieval of similar proteins [10].

Word embeddings are unsupervised learning methods which have, as input, large
corpora, and where they output a dense vector representation of words contained in the
sentences of these documents based on the distributional semantic hypothesis, that is, the
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meaning of a word can be understood by its context. Thus, a word vector represents local
linguistic features, such as lexical or semantical information, of the respective word. Several
methods to train word embeddings have been established, for example, [11–13]. These
representations have been shown to hold several properties, such as analogy and grouping
of semantically similar words [14,15]. Importantly, these properties are learned without
the need of a labeled data set. Word embeddings are currently the mainstream input for
neural networks in the Natural Language Processing (NLP) field, as firstly, they reduce the
feature space, compared to 1-hot representation, and secondly, they provide word features
that encapsulate relations between words based on linguistic features. The use of word
embeddings improved the performance on most of the tasks, such as sentiment analysis or
Named Entity Recognition (NER) [16].

Various methods used to create embeddings for proteins have been proposed [17–23].
ProtVec fragmented the protein sequence in 3-mers for all possible starting shifts, then
learned embeddings for each 3-mer and represented the respective protein as the average
of its constituting 3-mer vectors [17]. SeqVec utilized and extended the Embeddings from
Language Models (ELMo) [24] to learn a dense representation per amino acid residue,
resulting in matrix representations of proteins, created by concatenating their learned
residue vectors [21].

Focusing on their word segmentation, we note that learning embeddings for each
amino acid or 3-mer may not always reflect evolutionary signals. That is, a pair of proteins
with low sequence similarity is still a member of the same protein super-family, preserving
similar function [25].

The previous embedding approaches evaluated the learned representations intrinsi-
cally, in a qualitative manner. They averaged out the whole protein amino acid embeddings
to compute the aggregated vector. Then, known biological characteristics of proteins are
used, such as biophysical, chemical, structural, enzymatic, and taxonomic, as distinct
colors in a reduced 2-D embedding space. In such visualizations, previous embedding
approaches reported the appearance of distinct clusters of proteins, each consisting of pro-
teins with similar properties. For downstream evaluation, they measured the improvement
of performance in downstream tasks.

Concerning the qualitative intrinsic evaluation, two caveats exist. First, researchers av-
eraged out the protein amino acid vectors, where consequently, this qualitative evaluation
is not related in a straightforward way with each learned embedding vector trained per
amino-acid. In addition, this averaging-out operation may not reveal the function of the
most important sites of a protein, meaning the comparative result holds a low degree of
biological significance. Second, we argue that the presented qualitative evaluations lack the
ability to assess different learned embeddings in a sophisticated manner. This is because
there is no systematic way to quantitatively compare 2-D plots of reduced embedding spaces,
each produced by a protein-embedding method in investigation.

Indeed for word embeddings, there has been an increase in methods to evaluate word
representations intrinsically and in a quantitative manner, such as [26,27]. Having such
evaluation metrics allows us to validate the knowledge acquired per each word vector and
use the best-performing space for downstream tasks. However, intrinsic evaluations of
current amino acid embedding representations are prevented by incomplete biological
metadata at amino acid level, for all disposed proteins, in the UniProtKnowledgeBase
(UniProtKB) [28].

To address this limitation in quantitative intrinsic evaluations of protein sequence
embeddings, we present our approach with five major contributions:

1. Our dom2vec approach is developed, in which words are InterPro annotations and
sentences are the domain architectures. Then, we use the word2vec method to learn
the embedding vector representation for each InterPro annotation.

2. A quantitative intrinsic evaluation method is established based on the most sig-
nificant biological information for a domain—its structure and function. First, we
evaluated the learned embedding space for domain hierarchy comparing known
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domain parent–children relations to cosine similarity of the parent domain. Then, we
investigated the performance of a nearest neighbor classifier, Cd

nearest, to predict the
secondary structure class provided by SCOPe secondary structure class [29] and the
Enzyme Commission (EC) primary class. Finally, we equally examined the perfor-
mance of the Cd

nearest classifier to predict the GO molecular function class for three
example model organisms and one human pathogen.

3. Strikingly, we observed that Cd
nearest reaches adequate accuracy, compared to Cd

nearest on
randomized domains vectors, for secondary structure, enzymatic function, and GO
molecular function. Thus, we hypothesized an analogy between word embedding
clustering by local linguistic features and protein domains clustering by domain
structure and function.

4. To evaluate our embeddings extrinsically, we inputted the learned domains embed-
dings to simple neural networks and compared their performance with state-of-the-art
protein sequence embeddings in three full-protein tasks. We surpassed both SeqVec
and ProtVec for the toxin presence and enzymatic primary function prediction task,
and we reported comparable results in the cellular location prediction task.

5. The pre-trained protein domain embeddings are available online at https://doi.org/
10.25835/0039431, to be used by the research community.

The remainder of the paper is organized as follows: related work on protein embed-
dings is reviewed in Section 2. The methodology used to train and evaluate dom2vec
embeddings is described in Section 3. The intrinsic and extrinsic evaluation results are
presented in Section 4. In Section 5, we conclude.

2. Background

Current studies on protein embeddings are evaluated intrinsically and extrinsically.
In extrinsic evaluation, prediction measures, like performance on a supervised learning
task, are most commonly used to evaluate the quality of embeddings. For example,
the ProtVec work [17] evaluated their proposed embeddings extrinsically by measuring
their performance in predicting protein family and disorder. SeqVec [21] assessed their
embeddings extrinsically by measuring performance on protein-level tasks, prediction of
sub-cellular localization and water solubility, and residue-level tasks, and prediction of the
functional effect of single amino acid mutations. However, extrinsic evaluation methods
are based on a downstream prediction task, thus not measuring the biological information
captured by each learned subsequence vector separately.

Previous studies evaluated the quality of their sequence embeddings intrinsically,
by averaging the amino acid embedding vectors per protein and then drawing t-SNE
visualizations [30] using distinct biological labels of a protein as colors, such as taxonomy,
SCOPe, and EC primary class. However, this qualitative assessment hinders the selection
of the best-performing embeddings, irrespective of the downstream task, because there is
not a sophisticated method to rank 2-D visualizations.

Nevertheless, in NLP, the quality of a learned word embedding space is often evalu-
ated intrinsically in a quantitative manner by considering relationships among words, such
as analogies. Compared to qualitative evaluation, quantitative intrinsic evaluation enables
assessment of the degree of biological information captured by the embeddings. This
advantage allows us to choose the best set of parameters to create the embeddings that con-
tain the highest degree of meaningful information without choosing a specific downstream
task.

From all discussed protein embeddings studies, only [23] developed quantitative
intrinsic evaluation methods. To benchmark their Pfam domain embeddings, they used
the following three experiments. First, they benchmarked the performance of the nearest
neighbor classifier predicting the three main GO ontologies of a Pfam using its embedding
vector. Second, they assessed the Matthew’s correlation coefficient [31] between Pfam
embedding and first-order Markov encodings. They also assessed the vector arithmetic

https://doi.org/10.25835/0039431
https://doi.org/10.25835/0039431
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to compare GO conceptual binary assignment—for example, one pair was intracellular
(GO:0005622) vs. extracellular (GO:0005615).

Our approach differs from [23] in four main points. First, we trained embeddings
for all domain annotations of all proteins available in Interpro. That is, we included all
available InterPro annotations, consisting of super-family, family, single domains, and
functional sites, as “words” input to the word2vec method. Therefore, we used a broader
set of annotations for the whole spectrum of organisms. Besides, word2vec was developed
for sentences of natural languages, which have a moderate number of words. In order
to copy with this assumption for the sentence length, we resolved overlapping and re-
dundant annotations in order to increase the number of InterPro annotations, making
our input more suitable for the word2vec method. Second, we benchmarked over the two
word2vec models (CBOW and SKIP) and their parameters for each experiment of our quan-
titative intrinsic evaluation step, and consequently, we used our assessment to choose the
best embedding space. Third, we established three unique intrinsic evaluation benchmarks
for domain hierarchy, SCOPe secondary structure, and EC primary class. Lastly, our ap-
proach was also extrinsically evaluated on three downstream tasks in order to show that
dom2vec embeddings can surpass or be comparable to state-of-the-art protein sequence
embeddings.

3. Materials and Methods

In the following, the methodology for each part of our approach is explained. A con-
ceptual summary is presented in Figure 1.

Figure 1. Summary of our approach divided in four parts, building two forms of domain architectures,
training domain embeddings, performing intrinsic and extrinsic evaluation of dom2vec embeddings.

3.1. Building Domain Architectures

The InterPro database contains functional annotations for super-family, family, and
single domains, as well as functional protein sites. Hereafter, we will refer to all such
functional annotations as InterPro annotations. Furthermore, we will denote by domain
architectures the ordered arrangement of domains in a protein. We consider two distinct
strategies to represent a protein based on its domain architecture, consisting of either
non-overlapping or non-redundant annotations. For both annotation types, we insert each
annotation, based on the annotation’s beginning and end, in an interval tree Thit. For each
entry of the Thit, we save the annotation InterPro identifier, significance score, and length.
Based on the annotation type, we apply the following two distinct strategies to create the
linear domain architectures:
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Non-overlapping annotations. For each overlapping region in a protein, we keep the
longest annotation out of all overlapping ones. Annotations of non-overlapping regions
are included.

Non-redundant annotations. For each overlapping region in a protein, we keep all
annotations with a distinct InterPro identifier. We break ties for annotations with the
equal InterPro identifier by filtering in the longest one. Similarly, we keep annotations of
non-overlapping regions.

For both annotation types, we sort the filtered-in annotations by their starting position.
Finally, following the approach of [5], we also added the “GAP” domain to annotate more
than 30 amino acid sub-sequences, which does not match any InterPro annotation entry.

An example of the resulting domain architectures for the Diphthine synthase protein
is shown in Figure 2. All domains are overlapping, with the largest one colored in blue,
and the non-overlapping annotation is the single longest domain (IPR035966). All other
domains have a unique InterProID; therefore, the set of non-redundant InterPro annota-
tions includes all presented domains which are sorted with respect to their starting position,
and colored in green.

Applying the previous steps for all annotated proteins produces the domain architec-
tures, constituting the input corpus to the following embedding module.

Figure 2. Non-overlapping and non-redundant domain architectures of the Diphthine synthase protein.

3.2. Training Domain Embeddings

Given a protein, we assumed that words were its resolved InterPro annotations and
sentences were the protein domain architectures. By this assumption, we learned task-
independent embeddings for each InterPro annotation using two variants of word2vec: a
continuous bag of words and skip-gram model, hereafter denoted as CBOW and SKIP re-
spectively. See [12] for technical details on the difference between these approaches.
Through this training, each InterPro annotation is associated with a task-independent
embedding vector.

3.3. Quantitative Intrinsic Evaluation

In the following, we use the metadata for the most characteristic properties of do-
mains, in order to evaluate the learned embedding space for various hyper-parameters
of word2vec. We propose four intrinsic evaluation approaches for domain embeddings:
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domain hierarchy based on the family/subfamily relation, SCOPe secondary structure
class, EC primary class, and GO molecular function annotation.

We refer to the embedding space learned by word2vec for a particular set of hyperpa-
rameters as Vemb. The k nearest neighbors of a domain d is found by using the Euclidean
distance, and it is denoted as Cd

nearest.
To inspect the relative performance of Vemb on each of the following evaluations,

we randomized all domain vectors and ran each evaluation task. That is, we assigned to
each domain vector a newly created random vector, for each unique dimensionality of
embedding space, irrespective of all other embedding method parameters.

Domain hierarchy

InterPro defines a strict family–subfamily relationship among domains. This relation-
ship is based on sequence similarity of the domain signatures. We refer to the children of
domain p as Sp. We use these relationships to evaluate an embedding space, posing the
following research question,

RQhierarchy: Did vectors of hierarchically close domains form clusters in the Vemb?
Evaluation We predicted the closest |Sp| domains on cosine similarity of their vector

to the parent vector, and we denote this predicted set as Ŝp. For all learned embedding
spaces, we measured their recall performance, Recallhier, defined as follows:

Recallhier “
ÿ

p

|Sp X Ŝp|

|Sp|
. (1)

SCOPe Secondary Structure Class

We extracted the secondary structure of Interpro domains from the SCOPe database
and formed the following research question,

RQSCOPe: Did vectors of domains, with same secondary structure class, form clusters in
the Vemb?

Evaluation We evaluated Vemb by retrieving Cd
nearest of each domain. Then, we applied

stratified 5-fold cross-validation and measured the performance of a k-nearest neighbor
classifier to predict the structure class of each domain. The intrinsic evaluation performance
metric is the average accuracy across all folds, AccuracySCOPe.

EC Primary Class

The enzymatic activity of each domain is given by its primary EC class [32] and we
pose the following research question,

RQEC: Did vectors of domains, with the same enzymatic primary class, form clusters in the
Vemb?

Evaluation We again evaluate Vemb using k nearest neighbors in a stratified 5-fold
cross-validation setting. The average accuracy across all folds, AccuracyEC, is again used
to quantify the intrinsic quality of the embedding space.

GO Molecular Function

For our last intrinsic evaluation, we aimed to assess Vemb using the molecular function
GO annotation. We extracted all molecular function GO annotations associated with each
domain. In order to account for differences in specificity of different GO annotations, we
always used the depth-1 ancestor of each annotation, that is, children of the root molecular
function term, GO:0003674.

Since model organisms have the most-annotated proteins, we created GO molecular
function data sets for one example of prokaryote (Escherichia coli, denoted E. coli); one
example of a simple eukaryote (Saccharomyces cerevisiae, denoted S.cerevisiae); and one
complex eukaryote (Homo sapiens, denoted Human). To also assess our embeddings for not
highly annotated organisms, we included a molecular function data set for an example
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of a human pathogen (Plasmodium falciparum, denoted as Malaria). Finally, we pose the
following research question,

RQGO: Did vectors of domains, with the same GO molecular function, form clusters in the
Vemb?

Evaluation Similarly, k nearest neighbors is used here in a stratified 5-cross-validation
setting. Average accuracy across all folds, AccuracyGO, is again used to quantify perfor-
mance.

3.4. Qualitative Evaluation

As a preliminary evaluation strategy, we used qualitative evaluation approaches
adopted in an existing work. To follow the qualitative approach of ProtVec and SeqVec
we also visualized the embedding space for selected domain superfamilies, to answer the
following research question,

RQqualitative: Did vectors of each domain superfamily form a cluster in the Vemb?
Evaluation First, we added the vector of each domain in a randomly chosen do-

main superfamily to an empty space. Then, we performed principle component analysis
(PCA) [33] to reduce the space in two dimensions, and observed the formed clusters.

3.5. Extrinsic Evaluation

In addition, we assessed the learned Vemb by examining the performance change in
downstream tasks. For the three supervised tasks, TargetP, Toxin, and NEW, the domain
representations were used as input in simple neural networks. Next, our model perfor-
mance was compared to the state-of-the-art protein embeddings, ProtVec and SeqVec.

TargetP

This data set is about predicting the cellular location of a given protein. We down-
loaded the TargetP data set provided by [34], and we also used the non-plant data set. This
data set consists of 2738 proteins accompanied by their uniprot ID, sequence, and cellular
location label, which can be nuclear, cytosol, pathway, or signal and mitochondrial. Finally,
we removed all instances with a duplicate set of domains, resulting in a total of 2418. This
is a multi-class task, and its class distribution is summarized in Appendix E.

Evaluation For the TargetP, we used the mc-AuROC performance metric.

Toxin

The research work [35] introduced a data set associating protein sequence to toxic
or other physiological content. We used the hard setting, which provides a uniprot ID,
sequence, and the label toxin content or non-toxin content, for 15,496 proteins. Finally, we
kept only the proteins with unique domain composition, resulting in 2270 protein instances
in total. This is a binary task, and the class distribution is shown in Appendix E.

Evaluation As the Toxin data set is a binary task, we used AuROC as a performance
metric.

NEW

The NEW data set [36] contains the data for predicting the enzymatic function of
proteins. For each of the 22,618 proteins, the data set provides the sequence and the EC
number class. The primary enzyme class, the first digit of an EC number, is our label on
this prediction task, resulting in a multi-class task. Finally, we removed all instances with
duplicate domain composition, resulting in a total of 14,434 protein instances. The possible
classes are six, and the class distribution is shown in Appendix E.

Evaluation The NEW data set is a multi-class task; thus, we used mc-AuROC as a
performance metric.
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3.5.1. Data Partitioning

We divided each data set into 70/30% train and test splits. To perform model selection,
we created inner three-fold cross-validation sets on the train split.

Out-of-vocabulary experiment We observed that the performance of classifiers de-
pending on protein domains was highly dependent on the out-of-vocabulary (OOV) do-
mains, as first discussed in [37]. OOV domains are all the domains contained in the test
set, but not in the train. For TargetP, Toxin, and NEW, we observed that approximately
60%, 20%, and 20% of test proteins contained at least one OOV domain, respectively.

For the TargetP containing the highest OOV, we experimented to compensate for the
high degree of OOV. We split the test set into shorter sets by an increasing degree of OOV,
namely 0%, 10%, 30%, 50%, 70%, and 100%. Then, we trained models for the whole train
set and benchmarked the performance on each of these test subsets.

Generalization experiment For the Toxin and NEW data sets, experiencing low OOV,
we sought to investigate the generalization of the produced classifier. We increased the
number of training examples that the model was allowed to learn from and we bench-
marked always in the entire test set. To do so, we created training splits of size 10%, 20%,
and 50% of the whole train set. To perform significance testing, we trained on 10 random
subsamples for each training split percentage, and then tested on the separate step set.
We used the paired sample t-test, the Benjamini–Hochberg multiple-test, to compare the
performance between a pair of classifiers on the test set.

3.5.2. Simple Neural Models for Prediction

We consider a set of simple, well-established neural models to combine the InterPro
annotation embeddings for each protein to perform downstream tasks, that is, for extrin-
sic evaluation tasks. In particular, we use FastText [38], convolutional neural networks
(CNNs) [39], and recurrent neural networks (RNNs) with long- and short-term memory
(LSTM) cells [40] and bi-directional LSTMs.

4. Results
4.1. Building Domain Architecture

We used the domain hits for UniProt proteins from InterPro version 75, containing
128,660,257 proteins with an InterPro signature, making up 80.9% of the total UniPro-
tKB proteome (version 2019_06). For all these proteins, we extracted the non-overlapping
and non-redundant sequences, which we process in the next section. The number of unique
non-overlapping sequence was (35,183 + 1), where the added “GAP” domain and non-
redundant domain was (36,872 + 1) plus the “GAP”. Comparing this to the total number
of domains in InterPro version 75, which was 36,872, we observed that non-overlapping
InterPro annotations captured 95.42%, and the non-redundant domain captured 100% of
the InterPro annotation entries. To enable visual comparison of the created type of domain
architectures versus the downloaded InterPro annotations, in Figure 2 we illustrate the
non-overlapping and non-redundant domain architectures of the Diphthine synthase protein.
This same protein, Diphthine synthase, was picked as an example illustration for annotations
in the latest InterPro work [41].

4.2. Training Domain Embeddings
Domain Architectures

Before applying the word2vec method, we examined the histograms of the number of non-
overlapping and non-redundant InterPro annotations per protein in Figure 3. We observed
that these distributions were long-tailed with modes equal to 1 and 3, respectively. Then, we
used both CBOW and SKIP algorithms to learn domain embeddings. We used the following
parameter sets. Based on the histograms, we selected the context window parameter for the
word to be 2 or 5, w “ t2, 5u. For the number of dimensions, we used common values from
the NLP literature, dim “ t50, 100, 200u. We trained the embeddings from 5 to 50 epochs
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with step size 5 epochs ep “ t5, 10, 15, . . . , 50u. Finally, all other parameters were set to their
default values. For example, the negative sampling parameter was set to default, ng = 5.

4.3. Quantitative Intrinsic Evaluation

In the following, we evaluated each instance of learned embedding space Vemb for
both non-overlapping and non-redundant representations of domain architectures. An
instance of Vemb space is the embedding space learned for a combination of the product
annotation_type ¨w ¨ dim ¨ ep. Consequently, the total number of embedding space instances
is |annotation_type| ¨ |w| ¨ |dim| ¨ |ep| “ 2 ¨2 ¨3 ¨10 “ 120. Let Vi

emb denote such an embedding
space instance. In the following subsection, we evaluated each Vi

emb for domain hierarchy,
secondary structure, enzymatic primary class, and GO molecular function. Finally, all
reported performances are shown for the best-performing epoch value (ep). Results are shown
in Table 1.

Table 1. Intrinsic evaluation performance. (a) Recallhier for non-redundant InterPro annotations.
(b–d): Cd

nearest average accuracy over all folds: (b) AccuracySCOPe, (c) AccuracyEC and (d) AccuracyGO

for non-redundant InterPro annotations. For all tables, results are shown for the best-performing ep
value; if k is not shown, then k = 2. Best performance of an evaluation task shown in bold.

(a) Domains hierarchy

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 0.406 (ep = 10) 0.412 (ep = 10) 0.414 (ep = 5)
CBOW, w = 5 0.405 (ep = 30) 0.402 (ep = 35) 0.382 (ep = 10)
SKIP, w = 2 0.512 (ep = 5) 0.53 (ep = 5) 0.538 (ep = 5)
SKIP, w = 5 0.507 (ep = 5) 0.525 (ep = 5) 0.524 (ep = 5)

random 0 0 0

(b) SCOPe Secondary structure

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 77.09 (ep = 5) 76.35 (ep = 5) 75.77 (ep = 5)
CBOW, w = 5 78.15 (ep = 5) 76.94 (ep = 5) 76.84 (ep = 5)
SKIP, w = 2 84.42 (ep = 45) 84.42 (ep = 40) 84.08 (ep = 30)
SKIP, w = 5 84.56 (ep = 25) 84.06 (ep = 45) 83.72 (ep = 10)

random 23.39 (k = 40) 23.49 (k = 40) 22.76 (k = 20)

(c) EC primary class

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 76.88 (ep = 5) 75.85 (ep = 5) 75.39 (ep = 5)
CBOW, w = 5 80.89 (ep = 5) 79.89 (ep = 5) 77.16 (ep = 5)
SKIP, w = 2 89.47 (ep = 35) 89.06 (ep = 40) 88.86 (ep = 5)
SKIP, w = 5 90.85 (ep = 30) 90.41 (ep = 15) 90.2 (ep = 5)

random 33.62 (k = 40) 32.06 (k = 40) 32.28 (k = 40)

(d) GO molecular function (Human)

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 66.94 (ep = 5) 66.32 (ep = 5) 66.32 (ep = 5)
CBOW, w = 5 67.77 (ep = 5) 65.87 (ep = 5) 65.77 (ep = 5)
SKIP, w = 2 74.77 (ep = 40) 74.18 (ep = 5) 73.14 (ep = 5)
SKIP, w = 5 75.96 (ep = 40) 75.53 (ep = 10) 74.98 (ep = 5)

random 37.05 (k = 40) 37.03 (k = 20) 37.05 (k = 40)
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Figure 3. Histograms of number of InterPro annotations per protein. (a) Non-overlapping and (b) non-redundant annotations.

4.3.1. RQhierarchy: Did Vectors of Hierarchically Close Domains Form Clusters in the Vemb?

For the first research question, we loaded the parent–child tree Thier, provided by
InterPro, consisting of 2430 parent domains. Then, for each Vi

emb, we compared the actual
and predicted children of each parent, and we averaged out the recall for all parents. For
ease of presentation, we show only the results for non-redundant InterPro annotations at
Table 1a, and we provide the complete results in the Appendix A.

From Tables A1 and 1a (Appendix A), we observed that SKIP performed better overall,
and the embeddings learned from non-redundant InterPro annotations always had better
average recall values compared to the non-overlapping ones. The best-performing Vi

emb
achieved average Recallhier of 0.538. We compared this moderate performance of Vemb with
the performance of the randomized spaces, which was equal to 0. We concluded that our
embedding spaces greatly outperformed each randomized space for domain hierarchy
relation. Therefore, we admitted that the majority of domains of the same hierarchy were
placed in close proximity in the embedding space.

4.3.2. RQSCOPe: Did Vectors of Domains with the Same Secondary Structure Class Form
Clusters in the Vemb?

We extracted the SCOPe class for each InterPro domain. This resulted in 25,196
domains with an unknown secondary structure class, 9411 with a single secondary structure
class, and 2265 domains with more than one assigned class (multi-label). For clarity, we
removed all multi-label and unknown instances, resulting in 9411 single-labeled instances.
The class distribution of the resulting data set is shown in Appendix B.

We measured the performance of the Cd
nearest classifier in each Vi

emb to examine the ho-
mogeneity of the space with respect to the SCOPe class. We split the 9411 domains in 5-fold
stratified cross-validation sets. To test the change in prediction accuracy for an increasing
number of neighbors, we used different sets of neighbors, namely, k “ t2, 5, 20, 40u. We
summarized the results for the best-performing Cd

nearest, which was k “ 2 for non-redundant
InterPro annotations in Table 1b. We show the respective table for non-overlapping InterPro
annotations in Appendix B. We compared these accuracy measurements to the respective
ones of the random spaces, and we found that the lowest accuracy values, achieved for
(non-overlapping, CBOW, w = 5, dim = 200, ep = 15), as shown in Appendix Table A2, are
twice as high as the accuracy values of the random spaces for all possible dimensions.
Consequently, we concluded that domain embeddings of the same secondary structure
class formed distinct clusters in the learned embedding space.

4.3.3. RQEC: Did Vectors of Domains, with the Same Enzymatic Primary Class, Form
Clusters in the Vemb?

We processed the EC primary class, resulting in 29,354 domains with unknown EC,
7248 domains with only one EC, and 721 with more than one EC. As before, we removed all
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multi-label and unknown instances, leaving 7428 domains with known EC. We augmented
a domain instance with its vector representation for each Vi

emb, and then we used Cd
nearestto

predict the EC label. See Appendix C for the class distribution of the EC task.
We reported the average AccuracyEC obtained in embedding spaces learned using

non-redundant InterPro annotations in Table 1c. We show the respective table for non-
overlapping in Appendix C. We compared these accuracy measurements to the respective
ones of the random spaces. We found that the minimum average AccuracyEC value was
equal to 60.51 and was achieved using (non-overlapping, CBOW, w = 5, dim = 200, ep = 15),
presented in Appendix Table A3. That value was approximately twice as large as the
accuracy values of the random spaces for all possible dimensions; the maximum average
AccuracyEC for random space with dim = 100 was 32.64. Hence, we were able to accept
that domain embeddings of the same EC primary class formed distinct clusters in a learned
embedding space.

4.3.4. RQGO: Did Vectors of Domains with the Same GO Molecular Function Form
Clusters in the Vemb?

We parsed the GO annotation file of InterPro to extract first-level GO molecular
function for domains for the four organisms. We followed the same methodology to
examine the homogeneity of a Vemb with respect to GO molecular function annotations. For
each Vi

emb, we augmented each domain by its vector and its GO label, and we classified each
domain using Cd

nearest. As before, we used 5-fold stratified cross-validation for evaluation.
In our experiments, we varied the number of neighbors k “ t2, 5, 20, 40u to test its influence
on the change of performance.

For space limitations, we summarized the performances showing only the best average
accuracy over the number of neighbors. For ease of presentation, we omitted the result
tables for the first three organisms and show only that for Human, but we discuss the results
for all organisms. See Appendix D for full results.

For Malaria, the best average accuracy was 76.86 (non-redundant, SKIP, w = 5, dim = 100,
ep = 40) and the minimum was 56.94 (non-overlapping, CBOW, w = 5, dim = 100, ep = 10),
presented in Table A4b,c respectively. We compared this moderate minimum accuracy to
the maximum level of accuracy obtained by the randomized embedding space, which was
47.57 for dim = 200. Therefore, we concluded that dom2vec embeddings outperformed the
random baseline by at least 10 percent.

For E. coli, the best accuracy score was 81.72 (non-redundant, SKIP, w = 5, dim = 50,
ep = 5), and the minimum was 67.34 (non-overlapping, CBOW, w = 2, dim = 200, ep = 5),
shown in Table A5b,c respectively. Compared with the random baseline, achieving a best
accuracy score of 64.46, we observed that, again, dom2vec was able to surpass the random
baseline.

For Yeast, the best accuracy score was 75.10 (non-redundant, SKIP, w = 5, dim = 50,
ep = 50), and the minimum accuracy value was 59.82 (non-overlapping, CBOW, w = 5,
dim = 50, ep = 50), presented in Table A6b,c respectively. We contrasted this to the maximum
accuracy level obtained in a random space, which was 53.73 (achieved for dim = 100), to
report that dom2vec vectors in VE.coli

emb captured GO molecular function classes at a much
higher degree than randomized vectors.

For Human, the best average performance for non-redundant InterPro annotations are
shown in Table 1d. The best average accuracy level was 75.96, scored by 2-NN for Vhuman

emb
(non-redundant, SKIP, w = 5, dim = 50, ep = 40). The minimum accuracy value was 57.7,
obtained by (non-overlapping, CBOW, w = 2, dim = 50, ep = 10) shown in Table A7b. The
best performance of a random space was 37.36 (Table A7b). We compared the minimum
accuracy level of trained spaces with the best of the random spaces. We found that the
minimum accuracy achieved in the dom2vec spaces was 20 percentage values higher than
the best performance of the random space.

For all four example organisms, we observed that the SKIP on non-redundant InterPro
annotations produced Vemb, in which Cd

nearest achieved the best average accuracy. For
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three out of the four organisms, the best performances were achieved for the lowest
number of dimensions (dim = 50). In all cases, we found that the worst-performing
dom2vec embeddings outperformed the random baselines. By these findings, we affirmed
that domain embeddings of the same GO molecular function class formed distinct clusters
in the learned embedding space.

4.4. Concluding on Quantitative Intrinsic Evaluation

Based on the previous four experiments, we aimed to evaluate the learned Vemb spaces
and select the best domain embedding space for downstream tasks. In all experiments,
the non-redundant InterPro annotations created better-performing embedding spaces
compared to non-overlapping annotations. We reached this finding by comparing the
modes of a number of annotations per protein for the two annotation types, Figure 3. We
hypothesized that, by the very low mode for non-overlapping annotations, a mode equal to
one annotation, the word2vec method could not produce embeddings for even the stringent
context window value of two. In contrast, 52% of proteins contained less than or equal to
three non-redundant InterPro annotations.

This makes SKIP able to produce embedding spaces by attaining the best intrinsic
performance. From the individual results, we saw that the configuration of parameters
(non-redundant, SKIP, w = 5, dim = 50) brought the best results in Cd

nearest performance for
SCOPe, EC, and GO for E. coli, Yeast, Human, second best for Malaria, and the sixth best
recall (0.507) for the domain hierarchy relation. Therefore, we will denote as Vbest intrinsic

emb ,
the space produced by (non-redundant, SKIP, w = 5, dim = 50, ep = 50).

4.5. Qualitative Evaluation
RQqualitative: Did Vectors of Each Domain Superfamily Form a Cluster in the Vemb?

To explore the Vemb in terms of the last research question, RQqualitative, we randomly
selected five InterPro domain superfamilies to perform the visualization experiment. The
selected domain superfamilies were PMP-22/EMP/MP20/Claudin superfamily with parent
InterPro id IPR004031, small GTPase superfamily with parent InterPro id IPR006689, Kinase-
pyrophosphorylase with parent InterPro id IPR005177, Exonuclease, RNase T/DNA polymerase
III with parent InterPro id IPR013520, and SH2 domain with parent InterPro id IPR000980.

We loaded the parent–child tree Thier, provided by InterPro, and for each domain
superfamily starting from the parent domain, we included recursively all domains that had
a subfamily relationship with this parent domain. For example, the Kinase-pyrophosphorylase
domain superfamily had domain parent IPR005177, which in turn had two immedi-
ate domain subfamilies IPR026530 and IPR026565. The IPR026565 domain contained
a subfamily domain with ID IPR017409, where consequently, the set of domains for
Kinase-pyrophosphorylase domain superfamily was {IPR005177, IPR026530, IPR026565, and
IPR017409}. We retrieved the vectors for each domain in each superfamily in the Vbest intrinsic

emb .
Finally, we applied principal component analysis (PCA) to produce a two-dimensional
space.

Visualization of the reduced space is depicted in Figure 4. Domain embeddings of each
superfamily are organized in well-separated clusters. The cluster of the Exonuclease, RNase
T/DNA polymerase III superfamily had the highest dispersion of all presented superfamilies.
By this finding, we could answer the research question with the following: Embedding
vectors of the same superfamily are well-clustered in the trained Vemb.
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Figure 4. Domain vectors for five domain superfamilies in the dom2vec space.

4.6. Extrinsic Evaluation
4.6.1. Extracting Domain Architectures

For each data set that contained the UniProt identifier for the protein instance, we
extracted the domain architectures for non-redundant InterPro annotations, already cre-
ated in Section “Building domain architectures”. For all proteins whose UniProt identifier
could not be matched, or for data sets not providing the protein identifier, we used Inter-
ProScan [42] to find the domain hits per protein. For proteins without a domain hit after
InterProScan, we created a protein-specific, artificial protein-long domain; for example, we
assigned to the protein G5EBR8, a protein-long domain named “G5EBR8_unk_dom”.

4.6.2. Model Selection

To select which simple neural model we should compare to the baselines, we per-
formed hyperparameter selection using an inner, three-fold cross-validation on the training
set; the test set was not used to select hyperparameters. We used common parameters,
with a dropout of 0.5, batch size of 64, an Adam optimizer [43] with learning rate of 0.000,
weight decay for the last fully connected layer of 0, and number of epochs equal to 300. As
a final hyperparameter, we allowed updates to the learned domain embeddings, initialized
by selected dom2vec embeddings. The results are shown in Appendix E.

4.7. Running Baselines

Then, we used the same network as the one in the right side of Figure 5 of [21]; we
refer to this network as SeqVecNet. Namely, the network first averages the 100 (ProtVec) or
1024 (SeqVec) dimensional embedding vector for a protein; it then applies a fully connected
layer to compress a batch of such vectors into 32 dimensions. Next, a ReLU activation
function (with 0.25 dropout) was applied to that vector, followed by batch normalization.
Finally, another fully connected layer was followed by the prediction layer. As the third
baseline, we added the 1-hot of domains in order to investigate the performance change
compared to dom2vec learned embeddings.

Evaluation

For TargetP, we sought to investigate the effect of OOV on the produced classifier
compared to sequence-based embeddings classifiers which do not experience OOV, as their
used sequence features were highly common in both the train and test sets. For the Toxin and
NEW datasets, we benchmarked the generalization of the produced classifier compared to the
sequence-based embeddings classifiers. Finally, for both kinds of experiments, we used the
trained models on each test set. Hence, this evaluation shows how differences in the training
set affect performance on the test set. The resulting performances are shown in Figure 5.
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Out-of-vocabulary experiment For TargetP, we validated that OOV will affect the
performance of domains dependent classifiers. That is, for OOV in the range of 0–30%, the
dom2vec classifier was comparable to the best-performing model, SeqVec. However, when
OOV increased even further, then the performance of our model dropped, though still
being competitive with the SeqVec. dom2vec greatly outperformed the 1-hot representation,
validating the NLP assumption that unsupervised embeddings improve classification
on unseen words—in this context, protein domains—compared to 1-hot word (domain)
vectors.

Generalization experiment For both Toxin and NEW, dom2vec significantly outper-
formed SeqVec, ProtVec, domains 1-hot vectors, and Benjamini–Hochberg multiple-test
corrected p-value < 0.05. In the Toxin data set, we observed that ProtVec learned the less
variant model, but with the trade-off obtaining the lowest performance (mc-AuROC). For
the NEW data set, the dom2vec 1-hot representation was the second-best representation
outperforming SeqVec and ProtVec, allowing us to validate the finding that domain com-
position is the most important feature for enzymatic function prediction, as concluded
by [36].

Figure 5. Downstream performance. Sub-figure (a) refers to the OOV experiment, while (b,c) refer to the generalization
experiment. The marked points represent the mean performance on the test set, and the shaded regions show one standard
deviation above and below the mean.

5. Conclusions

In this work, we presented dom2vec, an approach for learning quantitatively assessable
protein domain embeddings using the word2vec method on domain architectures from
InterPro annotations.

We have shown that dom2vec adequately captured the domain SCOPe structural
information, EC enzymatic function, and the GO molecular function of each domain with
such available metadata information. However, dom2vec produced moderate results in the
domain hierarchy evaluation task. After investigating the properties of domain families
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that dom2vec produces these moderate results, we concluded that dom2vec cannot capture
the domain hierarchy, mostly for domain families of low cardinality. We argue that by using
more complex classifiers compared to Cd

nearest, we could gain in hierarchy performance, but
this was not the scope of our evaluation.

Importantly, we did discover that dom2vec embeddings captured the most distinctive
biological characteristics of domains, secondary structure, and enzymatic and molecular
function for an individual domain. That is, word2vec produced domain embeddings which
clustered sufficiently well by their structure and function class. Therefore, our finding
supported the accepted modular evolution of proteins [1], in a data-driven way. It also
made possible a striking analogy between words in natural language that clustered together
in word2vec space [14], and protein domains in domain architectures that clustered together
in dom2vec space. Therefore, we parallel the semantic and lexical similarity of words to the
functional and structural resemblance of domains. This analogy may augment the research
on understanding the nature of rules underlying the domain architecture grammar [7]. We
are confident that this interpretability aspect of dom2vec will allow researchers to apply it
reliably, so as to predict biological features of novel domain architectures and proteins with
identifiable InterPro annotations.

In downstream task evaluation, dom2vec significantly outperformed domain 1-hot
vectors and state-of-the-art sequence-based embeddings for the Toxin and NEW data
sets. For the TargetP, dom2vec was comparable to the best-performing sequence-based
embedding, Seqvec, for OOV up to 30%. Therefore, we recommend using dom2vec in
combination with sequence embeddings to boost prediction performance.
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Appendix A. Domain Hierarchy

Average recall for all InterProparents in Thier, see main paper, for no overlapping
sequences are shown in Table A1. The histogram of average recall for best-performing
embedding space is shown at Figure A1a. We observe that the embeddings space brought
close domains with unknown family–subfamily relation for almost the one third of the
parent domains (827 out of 2430).

To diagnose the reason for this moderate performance, we plotted the histogram of the
number of children for each parent having recall 0, Figure A1b. We observed that most of
these parents had only one child. Consequently, the embedding space should have been very
homogeneous, for each of these parent child relation, in order to acquire better recall than 0.

https://doi.org/10.25835/0039431
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Figure A1. Diagnostic plots for domain hierarchy assessment task. (a) Recallhier histogram for SKIP, w = 2, dim = 200, ep = 5
for non-redundant annotations. and (b) Histogram of number of children for parents with Recallhier=0.

Table A1. Average Recallhier for non-overlapping annotations, best shown in bold.

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 0.242 (ep = 15) 0.259 (ep = 20) 0.263 (ep = 15)
CBOW, w = 5 0.242 (ep = 45) 0.252 (ep = 30) 0.25 (ep = 15)
SKIP, w = 2 0.287 (ep = 20) 0.316 (ep = 30) 0.32 (ep = 20)
SKIP, w = 5 0.284 (ep = 20) 0.302 (ep = 30) 0.311 (ep = 30)

random 0 0 0

Appendix B. SCOPe Secondary Structure Class

Classes distribution of secondary structure class is shown at Table A2a. Average
Cd

nearest accuracy over all folds, AccuracySCOPe, for non-overlapping annotations shown in
Table A2b.

Table A2. SCOPe evaluation. (a) SCOPe class summary, (b) Cd
nearest average accuracy over all folds,

AccuracySCOPe, for non-overlapping annotations (default k = 2), best shown in bold.

SCOPe Class No. of
Domains

a 1868
b 1806

a|b 2303
a+b 2320

multi-domain 304
membrane/cell 309

small 501

(a) SCOPe classes

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 50.01 (ep = 30) 50.69 (ep = 25) 50.45 (ep = 20)
CBOW, w = 5 49.59 (ep = 25) 50.03 (ep = 25) 48.82 (ep = 15)
SKIP, w = 2 51.83 (ep = 30) 51.79 (ep = 20) 51.78 (ep = 15)
SKIP, w = 5 51.54 (ep = 35) 51.65 (ep = 15) 51.34 (ep = 15)

random 22.75 (k = 40) 24.18 (k = 40) 23.39 (k = 40)

(b) AccuracySCOPe
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Appendix C. EC Primary Class

Classes distribution of EC primary class is shown at Table A3a. Average Cd
nearest accu-

racy over all folds, AccuracyEC, for non-overlapping shown in Table A3b.

Table A3. EC evaluation. (a) EC class summary, (b) average Cd
nearest accuracy over all folds,

AccuracyEC, for non-overlapping annotations (k = 2), best shown in bold.

EC Primary Class No. of
Domains

Oxidoreductases 1102
Transferases 2490
Hydrolases 2190

Lyases 524
Isomerases 318

Ligases 448
Translocases 176

(a) EC classes

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 61.23 (ep = 10) 61.33 (ep = 10) 60.66 (ep = 15)
CBOW, w = 5 61.22 (ep = 20) 60.51 (ep = 10) 60.61 (ep = 15)
SKIP, w = 2 63.56 (ep = 10) 63.92 (ep = 20) 62.58 (ep = 20)
SKIP, w = 5 62.47 (ep = 10) 63.44 (ep = 10) 62.94 (ep = 15)

random 31.51 (k = 40) 32.64 (k = 40) 31.68 (k = 20)

(b) AccuracyEC

Appendix D. GO Molecular Function

Appendix D.1. Malaria

GO class distribution and average Cd
nearest accuracy over all folds,AccuracyGO, for

non-overlapping and non-redundant annotations, for Malaria, are shown in Table A4a–c
respectively.

Table A4. Malaria GO molecular function evaluation. (a) GO class summary, (b,c) Average Cd
nearest accuracy over all folds,

AccuracyGO, for non-overlapping and non-redundant annotations, whenever k is not shown k = 2, best shown in bold case.

GO Class No. of Domains

Catalytic activity 676
Binding 440

Structural molecule activity 171
Transporter activity 63

Molecular function regulator 22
Transcription regulator activity 13

Cargo receptor activity 1
Molecular carrier activity 1

(a) GO classes

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 58.2 (k = 5, ep = 35) 58.24 (k = 5, ep = 5) 57.87 (ep = 5)
CBOW, w = 5 57.87 (ep = 10) 56.94 (ep = 10) 57.1 (ep = 5)
SKIP, w = 2 59.48 (k = 5, ep = 10) 59.82 (ep = 15) 58.68 (ep = 10)
SKIP, w = 5 60.61 (ep = 10) 59.01 (ep = 10) 59.39 (ep “ 5)

random 46.21 (k = 40) 46.62 (k = 40) 45.99 (k = 40)

(b) AccuracyGO for non-overlapping annotations
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Table A4. Cont.

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 67.33 (ep = 5) 64.88 (ep = 5) 61.13 (ep = 5)
CBOW, w = 5 66.74 (ep = 5) 66.75 (ep = 5) 63.89 (ep = 5)
SKIP, w = 2 75.79 (ep = 35) 75.64 (ep = 45) 74.91 (ep = 5)
SKIP, w = 5 76.79 (ep = 10) 76.86 (ep = 40) 72.75 (ep = 20)

random 46.58 (k = 40) 46.22 (k = 40) 47.57 (k = 40)

(c) AccuracyGO for non-redundant annotations

Appendix D.2. E. coli

GO class distribution and average Cd
nearest accuracy over all folds, AccuracyGO, for

non-overlapping and non-redundant annotations, for E. coli, are shown in Table A5a–c
respectively.

Table A5. E. coli GO molecular function evaluation. (a) GO class summary, (b,c) Average Cd
nearest accuracy over folds,

AccuracyGO, for non-overlapping and not-redundant annotations, whenever k is not shown k = 2, best shown in bold.

GO Class No. of Domains

Catalytic activity 1,565
Binding 476

Transporter activity 211
Structural molecule activity 117

Transcription regulator activity 39
Molecular function regulator 15

Molecular carrier activity 3
Translation regulator activity 1
Molecular transducer activity 1

(a) GO classes

Modelå Dimension dim “ 50 dim “ 100 dim “ 200

CBOW, w = 2 67.66 (k = 5, ep = 30) 67.46 (k = 20, ep = 5) 67.34 (k = 20, ep = 5)
CBOW, w = 5 67.78 (k = 5, ep = 5) 67.46 (k = 20, ep = 5) 67.34 (k = 20, ep = 5)
SKIP, w = 2 68.15 (k = 5, ep = 5) 67.54 (k = 5, ep = 5) 67.75 (k = 20, ep = 5)
SKIP, w = 5 69.1 (k = 5, ep = 5) 67.82 (k = 5, ep = 5) 68.15 (k = 5, ep = 5)

random 64.46 (k = 40) 64.46 (k = 40) 64.46 (k = 40)

(b) AccuracyGO for non-overlapping annotations

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 71.41 (k = 5, ep = 5) 68.45 (k = 5, ep = 5) 67.87 (ep = 5)
CBOW, w = 5 74.95 (ep = 5) 71.69 (ep = 5) 68.91 (ep = 5)
SKIP, w = 2 81.27 (ep = 5) 80.32 (ep = 5) 80.36 (ep = 5)
SKIP, w = 5 81.72 (ep = 5) 81.64 (ep = 5) 80.77 (ep = 5)

random 64.38 (k = 40) 64.46 (k = 40) 64.38 (k = 40)

(c) AccuracyGO for non-redundant annotations
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Appendix D.3. Yeast

GO class distribution and average Cd
nearest accuracy over all folds, AccuracyGO, for

non-overlapping and non-redundant annotations, for Yeast, are shown in Table A6a–c
respectively.

Table A6. S.cerevisiae GO molecular function evaluation. (a) GO class summary, (b,c) Average Cd
nearest accuracy over

folds,AccuracyGO, for non-overlapping and non-redundant annotations, best shown in bold.

GO Class No. of Domains

Catalytic activity 1177
Binding 585

Structural molecule activity 208
Transporter activity 112

Transcription regulator activity 46
Molecular function regulator 40
Translation regulator activity 2
Molecular transducer activity 2

Molecular carrier activity 1
Cargo adaptor activity 1

(a) GO classes

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 60.05 (k = 20, ep = 5) 59.87 (k = 20, ep = 5) 59.87 (k = 20, ep = 5)
CBOW, w = 5 59.82 (k = 20, ep = 15) 60.24 (k = 20, ep = 5) 60.70 (k = 20, ep = 5)
SKIP, w = 2 60.74 (k = 5, ep = 10) 60.79 (k = 5, ep = 10) 61.53 (k = 5, ep = 5)
SKIP, w = 5 61.38 (k = 5, ep = 10) 60.75 (k = 20, ep = 5) 60.61 (k = 20, ep = 10)

random 53.36 (k = 40) 53.64 (k = 40) 53.64 (k = 40)

(b) AccuracyGO for non-overlapping annotations

Modelå Dimension dim = 50 dim = 100 dim = 200

CBOW, w = 2 64.37 (k = 5, ep = 5) 64.87 (k = 5, ep =5) 62.4 (k = 5, ep = 5)
CBOW, w = 5 67.17 (k = 5, ep = 50) 65.11 (k = 5, ep = 5) 63.31 (k = 5, ep = 5)
SKIP, w = 2 73.36 (k = 5, ep = 20) 73.86 (k = 5, ep = 5) 72.29 (k = 5, ep = 5)
SKIP, w = 5 75.1 (k = 5, ep = 50) 74.1 (k = 5, ep = 10) 73.02 (k = 5, ep = 5)

random 53.59 (k = 40) 53.73 (k = 40) 53.18 (k = 40)

(c) AccuracyGO for non-redundant annotations

Appendix D.4. Human

GO class distribution and average Cd
nearest AccuracyGO for non-overlapping annota-

tions, for Human, is shown in Table A7a,b.
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Table A7. Human GO molecular function evaluation: (a) GO class summary, (b) Average Cd
nearest accuracy over folds,

AccuracyGO, for non-overlapping annotations, when k is not shown k = 2, best shown in bold.

GO Class No. of Domains

Catalytic activity 1945
Binding 1583

Transporter activity 377
Molecular transducer activity 355
Structural molecule activity 262

Transcription regulator activity 203
Molecular function regulator 168

Cargo receptor activity 9
Molecular carrier activity 1

Cargo adaptor activity 1

(a) GO classes

Modelå Dimensions dim = 50 dim = 100 dim = 200

CBOW, w = 2 57.7 (ep = 10) 58.82 (ep = 10) 58.04 (k = 5, ep = 10)
CBOW, w = 5 58.1 (ep = 30) 58.9 (ep = 35) 58.2 (ep = 10)
SKIP, w = 2 60.51 (k = 5, ep = 15) 60.67 (ep = 10) 59.3 (ep = 10)
SKIP, w = 5 60.59 (k = 5,ep“35) 60.18 (k = 5, ep = 10) 59.84 (k = 5, ep = 10)

random 36.72 (k = 40) 36.44 (k = 40) 37.36 (k = 40)

(b) AccuracyGO for non-overlapping annotations

Appendix E. Extrinsic Evaluation

Class distribution for TargetP, Toxin and NEW data sets shown in Table A8a–c respec-
tively. Model selection over hyperparameters, including architecture, shown in Table A9.

Table A8. Class summary for downstream tasks. (a) TargetP, (b) Toxin and (c) NEW.

Location No. of Proteins

Nuclear 1072
Cytosolic 405

Pathway/Signal 605
Mitochondrial 304

(a) TargetP

Toxicity No. of Proteins

Toxin 1747
Non toxin 523

(b) Toxin

EC Primary Class No. of Proteins

Oxidoreductases 2234
Transferases 5232
Hydrolases 4099

Lyases 1124
Isomerases 731

Ligases 1124

(c) NEW
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Table A9. Average performance of simple neural architectures using as input dom2vec on inner
three-fold cross-validation. For Toxin AuROC is shown and for the two other data sets mc-AuROC is
shown. Best values shown in bold.

Model å Data Set TargetP Toxin NEW

CNN, size = (1,2), filters = 200 0.9191 0.9074 0.9845
CNN, size = 1, filters = 128 0.9288 0.8957 0.9844

FastText (uni-gram) 0.8829 0.9029 0.9818
LSTM, dim = 512, layer = 1 0.9103 0.9025 0.9857

bi-LSTM, dim = 512, layer = 1 0.921 0.9052 0.9857
SeqVecNet dim = 32 0.9017 0.9086 0.9876
SeqVecNet dim = 512 0.9206 0.9145 0.9864

SeqVecNet dim = 1024 0.9228 0.9034 0.9861
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