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A B S T R A C T   

Wild bees play a major role in the cultivation of crops for human use, in the reproduction of many wild plants and 
are a key component of biodiversity. Mainly due to human activities, wild bees, like other insects, face a rapid 
decline in Europe. Understanding species distribution can help to design efficient conservation measures. Species 
distribution can also be used to estimate pollination ecosystem service potential, which can benefit the pro-
duction of crops relying on pollination and the reproduction of wild plant communities. The presence of polli-
nators depends on a combination of environmental and biotic factors, each playing a determining role at 
different spatial scales. We therefore developed a model composed as a hierarchical framework for environ-
mental predictors: climatic data and Land Use/Land Cover (LULC) variables at the European scale and species- 
specific habitat information at the local scale. The model combines the advantages of two different existing 
approaches: pollinator species distribution predictions based on their environmental requirements and knowl-
edge on bee species life-history traits and habitats. This paper presents the predicted distribution of twenty-five 
wild bee species of the Andrena genus in an agricultural region in Northern Germany. We used oilseed rape 
pollinators as a case study and compared the potential pollination services to the potential demand in the Case 
Study Area. The developed framework allows to determine the capacity of landscapes to support pollination 
ecosystem services from wild bees at the local scale, which can support the identification of vulnerable areas and 
the design of local scale measures for habitat improvement and for conservation. The hierarchical approach 
leaves potential for further adaptations in order to improve the prediction of wild bee species dynamics and 
factors influencing their spatial distribution.   

1. Introduction 

Pollination is a key ecosystem service, vital to both wild plants and 
cultivated crops (Klein et al., 2007). Gallai et al. (2009) estimated that 
10% of the total economic value of food production in Europe depends 
upon insect pollination. There is growing evidence that wild bees play a 
significant role in crop pollination (Javorek et al., 2002; Greenleaf and 
Kremen 2006a; Klein et al., 2007; Bommarco et al., 2012; Garibaldi 
et al., 2013), and that the pollination service delivered by wild polli-
nators cannot entirely be substituted by honeybees (Brittain et al., 2013; 
Garibaldi et al., 2013). An increasing number of insect pollinators are in 
decline or threatened, mainly because of anthropogenic stressors such as 

environmental pollution, land use change and agricultural intensifica-
tion but also climate change (Winfree et al., 2009; Potts et al., 2010; 
Cameron et al., 2011; Ollerton et al., 2014; Nieto et al., 2014). This 
decline of pollinating species will not only have an impact on agricul-
tural productivity and resilience (IPBES 2016), it can also lead to a 
parallel decline of wild plant species (Biesmeijer et al., 2006), as globally 
estimated 85% of flowering plants (78% in temperate zones) are adapted 
to animal pollination (Ollerton et al., 2011), mainly to bees (Potts et al., 
2010). Therefore ongoing declines in pollinator diversity may result in 
community cascade effects, i.e., the subsequent loss of other species that 
directly or indirectly rely upon extinct or declining species (Chapin 
et al., 1997). This in turn can have an impact on wild food, fibre and 
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medicine supplies, as well as decrease the cultural and aesthetic values 
of a landscape (IPBES 2016). 

In light of these observations, there are increasing calls and efforts to 
conserve wild pollinator species and their habitats (IPBES 2016). An 
effective biodiversity conservation policy should provide a clear guid-
ance to planning authorities on how to develop targeted species-specific 
conservation options for organisms that contribute to pollination ser-
vices at relevant scales (Kremen et al., 2007). To this end, there is a need 
for better spatial assessments of pollination. Understanding spatial 
patterns of pollinators is also crucial for estimating their availability to 
pollinate cultivated crops and wild plants (Kremen et al., 2004), to 
facilitate monitoring and inform on the habitats and vulnerability of 
local pollinators (Kremen et al., 2007; Kremen and Chaplin-Kramer 
2007). 

Up to now, the main approaches for building pollinator ecosystem 
service maps are by using InVEST (Integrated Valuation of Ecosystem 
Services and Tradeoffs) (Sharp et al., 2016) and ESTIMAP (Ecosystem 
Service Mapping Tool) (Zulian et al., 2013). InVEST and ESTIMAP 
models are primarily based on expert judgements on the presence and 
preferences of pollinators (essentially nesting places and floral feeding 
resources). The main issues with expert-based knowledge are that this 
knowledge may strongly depend on their selections, experience and 
expertise (Polce et al., 2018; Lonsdorf et al., 2009), and therefore can be 
biased towards specific species or species groups. Fewer studies are 
based on Species Distribution Models (SDMs) and actual species records 
(Polce et al., 2013; Polce et al., 2018; Nogué et al., 2016). SDMs rely on 
the correlation between environmental variables and geo-localized 
species records to determine the environmental variables that drive 
species presence and delineate potential species distribution (Guisan 
and Zimmermann 2000; Elith and Leathwick 2009; Araújo and Guisan 
2006). Contrary to SDMs, InVEST and ESTIMAP models do not allow to 
dynamically consider different environmental conditions (Lonsdorf 
et al., 2009; Zulian et al., 2013). When mapping pollination ecosystem 
service potential at national or sub-national scales, bioclimatic condi-
tions can largely vary and be a major determinant of bee species 
occurrence. Conversely, existing pollination models based on SDMs are 
at relatively coarse resolution, constrained by occurrence data and 
environmental variables typically available at coarse spatial resolution. 
Especially in highly fragmented landscapes, this resolution may fail to 
cover important habitats such as hedgerows, small pastures and forests, 
and therefore obtain biased pollinator distribution maps. Thus, to 
improve our ability to predict pollinator diversity and the associated 
pollination ecosystem service, one possibility could be to combine the 
advantages of the two different approaches: species distribution pre-
dictions through SDMs and knowledge on bee species life-history traits 
and habitat requirements as implemented in InVEST and ESTIMAP 
frameworks. 

The aim of this study is to develop a high-resolution pollinator spe-
cies model to predict spatial patterns of pollination ecosystem services 
potential from wild bees at the local scale. Hereby we assume that 
pollinator species richness and landscape suitability are good proxies of 
pollination service potential. This is a common assumption in existing 
pollination models (Kremen et al., 2007; Lonsdorf et al., 2009; Zulian 
et al., 2013) and is supported by the fact that pollination quantity, 
quality and stability tend to increase in landscapes with a diverse 
pollinator community (Klein et al., 2007; Albrecht et al., 2012; Dainese 
et al., 2019). The model is used as a tool to provide clear guidance for 
potential users such as planning authorities on how to optimize con-
servation measures for wild bee conservation and to inform on how 
management decisions can affect pollination ecosystem services and 
therefore pollination-dependant crop productivity. We apply the model 
in an agriculture-dominated case study area in northern Germany to test 
this approach at the local scale and its applicability for landscape 
management, using selected bee species as an example. The approach 
also allowed us to assess how and which environmental variables affect 
wild bee species distribution, as well as the role of life-history traits on 

their spatial distribution. 

2. Materials and methods 

2.1. Case study area (CSA) 

The CSA is located in the region of the Bornhöved Lake District in the 
federal state of Schleswig-Holstein in Northern Germany (Fig. 1). The 
extent of the area is approximately 140 km2. Agroecosystems dominate 
the landscape in a catchment area of five glacially formed and consec-
utively connected lakes. The CSA shows a suit of habitats with a high 
proportion of hedges and wall hedges that are characteristic in the 
province, shaping a highly diverse and fragmented landscape (see Fig. 1 
and Fränzle et al. 2008). Only small settlements, following a north-south 
alignment, are located in the CSA. 

2.2. Datasets 

2.2.1. Bees 
We selected species from the genus Andrena, also called mining bees, 

as they represent a highly various group including small bees to ones 
larger than honey bees, species that differ in seasonality or soil prefer-
ence as well as specialists (oligolectic) and generalist (polylectic) spe-
cies. This genus of bees is therefore a good representative of a broad 
range of bee species. From the Andrena genus, we selected species that 
were identified in the region and documented in the federal red list (van 
der Smissen 2001). This step accounts for historical and current 
dispersal limitations and helps to determine which species in the global 
source pool could have dispersed to the CSA (Guisan et al., 2017). The 
selected Andrena species are listed amongst the most important polli-
nators for crops in Europe, particularly of oilseed rape flowers and apple 
trees (Klein et al., 2007; Kleijn et al., 2015), or wild flowers (Westrich 
2018). Plant families visited by each species are listed in Table 1 in the 
supplementary material. We obtained 125,681 presence-only records of 
twenty-six wild bees from the Global Biodiversity Information Facility1 

(GBIF). Occurrence records retrieved from GBIF were cleaned using the 
“CoordinateCleaner v.2.0–14′′ package (Zizka et al., 2019). Occurrences 
with sea coordinates, zero coordinates or without geographic coordi-
nate, country mismatches, country centroids, outlier coordinates and 
coordinates assigned to biodiversity institutions were excluded. We also 
removed data older than 1950 as old records are more likely to be un-
reliable (Maldonado et al., 2015), data records with unprecise co-
ordinates and duplicates. We also checked for taxonomic errors, 
including spelling mistakes and synonyms. To reduce model overfitting 
derived from spatial autocorrelation and overdominance of specific re-
gions due to sampling bias, we then thinned the records using the 
package “spThin v.0.2.0′′ (Aiello-Lammens et al., 2015). 

We only selected species that had more than 50 GBIF occurrence 
records, as this is a key criterion for SDM modelling quality (Guisan 
et al., 2017). After geographic and taxonomic cleaning, only 10,928 
records of twenty-five wild bee species were retained for modelling 
(Table 1 in the supplementary material). 

2.2.2. Environmental variables 
We used bioclimatic and Land Use/Land Cover (LULC) data as 

environmental predictors (see Table 2 in the supplementary material for 
a complete list of the environmental variables). We first selected the 
main drivers of species ranges based on knowledge about mechanistic 
relationship between environmental variables and physiology of the 
targeted species. We further reduced the number of variables as too 
many variables increase the risk of overfitting and collinearity issues 
between the variables (Dormann et al., 2013; Guisan et al., 2017). 
Collinearity refers to the non-independence of predictor variables and 

1 https://www.gbif.org/ 
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can be a problem for parameter estimation as it inflates the variance of 
regression parameters and potentially leads to the wrong identification 
of relevant predictors. Therefore, reducing the number of environmental 
variables maximizes the performance of SDMs and the accuracy of the 
predictions (Araujo and Guisan 2006). A Principal Component Analysis 
(PCA) was used to visualize the correlation between variables, to iden-
tify the main environmental gradients in the study area and to investi-
gate the distribution of species in the environmental space (Guisan et al., 
2017). We conducted our PCA using the “ade4 v.1.7–16′′ package from R 
(Dray and Dufour 2007). We also analysed correlations between envi-
ronmental variables with a Pearson analysis for all bioclimatic and LULC 
variables. Only the most relevant uncorrelated variables, i.e. with a 
Pearson’s correlation coefficient below 0.7, were finally selected (Dor-
mann et al., 2013). 

The bioclimatic variables were first selected based on their impact on 
diurnal foraging activity of bees, nesting success and plants availability. 
During active months, low temperatures and high precipitation values 
reduce the number of foraging days and consequently potentially 
decrease bee fitness (Westrich 2018). High precipitation values probably 
impact the nesting success for ground nesters (Bystriakova et al., 2018). 
Extreme temperature and precipitation also indirectly affect bees by 
impacting the bloom of plants and therefore resource availability (Nieto 

et al., 2014). Climatic data were retrieved from WorldClim2 on a 30 
second resolution raster grids (~1 km2 at the equator) from WorldClim 
2.0 (Fick and Hijmans 2017). From the 19 available climatic variables, 
we first selected the variables expected to be the most causal for the 
species distribution: Bio_02 (Mean Diurnal Range), Bio_5 (Max Tem-
perature of Warmest Month), Bio_6 (Min Temperature of Coldest 
Month), Bio_7 (Temperature Annual Range, Bio_5 - Bio_6), Bio_8 (Mean 
Temperature of Wettest Quarter), Bio_10 (Mean Temperature of 
Warmest Quarter), Bio_11 (Mean Temperature of Coldest Quarter), 
Bio_14 (Precipitation of Driest Month), Bio_16 (Precipitation of Wettest 
Quarter), Bio_18 (Precipitation of Warmest Quarter) and Bio_19 (Pre-
cipitation of Coldest Quarter). The results of the PCA indicated that from 
the nine pre-selected bioclimatic variables, eight were strongly corre-
lated (Bio_5, Bio_6, Bio_10 and Bio_11, Bio_14 and Bio_18 as well as 
Bio_19 and Bio_16) and one (Bio_8) did not significantly contribute to 
the overall environmental variation (see Fig. 1 in the supplementary 
material). We selected Bio_19, Bio_11, Bio_2, Bio_7 and Bio_14 for the 
modelling, as they are good variables for discriminating between bee 
species and the rest of the environment. 

Fig. 1. Location of the study area in Northern Germany (on the right) and distribution of Land Use / Land Cover classes (AKTIS/InVeKoS (2010)) in the case study 
area (on the left). 

2 http://worldclim.org/version2 
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In temperate zones, wild bee species distribution are influenced by 
the proportion of heathland, woodland, grassland and urban areas 
coverages at the landscape scale (Senapathi et al., 2015). As major 
threats to wild bees in Europe, agricultural intensification and expan-
sion, pollution and urban sprawl will generally have a negatively impact 
wild bee species distribution (Nieto et al., 2014). For this study, LULC 
data was derived from the CORINE (Coordination of Information on the 
Environment) Land Cover 2018 dataset3, with a 100 m resolution. This 
dataset is produced by the European Environmental Agency (EEA) and is 
composed of 44 different LULC classes belonging to the five main land 
cover categories artificial surfaces, agricultural, forest, semi-natural 
areas, wetlands or water bodies. We used the hierarchical level 3 from 
CORINE and first aggregated the data in 1 km * 1 km grid cells, repre-
senting the percentage cover of each LULC per 1 km * 1 km grid. This 
was a necessary first step to generate a clean data structure for modelling 
(all predictors having the same resolution). The resolution of the pre-
dicted results is the same as the one of the environmental variables (1 km 
* 1 km). We first selected 15 LULC classes based on their ecological 
relevance: Continuous urban fabric, discontinuous urban fabric, road 
and rail networks and associated land, non-irrigated arable land, pas-
tures, complex cultivation patterns, broad-leaved forest, coniferous 
forest, mixed forest, natural grasslands, moors and heathland, transi-
tional woodland-shrub, sparsely vegetated areas, water courses and 
water bodies. We run the complete model a first time to select the most 
important variables for the select wild bee species distribution. This led 
to the selection of the following LULC variables: discontinuous urban 
fabric, non-irrigated arable land, pastures, coniferous forest, sparsely 
vegetated areas, water courses and water bodies. The selected LULC 
variables are neither correlated within each other nor with the selected 
bioclimatic variables (see Pearson correlation coefficients in Table 3 in 
supplementary material). 

In total, five bioclimatic variables and seven LULC classes were 
selected for modelling the potential distribution of the twenty-five bee 
species. 

2.2.3. Habitat filter variables 
We used the ATKIS (version 2012, Authoritative Topographic and 

Cartographic Information System), the official topographic information 
system for Germany and the InVeKoS (version 2010, Integrated 
Administration and Control System) datasets to build our species- 
specific habitat filters. The ATKIS dataset is originally mapped at a 
scale of 1:25.000 and describes 182 object classes that belong to artifi-
cial surfaces, traffic, vegetated areas (mainly agricultural, forest and 
natural areas), water bodies and relief (such as dams, cliffs, dunes). The 
InVeKoS dataset was used to obtain landscape elements such as hedge-
rows and tree rows for the CSA. For both datasets, the spatial resolution 
depends on the feature classes and has a MMU between 0.1 and 1 hectare 
(Bach et al., 2006). The ATKIS/InVeKoS datasets was used to map bee 
species habitat as described by Westrich (2018). To our knowledge, it is 
the most appropriate way to map bee species habitat at a high thematical 
and spatial resolution in our CSA. Though the latest generation of sat-
ellite products may allow to map LULC at a high resolution and to 
describe the presence of landscape elements at European scale, this data 
is not available yet. We created a habitat filter for each of the twenty-five 
selected bee species, by keeping only the LULC classes described as 
potential habitats (Table 4 in the supplementary material). 

2.3. Model calibration and evaluation 

2.3.1. Conceptual model 
We aimed at developing a species-centred approach based on the 

Ecosystem Services Providers (ESP) concept, i.e., species, functional 
groups, species communities, or habitats that produce ecosystem 

services (Kremen et al., 2007). In our model, the ESP are wild bees that 
provide pollination ecosystem services. The conceptual framework 
(Fig. 2) is inspired by the Ecological Production Function framework 
from Kremen et al. (2007). Key elements for species geographical dis-
tribution depend on the spatial scale of the influencing factors (Pearson 
and Dawson 2003; Thuiller 2004; Milbau et al., 2009; Hortal et al., 
2010). At the global scale, species occurrence is governed by bioclimatic 
and land cover variables (Fig. 2a) (Hegland et al., 2009). For bee species, 
distribution drivers at the global scale are not yet well understood 
(Bystriakova et al., 2018), while local determinants are relatively well 
known and mainly depend on the presence of nesting places and floral 
resources at the local scale, which define the habitat of a species 
(Fig. 2b) (Westrich 2018). The analysis of the role of different envi-
ronmental drivers at their operating scales is required to appropriately 
predict wild bee occurrences at the local scale. We therefore use a hi-
erarchical framework that builds on the work of Milbau et al. (2009): 
environmental drivers operating at large scales are used to predict 
species distribution using SDMs, and the outputs are combined with a 
species-specific habitat suitability filter to refine the suitability maps at 
the local scale. The pollination efficiency of each species depends on 
life-history traits, such as morphology and behaviour (Willcox et al., 
2017). One important trait for the pollination of crops is the foraging 
range (Fig. 2c), because it determines the distance over which pollen can 
be transported and if crop fields or target plants are reachable for the 
different species. The pollination potential is defined as the sum of each 
predicted species probability of presence combined with foraging dis-
tances. The pollination ecosystem service potential on crop fields was 
restricted to the probability of presence of crop pollinators on potential 
pollination-dependant fields (Fig. 2d). 

2.3.2. Species distribution model 
Species distribution modelling was carried out with the “biomod2 

v.3.4.6′′ library (Thuiller et al., 2016) implemented in R (Version 4.0.3) 
(R Core Team 2017). All maps were created using ArcGIS (Version 
10.6.1). 

Occurrence data from GBIF are typically presence-only data, with no 
recorded absence data, whereas the algorithms used for modelling need 
presence-absence points, so pseudo-absence points were generated with 
the following approach: several sets of pseudo-absence data were 
generated to prevent sampling bias and to be able to test the effect of 
each pseudo-absence selection on the predictive ability of the model. 
Following Phillips et al. (2009), we restricted the selection of the 
background points in a 10 km buffered convex hull around the GBIF 
Andrena records to reflect species sampling bias. One thousand 
pseudo-absence data points were sampled randomly from the back-
ground region and we repeated the random selection ten times to build a 
ten-fold internal cross-validation of the models (Phillips et al., 2009; 
Barbet-Massin et al., 2012). 

We chose to combine different algorithms with ensemble modelling 
as no statistical tools will per se perform better than any other (Elith and 
Leathwick 2009; Aguirre-Gutiérrez et al., 2013; Araújo et al., 2019) and 
as predictions based on an ensemble of several algorithms are often 
more robust than predictions derived from a single model (Araújo and 
New 2007; Araújo et al., 2019). For each bee species model, we used 
three different algorithms: Generalized Linear Model (GLM), a flexible 
regression model allowing to handle non-normally distributed response 
variables, Flexible Discriminant Analysis (FDA), a flexible classification 
approach derived from Linear Discriminant Analysis methods and 
Random Forest, a bagging approach. To train the SDMs and test their 
predictive performances, we used a cross-validation with a random 
subset of 70% of the points to calibrate the model for every single spe-
cies, while the remaining 30% of the points were used for validation. 
Each single model was run on the training data and evaluated on the test 
data using performance evaluation metrics. This process was repeated 
four times with different partitioning of the original dataset into a 
training and a test set. Cross-validation was used to decrease bias in the 3 https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 
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predictive performance of the measuring models (Pearce and Ferrier 
2000). 

We used different performance evaluation metrics: Area Under the 
Curve (AUC) of the Receiver Operating Characteristic (ROC) plot, True 
Skills Statistics (TSS) and the continuous Boyce index (CBI). AUC is a 
threshold-independent model evaluation indicator (Franklin 2010), 
which continuously discriminates between suitable and unsuitable 
habitats, independently of prevalence of target species (Elith and 
Burgman 2002). It plots the commission error against omission error and 
ranges between 0.5 and 1, where 1 represents a perfect discrimination 
between presence and absence, and 0.5 represents a random fit. TSS is a 
threshold-dependant measure of model accuracy and, contrary to AUC, 
is based on binary predictions of predicted suitability/unsuitability for 
each species (Allouche et al., 2006). It ranges from -1 to +1, with +1 
indicating perfect agreement between predictions and observations, and 
0 or less indicating an agreement no better than a random classification 
(Zhang et al., 2015). This metric is negatively related to species preva-
lence (Allouche et al., 2006). Contrary to AUC and TSS, CBI does not 
require absence data and is therefore considered as more appropriate 
when working with presence-only data. The metric measures how 
observed presences are distributed across the gradient of predicted 
presences and how this differs from a random distribution. It also varies 
from -1 to +1, where positive values indicate a good agreement between 
predictions and the distribution of presences in the evaluation dataset, 
values close to zero indicate predictions not different from a random 
distribution and negative values indicate incorrect models (Hirzel et al., 
2006). 

One of the main challenges in modelling pollination potential is that 
each pollinator species has its specific potential geographical range and 
habitat needs, so each species needs to be modelled independently. For 
each bee species, a total of 120 models was built (using three algorithms, 
four cross-validations to sample test and training data and ten pseudo- 

absences samplings). Only models with a TSS greater or equal to 0.6 
were kept to build the final ensemble (Landis and Koch 1977). Ensemble 
predictions were calculated as weighted averages of single-model pre-
dictions, with weights assigned to each modelling technique using the 
TSS (Allouche et al., 2006). 

To ensure transparency and reproducibility of our SDMs, we 
included an Overview, Data, Model, Assessment, and Prediction 
(ODMAP) protocol from Zurell et al. (2020) in the supplementary 
material. 

2.3.3. Habitat filter 
The next step was to combine the SDM ensemble models with the 

corresponding habitat filters for each modelled bee species into a unique 
predicted distribution (or environmental suitability) map for the CSA 
(Fig. 2b). To do so, for each species and each grid cell of the CSA, we 
multiplied the species distribution prediction and the binary habitat 
filter values. The resulting maps represent the suitability of the area to 
support the different bee species, according to its environmental con-
ditions and the presence of potential habitats for each species. 

2.3.4. Foraging range 
As bees are central place foragers, their foraging ranges determine 

their capacity to pollinate and to potentially increase the yield of adja-
cent crop fields. The foraging ranges of the species were added to the 
model to determine the final pollination potential map (Fig. 2c). 
Foraging distances are species-specific and are a function of the inter-
tegular distance (i.e., the distance between the wing-attachment points 
on either side of the thorax) (Greenleaf et al., 2007). Kendall et al. 
(2019) implemented the “pollimetry v.1.0.1′′ library, which allows to 
calculate foraging distances based on intertegular measurements of bees 
and provide the resulting database intertegular measurements of 4035 
bee specimens. We used this package in R to estimate the average 

Fig. 2. Flow chart representing the different steps of the hierarchical modelling approach to predict pollination potential at the local scale.  
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foraging range of the twenty-five selected bee species. When no data 
were found, we used the average of all foraging ranges over the Andrena 
genus. Foraging range values are presented in Table 5 in the supple-
mentary material. Using the “raster v3.4–5′′ package (Hijmans et al., 
2013), we then implemented a circular moving window, with a focal 
corresponding to the average foraging distance of each bee species. For 
each grid cell of the CSA, the pollination potentials were computed 
based on the foraging ranges and the suitability of the area to support 
the different bee species. 

2.3.5. Relative pollination potential 
The total pollination potential of the CSA was calculated as the sum 

of the pollination potential of each species, determined in the previous 
step. We made the assumption that local species communities are made 
of species with the same environmental requirements and we neglected 
macroecological controls on community assembly such as competition 
and synergies between species (Guisan and Rahbek 2011). We chose to 
work with occurrence probability maps and not with binary pre-
sence/absence maps, as Calabrese et al. (2014) and D’Amen et al. (2015) 
showed that the addition of predictions of occurrence probabilities from 
individual SDMs is preferable to setting arbitrary thresholds to obtain 
binary predictions and then combining those into a stacked-SDM, as this 
tend to be biased and overpredict of species richness. 

The resulting map represents the relative pollination potential of the 
area, i.e. the potential of the area to sustain pollination from the selected 
Andrena species. 

2.3.6. Comparison with independent field data 
In the CSA, flower visiting insects were collected using one yellow 

pan trap in 12 rapeseed fields between May 4th to June 6th 2018. Traps 
were set up at one border of each field, close to a near-natural habitat 
(such as hedgerows or forests), with their tops approximately even with 
the surrounding oilseed rape flowers. The traps were filled with diluted 
detergent solution and emptied weekly. All bees were identified to 
species level. The trap locations were selected to cover the landscape 
diversity in the CSA: from locations surrounded by a landscape with a 
high proportion of near-natural habitats to locations with a low pro-
portion of near-natural habitats. 

We used linear regression to assess whether the pollination model 
outputs reflect the pollinator community abundance and species rich-
ness collected in the field. We compared the abundance and richness of 
oilseed rape pollinators from the Andrena genus from the collected data 
with the predicted pollination potential. We also compared Andrena 
species richness from the collected data with the predicted richness of 
Andrena species obtained with the model (the sum of all the predicted 
suitability using the SDMs and the habitat filters, Fig. 2b in the work-
flow). For this comparison, we calculated the mean predicted species 
richness for all pixels within a radius of 200, 300 and 500 m radius of 
trap locations. 

3. Results 

3.1. Model evaluation 

The evaluation scores of all ensemble models were high to very high 
(ROC between 0.892 and 0.978, TSS between 0.623 and 0.887 and CBI 
between 0.965 and 1), which means that the predictive accuracies of the 
models were good to very good. An overview of all these performances 
measures can be found in Table 7 in the supplementary material. 

The importance of each predictor for each species model varied with 
the tested algorithms and modelled species. Bioclimatic variables indi-
cated a higher percentage of the data variances than LULC variables. 
Bio_2 (Mean Diurnal Range), Bio_11 (Mean Temperature of Coldest 
Quarter) and Bio_7 (Temperature Annual Range) appear to be generally 
the most important variables, followed by Bio_19 (Precipitation of 
Coldest Quarter) and Bio_14 (Precipitation of Driest Month). LULC 

variables have a more minor importance for the models and generally 
only few categories are relevant for each species. Discontinuous urban 
fabric is overall the most important LULC variable, followed by non- 
irrigated arable land and sparsely vegetated areas (Table 6 in the sup-
plementary material). 

3.2. Species distribution models 

Figs. 3 and 4 illustrate the different results for two species (Andrena 
barbilabris and Andrena carantonica). The predicted presence of each 
species is determined through a SDM at the European scale (Figs. 3 and 4 
(B)) based on occurrence data (Figs. 3 and 4(A)). Even at the local scale 
of the CSA, we obtained different distribution predictions for each spe-
cies. For instance, the model predicted that overall, the area is slightly 
more suitable for A. carantonica than for A. barbilabris (Figs. 3 and 4(C)). 
Habitat filtering was done with a buffer of 2 km around the CSA to ac-
count for foraging distances and the possibility that bees can nest outside 
and forage inside the CSA (Figs. 3 and 4(D)). The differences in the final 
predicted presence of species were also due to habitat preferences of 
each species: For instance, A. carantonica has a wider range of potential 
habitats and a broader distribution over the CSA than A. barbilabris. A. 
carantonica has a wider foraging range than A. barbilabris (700 m 
compared to 200 m), which also explains the differences in species 
respective pollination potential in the final maps (Figs. 3 and 4(E)). 

3.3. Potential pollination map for the CSA 

The model predicted the CSA as suitable for all the target species. The 
predicted pollination service potential (sum of the pollination potential 
of all target wild bee species) scores from 0 (none of the modelled spe-
cies is potentially present) to 15 (highest predicted scores when adding 
the pollination service potential of the twenty-five wild bee species) for 
each grid cell (see Fig. 2 in the supplementary material). Areas where 
none of the species is potentially present have no potential pollination 
ecosystem service performed by the selected and modelled species, 
whereas a high predicted landscape suitability and wild bee species 
richness increase the pollination service potential of the area. 

Fig. 5 compares the predicted spatial patterns of oilseed rape polli-
nators and the potential pollination ecosystem service demand for 
oilseed rape (the main pollination-dependant crop in the CSA), esti-
mated with the ATKIS/InVeKoS “arable land” LULC class. The location 
of rapeseed fields generally changes annually, as a result of crop rota-
tion, changing market prices and changes in political schemes and 
subsidies. The demand for pollination ecosystem services will therefore 
change annually and can potentially occur on all arable fields. This is 
why we did not directly map rapeseed fields and assumed that it could 
potentially grow on every arable field. For this analysis, we restricted 
the pool of modelled wild bee species to oilseed rape flowers visitors (as 
documented in Table 1 in the supplementary material). Our model 
predicted that most of the fields have a low pollination potential and the 
mean pollination potential value on arable fields was 1.5. The model 
predicted low mean pollination ecosystem service potentials particu-
larly the North-Eastern part of the CSA (e.g. in Fig. 5(C)). Fields with 
relatively high mean pollination ecosystem service potentials are more 
evenly distributed over the CSA. 

3.4. Comparison with independent field data 

Yellow pan traps captured 801 individual bees from 42 different 
species. From the collected wild bees, 681 were from the genus Andrena, 
from 19 different species. Form the genus Andrena, 576 individuals were 
known oilseed rape flower visitors, from 9 different species. Abundance 
and richness of oilseed rape visitors from the genus Andrena increased 
with the predicted pollination service potential (r = 0.28, d.f. = 10, p =
0.07) and (r = 0.29, d.f. = 10, p = 0.07), however not significantly 
(Fig. 6(a) and (b)). Oilseed rape visitor richness increased with the mean 
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predicted pollinator richness within a radius of 500 m (r = 0.28, d.f. =
10, p = 0.07, not shown here), 300 m (r = 0.38, d.f. = 10, p = 0.03) and 
200 m (r = 0.48, d.f. = 10, p = 0.01) (Fig. 6(c) and (d)). 

4. Discussion 

We have predicted the current potential occurrence of twenty-five 
selected bee species at the local scale in order to estimate the poten-
tial pollination ecosystem service supply for pollination-dependant 
crops and wild plants. The aim was to develop a model based on peer- 
reviewed knowledge rather than on expert-judgement, adapted to the 
region of interest and its bioclimatic conditions and with consideration 
to the availability of foraging resources and nesting places, for which a 
fine resolution is needed. One further novelty of the developed method 
is that it combines environmental drivers at larger and local spatial 
scales and thereby goes beyond existing pollination models, which 
typically focus on one scale, despite the importance of integrating 
environmental drivers at multiple geographical scales (Milbau et al., 
2009; Mateo et al., 2019b). 

4.1. Modelling pollination service potential 

SDMs results highlighted the role of bioclimatic factors in bee species 
occurrence at continental to local scales, as previously illustrated by 
Polce et al., (2013); Nogué et al., (2016); Polce et al., (2018) and 
Bystriakova et al., (2018). This is indicated by the predicted suitability 
maps (Figs. 3b & 4b): SDMs predicted that the suitability for 
A. carantonica and A. barbilabris is highly variable across Europe coun-
tries and we also obtained different predictions at the local scale 
(Figs. 3c & 4c). As the ESTIMAP and InVEST models only express the 
relative suitability for pollinators in terms of availability of floral re-
sources and nesting sites (Lonsdorf et al., 2009; Zulian et al., 2013), they 
neglect the variability of bee species distributions due to bioclimatic 
factors. To our knowledge, no study has yet assessed these models in 
regard to the use or non-use bioclimatic factors. Furthermore, SDMs 
provide an effective alternative to local expert opinion on species po-
tential occurrence (Gastón et al., 2014) and can be used to discriminate 
present from absent species in a given location. In addition, as the 
modelling framework allows to assess the relative importance of envi-
ronmental variables on different species, it can be also used to analyse 
the impact of climate and land cover changes on wild bee species and 
future pollination service potential. 

Fig. 3. Examples of species distribution model outputs for A. carantonica. (A): Occurrence points, retrieved from the GBIF database and cleaned, (B): predicted 
probability of presence at the European level (ensemble model of the best performing algorithms), (C): Zoom of the predicted probability of presence covering the 
CSA, (D): predicted probability of presence on potential habitats (SDM results X habitat filter; including buffer around the CSA), (E): predicted pollination ecosystem 
service potential by A. carantonica in the CSA. 
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As they do not account for natural and semi-natural areas, previous 
pollination (or wild bee species distribution) models based on SDMs also 
probably overpredict the distribution of bee species at the local scale 
(Polce et al., 2013; Nogué et al., 2016; Polce et al., 2018; Bystriakova 
et al., 2018). These models may therefore significantly overpredict the 
pollination potential and minimize areas where pollination demand 
exceeds pollination service potential, as only specific areas in croplands 
provide suitable habitats for wild bee species (mainly natural and 
semi-natural habitats) (Westrich 2018). This is particularly problematic 
when pollination-dependant crops are isolated from natural and 
semi-natural habitats (Ricketts et al., 2008; Garibaldi et al., 2011). The 
importance of the presence of natural and semi-natural areas at small 
spatial scales within agricultural landscapes for wild pollinator species 
has been described in many studies (Gathmann and Tscharntke 2002; 
Zurbuchen et al., 2010; Ricketts et al., 2008; Kennedy et al., 2013) and is 
also supported by our results. This is indicated by the differences be-
tween the predicted suitability and pollination potential maps (Figs. 3 & 
4): our results of SDMs predict that the whole CSA is highly suitable for 
A. carantonica and A. barbilabris, whereas their final suitable areas are 
much more restricted when accounting for habitat availability. This is 
consistent with Fournier et al., (2017) and Hattab et al., (2014), which 
also found that adding species-specific habitat filters greatly refined 

habitat suitability for terrestrial and marine species. As it integrates 
information on drivers operating across different scales, our multi-scale 
approach should provide more accurate predictions and a better un-
derstanding of processes underlying species distribution compared to 
single-scale models (Pearson et al., 2004; Mateo et al., 2019b; Mateo 
et al., 2019a; Bellamy et al., 2020; Fournier et al., 2017). 

Despite the low number of sampling sites and the restricted sampling 
period during the mass-flowering of oilseed rape, our model correlated 
fairly well with the data observed in the field. The model was able to 
predict a significant proportion of the variation in oilseed rape pollinator 
richness from independent data. Oilseed rape pollinator richness and 
abundance from the collected data were also correlated with the pre-
dicted pollination service potential, however with no significance. This 
analysis can be considered as a first approach to evaluating the model 
results, but not yet a validation of our model due to the small number of 
sampling sites and the absence of replication. 

4.2. Limitations and uncertainties of the study 

The presented approach comes with several modelling limitations. 
First, the performance of each SDM is constrained by the quantity and 
quality of the GBIF occurrence data. In principle, the performance of 

Fig. 4. Species distribution model outputs for A. barbilabris. (A): Occurrence points, retrieved from the GBIF database and cleaned, (B): predicted probability of 
presence at the European level (ensemble model of the best performing algorithms), (C): Zoom of the predicted probability of presence covering the CSA, (D): 
predicted probability of presence on potential habitats (SDM results X habitat filter; including buffer around the CSA), (E): predicted pollination ecosystem service 
potential by A. barbilabris in the CSA. 
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each SDM can be improved by including more species occurrence data. 
For the selected bee species, GBIF occurrence data are particularly 
biased towards higher occurrences in Northern European countries 
including Great Britain, Sweden, Belgium and Germany, which may 
make the outputs of the SDMs less reliable for regions with very different 
bioclimatic conditions such as Southern European countries. This is 
however less problematic in the studied CSA, located in Northern 
Germany. 

Second, our model might overpredict single species occurrences 
because there is no limit on the number of species that can occupy a 
given area, i.e. the carrying capacity of ecosystems is not considered in 
SDM approaches (Graham and Hijmans 2006; Thuiller et al., 2015). This 
is particularly the case when interactions between species (competition, 
parasitism, mutualism, predator-prey) strongly influence species 
co-occurrences and can exclude species from a community. For instance, 
honeybees have been reported to negatively impact the presence of wild 
bees because of their density and their outstanding foraging capacity 

(Thomson 2004; Hudewenz and Klein 2013), although this is debatable 
(Greenleaf and Kremen 2006b; Westrich 2018). One way to account for 
biotic interactions in SDMs is to test models’ residual for evidence of 
species interaction using Joint Species Distribution Models (jSDMs) 
(Pollock et al., 2014). Using jSDMs instead of SDMs may increase the 
explanatory power when modelling pollinator communities. However, 
when restricted to relatively few species, the present model should not 
lead to an overprediction of the local pollination potential. 

Our habitat filter is based on the work from Westrich (2018), which 
gathered knowledge on wild bees in Germany based on more than 3000 
scientific publications. As habitat preference of wild bee species may be 
different in other countries, the habitat filter should be adapted to local 
characteristics when using the model in other regions of the world. 

We found that two precipitation variables and three temperature- 
related variables were the most important for predicting the potential 
distribution of bee species over Europe: Precipitation of the Coldest 
Quarter and of the Driest Month, Temperature Annual Range, Mean 

Fig. 5. Predicted mean pollination potential on 
arable lands (A) and zoom over two contrasting 
pollination service potential results (B and C). 
Brown areas represent potential suitable habi-
tats for the different bee species. Light yellow 
areas represent unsuitable habitats other than 
arable lands. Arable lands are marked with a 
gradient from light to dark blue, depending on 
the predicted mean pollination service poten-
tial for each parcel of the CSA (the mean is 
calculated over each parcel). In (B), the land-
scape has a larger proportion of potential hab-
itats such as grasslands and forests, whereas in 
(C), the landscape is largely dominated by 
arable lands. In (C), the mean pollination po-
tentials tend to be lower than in (B) (values 
between 0.9 and 6.2 in (B); 0.2 and 4.2 in (C)). 
The circles represent the principal foraging 
ranges of the selected bee species (100, 300 and 
500 m radius), so the principal distances 
around fields within which the presence of 
habitats for pollinators can increase pollination 
ecosystem service supply.   
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Temperature of Coldest Quarter and Mean Diurnal Range. These vari-
ables all have a direct or indirect ecological implication that can be 
explained. Precipitation and temperature extremes affect nesting suit-
ability, foraging behaviour and resource availability. Low temperature 
and high precipitation values might have a higher impact on the pres-
ence of bees during their active season (principally spring and early 
summer), by directly reducing their foraging capacity. Instead of using 
bioclimatic variables from WorldClim, SDM predictions might be 
improved by using temperature and precipitation values restricted to 
each respective bee-active season. We found that LULC variables have a 
much lower impact on species distribution, except discontinuous urban 
fabric, non-irrigated arable land and sparsely vegetated areas for some 
species and depending on the algorithm. These results on the relative 
importance of environmental data for predicting bee species distribution 
are comparable to Polce et al., (2013) but not Bystriakova et al., (2018) 
nor Polce et al., (2018). This may be due to the selected bee species, as 
the latter two studies were calibrated with Bumblebee species or bees of 
the subfamily Colletinae, whereas the study from Polce et al., (2013) 
was calibrated with species from different genera, including some 
Andrena species. Besides, Polce et al., (2013) found that the use of 
pesticides plays a significant role in bee distribution. As there is growing 
evidence that pesticides inputs can have a considerable negative impact 
on wild bee species (Brittain et al., 2010; Whitehorn et al., 2012), this 
variable should be used when available to refine the different SDMs. 

Effective pollination depends on the pollination effectiveness or 
performance of each species, which in turn depends on a broad range of 
factors, e.g. pollinator morphology and behaviour, flower visitation 
rates, pollen deposition but also plant health (Willcox et al., 2017). 
There is growing evidence that not all species are equally important for 
the pollination of a given crop (Kleijn et al., 2015; Winfree et al., 2015) 
or wild plant species (Gorenflo et al., 2017). Empirical data linking yield 
gain specifically to one pollinator taxon are however still scarce (but see 
Rader et al., (2009) and Jauker et al., (2011)), so we did not include 
information about pollination efficiency of each wild bee species in our 
model. Furthermore, there are a wide range of community-level factors 
that may influence pollination efficiency, such as species interactions 
and niche complementarity (Willcox et al., 2017). Instead, we assumed 

that the pollination ecosystem service potential of an area increases with 
the likelihood of the presence of bees and bee species richness, which is 
supported by Klein et al., (2009), Garibaldi et al., (2011) and Woodcock 
et al., (2019). Accounting for functional diversity and specifically 
choosing bee species with a high functional divergence (characterised 
by non-overlapping traits) could however greatly improve the infor-
mative value of pollination models and allows to ultimately link crop 
pollination service potential to service provision and contribution to 
crop yield, seed quality and eventually economic return (Woodcock 
et al., 2019; Gagic et al., 2015). Building on Woodcock et al., (2019), the 
framework could be further improved by adding an extra step convert-
ing species probability of presence into a functional divergence index (i. 
e., a composite index derived from species effect traits that play an 
important role for the pollination of the considered crops), whenever 
this data is available. To do this, the function divergence index from 
Woodcock et al., (2019) or a similar composite of traits influencing 
species pollination efficiency could be included in step (c) (Fig. 2) of the 
framework, along with the foraging range, a trait which is already 
accounted for in the model. Similarly, including information about 
temporal dynamics, particularly about bee flight seasons can further 
increase the robustness of the model predictions. This could be done by 
adding flighting season filters (similar to the habitat filters) between 
step (b) and (c) (Fig. 2) of the framework and running the model for each 
month of the crop flowering season to estimate the monthly pollination 
service potential throughout the entire crop flowering season. This will 
allow to assess whether the entire crop flowering time is covered by a 
high pollination potential or if there is a temporal mismatch between ES 
demand and potential. 

Lastly, the presented pollination potential maps are based on solely 
one genus (Andrena) and twenty-five species, whereas around 300 spe-
cies have been observed in the region – of which only 110 species are not 
threatened by extinction nor are already extinct (van der Smissen 2001). 
As we selected species from the genus Andrena and only species that are 
soil-nesting and solitary, the results certainly do not represent each 
single bee species occurring in the region. For a better wild bee species 
richness assessment, other genera should be included in the model. For 
instance, above-ground nesting bees and species with different degrees 

Fig. 6. Linear regressions with one independent dataset from the CSA: between oilseed rape pollinator abundance and the predicted pollination potential (a), 
between oilseed rape pollinator richness and the predicted pollination potential (b), between oilseed rape pollinator richness and the mean predicted oilseed rape 
pollinator richness for a radius of 300 m (c) and 200 m (d) around the pan trap locations. 
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of sociality are not represented in our model. Including bees with these 
characteristics could have an impact on the resulting pollination po-
tential maps, if sociality and nesting requirements play a major role in 
species distribution. The selected bees are nevertheless suitable for 
pollination potential modelling, as they represent a highly variable 
group due to their varied size, seasonality, soil preference for nesting 
and foraging behaviour and as the vast majority of wild bees are 
soil-nesting and solitary (Westrich 2018). 

4.3. Applications 

The pollination potential maps in the studied CSA can help to assess 
the needs for practical conservation measures to promote insect polli-
nators in agri-environmental schemes. Spatially explicit maps of the 
pollination potential in comparison to maps of pollination demand will 
allow the identification of areas where pollination service is deficient. 
The resulting maps can support land management recommendations 
such as where to prioritize habitat conservation measures in agricultural 
landscapes to sustain biodiversity, ecosystem functions and services that 
support crop production. One advantage of the developed model is the 
combination of SDMs and species-specific habitat filters. This can help to 
develop relevant habitats for species, for which large-scale factors such 
as climatic parameters are also suitable. For example, in Fig. 4 (C), the 
dark blue zones indicate a high suitability for A. barbilabris. However, as 
there are only few potential habitats for this species at these spots, the 
species cannot colonize a large part of these suitable areas. These areas 
could thus be potential targets for A. barbilabris conservation measures, 
such as the inclusion of fallow in the crop-rotation pattern. Conservation 
measures such as hedgerows, field margins and flower strips have been 
shown to have a positive and significant effect on wild bee abundance 
and diversity (M’Gonigle et al., 2015), particularly for bumblebees 
(Pywell et al., 2005; Carvell et al., 2011; Pywell et al., 2012). This 
demonstrates the importance of these habitats at the small scale for 
pollinator community conservation. Furthermore, Pywell et al., (2012) 
highlighted the importance of using ecological knowledge of targeted 
species when designing conservation measures and showed that 
species-specific measures are much more efficient and sustain a higher 
species richness than generalized conventional conservation measures. 

As climatic factors have a significant effect on the distribution of 
bees, climate change will certainly affect bee distribution in the future 
and disrupt plant–pollinator interactions (Memmott et al., 2007; Bies-
meijer et al., 2006). Our results show that the consideration of climatic 
factors (and therefore climate change) is essential when developing 
conservation measures for the long term, for pollinator biodiversity and 
to preserve plant-pollinator interactions. 

5. Conclusions 

To our knowledge, this is the first work that developed a framework 
that predicts geographical patterns of pollinators based on SDM and 
multi-scale environmental drivers to predict pollination ecosystem ser-
vice potential at the local scale. The results of the different models show 
that the framework can be adapted for a local scale assessment. This 
approach allowed us to predict the pollination potential from mining 
bee species and to identify areas with high or low pollination ecosystem 
services potential. The comparison with independent samples showed 
good agreement between the model outcomes and species occurrence 
data collected in the field. The developed model can support land-use 
decisions but also help to identify conservation measures and areas for 
prioritizing species conservation planning. This method is transferable 
to other European regions and other countries in the World, provided 
that they have enough species occurrence data. It can also be used to 
investigate the effect of climate and land-use changes on pollinators’ 
distribution and pollination potential and help to implement mitigation 
measures for vulnerable areas and species. 
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