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ABSTRACT

The continuous growth of available data on the World Wide Web has led to an unprecedented
amount of available information. However, the enormous variance in data quality and
trustworthiness of information sources impairs the great potential of the large amount of
vacant information. This observation especially applies to geographic information on the
Web, i.e., information describing entities that are located on the Earth’s surface. With
the advent of mobile devices, the impact of geographic Web information on our everyday
life has substantially grown. The mobile devices have also enabled the creation of novel
data sources such as OpenStreetMap (OSM), a collaborative crowd-sourced map providing
open cartographic information. Today, we use geographic information in many applications,
including routing, location recommendation, or geographic question answering.

The processing of geographic Web information yields unique challenges. First, the
descriptions of geographic entities on the Web are typically not validated. Since not all
Web information sources are trustworthy, the correctness of some geographic Web entities
is questionable. Second, geographic information sources on the Web are typically isolated
from each other. The missing integration of information sources hinders the efficient use
of geographic Web information for many applications. Third, the description of geographic
entities is typically incomplete. Depending on the application, missing information is a
decisive criterion for (not) using a particular data source.

Due to the large scale of the Web, the manual correction of these problems is usually
not feasible such that automated approaches are required. In this thesis, we tackle these
challenges from three different angles. (i) Validation of geographic Web information: We val-
idate geographic Web information by detecting vandalism in OpenStreetMap, for instance,
the replacement of a street name with advertisement. To this end, we present the OVID
model for automated vandalism detection in OpenStreetMap. (ii) Enrichment of geographic
Web information through integration: We integrate OpenStreetMap with other geographic
Web information sources, namely knowledge graphs, by identifying entries corresponding to
the same world real-world entities in both data sources. We present the OSM2KG model for
automated identity link discovery between OSM and knowledge graphs. (iii) Enrichment of
missing information in geographic Web information: We consider semantic annotations of
geographic entities on Web pages as an additional data source. We exploit existing annota-
tions of categorical properties of Web entities as training data to enrich missing categorical
properties in geographic Web information. For all of the proposed models, we conduct
extensive evaluations on real-world datasets. Our experimental results confirm that the
proposed solutions reliably outperform existing baselines.

Furthermore, we demonstrate the utility of geographic Web Information in two appli-
cation scenarios. (i) Corpus of geographic entity embeddings: We introduce the Geo Vectors
corpus, a linked open dataset of ready-to-use embeddings of geographic entities. With
GeoVectors, we substantially lower the burden to use geographic data in machine learning
applications. (ii) Application to event impact prediction: We employ several geographic Web
information sources to predict the impact of public events on road traffic. To this end, we
use cartographic, event, and event venue information from the Web.

Keywords: geographic data, Web data, Linked Open Data, spatio-temporal machine
learning



ZUSAMMENFASSUNG

Durch die kontinuierliche Zunahme verfiigbarer Daten im World Wide Web, besteht heute
eine noch nie da gewesene Menge verfiigbarer Informationen. Das grofle Potential dieser
Daten wird jedoch durch hohe Schwankungen in der Datenqualitét und in der Vertrauenswiir-
digkeit der Datenquellen geschmaélert. Dies kann vor allem am Beispiel von geografischen
Web-Informationen beobachtet werden. Geografische Web-Informationen sind Informatio-
nen iiber Entitéten, die iber Koordinaten auf der Erdoberfliche verfiigen. Die Relevanz von
geografischen Web-Informationen fiir den Alltag ist durch die Verbreitung von internetfihi-
gen, mobilen Endgeraten, zum Beispiel Smartphones, extrem gestiegen. Weiterhin hat die
Verfiigbarkeit der mobilen Endgerite auch zur Erstellung neuartiger Datenquellen wie Open-
StreetMap (OSM) gefiihrt. OSM ist eine offene, kollaborative Webkarte, die von Freiwilligen
dezentral erstellt wird. Mittlerweile ist die Nutzung geografischer Informationen die Grund-
lage fiir eine Vielzahl von Anwendungen, wie zum Beispiel Navigation, Reiseempfehlungen
oder geografische Frage-Antwort-Systeme.

Bei der Verarbeitung geografischer Web-Informationen miissen einzigartige Herausfor-
derungen berticksichtigt werden. Erstens werden die Beschreibungen geografischer Web-
Entitaten typischerweise nicht validiert. Da nicht alle Informationsquellen im Web ver-
trauenswiirdig sind, ist die Korrektheit der Darstellung mancher Web-Entitaten fragwiirdig.
Zweitens sind Informationsquellen im Web oft voneinander isoliert. Die fehlende Integration
von Informationsquellen erschwert die effektive Nutzung von geografischen Web-Information
in vielen Anwendungsfallen. Drittens sind die Beschreibungen von geografischen Entitdten
typischerweise unvollstdndig. Je nach Anwendung kann das Fehlen von bestimmten Infor-
mationen ein entscheidendes Kriterium fiir die Nutzung einer Datenquelle sein.

Da die Grofle des Webs eine manuelle Behebung dieser Probleme nicht zulésst, sind au-
tomatisierte Verfahren notwendig. In dieser Arbeit ndhern wir uns diesen Herausforderungen
von drei verschiedenen Richtungen. (i) Validierung von geografischen Web-Informationen:
Wir validieren geografische Web-Informationen, indem wir Vandalismus in OpenStreetMap
identifizieren, zum Beispiel das Ersetzen von Straflennamen mit Werbetexten. (ii) An-
reicherung von geografischen Web-Information durch Integration: Wir integrieren Open-
StreetMap mit anderen Informationsquellen im Web (Wissensgraphen), indem wir Eintrage
in beiden Informationsquellen identifizieren, die den gleichen Echtwelt-Entitaten entsprechen.
(iii) Anreicherung von fehlenden geografischen Informationen: Wir nutzen semantische An-
notationen von geografischen Entitaten auf Webseiten als weitere Datenquelle. Wir nutzen
existierende Annotationen kategorischer Attribute von Web-Entitdten als Trainingsdaten,
um fehlende kategorische Attribute in geografischen Web-Informationen zu ergénzen. Wir
fiihren ausfithrliche Evaluationen fiir alle beschriebenen Modelle durch. Die vorgestellten
Losungsanséitze erzielen verlisslich bessere Ergebnisse als existierende Ansétze.

Weiterhin demonstrieren wir den Nutzen von geografischen Web-Informationen in zwei
Anwendungsszenarien. (i) Korpus mit Embeddings von geografischen Entitdten: Wir stellen
den GeoVectors-Korpus vor, einen verlinkten, offenen Datensatz mit direkt nutzbaren Em-
beddings von geografischen Web-Entitdten. Der GeoVectors-Korpus erleichtert die Nutzung
von geografischen Daten in Anwendungen von maschinellen Lernen erheblich. (ii) Anwen-
dung zur Prognose von Veranstaltungsauswirkungen: Wir nutzen Karten-, Veranstaltungs-
und Veranstaltungsstéatten-Daten aus dem Web, um die Auswirkungen von Veranstaltungen
auf den Straflenverkehr zu prognostizieren.

Schlagworter: Geografische Daten, Web Daten, Linked Open Data, raumlich-zeitliches
maschinelles Lernen
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Introduction

Geographic information has always played a vital role for human civilizations. The
quality of the geographic information, e.g., in the form of maps, provides insights into
the advances of historical societies. Early examples of geographic information, e.g.,
the Babylonian Map of the World are dating back to the 6th century BC [RT10].
Today, the availability of geographic information has positive effects on many aspects
of our everyday life. For instance, we may use geographic information for route
planning and travel time estimation for commuting to work or prepare for bad weather
by considering the weather forecast for our residential area.

The advent of the World Wide Web together with the development of mobile de-
vices such as smartphones has further increased the impact of geographic information
on our lives and paved the way for novel applications. For example, location-based so-
cial networks such as Foursquare! allow sharing the own position by indicating visits
of point of interests. The image hosting service Flickr? includes optional geographic
location information on images. In this sense, the World Wide Web has emerged as
universal middleware for many location-based applications.

Throughout the last decades, several sources of geographic information on the
Web evolved. First, so-called Volunteered Geographic Information (VGI) is a type of
user-generated content that was enabled by the development of Web 2.0 technologies
[Goo07]. In VGI, volunteers collect, describe and publish geographic information.
The most prominent example of VGI is the OpenStreetMap® (OSM) project. OSM
was funded in 2004 to address the lack of free cartographic information of the United
Kingdom [Ope2la]. OSM relies on data contributed by volunteers (so-called map-
pers) that manually specify geographic information about, e.g., their living regions.
Today, OSM is a rich source of publicly available geographic Web information used
in countless applications such as routing algorithms or Web map services. Besides

thttps:/ /foursquare.com/
Zhttps:/ /www.flickr.com/
3https://www.openstreetmap.org/
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2 Chapter 1 Introduction

OSM, other examples of VGI include GPS recordings of animal movements®, textual
knowledge bases describing geographic entities such as Wikipedia®, or more structured
knowledge bases such as knowledge graphs, e.g., WikidataS.

Second, websites providing geographically referenced content constitute another
source of geographic Web information. Exemplary geographic content includes travel
and restaurant recommendations or announcements of scheduled public events like
concerts and fairs. Often, these websites highlight geographic information in a machine-
readable way using so-called semantic markup. The machine-readable information
enables geographic queries in Web search engines, such as ‘Find concerts near me
tomorrow” , to retrieve relevant Websites and ultimately increases the visibility of the
Websites. At the same time, (machine-readable) geographic website contents in prin-
ciple offer a high potential value for many more geographic data-driven applications.

Whereas geographic Web information is a highly relevant data source for location-
based applications, unique challenges arise from the data acquisition paradigms of
VGI and from collecting geographic website content. First, there are rarely guar-
antees for the correctness of the information. Especially in VGI, contributions can
often be anonymous, lowering the hurdle for intentionally and unintentionally spread
of wrong information [Ball4]. Second, different sources of geographic information
on the Web are rarely integrated, hindering the efficient use of the information in
downstream applications [TD21a]. Third, the descriptions of geographic entities on
the Web are often incomplete, such that common individual entity properties are
regularly not available [YFGD16]. Fourth, the sheer amount of available geographic
information on the Web obstructs the manual correction of the abovementioned prob-
lems. Therefore, the scale of the Web requires automated approaches to address these
challenges [BEM*13].

While historical pursuits of collecting geographic information may have focussed
on filling blank spots on maps, the modern challenges require intelligent algorithms
to provide high-quality geographic information. In this thesis, we develop several
approaches to enrich and validate geographic information on the Web to fill selected
information technology age “blank spots” in geographic data availability.

1.1 Research Questions

Despite the growing importance and availability of geographic information on the
Web, the data quality heavily varies with respect to geographic regions and data
sources [BNZ14, MRP16]. This varying data quality can be exemplary observed in
OpenStreetMap. In June 2021, the size of data available for the country of Ger-
many summed up to 3.3 GB, while only 2.5 GB of data was available for the entire

4https://www.movebank.org/cms/movebank-main
Shttps://www.wikipedia.org/
Shttps://www.wikidata.org/
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South American continent. While the variance in data quality may hinder the use
of geographic Web Information, the available data still has a high potential value to
serve as training data for machine learning models. This thesis investigates how to
enrich and validate several aspects of geographic Web information by exploiting the
available data in supervised machine learning models.

In the first step, we aim to validate existing geographic Web information in Open-
StreetMap. Data correctness is a vital prerequisite for the majority of data-driven
applications. To this end, we aim to remove wrong and potentially harmful informa-
tion from OSM. In particular, we aim to detect vandalism within OSM, leading to
the first research question.

RQ1: How to create a machine learning model to detect vandalism in volunteered
geographic information sources on the Web, such as OpenStreetMap?

Vandalism detection in OpenStreetMap is critical and remarkably challenging due to
the large scale of the dataset, the sheer number of contributors, various vandalism
forms, and the lack of annotated data to train machine learning algorithms.

After validating the existing information, we aim to enrich geographic Web Infor-
mation by adding new information. In principle, many modern applications require
the combination of different datasets. For instance, a routing application requires the
combination of road network data and current traffic data to facilitate travel time
predictions. Therefore, the usefulness of a dataset is often limited by its capability to
be integrated with other datasets. Tim Berners-Lee, the inventor of the World Wide
Web, formulated the five-star open data deployment scheme from this observation
[BLO6]. In this scheme, a dataset can only reach the highest data quality level if it is
integrated with other datasets. This integration is typically achieved with so-called
links modeling relations of entities across different datasets.

While OpenStreetMap provides rich cartographic information, it lacks non-carto-
graphic properties, e.g., the population evolution of a city. Contrarily, popular knowl-
edge graphs such as Wikidata and DBpedia are potentially rich sources of such infor-
mation but lack comprehensive cartographic information. Therefore, OpenStreetMap
and knowledge graphs have a high potential to complement each other. However, links
between OSM and knowledge graphs are still rare, hindering the effective combina-
tion of these data sources. The need for enrichment with additional links leads to the
following research question.

RQ2.1: How to discover identity links between OpenStreetMap nodes and
knowledge graph entities?

The problem of link discovery is particularly challenging due to the lack of a strict
schema and heterogeneity of the user-defined node representations in OSM. The het-
erogeneity of the OSM node descriptions includes a varying level of detail as well
as inconsistent annotations. This heterogeneity imposes major challenges in captur-
ing OSM nodes semantics in feature representations for machine learning algorithms.
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From this observation, we formulate the following research question:

RQ2.2: How to capture the semantics of OpenStreetMap objects despite varying
data quality and the lack of a consistent schema?

So far, we have considered OpenStreetMap capturing cartographic information
and popular knowledge graphs capturing encyclopedic information as data sources.
While both sources provide a detailed description of geo-entities, they lack current or
dynamic information, e.g., about public events that are going to take place. Therefore,
we approach semantic Web markup as a third source of geographic Web information.
Semantic Web markup provides machine-readable descriptions of entities occurring on
Web pages, for instance, when and where public events are taking place. Throughout
the past years, Semantic Web markup has seen widespread adoption since markup
typically increases the visibility of Web pages for search engines. The increased
visibility constitutes a substantial incentive for website authors to provide markup
annotations. However, due to the diversity of websites, semantic Web markup is
typically not used consistently, resulting in sparse entity annotation. This sparsity
raises the need for an enrichment approach to add missing information. We consider
this problem in our last research question:

RQ3: How to infer missing categorical attributes of geographic Web entities?

As a first step towards enriching semantic Web markup data, we focus on categorical
information. Challenges arise from the noisy, sparse, and inconsistent usage of Web
markup introduced by the immense diversity of Web pages.

1.2 Contributions

To address the research questions formulated in the previous section, we present
several contributions in this thesis. Figure 1.1 presents an overview of the individual
contributions and their mutual relations. We exploit several sources of Geographic
Web Information to make contributions in the areas of validation of geographic Web
information, enrichment of geographic Web information, and for selected applications.

Validation of Geographic Web Information

This thesis introduces a validation model that identifies vandalism in OpenStreetMap,
which is currently one of the most prominent sources of volunteered geographic in-
formation.

e We address RQ1 in Chapter 3. We propose the Ouvid (OpenStreetMap Vandalism
Detection) model, a novel machine learning approach for vandalism detection
in OpenStreetMap. Furthermore, we extract a dataset of real-world vandal-
ism incidents from OpenStreetMap’s edit history for the first time and provide
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Figure 1.1. Contribution summary of this thesis. We use geographic Web information
in the forms OpenStreetMap, knowledge graphs, and Web markup. We propose an
approach to validate OpenStreetMap data through vandalism detection. We propose
two approaches to enrich geographic Web information, i.e., we describe an algorithm
for link discovery between OSM and knowledge graphs and one method to enrich
categorical Web markup data. We describe two applications that benefit from the
improved geographic knowledge, namely the construction of the GeoVectors corpus
that provides usable embeddings of geographic entities and the prediction of event
impact on road traffic.

this dataset as open data. Our evaluation results on real-world vandalism data
demonstrate that the proposed Ovid method outperforms the baselines by eight
percentage points regarding the F'1 score on average.

Enrichment of Geographic Web Information

We tackle the challenge of enriching geographic Web Information from two directions.
First, we enrich OpenStreetMap by discovering identity links between OpenStreetMap
and knowledge graphs such as Wikidata and DBpedia in Chapter 4.

e We address RQ2.1 by introducing the OSM2KG model - a novel link discovery
approach to predict identity links between OSM nodes and geographic enti-
ties in a knowledge graph. OSM2KG combines a supervised machine learning
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model with a geographic candidate generation step to determine identity links
effectively. Our experiments, conducted on several OSM datasets as well as
the Wikidata and DBpedia knowledge graphs, demonstrate that OSM2KG can
reliably discover identity links. OSM2KG achieves an F1 score of 92.05% on
Wikidata and of 94.17% on DBpedia on average.

e We address RQ2.2 by proposing a novel latent, compact representation of
OSM nodes that captures semantic node similarity in an embedding. OSM2KG
adopts this latent representation to train a supervised model for link prediction.

Second, in Chapter 5, we enrich semantic Web markup by inferring missing categorical
information, for instance, the types of events.

e We address RQ3 by presenting a supervised classification model that uses Web-
specific features such as domain information to augment missing categorical
information. We demonstrate superior performance compared to both naive
baselines and specialized state-of-the-art methods for type inference and achieve
F1 scores of 79% and 83% in two experimental tasks.

Applications

We illustrate the use of geographic Web information with the two applications of
geographic embedding generation and event impact prediction.

e In Chapter 6 we present GeoVectors, a unique, world-scale corpus containing
ready-to-use embeddings of over 980 million geographic entities in 180 countries.
We create a semantic description of the GeoVectors corpus, including identity
links to the Wikidata and DBpedia knowledge graphs, and provide a SPARQL

endpoint as a semantic interface.

e In Chapter 7 we introduce a novel metric to measure the spatial and temporal
impact of special public events on road traffic. Then, we propose a supervised
regression model that exploits event information, OSM road network informa-
tion, and additional geo-entity information to predict spatial and temporal event
impact.

1.3 Thesis Outline

The remainder of this thesis is structured as follows: In Chapter 2 we provide an
overview of the relevant background areas for this thesis. Specifically, we describe the
Resource Description Framework in Section 2.1, sources of geographic information on
the Web in Section 2.2, and spatio-temporal machine learning in Section 2.3.
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Then, in the subsequent three chapters, we present one approach to validate and
two approaches to enrich geographic information on the Web. In Chapter 3, we vali-
date geographic Web information by introducing an approach for vandalism detection
in OpenStreetMap. To this end, we propose the OVID model, a supervised binary
classification model, in Section 3.4 and evaluate it in Section 3.6. Next, in Chapter
4 we enrich geographic Web information by discovering identity links between Open-
StreetMap and knowledge graphs. We present the OSM2KG model in Section 4.5
and conduct an extensive evaluation in Section 4.7. Then, in Chapter 5 we introduce
another enrichment approach for geographic Web information by inferring missing
categorical information in Web markup, e.g., public event information. We describe
the challenges resulting from the markup data quality in Section 5.3 and describe the
enrichment model in Section 5.5.

The next two chapters describe two applications that benefit from the improved
geographic Web data quality. First, in Chapter 6 we present the GeoVectors cor-
pus, a world-scale resource providing ready-to-use embeddings of geographic entities
extracted from OpenStreetMap. We describe the embedding generation process in
Section 6.4. We use identity links between OSM and knowledge graphs to provide
semantic access to the resource described in Section 6.5. Then, in Chapter 7, we ad-
dress the problem of event impact prediction on road traffic. To this end, we exploit
event information, road network data from OSM, and additional geo-entity informa-
tion. We provide a formalization of spatial and temporal event impact in Sections 7.4
and 7.5. Finally, we conclude the thesis in Chapter 8 by summarizing the findings
and discussing future research directions.






Background

This chapter presents the most relevant concepts for collecting and processing ge-
ographic information on the Web. First, we describe best practices for publishing
data on the Web and introduce the Linked Open Data paradigm and the resource de-
scription framework. Then, we provide an overview of geographic information sources
on the Web including OpenStreetMap, knowledge graphs and semantic Web markup.
Finally, we discuss architectures for processing geographic Web information, i.e., ar-
chitectures for spatio-temporal machine learning models.

2.1 Linked Open Data &
The Resource Description Framework (RDF)

Linked Open Data (LOD), also referred to as Linked Data, is a data publishing
paradigm [HB11]. The core idea of Linked Open Data is to connect distributed
data sources on the Web by establishing links between entities of the respective data
sources. LOD aims to create a connected Web of data providing structured access to

seamlessly connected data sources and thereby increasing the potential utility of all
included data sources [BHB09, HB11].

An essential concept to establish the Web of Data is the use of International Re-
source Identifiers (IRIs) [SRM™14]. TRIs are absolute references to resources, i.e.,
references to arbitrary objects or concepts, with a global scope. The most promi-
nent examples of IRIs are uniform resource locators (URLs), typically used to refer-
ence Web pages. Due to the global scope of IRIs, IRIs distinctly identify resources
across different datasets. These global identifiers enable references between different
datasets, e.g., by indicating which resources refer to the same real-world object.

From a technical perspective, the Resource Description Framework (RDF) has
become the key technology for publishing Linked Open Data. RDF is a framework
for specifying machine-readable information about arbitrary entities [SRM*14]. The

9
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World Wide Web Consortium (W3C) endorsed RDf as W3C recommendation in the
year 1999 [Wor99]. The RDF specification version 1.0 appeared in the year 2004.
In version 1.0, RDF was intended as language to “represent metadata about Web re-
sources” [MMMO4]. Ten years later, in 2014, version 1.1 of the RDF specification was
released. Version 1.1 broadened RDF’s scope to a general “framework for express-
ing information about resources.” [SRM™14]. Here, the term resource is a general
placeholder and may refer to arbitrary real-world entities as well as abstract concepts.

RDF describes resources in the form of so-called triples. Each triple consists of a
subject, a predicate, and an object. The simplest format to express RDF statements
is N-Triples. A single N-Triple consists of white space separated subject, predicate,
and object terminated by a “.” [Bacl4]. For instance, the information that Hanover
is a city could be expressed via the following N-Triple:

<Hanover> <is a> <city> .

Where <Hanover> is the subject, <is a> is the predicate, and <city> is the object.
In an RDF triple, all three subject, predicate, and object can be an IRI.

Running Example

Throughout this chapter, we illustrate different representations of geographic ob-
jects by the example of the city of Hanover, Germany. We adopt the RDF rep-
resentation of Hanover in the GeoNames' database. The GeoNames project cap-
tures the names of geographical places worldwide, e.g., cities, countries, or moun-
tains. Listing 2.1 presents an excerpt of Hanover’s RDF representation in GeoN-
ames. The first two lines define prefixes for the used vocabularies. gn refers to
the GeoNames vocabulary, while wgs84 _pos refers to the W3C basic vocabulary for
representing longitude and latitude in a WGS84? coordinate system. Prefixes ab-
breviate redundant parts of IRIs to allow the easier reading and writing of RDF
statements. Each line represents a single RDF triple. The subject of all triples is
Hanover’s IRI in GeoNames https://www.geonames.org/6559065. Also, all pred-
icates are IRIs referring to well-defined properties. For instance, gn:name (spelled
out http://www.geonames.org/ontology#name) indicates the name of the subject,
whereas wgs84_pos:lat and wgs84 _pos:long indicate the geographic coordinates in
the form of latitude and longitude.

Thttps://www.geonames.org/
2The World Geodetic System (WGS) is the standard coordinate system for coordinates on the
earth surface. WGS84 denotes the current version [wgsl4].
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Listing 2.1: Exerpt of Hanover’s RDF representation from the GeoNames database.

@prefix gn: <http://www.geonames.org/ontology#>
@prefix wgs84_pos <http://www.w3.o0rg/2003/01/geo/wgs84_pos#>

<https://www.geonames.org/6559065> gn:name ’Hannover’
<https://www.geonames.org/6559065> gn:officialName °’Hannover’
<https://www.geonames.org/6559065> gn:countryCode ’DE’.
<https://www.geonames.org/6559065> gn:population 536925
<https://www.geonames.org/6559065> wgs84_pos:lat 52.37362
<https://www.geonames.org/6559065> wgs84_pos:long 9.73711

2.2 Geographic Information on the Web

In this section, we discuss essential sources of geographic information on the Web. In
particular, we give an overview on OpenStreetMap, geographic knowledge graphs, and
semantic Web markup.

2.2.1 OpenStreetMap

The OpenStreetMap (OSM) project collects and provides free geographic data cover-
ing the whole world [Ope21b, AZMH15]. Steve Coast founded OSM at the University
College London in 2004 [HWO08]. Today, OSM is the most prominent example of
volunteered geographic information (VGI) [Goo07]. OSM is a collaborative project
that collects all information from community members, so-called “contributors”, that
voluntarily provide geographic data under the Open Database License (ODbL)3. In
principle, OSM aims at capturing data about all objects with a geographic extent.
Typical OSM objects include physical objects like roads, rivers, or forests, but also
conceptual objects like country boundaries. Figure 2.1 shows the OSM Web interface
that provides an accessible way to explore and visualize the map data.

OSM has recently evolved as the key source of openly accessible VGI for many
parts of the world. The amount of information available in OpenStreetMap is contin-
uously growing. For instance, the number of GPS points captured by OSM increased
from 7.4-10% in 2019 to 8.6-10° in 2021. Figure 2.2 presents a visualization of OSM’s
growth from 2006 to 2021 with respect to the number of registered users in Figure
2.2a and the number of captured GPS points in Figure 2.2b.

Today, OSM data is used in a plethora of machine learning applications such
as road traffic analysis [KGG20], remote sensing [VMSTF21], and geographic en-
tity disambiguation [TD21a]. Other data-driven OSM applications include map tile
generation [HWO08], routing [HR16], and knowledge graph generation [SLHA12].

3https://opendatacommons.org/licenses/odbl/
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Figure 2.1. OpenStreetMap Web view of Hanover, Germany. (©)OpenStreetMap con-
tributors, ODbL.
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The OpenStreetMap Data Model

OpenStreetMap categorizes its geographic objects into three types. Nodes represent
geographic points (e.g., mountain peaks) with the position specified by latitude and
longitude. Ways represent lines (e.g., roads) composed of a sequence of nodes. Re-
lations are composed of nodes and ways and describe more complex objects, e.g.,
national borders. Relations can also include sub-relations. Formally, we define an
OSM object as follows:

Definition 2.1 (OSM object). An OSM object is defined as o = (id, type, loc, tags, very,
where:

e id is an object identifier.
e type € {Node, Way, Relation} indicates the object type.

e loc indicates the geographic location of the object. The location can either be a
point (Node), a line (Way), or a set of points and lines (Relation).

e tags is a set of “tags” describing object characteristics. FEach tag (k,v) € tags
15 represented as a key-value pair with the key k and a value v.

e ver is the version number of the object. The version number corresponds to the
number of revisions of the object o.

An OSM object o can be distinguished by its identifier o.id together with its type o.type.

An OSM object may exhibit an arbitrary number of so-called tags, i.e., key-value
pairs, that describe the semantics of the object. For instance, the tag place=city
indicates that an OSM object annotated with this tag represents a city. OSM does not
provide a fixed taxonomy of keys or range restrictions for the values but encourages its
users to use established key-value combinations and to follow a set of best practices®.
For example, the node labels are often available under the “name” key, whereas the
labels in different languages can be specified using the “name:code=" convention®.
However, OSM contributors are free to introduce new tags to OSM on their behalf®.
As a consequence, the information representation and the level of detail provided for
individual OSM objects are very heterogeneous [TR15]. This heterogeneity may make
the use of OSM data potentially challenging.

Figure 2.3 illustrates this heterogeneity by depicting the mean and the standard
deviation of the number of tags for selected object types. In particular, we consider
the most frequent entity types in an OSM snapshot of Germany from 2018 such as
cities, train stations, castles, and mountains. We observe that the number of tags

4https://wiki.openstreetmap.org/wiki/Map_features
Shttps:/ /wiki.openstreetmap.org/wiki/Multilingual_names
Shttps://wiki.openstreetmap.org/wiki/Any_tags_you like
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Figure 2.3. Average number of tags per object type in an OpenStreetMap snapshot
of Germany from 2018. Error bars indicate the standard deviation.

varies significantly with the entity type. Moreover, the standard deviation is relatively
high (between 35% and 63%) for all entity types. While for some entity types (e.g.,
mountains) the variation in the absolute number of tags is rather small, other types
(e.g., cities) exhibit more substantial variations, meaning that some cities possess
more detailed annotations compared with the rest.

Running Example

For the running example, we present Hanover’s representation in OSM in Listing 2.1.
The relation with the ID 59418 represents Hanover. The geographic location (loc) is a
polygon also depicted in Figure 2.1 as a red line. The polygon consists of several ways,
i.e., lines, that define the polygon boundaries. The tags describe various properties in-
cluding traffic information systems identifier (TMC:cid_58:tabcd_1:LocationCode),
administrative information (de:amtlicher gemeindeschluessel), the name in dif-
ferent languages, and links to the corresponding Wikipedia page.
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Listing 2.1. Representation of Hanover in OSM ((©)OpenStreetMap contributors,
ODbDL).

ID 59418

type Relation
ver 97

loc

member type member ID
Node 1651888734
Way 23729287
Way 239327869
Way 138493032
Way 834738892
tags

key value
TMC:cid_58:tabcd_1:Class Area
TMC:cid_58:tabcd_1:LCLversion 8.00
TMC:cid_58:tabcd_1:LocationCode 452
admin_level 8
alt_name:gl Hannover
boundary administrative
de:amtlicher_gemeindeschluessel 03241001
de:regionalschluessel 032410001001
name Hannover
name:ar Sela
name:be F'anosep
name:zh D B
type boundary
wikidata Q1715

wikipedia

de:Hannover
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2.2.2 Knowledge Graphs

Knowledge Graphs (KGs) have recently become a popular way to model large or het-
erogeneous data collections [HBC'21]. In 2012, Google coined the term ”Knowledge
Graph’ by introducing the Google knowledge graph [Sin12|. Academia and industry
quickly adapted the concept due to its ability to capture complex relations in arbi-
trary domains [NGJT19, HBC*™21]. Today, the major technology companies (e.g.,
Microsoft, Google, Facebook, eBay, and IBM [NGJ*19]) have adopted knowledge
graphs, and research on knowledge graphs constitutes a vital topic in the Semantic
Web field.

Knowledge Graphs use a graph structure to model entities and their mutual re-
lations. That is, entities constitute the nodes, and the relations form the edges in
the graph. In contrast to tabular data, where the columns induce a fixed schema
for each row, knowledge graphs provide a lightweight way to model arbitrary rela-
tions and nonlinear structures. Figure 2.4 presents an example of a simple knowledge
graph. The nodes represent different entities, i.e., cities (Hanover, Hildesheim), a
federal-state (Lower Saxony), and a climate zone (Oceanic Climate). The edges ex-
press relations between the entities, i.e., that Hanover and Hildesheim are neighboring
cities and that both are located in Lower Saxony. Finally, Hanover, Hildesheim, and
Lower Saxony have the same climate classification, i.e., oceanic climate.

Today, several established open knowledge graphs exist. The most popular knowl-
edge graphs capture general knowledge [HBC*21]. Prominent examples are the Wiki-
data [VK14], the DBpedia [LIJ15], the YAGO [SKWO07], or the Freebase [BEPT08]
knowledge graphs. These graphs are extracted from textual knowledge bases [LIJ*15,
SKWO07], e.g., Wikipedia, or are manually constructed by volunteers [VK14, BEPT08].
Another class of knowledge graphs aims to capture domain-specific information. Ex-
amples of geographic knowledge graphs are the LinkedGeoData KG [SLHA12] and
WorldKG [DTY*21] extracted from OpenStreetMap and the YAGO2GEO KG that

climate
L s | classifcation Oceanic
ower Saxony J Climate
located located climate
in in classification
neighbor
N
[ Hanover J< Hildesheim }
neighbor B

climate classification

Figure 2.4. Simple knowledge graph example.
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Figure 2.5. Excerpt of Hanover’s representation in the Wikidata knowledge graph.

extends the YAGO2 KG with geographic information [KMK19]. Popular applications
of knowledge graphs include but are not limited to information retrieval, recommender
systems, or question answering [HBC™21, NGJ19].

Running Example

In the running example, we consider the representation of Hanover in the Wikidata
knowledge graph”. Figure 2.5 presents an excerpt of the node representing Hanover
(Q1715) and direct neighbors. Rectangles with rounded corners indicate entities,
while rectangles with sharp corners represent literal values. All entities can be identi-
fied using Wikidata IDs that also serve as IRIs. The label edges indicate the colloquial
name of the nodes. For instance, the label of Q1715 is “Hanover” and the label of
Q1549591 is “big city”. Several literal values indicate properties of Hanover, such as
the population and the official name. The “instance of”-edges provide type informa-
tion about Q1715, i.e., Hanover is of type “big city” and “state capital in Germany”.
Furthermore, the remaining edges indicate Hanover’s relation to other entities that, in
turn, have mutual relations. For instance, Hanover has a “capital of“-relation to the
German federal state Lower Saxony and a “contains administrative territorial entity’
to the city district Nord. Both Lower Saxony and the district Nord have a country-
relation with the node representing Germany such that multiples connections between
Lower Saxony and Nord exist. This example illustrates the capability of knowledge
graphs to model such nonlinear relation patterns.

Thttps://www.wikidata.org/wiki/Q1715
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Figure 2.6. No. triples extracted from semantic markup in the Web Data Commons
corpus with respect to the year of the Web crawl.

2.2.3 Semantic Markup

Semantic markup embeds semi-structured data about entities within Websites. Sev-
eral formats recommend by the W3C such as Microdata, RDFa [Wor08], or JSON
Linked Data (JSON-LD) [Wor20] exist and can be used to annotate the semantic
entity information. The embedded markup formats can be easily transformed into
other RDF formats, such as RDF quadruples (N-Quads)[Worl14]. RDF quadruples
extend the RDF triples concept introduced in Section 2.1 by adding a graph label
to each triple. The graph label specifies the scope of the quadruple. In the case of
Web markup, the graph label often indicates the origin, i.e., the URL from which the
triple was extracted.

By today, semantic markup data is available at an unprecedentedly large scale,
which can be exemplarily observed on the Web Data Commons (WDC) [MPB14]
corpus. WDC? offers a large-scale corpus of RDF quadruples extracted from the
Common Crawl®. The Common Crawl is a non-profit initiative that provides open
accessible Web crawl datasets. Figure 2.6 presents the number of extracted quadruples
in the WDC datasets with respect to the crawl year. We observe a near-constant
growth of extracted quadruples of the years. The growth indicates the increasing
adoption of semantic markup. For instance, the crawl of October 2016 contains
3.41-10° URLs, of which 50% exhibit markup from which over 8.6 - 10'° triples were
extracted. In contrast, the crawl of November 2015 contains 3.18-10° URLs, of which
only 39% exhibit markup, resulting in only about 4.4-10'° extracted triples [BMP21].

The most prominent use case of semantic markup is Search Engine Optimization
(SEO) [Mik15], i.e., to provide machine-readable information about website contents
to search engines. While being leveraged to facilitate interpretation and retrieval of
Websites by most major search engines, markup data is also helpful for maintaining
and augmenting knowledge graphs. Additional Web markup applications include

8http://webdatacommons.org/
9http://commoncrawl.org/
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Google Rich Snippets, Pinterest Rich Pins and search features for Apple Siri [GBM16].
The Schema.org vocabulary is a joint initiative from major search engines such as
Bing, Google, Yahoo! and Yandex that provides a joint vocabulary and is the most
commonly deployed vocabulary for semantic markup on the Web [BEM™13]. In the
following we abbreviate the prefix of the schema.org vocabulary by s:, e.g., s:City.

Running Example

Due to the still limited adaption of semantic markup describing geographic entities,
we manually augment an excerpt of Hanover’s Wikipedia infobox!? with the corre-
sponding schema.org annotations for the running example. Listing 2.1 presents a
representation of Hanover with semantic Microdata annotations marked in brown
color.

First, the itemtype attribute of the tbody specifies the entity type s:City, indi-
cating that the table describes a city. Next, the individual rows of the table describe
particular properties. The itemprop attribute provides the property name, e.g., name,
containedInPlace, or url. Properties can also refer to sub-entities. For instance,
the temprop="geo" attribute indicates the “geo” property describing the geographic
extent of an entity. An own entity of type s:GeoCoordinates provides the latitude
and longitude information. Finally, the s:PropertyValue type can provide additional
properties currently missing in schema.org. In the example, we define the “Elevation”
and “Population” properties.

Listing 2.3: Example of a Microdata representation of Hanover. Brown color indicates
Microdata markup.

<table>
<tbody itemscope itemtype="https://schema.org/City">
<tr>
<th colspan="2" class="infobox-above">
<span class="wrap" itemprop="name">Hanover</span>
</th>
</tr>
<tr>
<th scope="row" class="infobox-label">Country</th>
<td class="infobox-data">
<span itemprop="containedInPlace">Germany</span>
</td>
</tr>
<tr class="mergedrow">
<th scope="row" class="infobox-label">State</th>
<td class="infobox-data">
<span itemprop="containedInPlace">Lower Saxony</span>

Ohttps://en.wikipedia.org/wiki/Hanover
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</td>
</tr>
<tr class="mergedtoprow" itemprop="geo" itemscope
itemtype="https://schema.org/GeoCoordinates">
<th scope="row" class="infobox-label">Coordinates</th>
<td class="infobox-data">52 22’N 9 43’E</td>
<meta itemprop="latitude" content="52.366667" />
<meta itemprop="longitude" content="9.716667" />
</tr>
<tr class="mergedtoprow" itemscope
itemtype="https://schema.org/PropertyValue">
<th scope="row" class="infobox-label">Elevation</th>
<td class="infobox-data">55 m (180 ft)</td>
<meta itemprop="name" content="Elevation" />
<meta itemprop="value" content="55m" />
</tr>
<tr class="mergedtoprow" itemscope
itemtype="https://schema.org/PropertyValue">
<th colspan="2" class="infobox-header">Population</th>
<td class="infobox-data">534,049</td>
<meta itemprop="name" content="Population" />
<meta itemprop="value" content="534,049" />
</tr>
<tr class="mergedrow">
<th scope="row" class="infobox-label">Website</th>
<td class="infobox-data">
<a href="https://www.hannover.de/" itemprop="url">
www.hannover .de</a>
</td>
</tr>
</tbody>
</table>

2.3 Spatio-Temporal Machine Learning

This section discusses the technical background in the area of spatio-temporal machine
learning. Spatio-temporal machine learning algorithms exploit both the spatial and
temporal dimensions and often learn patterns from geographic data. In this thesis,
we only consider spatial data located on the earth’s surface. Therefore, we will
interchangeably use the terms “spatial”, “geographic”, and “geospatial “ throughout
this thesis.

Figure 2.7 presents a typical spatio-temporal machine learning pipeline based on
the description of Wang et al. [WCY20]. The pipeline starts with raw spatio-temporal
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Figure 2.7. Typical spatio-temporal machine learning pipeline based on [WCY20].

data as input. First, the instance construction step transforms the input into well-
defined spatio-temporal data types, e.g., points or trajectories. Then, the discretiza-
tion step maps the spatio-temporal data into aggregated representations, e.g., graphs
or grids. Finally, the model selection step aims to select an appropriate machine
learning model to exploit the discretized data. In the following sections, we detail the
individual steps of the pipeline.

2.3.1 Instance Construction

The instance construction step uses raw spatio-temporal data and transforms it into
well-defined spatio-temporal data types.

In general, spatio-temporal data comes in many forms and can be collected with
diverse sensors, including GPS sensors [AYW™16, CYH™ 18], induction loops for traffic
detection [PDGS15, Chul2, AHC14, FPEG17]| weather radars [HSZ20], or satellite
imagery [TDEP18]. This section discusses the spatial-temporal data types and the
corresponding data sources most relevant for this thesis.

Points: Points are instances whose location information is given by a single pair of
latitude/longitude coordinates. Points can represent various real-world measurements
for a particular location and a particular time, such as the taking place of a public
event [TDD20], traffic incidents [PDGS15], stationary traffic speed recordings [Chul2,
AHC14, FPEG1T7], or crime incidents [WCY20].

Trajectories: Trajectories are sequences of points, commonly representing the
movement of objects through space and time. Each point of the trajectory captures
the object’s position at a particular point in time, such that subsequent points are
temporal successors. Trajectory data is typically collected with sensors that are at-
tached to the moving object [WCY20]. These sensors measure the position of the ob-
ject at constant time intervals, also called the sampling rate [CFCT09]. Furthermore,
some sensors provide additional measurements like the current velocity, acceleration,
and electric field strength. The most prominent trajectory sensors are GPS sensors
that are often integrated with navigation devices.

Other spatio-temporal instance types include spatio-temporal polygons, geograph-
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(a) Raw GPS points (b) Grid Discretization  (c) Graph Discretization

Figure 2.8. Traffic data discretization example. Map image (€)OpenStreetMap con-
tributors, ODbL.

ically referenced satellite images, and spatio-temporal raster data.

2.3.2 Spatio-Temporal Data Discretization

Data discretization is the processing of mapping continuous data points to a cate-
gorical data distribution [BOS09], e.g., mapping GPS coordinates to streets. The
categories are also often referred to as bins. Depending on the task, categorical data
distributions can enable more effective training of machine learning models. In the
context of spatio-temporal data, the discretization process typically consists of sepa-
rate spatial and temporal discretization steps.

Considering spatial discretization, two discretization techniques are commonly
used. Figure 2.8 contrasts grid discretization and graph discretization of GPS point
data. In grid discretization, a virtual uniform spatial raster indicates the discretiza-
tion bins. Spatial geometries that fall into individual cells of the raster are mapped
to the respective cells. On the one hand, grid discretization constitutes a simple and
often effective way to discretize spatial data. On the other hand, grid discretization
may introduce a loss of accuracy for the following reasons. First, the mapping to grid
cells shadows the exact position, where the size of the grid cells is an upper bound
for imprecision. Second, locations that fall into the same grid cell are not necessarily
related to each other. For instance, a rural road and a highway with a parallel course
might fall into the same grid cell but may not be reachable from each other.

In graph discretization, the nodes or edges of a spatial graph serve as bins. Spatial
graphs are a flexible way to model many spatial distance relations. For instance, road
networks can be modeled as spatial graphs, where the edges represent roads and the
nodes represent junctions. Other examples include sensor networks or neighboring
relations of city districts. A popular example, of graph discretization is the assignment
of car trajectory to roads (so-called map matching [YG18]). Graph discretization
is often more accurate than grid discretization and may enable more fine granular
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analyses. On the downside, the graph construction and the mapping of spatial data
to the individual graph components is typically more complex than the mapping to
grid cells. Furthermore, modeling spatial data as a graph does not make sense for all
kinds of spatial data.

Temporal discretization is usually carried out by mapping exact time stamps to
discrete-time bins. The particular application determines the granularity of the bins.
For instance, traffic forecasting might require more precise bins, e.g., 15-minute bins,
whereas weather forecasting might allow for less granular bins, e.g., three-hour bins.
Periodic patterns might also require determining reoccurring bins, such as weekdays
or the time of day. For instance, rush hour traffic usually occurs in the morning and
the afternoon of weekdays, but not during the night on weekends.

2.3.3 Spatio-Temporal Model Selection

The spatio-temporal model selection step aims to determine the best-suited machine
learning model, such as classification, regression, or unsupervised models.

Traditional machine learning models, such as random forests, support vector ma-
chines, or decision trees have been applied to many spatio-temporal machine learning
problems. These models require a feature engineering process and rely on explicit fea-
ture representations of spatial and temporal relations. Compared to neural networks,
these models require fewer data to facilitate training but usually only achieve lower
performance than neural models. However, traditional machine learning models are
still a good alternative if only little training data is available.

Neural networks have superseded traditional machine learning models as state of
the art for a wide range of spatio-temporal problems during the last years, e.g., traffic
speed prediction [ZCM™20] and next location recommendation [LLL21]. Compared to
traditional machine learning models, neural networks do not rely as much on feature
engineering but are often able to automatically discover patterns in spatio-temporal
data [GBC16]. On the downside, neural models usually require large amounts of train-
ing data. We distinguish between two classes of neural models: (i) models learning
spatial and temporal patterns separately and (ii) model learning spatial and temporal
patterns jointly.

Models separately learning spatial and temporal relations first apply a set of spa-
tial layers and then employ the temporal layers on top of the spatial layers [WCY20].
The spatial layers aim to determine and aggregate spatial patterns in the data, for
instance, mutually dependent road segments, congestion propagation, or relations
between geographic regions. To this end, the spatial layer computes intermediate
spatial representations of each time step individually, forming a spatial time series.
Commonly used spatial layers include convolutional neural networks (often used for
grid data) and graph neural networks. Recently, geographic representation learn-
ing algorithms have emerged as an additional method to determine spatial relations.
These algorithms can be seen as preceding unsupervised feature extraction step to
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transform geographic data into continuous numerical representations. Current geo-
graphic representation learning algorithms include stacked auto encoders [MZWL18],
generative models [HMLS20], and word2vec-like models [FCAC17, YHMH19]. The
temporal layers aim to determine temporal patterns in the spatial representations
of the individual time steps, for instance, trends or periodic behavior. To this end,
recurrent neural networks with an encoder-decoder architecture are commonly used.
First, the encoder learns a latent representation of the spatial time series. Then, the
decoder uses the latent representation to predict future values of the time series in-
crementally. Typical recurrent neural architectures include long short-term memory
cells and gated recurrent units are com.

Lately, models jointly learning spatio-temporal relations have emerged. These
models typically consist of spatio-temporal blocks that are repeatedly stacked on
top of each other. Each block is capable of determining both spatial and temporal
patterns. By removing the strict separation, these models aim to address the mutual
dependence of spatial and temporal patterns. Consider a traffic jam as an example
for mutual spatio-temporal dependencies. The length of a traffic jam grows with a
longer duration of the jam. At the same time, the traffic jam will last longer if more
roads are affected. Recent architectures for jointly learning spatio-temporal relations
include convolutional neural networks [ZCM*20] and attention networks [LLL21].



Validation of OpenStreetMap Data through
Vandalism Detection

As a first step to increase data quality, we aim to validate the existing geographic
information on the Web in this chapter before we later add missing information using
the enrichment approaches described in Chapter 4 and 5. As discussed in Section
2.2.1, OpenStreetMap is currently one of the most important sources of geographic
Web information. Therefore, in this chapter, we aim to validate OpenStreetMap
information. In particular, we aim to detect vandalism in OpenStreetMap, i.e., wrong
or prohibited information.

The manual correction of such information, e.g., by OSM contributors, is a costly
process due to the scale of OpenStreetMap. Existing approaches for vandalism de-
tection in crowd sourced knowledge bases used machine learning models to facilitate
automated vandalism detection, e.g., in Wikidata. However, the heterogeneity of
OSM objects and the lack of annotated training data imposes substantial challenges
to the application of machine learning models. In RQ1 we ask how to create such a
machine learning model to detect vandalism in volunteered geographic information,
such as OSM. In this chapter, we address RQ1 by introducing the OvViD model, a
machine learning model for vandalism detection in OpenStreetMap.

3.1 Introduction

The amount of geospatial information in OpenStreetMap is continuously growing.
For instance, the number of nodes captured by OSM increased from 5.9-10° in March
2020 to 6.7 - 10 in March 2021. With the OSM growth, quality assurance becomes
essential but also increasingly challenging. Recently, the problem of vandalism de-
tection in OSM has attracted interest of researchers [TTdR20, VMSTF21] and OSM
contributors'. For example, the OSM community identified several cases of vandal-

thttps://wiki.openstreetmap.org/wiki/Vandalism
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Figure 3.1. Real-world examples of different vandalism forms in OSM. Map data:
©OpenStreetMap contributors, ODbL.

ism in the context of the location-based mobile game Pokémon Go [JNHQ20], in
which users added wrong information to the map to gain an advantage in the game.
Today, OSM provides a data basis for various real-world applications, including nav-
igation systems and geographic information systems (GIS). Detecting and removing
vandalism cases is essential to preserve the credibility and trust in OSM data.

The problem of vandalism detection in OSM is particularly challenging due to the
large scale of the dataset, the high number of contributors (over 7.6 million in June
2021), the variety of forms vandalism can take, and the lack of annotated data to train
machine learning algorithms. Figure 3.1 presents four real-world vandalism examples.
The vandalism forms in OSM include the arbitrary deletion of map regions, creating
non-existing cities in the middle of an ocean, drawing texts using geometric shapes,
and overwriting street names and other objects with advertisements and offensive
content. Vandalism detection methods need to consider various aspects such as the
geographic context, typical user behavior, and content semantics to identify poten-
tially malicious edits effectively. The diversity of vandalism appearances and relevant
features constitutes a significant challenge for automated vandalism detection.

Whereas the existing literature has considered OSM vandalism previously, only
a few automated approaches for vandalism detection in OSM exist. An early ap-
proach proposed in [NGZ12] adopts a rule-based method to identify suspicious edits.
This approach is subject to numerous manually tuned thresholds. In [TTdR20], the
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authors proposed a random forest-based method that detects vandalized buildings.
This approach is limited to the building domain and does not capture other various
OSM vandalism forms. Furthermore, due to the shortage of benchmark datasets with
real vandalism examples, existing studies typically utilize synthetic data and lack
evaluation in real-world settings.

In this chapter, we present the OvID (OpenStreetMap Vandalism Detection)
model - a novel supervised machine learning approach to detect a variety of van-
dalism forms in OSM effectively. We propose a neural network architecture that
adopts multi-head attention to select the most relevant edits within an individual
changeset, i.e., a set of edits performed by a user within one session. Furthermore,
we propose an original feature set that captures different aspects of OSM vandalism,
such as user experience and contribution content. We train and evaluate OVID on
real-world vandalism occurrences in OSM, manually identified by the OSM commu-
nity. To enable training of supervised machine learning models, we create a new
ground truth dataset by extracting reverted entries from the OSM history. Although
reverts indicating vandalism are available in OSM, identifying specific geographic en-
tities affected by vandalism from reverts is not trivial as OSM does not specify which
exact changeset is being corrected by the revert. Therefore, we develop an extraction
procedure to extract vandalism occurrences accurately. Our evaluation results on two
real-world datasets demonstrate that OvID outperforms existing approaches by 8.14
percent points in F1 score and 5.41 percent points in terms of accuracy on average.

Contributions. In this chapter, we address RQ1 and make the following contri-
butions:

e We present OVID — a novel machine learning method for vandalism detection
in OpenStreetMap. OVID relies on a neural network architecture that adopts a
multi-head attention mechanism to summarize information indicating vandalism
from OpenStreetMap changesets effectively.

e We propose a set of original features that capture changeset, user, and edit
information to facilitate effective vandalism detection.

e We extract a dataset of real-world vandalism incidents from the OpenStreetMap
edit history for the first time.

e We conduct an evaluation on the extracted real-world vandalism dataset and
demonstrate the effectiveness of the proposed OvVID method, outperforming the
baselines by eight percentage points regarding the F'1 score on average.

The rest of the chapter is organized as follows: We discuss related work in Section
3.2. Then, in Section 3.3, we formally define the problem of vandalism detection in
OpenStreetMap. In Section 3.4 we introduce the proposed OvID model. We describe
the experimental setup in Section 3.5. Following that, in Section 3.6 we present and
discuss the evaluation results using two real-world OpenStreetMap datasets. Finally,
we provide a discussion in Section 3.7.
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3.2 Related Work

This section discusses the related work in the areas of vandalism detection in crowd-
sourced knowledge bases and vandalism in OpenStreetMap.

Vandalism Detection in Crowd-Sourced Knowledge Bases. The existing
literature investigated vandalism detection in crowd-sourced knowledge bases such as
OpenStreetMap in several studies. Neis et al. early proposed OSM-Patrol [NGZ12], a
rule-based system to detect vandalism in OpenStreetMap. OSM-Patrol determines a
vandalism score for each edit. The score includes features such as user reputation, ob-
ject type, or the number of established tags used in the edit. While OSM-Patrols aims
at classifying individual edits, we classify entire changesets. In this chapter, we use
OSM-Patrol as a baseline. Our experimental results confirm that OvID outperforms
this baseline.

More recently, another line of research has investigated the validation of building
shapes within OpenStreetMap. Xie et al. developed a convolutional neural network
that extracts building shapes from remote sensing imagery. The authors then com-
pare the extracted shapes with shapes from OSM [XZX*19] to validate the buildings
in OSM. The OSM Watchman approach uses a supervised random forest model for the
detection of vandalism on buildings in OSM [TTdR20]. However, the authors eval-
uated OSMWatchman on synthetically created vandalism incidents only. Whereas
the approach presented in [XZX'19] is too specific for our experimental setting, we
compare OVID to OSMWatchman as a baseline. In our evaluation, we demonstrate
that OvVID outperforms OSMWatchman with respect to all considered metrics on
real-world vandalism datasets.

Heindorf et al. investigated the problem of vandalism detection in the Wiki-
data knowledge graph [HPSE16, HPSE15, HSEP19]. They developed the Wikidata
Vandalism Detection (WDVD) model that uses a random forest classification model
together with user-based features (e.g., number of previous contributions) and text-
based content features (e.g., the ratio of uppercase letters). We compare to WDVD as
a baseline and show that our proposed OvVID model outperforms WDVD concerning
F1 score and accuracy.

Another class of approaches aims at detecting vandalism of textual knowledge
bases such as Wikipedia [PSG08, KSS15]. These approaches use Wikipedia-specific
features (e.g., edits of meta-pages) and features tailored to natural language texts
(e.g., the fraction of pronouns in a text). In contrast, OSM provides object descrip-
tions as key-value pairs that do not normally contain long natural language texts,
such that this class of models is not applicable to OSM data.

Vandalism in OpenStreetMap. Previous research has investigated the char-
acteristics of vandalism in OpenStreetMap. Antoniou et al. identified vandalism
as a threat to the OSM data quality in a recent survey on volunteered geographic
information [ASFT17]. Quin et al. analyzed OSM user bans and further specified
several threat categories such as nefariousness, obstinance, ignorance, and mechani-
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cal problems [QB19]. Similarly, Ballatore et al. proposed a typology of vandalism in
OpenStreetMap and coined the term “carto-vandalism” [Ball4]. They categorize van-
dalism incidents in the types play, ideological, fantasy, artistic, industrial, and spam
carto-vandalism. The authors point out the potential use of automated tools such as
machine learning for vandalism detection. Mooney et al. analyzed high frequently
edited objects and found so-called “edit wars” in OpenStreetMap [MC12]. Edit wars
are disputes of two or more contributors in which the contributors repeatedly revert
each other’s contributions. Edit wars are considered vandalism or bad-editing by the
OSM community?.

Recently, the OSM community observed an increased amount of vandalism aiming
to manipulate the location-based game ”Pokémon Go“ that uses OpenStreetMap
data. Juhdsz et al. found that the OSM community has manually corrected most of
these incidents [JNHQ20].

These studies highlight the importance of mitigating vandalism in OpenStreetMap.
Our OVID model, proposed in this chapter, can lower the effort required for vandalism
correction in OSM in the future.

3.3 Problem Definition

In this chapter, we target the problem of identifying vandalism changesets in Open-
StreetMap. To this end, we extend the OSM formalization introduced in Section
2.2.1.

OSM allows for updates in the form of edits of individual OSM objects. An edit
can either create new objects or modify or delete existing objects. More formally, we
define an OSM edit as follows:

Definition 3.1 (Edit). An edit is defined as e = (o, op, ver,t), where:

e 0 is an OpenStreetMap object.
e op € {create, modify, delete} is the operation performed on the object o.
e ver is the new version number (o.ver + 1) after the edit is performed.

e t is the time when the edit took place.

Edits are submitted to OSM in the form of changesets. Changesets bundle multiple
edits created by a single user during a short time period.

Definition 3.2 (Changeset). A changeset is defined as ¢ = (E,t,u, co), where:

o F is a set of OSM edits that belong to the changeset.

2See: https://wiki.openstreetmap.org/wiki/Vandalism
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e t is the changeset commit time.
e u is the user who committed the changeset.

e co is a comment describing the changeset contents.

We denote the set of all changesets by C. We define the vandalism detection
task in OpenStreetMap, as detecting the changesets that contain wrong or prohibited
(e.g., discriminating or offensive) content.

Definition 3.3 (Vandalism Detection). Vandalism detection is the task of identifying
changesets that constitute vandalism by either deleting correct information or adding
wrong or prohibited information. We aim to learn a function y : C +— {True, False}
that assigns vandalism labels to changesets.

In OSM, examples of vandalism include the deletion of existing towns, creating
non-existing roads, adding advertisements, or replacing object names with offensive
terms. Some vandalism examples are illustrated in Figure 3.1.

3.4 The Ovid Model

This section presents the OVID (OpenStreetMap Vandalism Detection) model. OviD
is a supervised binary classification model that discriminates between regular and
vandalism OSM changesets. The model consists of a supervised artificial neural net-
work, including three main components: Feature Extraction, Feature Refinement &
Aggregation, and Prediction. Figure 3.2 provides an overview of the OvVID model
architecture. We adopt features in three categories. First, changeset features capture
meta-information of the individual changesets, e.g., the editor software. Second, user
features provide information regarding previous editing activities of the changeset
author, e.g., the number of prior contributions. Third, edit features encode infor-
mation describing the individual changes within the changeset, e.g., if an object was
added, modified, or deleted. Since a single changeset may consist of multiple edits,
OVID relies on a multi-head attention mechanism to aggregate the edits and identify
information relevant for vandalism detection. Finally, a sequence of prediction lay-
ers integrates the features and facilitates the detection of vandalism changesets. We
present the main components of the OVID approach in the following sections in more
detail.
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3.4.1 Feature Extraction

This section describes the extraction of the changeset, user, and edit features. Table
3.1 presents a summary of the features.

Changeset Features

The changeset features provide information regarding the changeset metadata. We
denote the changeset feature vector by X,.. For a changeset ¢, the feature vector
consists of the following individual features.

No. creates, no. modifications, no. deletes, no. edits. We capture the
changeset size by the number of created, modified, and deleted objects and the total
number of edits in the changeset |c.E|.

Min/max latitude/longitude, bounding box size. We capture the change-
set’s geographic extent by considering the minimum and maximum latitude and lon-
gitude among the changeset entries. Furthermore, we include the size of the overall
geographic bounding box of the changeset. We expect that a large geographic extent
may indicate vandalism.

Editor application. Several editor applications can create changesets for OSM.
Basic editors are easy to use and, therefore, more likely to be used for vandalism.
Following this intuition, we include the editor application as a categorical feature. We
apply 1-hot encoding such that an individual dimension represents a specific editor
application. For a specific editor application, we set the corresponding dimension to
1 and left all other dimensions as 0.

Has imagery used. OSM contributors may specify whether they used aerial
images for a specific changeset, which intuitively can make a changeset more trust-
worthy. We hence include this information as a binary variable.



32 Chapter 3 Validation of OpenStreetMap Data through Vandalism Detection

Comment length. Contributors can provide a comment c.co to document the
contents of a changeset. Intuitively, a long description may indicate trustworthy
changes. Therefore, we use the number of characters in a comment as a feature.

Table 3.1. OVID features overview

Feature Type Reference

Changeset Features

No. creates numerical [Jas1§]
No. modifications numerical [Jas18]
No. deletes numerical [Jas18]
No. edits numerical original
Max. latitude numerical original
Max. longitude numerical original
Min. latitude numerical original
Min. longitude numerical original
Bounding box size numerical original
Editor application categorical original
Has imagery used binary original
Comment length numerical [HPSE16]
User Features

No. past creates numerical INGZ12]
No. past modifications numerical original
No. past deletes numerical original
No. contributions numerical  [HPSE16, TTdR20]
No. top-12 keys used numerical INGZ12]
Account creation date numerical [HPSE16]
No. active weeks numerical [TTdR20]

Edit Features

Edit operation categorical INGZ12
Object type categorical INGZ12
Object version number numerical [HPSE16

]
]
]
No. previous authors numerical  [HPSE16, TTdR20]
Time to previous version numerical [INGZ12, TTdR20]

]

No. tags numerical [TTdR20
No. tags added numerical original
No. tags deleted numerical original
No. valid tags numerical [INGZ12]
No. previous valid tags  numerical INGZ12]

Name changed binary original
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Finally, we concatenate all changeset features to obtain the changeset feature
vector X, € R% where d, denotes the dimension of X,.

User Features

We utilize user features to capture the previous activity of the changeset author c.u,
as a more experienced user may be more trustworthy than a new user. Given a
changeset ¢ and its author c.u, we denote the user feature vector by X,,.

No. past creates, no. past modifications, no. past deletes. The user
experience plays a vital role in quantifying the users’ credibility [NGZ12|. Therefore,
we count the number of objects that the user c.u added to OSM and use this number
as a feature. In addition, we also consider the number of objects edited by the user
c.u to capture another aspect of the user experience. We count the number of objects
that c.u has modified and deleted previously and use each count as a feature.

No. contributions. We count the overall number of objects contributed by the
user and include this number in our model.

No. top-12 keys used. Following [NGZ12], we use the top-12 most frequent
keys used in OSM and determine how often the user added one of the top-12 keys
to an entry. As of May 2020, the top-12 most frequent keys are building, source,
highway, name, natural, surface, landuse, power, waterway, amenity, service, and
oneway. The top-12 most essential keys are likely to be present in the history of
credible OSM users. In contrast, an absence of top-12 tags in the user history might
indicate harmful behavior. We include the number of top-12 keys previously utilized
by the user c.u as a feature.

Account creation date, no. active weeks. To quantify the temporal scope
of user experience, we consider the timestamp of the user account creation date and
the number of weeks in which the user has contributed at least one changeset.

We concatenate all features to obtain the user feature vector X, € R%, where d,,
denotes the dimension of X,,.

Edit Features

The edit features capture information regarding the individual edits contained in a
changeset. As a single changeset ¢ may contain many edits, we first extract the
features for every individual edit e € c.F.. We extract the following features from
each edit e:

Object type, edit operation. The object type e.otype € {Node,
Way,Relation} and the edit operation e.op € {create,modify,delete} provide ba-
sic information about the type of the edited object and the editing operation applied.
Some object types might be easier to vandalize than others. For example, it is eas-
ier to move the single node representing the South Pole than to move the complex
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relation representing Antarctica. We use one-hot encoding to represent both features.

Object version number, no. previous authors. If the edit changes an already
existing object, we capture information about the object edit history by considering
the version number e.ver and the number of distinct previous authors. A high version
number might indicate controversial objects that are a subject of so-called edit wars?.

For instance, the country affiliation of some regions might be controversial?.

Time to the previous version. We measure the time between the current and
the last object version as the difference between the corresponding timestamps. If no
prior version of the object exists, we set this feature to zero.

No. tags. The tags provide semantic information about the object. A high
number of tags may indicate an established OSM object. Therefore, we consider the
total number of tags |e.o.tags|, the number of added tags, and the number of tags
deleted in the edit as features.

No valid tags, no. previous valid tags. The OpenStreetMap Wiki provides
a description of established key-value pairs as so-called map feature list®. Following
INGZ12], we count the number of tags that appear in the map feature list as the
number of valid tags. We assume that the use of a valid key-value combination
indicates proper editing behavior. Likewise, we determine the number of valid tags
in the previous version of the edited object if a previous version exists. Otherwise,
we set this feature to zero.

Name changed. Vandalizing object names is an effective way to create visible
fake information in OSM. Therefore, we create a binary feature indicating whether
the new name of an object differs from its previous name. If the object does not have
a name or a prior version, we set this feature to 0.

For each edit e € c.E, we concatenate the features into the edit feature vector
X, € R%, where d. denotes the dimension of X,.

3.4.2 Feature Refinement & Aggregation

In this step, we first refine the changeset and user features and then aggregate the
edit features to obtain a single feature vector for each changeset.

We refine the changeset and user feature vectors by passing them to the fully
connected layers X, = FCy, (X.) and X,y = FCy, (X,) with:

FCy,(X;) = ReLU(X;W; + b;),

where W; € R%*4 denotes a weight matrix, b; € R% a bias vector, dj, is the hidden
layer size, and ReLU denotes the Rectified Linear Unit activation function [GBC16].

3https://wiki.openstreetmap.org/wiki/Disputes
4https://wiki.openstreetmap.org/wiki/Disputed_territories
Shttps:/ /wiki.openstreetmap.org/wiki/Map_features


https://wiki.openstreetmap.org/wiki/Disputes
https://wiki.openstreetmap.org/wiki/Disputed_territories
https://wiki.openstreetmap.org/wiki/Map_features

3.4 The OvID Model 35

We concatenate the changeset and user features and apply a fully connected layer
with normalization:

Xc,u = nOTm(FC([XC/7XU/]>>7

where norm(-) denotes layer normalization [BKH16] that scales the layer output based
on the mean and standard deviation of the individual neurons’ activation values.

For OVID, we aim at selecting the edits most relevant to identify vandalism in the
corresponding changeset. To this extent, we aggregate the individual features of all
edits in the same changeset. We combine the feature vectors X, for each e € c.E into
the edit feature matrix M, € R%*I<El_ We apply the same fully connected layer to
each edit M. = FCy, (M,) to obtain the refined edit features M... To aggregate the
features of the individual edits into a single feature vector, we adopt the multi-head
attention mechanism proposed by [VSPT17]. Intuitively, the multi-head attention
mechanism computes a weighted sum of the edit features, where the model learns the
so-called attention weights representing the importance of specific edits.

Formally, the attention mechanism distinguishes between a query @, keys K and
values V. Attention selects the most relevant values V' for the query ) based on the
similarity between () and the keys K. As we aim at selecting the edits most relevant to
identify vandalism in the corresponding changeset, we represent the refined changeset
and user features as the query in the attention model and the refined edit features
as keys and values: ) = X.,, K = M., and V = M,. The Attention function is
defined as:

Attention(Q, K, V') = softma (—QKT)V
) Y = X ?
Vdy

where () denotes a query vector, K a key matrix, V' a value matrix, and dj, is the
dimension of one row (one key) of the key matrix. The term QKT computes the
similarity between the query vector ) and the individual keys in the key matrix K.
Then, the softmax function transforms the similarities to a probability distribution
representing the attention weights. The scaling factor v/dj, prevents the softmax from
having extremely small gradients during back propagation [VSP*17]. Finally, the
multiplication of the attention weights with the value matrix V' yields the weighted
sum of the values.

Multi-Head attention extends attention by using multiple (npeqq) attention heads.
Each head learns to focus on different edit feature combinations, e.g., the object type
together with the semantic description provided by the tags. Formally, each attention
head computes its own attention function:

Multi-Head(Q, K, V) = [heady, ..., head,, ]|
head; = Attention(QWZ, KWK VIwY),

with the projection matrices VVZ-Q € Réwxdn WK ¢ Rdnxdn WV € Rn*dn and WO €
R™head dnxdn

we,
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We compute an aggregated edit feature vector using multi-head attention: Xz =
Multi-Head(X. ., Mg, M) Finally, we refine the edit feature vector using a fully
connected layer with the layer normalization Xp = norm(FCy, (Xg)).

Some changesets, e.g., automatic imports, may contain a high number of edits (up
to 50,000 in our datasets) such that the contribution of an individual edit is negligible.
Therefore, we introduce an upper threshold the ;4 for the maximum number of edits
within a changeset. If the number of edits exceeds the ez, We set Xpr = 0 and rely
on the user and changeset features.

3.4.3 Prediction

We facilitate the detection of vandalism changesets by combining the refined changeset
and user features with the aggregated edit features into a single feature vector X, =
[Xeus Xpr]. We repeat fully connected layers with layer normalization n,,..q times and
use a final fully connected layer with a single output dimension and sigmoid activation
function to make predictions of the binary vandalism label:

Xy = norm(FCy, (X)),

j = sigmoid( Xy Wy +by),

with W, € R4 and b, € R. We consider a changeset as vandalism if § exceeds the
classification threshold: § > th..ss. We use the established threshold for the sigmoid
function the,ss = 0.5 [GBC16]. We investigate the influence of th,ss on the precision
and recall of the classification model later in the evaluation in Section 3.6.3.

We normalize all input features by removing the mean and scaling to unit variance.
We use the ADAM optimizer to train the network using a binary cross-entropy loss
and apply L2 regularization to all layers:

N
| ) i
L= =D i log(ii) + (L—y) log(1—g0) + A Y [[Will*,
=1 W,ew

where N denotes the number of training examples, W the set of all weight matrices,
A is the regularization weight, and || - ||* is the L? norm.

3.5 Evaluation Setup

This section describes the datasets, baselines, metrics, and hyperparameter optimiza-
tion used in the evaluation.



3.5 Evaluation Setup 37

Table 3.2. Dataset statistics for OSM-Reverts and OSM-Manual

Dataset property OSM-Reverts OSM-Manual
No. vandalism changesets 18,276 2,018
No. distinct users 8,768 1,686
Median create operations per changeset 5 3
Median modify operations per changeset 1 1
Median delete operations per changeset 1 1
Median nodes per changeset 6 4
Median ways per changeset 2 2
Median relations per changeset 1 1
Median edits per changeset 10 8
Median edits/vandalism changeset 10 4
Median edits/negative changeset 10 11
Timespan 2014-2019 2014-2019

3.5.1 Datasets

We conduct the experiments on two real-world datasets, OSM-Reverts and OSM-
Manual, described in the following. Table 3.2 summarizes selected statistics of both
datasets.

OSM-Reverts. We create a ground truth dataset by considering the changesets
reverting vandalism in the OpenStreetMap history from 2014 to 2019. The correctness
of the ground truth is essential for the training of supervised models. Therefore, we
aim at high precision in the ground truth extraction process.

Determining specific vandalism changesets repaired by the reverts is not trivial.
Whereas some reverts mention the corresponding changesets in the comment explic-
itly, others simply delete, update or insert geographic objects to repair the vandalism.
The revert comments are highly heterogeneous and do not always explicitly specify
the vandalism changeset.

The extraction process consists of the following steps: First, we extract the revert
changesets that fix vandalism changesets. We only consider changesets that mention
“vandalism” in their comments. Second, we determine the vandalism changesets
corrected by the revert. If a revert changeset explicitly mentions a specific changeset,
we consider the mentioned changeset as vandalism. Otherwise, we review the objects
that are the subject of the revert. If the revert deletes an object and only one user
contributed to the object, we consider changesets contributing to this object to be
vandalism. It is hard to attribute the revert to a specific changeset in other cases. As
we aim at high precision, we do not include such underspecified cases in our ground
truth.

To create negative examples (i.e., changesets that do not represent vandalism), we
remove the identified vandalism changesets and the reverts from the OSM changeset
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history. The overall fraction of the vandalism changesets is small compared to all OSM
changesets. Therefore, we obtain negative examples by randomly sampling changesets
from the filtered OSM history. We randomly sample the same number of changesets
as the vandalism changesets from the reduced changeset history to create negative
examples and obtain a balanced dataset. As a result, we obtain a dataset with 18,276
training examples. We make our dataset available as open data to make our results
reproducible and facilitate further research. We split the dataset into training (70%),
validation (10%), and test (20%) sets. To avoid bias towards individual OSM users,
we ensure that the training, validation, and test sets are disjunct concerning OSM
users. We train the models on the training and validation set and evaluate the results
on the test set.

OSM-Manual. In 2018, the OSM community manually identified approximately
one thousand vandalism incidents, including spam and forbidden imports.” We use
these changesets as positive examples. Analogous to OSM-Reverts, we create negative
examples by randomly sampling changeset from the OSM history. In total, the OSM-
Manual dataset includes 2,018 examples. The number of examples in the OSM-
Manual dataset is too small to train machine learning models. Thus, we use OSM-
Manual only as a test set. We evaluate vandalism detection approaches with OSM-
Manual by training the models on the entire OSM-Reverts dataset and then using
OSM-Manual as a test set.

3.5.2 Baselines

We compare our model with the following baselines:
RANDOM. This naive baseline chooses the vandalism label at random.

OSMPATROL. This model is an early approach to detect vandalism in OSM
INGZ12]. OSMPatrol is a rule-based system that aims to identify vandalism at the
level of OSM edits. For each edit, the baseline computes a vandalism score based on
a combination of rules considering user information and edit features, e.g., the object
version number. Each rule compares an individual feature to a threshold, where the
thresholds are model parameters. In our settings, we utilize this baseline to label
changesets. We consider a changeset ¢ as vandalism if the baseline identifies at least
one edit e € c.F in this changeset as vandalism. We apply an exhaustive grid search
to find the optimal thresholds for the individual rules.

OSMWATCHMAN. This model was recently proposed to detect vandalism on
buildings in OSM [TTdR20]. OSMWATCHMAN uses a random forest classifier that
utilizes content features (e.g., number of tags), context features (e.g., time to the
previous version), and user features (e.g., number of contributions). We apply random

6The OSM-Reverts dataset is available at: https://github.com/NicolasTe/Ovid
"The  OSM-Manual dataset is  available  at: https://github.com/jremillard/
osm-changeset-classification
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search to optimize the hyperparameters of the random forest model.

WDVD. The Wikidata Vandalism Model was proposed to detect vandalism in the
Wikidata knowledge graph [HPSE16]. This baseline uses a random forest classifier
with text-based features, e.g., the ratio of upper case letters and user-based features,
to detect vandalism. We apply random search to optimize the hyperparameters of
the random forest model.

GLOVE4+CNN. OSM community members developed this baseline to detect sus-
picious changesets [Jas18]. This baseline transforms OSM changesets into pseudo-
natural language sentences describing the changeset contents. For instance, the sen-
tences can include information regarding the number of created and deleted objects
and object tags. The baseline then uses pre-trained GloVe word embeddings [PSM14]
to obtain numerical representations of the sentences. The numerical representations
serve as an input for a convolutional neural network. We apply random search to
optimize the hyperparameters of the neural network.

3.5.3 Metrics

To evaluate the performance of the different vandalism detection approaches, we
compute the following metrics:

e Precision. The fraction of correctly classified vandalism instances among all
instances classified as vandalism.

e Recall. The fraction of correctly classified vandalism instances among all van-
dalism instances.

e F1 score. The harmonic mean of recall and precision.

e Accuracy. The fraction of correctly classified instances among all instances.

As the F1 score reflects recall and precision and the accuracy measures the overall
classification performance, we consider the F1 score and the accuracy as the most
relevant metrics for this study.

3.5.4 Hyperparameter Tuning & Training

We optimize the hyperparameters of OVID by applying the random search algorithm.
Table 3.3 summarizes the hyperparameter search space. We train OVID using the
ADAM optimizer [KB15] and dropout layers. We use 100 epochs and apply the early
stopping with patience strategy [GBC16].
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Table 3.3. Hyperparameter search space of OvVID

Parameter Description Search Space
Maximum number of edits

the.maz per changeset {10,20, 30}

Npred Number of prediction layers {1,2,3,4,5}

Nhead Number of attention heads {5, 10, 15,20}

dy, Hidden layer size {12, 24, 36,48}

) Dropout rate {0.4,0.5,0.6,0.7}

A Regularization weight {0.005,0.01,0.02}

3.6 Evaluation

The evaluation aims to assess the effectiveness of the proposed OVID approach for
vandalism detection. Furthermore, we analyze the contribution of OVID’s feature cat-
egories in an ablation study and investigate the capability to customize our approach
concerning precision and recall.

3.6.1 Vandalism Detection Performance

Table 3.4 summarizes the overall vandalism detection performance of the RANDOM,
OSMPATROL, OSMWATCHMAN, WDVD, and GLOVE+CNN baselines as well as
our proposed OVID approach. Table 3.4a and 3.4b respectively report the performance
on the OSM-Reverts and the OSM-Manual datasets, while Table 3.4¢ provides the
average scores.

Overall, we observe that in terms of F1 score and accuracy, OVID achieves the
best performance on both datasets. On average, OVID achieves 8.14 percent points
improvement in F1 score and 5.41 percent points improvement in accuracy compared
to the best performing baseline.

The OSMPATROL baseline achieves the best recall on both datasets. However,
OSMPATROL’s precision scores are close to 50%, which corresponds to the perfor-
mance of the random choices by the naive RANDOM baseline. The recall and precision
scores reveal that OSMPATROL assigns almost all changesets to the vandalism class,
resulting in ultimately low accuracy of 55.47% on average. The low accuracy scores
indicate that supervised machine learning models like OVID are better suited to detect
vandalism than the OSMPATROL system that relies on manually specified rules.

WDVD achieves the best precision on the OSM-Reverts dataset, but only reaches
a recall score of 64.79%. WDVD mainly relies on user features. The high precision
score indicates that user features can effectively identify a fraction of the malicious
changesets. However, the low recall score indicates that user features are insufficient
to capture the diverse vandalism forms. Low recall means that many vandalism cases
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Table 3.4. Vandalism detection performance with respect to precision, recall, F1 score
and accuracy [%]. Best scores are marked bold.

(a) OSM-Reverts

Approach Precision Recall F1 Accuracy
RANDOM 49.89 50.27  50.08 49.92
OSMPATROL 53.94 96.29 69.15 57.06
OSMWATCHMAN 77.60 70.74  74.01 75.18
WDVD 81.52 64.79 72.20 75.07
GLOVE+CNN 81.46 72.93 76.96 78.18
OvID 80.35 83.02 81.66 81.37

(b) OSM-Manual

Approach Precision Recall F1 Accuracy
RanNDOM 49.46 49.95 49.70 49.45
OSMPATROL 52.20 91.77 66.55 53.87
OSMWATCHMAN 57.75 3211 41.27 54.31
WDVD 74.88 46.98 57.73 65.61
GLOVE+CNN 82.16 19.62  31.68 57.68
OviD 69.86 70.76 70.31 70.12

(c) Average

Approach Precision Recall F1 Accuracy
RANDOM 49.68 50.11  49.89 49.69
OSMPATROL 53.07 94.03 67.85 55.47
OSMWATCHMAN 67.68 51.43 57.64 64.74
WDVD 78.20 55.88  64.97 70.34
GLOVE+CNN 81.81 46.27  54.32 67.93

OvID 75.11 76.89 75.99 75.75
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will remain undetected when using this baseline. In contrast, OVID that considers
user, changeset, and edit features, achieves 83.02% recall on OSM-Reverts.

The GLOVE+CNN baseline achieves the best precision on OSM-Manual but
only achieves a recall score of 19.62% resulting in a relatively low F1 score of 31.68%.
GLOVE+4CNN uses information from the changeset and the edits, but does not
consider user information. Comparing GLOVE+CNN to WDVD, we observe that
WDVD achieves higher recall and F1 scores on OSM-Manual than GLOVE+CNN.
This result indicates the importance of the user features for the OSM-Manual dataset.
OvVID that combines user and content features achieves a high recall (70.76%) on
OSM-Manual while maintaining a comparably high precision (69.86%).

The OSMWATCHMAN baseline achieves a moderate performance considering all
metrics on OSM-Reverts but fails to maintain the performance level on OSM-Manual.
OSMWATCHMAN uses a combination of user and content features. However, the low
F1 score on OSM-Manual of 41.27% indicates that OSM WATCHMAN’s specific feature
set does not generalize to the OSM-Manual dataset.

Comparing the performance across the datasets, we generally observe higher scores
on OSM-Reverts than on OSM-Manual. As OSM-Manual is too small to train su-
pervised machine learning models, we trained all models on OSM-Reverts for both
datasets, as described in Section 3.5.1. The difference in the performance indicates
that the datasets exhibit slightly different underlying distributions. The difference
in the distribution may, for instance, result from different vandalism forms contained
in the datasets. As expected, we observe the best performance when we train and
evaluate the models on the train and test datasets obtained from the same distri-
bution, i.e., OSM-Reverts. However, the performance on OSM-Manual indicates the
ability of the model to generalize to unseen data. The GLOVE+CNN baseline, which
achieved the second-best performance on OSM-Reverts, fails to generalize to OSM-
Manual and only achieves an F1 score of 31.68%. In contrast, we observe that OvIiD
achieves higher than 70% F1 score and accuracy. This observation indicates that
OviID’s proposed features and model architecture better generalize to unseen data
than the baselines.

3.6.2 Ablation Study

We conduct an ablation study to assess the contribution of OVID’s feature categories.
To this end, we remove individual parts of our model and measure the vandalism
detection performance on the OSM-Reverts and OSM-Manual datasets. We consider
the following configurations for the ablation study:

® OVID_Changeset: We remove X, i.e., the changeset features and the correspond-
ing refinement layer.

e OVID_yg.: We remove X, i.e., the user features and the corresponding refine-
ment layer.



3.6 Evaluation 43

e OVID_ggis: We remove Xgr, i.e., the edit features and the corresponding multi-
head attention and refinement layers.

o OVID_Changeset,Edits: We remove X and X, i.e., the changeset and edit fea-
tures and the corresponding layers.

o OVID_yrser paits: We remove X,y and Xpg, i.e., the user and edit features and
the corresponding layers.

We do not remove X and X,/ simultaneously since the edit features aggregation
component requires at least one of X. or X, to provide the query vectors for the
multi-head attention. Table 3.5a presents the scores on OSM-Reverts, while 3.5b
provides the scores on OSM-Manual.

On the OSM-Reverts dataset, we observe that we can not remove any feature cat-
egory without reducing the vandalism detection performance. In other words, every
feature category of our proposed model contributes to the vandalism detection per-
formance. Considering configurations removing only one feature category, we observe
the highest difference in accuracy for OVID_y.,.. This configuration leads to a slight
increase in recall (3.22 percent points) but a higher decrease in precision (12.89 per-
cent points), which signals that the user features are especially beneficial for precision.
For OVID_ g4, we observe moderate losses on both recall and precision. We obtain
similar results for OVID_cpangeser Tesults, i.e., a moderate difference in precision and
recall of approximately 1.8 percent points. The loss on all metrics indicates the general
usefulness of the edit and changeset information. Removing two feature categories
simultaneously further reduces the accuracy compared to removing only one category,
indicating that the categories capture different aspects of the OSM changesets and
complement each other. For OVID_yger gaits, We observe the lowest accuracy scores
of 61.62%, whereas we still obtain 77.58% accuracy for OVID_changeset, maits- The still
moderate accuracy of OVID_cpangeset,paits highlights the user features’ importance
since this configuration solely relies on the user information.

Moving on to the OSM-Manual dataset, we obtain patterns similar to OSM-
Reverts for the OVID_cpangeser and OVID_rge,. For OVID_yg,, We observe a perfor-
mance drop, especially regarding precision. In contrast to OSM-Reverts, OVID_ gg;ts
achieves an increased classification accuracy of 1.58 percent points. As discussed in
Section 3.6.1, we expect that the underlying distributions of OSM-Reverts and OSM-
Manual datasets can slightly differ. In particular, the median number of edits per
vandalism changeset in OSM-Reverts is ten, while this number in OSM-Manual is
only four, as shown in Table 3.2. Consequently, OVID cannot use the edit features
to their full advantage on OSM-Manual, where less edit information is available. As
a result, the edit features have a slight negative impact on the vandalism detection
performance on the OSM-Manual dataset. Nevertheless, OVID still achieves the best
performance in F1 score and accuracy compared to the baselines.

In summary, we observe that the changeset and user features provide valuable
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Table 3.5. Vandalism detection performance with respect to precision, recall, F1 and

accuracy of OVID when removing individual components. Best scores are marked
bold.

(a) OSM-Reverts

Model Precision Recall F1 Accuracy
OviID 80.35 83.02 81.66 81.37
OVID_changeset 78.42 81.33 79.85 79.49
OVID_7er 67.46 86.24 75.71 72.34
OVID_ ggits 78.68 78.98  78.83 78.81
OVIDfCh(zngeset,Edits 75.69 81.22 78.36 77.58
OVID_yser. Edits 59.54 72.38 65.34 61.62
(b) OSM-Manual
Model Precision Recall F1 Accuracy
OviID 69.86 70.76 70.31 70.12
OVID_changeset 59.03 49.55 53.88 57.58
OVID_7ser 53.83 62.74 57.94 54.46
OVID_ ggits 73.70 67.49 70.46 71.70
OVID_Changeset, Edits 66.94 55.8  60.86 64.12
OVID_yser, Bdits 56.02 62.24  58.97 56.69

contributions for the vandalism detection task on both datasets. The edit features
and their corresponding layers X g/ are highly beneficial for the datasets with a higher
number of edits per changeset like OSM-Reverts.

3.6.3 Precison/Recall Trade-off

This section discusses the trade-off between precision and recall in OviD. OVID can be
customized to address the requirements of specific scenarios regarding precision and
recall by adjusting the classification threshold thgss. theass specifies the minimum
activation value of OVID’s last sigmoid prediction layer at which OVID classifies a
changeset as vandalism.

Figure 3.3 presents the OVID’s precision/recall diagram considering the OSM-
Reverts and OSM-Manual datasets. At the most left, all changesets are classified as
non-vandalism such that OvVID achieves 100% precision but 0% recall. At the most
right, all changesets are classified as vandalism, resulting in 50% precision and 100%
recall. Note that the precision does not drop to 0% due to the class balance within
the datasets.
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Figure 3.3. Precision/recall diagram of OVID.

In general, we observe higher precision and recall scores on OSM-Reverts than
on OSM-Manual. On OSM-Reverts, OVID can obtain very high precision of 97% at
the cost of only achieving 20% recall. Similarly, we obtain 92% precision at 20%
recall for OSM-Manual. A high-precision configuration can potentially be used to
run a fully automated vandalism detection system that blocks detected changesets
directly. Lowering precision leads to a rapid increase in recall on OSM-Reverts. At
80% precision, OVID already achieves 83% recall. For OSM-Manual, OVID maintains
approximately 70% precision at 70% recall. High recall of vandalism cases may be
favorable to maintain high data quality, but may lead to accidental blocking of correct
changesets (false positives). A high recall configuration of OVID can be used to
generate vandalism candidates in a human-in-the-loop approach, in which vandalism
candidates are verified manually by the OSM community.

3.7 Discussion

In this chapter, we tackled the problem of validating geographic Web information
by presenting an approach for vandalism detection in OpenStreetMap. Validation
of OpenStreetMap is crucial since OSM is currently the most prominent source of
volunteered geographic information and is widely adopted by many real-world appli-
cations. Whereas existing OSM vandalism detection approaches, such as [NGZ12],
try to identify vandalism on the edit level, i.e., for isolated objects, we propose to
consider vandalism on the changeset level. Considering whole changesets enables the
identification of vandalism in composed OSM objects, such as ways and relations.

We proposed the OvID (OpenStreetMap Vandalism Detection) model, a novel su-
pervised machine learning approach for vandalism detection in OpenStreetMap. OVID
relies on a neural network architecture that adopts a multi-head attention mechanism
to summarize information indicating vandalism from OpenStreetMap changesets ef-
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fectively. To facilitate automated vandalism detection, we introduce a set of original
features that capture changeset, user, and edit information.

To the best of our knowledge, there was no openly available dataset of OSM
vandalism allowing for the training of supervised machine learning models before
our work. Therefore, we constructed a new ground truth dataset for vandalism de-
tection in OSM by systematically analyzing vandalism-related reverts in the Open-
StreetMap history. Based on the reverts, we extract vandalism examples from the
OpenStreetMap history resulting in a novel dataset containing over 18,000 vandalism
examples.

Our experiments on real-world datasets demonstrate that OvID can effectively
detect OSM vandalism. OVID achieves an F1 score of 75.99 % and an accuracy of
75.75% on average, which corresponds to 8.14 percent points increase in F1 score and
a 5.41 percent point increase in accuracy compared to the best performing baselines.
Furthermore, the experiments on the smaller, held-out OSM-Manual dataset show
OvID’s capabilities to generalize to previously unseen data.

OvID demonstrates the potential of machine learning models for validation of
geographic information on the Web. We investigated different precision/recall config-
urations in detail in Section 3.6.3. Whereas the current precision does not allow for
the fully autonomous deployment of OVID, we believe there is enormous potential to
substantially ease vandalism detection in a human-in-the-loop setting.



Enriching OpenStreetMap with Links to Knowledge
Graphs

In this chapter, we approach the problem of enriching geographic information on the
Web. Analogous to Chapter 3, we employ OpenStreetMap as an essential source for
such information. A very effective way to enrich information is to integrate it with
other information sources and thereby unlock large chunks of information provided
by the additional sources at once. Knowledge graphs are rich sources of semantic
information but are rarely integrated with OpenStreetMap. Therefore, we consider
knowledge graphs as an additional information source and integrate them with Open-
StreetMap by determining identity links between OSM objects and knowledge graph
entities in this chapter. We present a supervised machine learning model for link dis-
covery addressing RQ2.1 that asks how to identify such links. Furthermore, RQ2.2
asks how to capture the semantics of OSM objects despite OSM’s heterogeneity. This
chapter addresses this research question by introducing an unsupervised embedding
model learning latent representations of OSM objects.

4.1 Introduction

Knowledge graphs (KGs), i.e., graph-based knowledge bases [FBMRI18|, including
Wikidata [VK14], DBpedia [LIJ*15], YAGO [HSBW13] and EventKG [GD19] are a
rich source of semantic information for geographic entities, including for example cities
and points of interest (POIs). This information, typically represented according to
the RDF data model, has a high and so far, mostly unexploited potential for semantic
enrichment of OSM nodes. An interlinking of OSM nodes and geographic entities in
knowledge graphs can bring semantic, spatial, and contextual information to its full
advantage and facilitate, e.g., geographic question answering [PSBT 18] and semantic
trip recommendation [HSW19].

The interlinking of OSM and knowledge graphs has recently attracted interest in
47
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the Wikidata! and OSM? communities. Our analysis results, presented in Section
4.3, illustrate that the coverage of the existing interlinking between the OSM nodes
and Wikidata entities varies significantly across entity types and geographic regions.
For example, in a recent OSM snapshot of Germany (referred to as 0SM-DE), cities
are linked more often (73%) than less popular entities like mountains (5%). For
another example, there are 42% more linked OSM nodes in the OSM snapshot of
Germany than in that of Italy (0SM-IT). In practice, the interlinking of OSM nodes
with semantic reference sources such as Wikidata or DBpedia is typically conducted
manually by volunteers (and sometimes companies, see, e.g., [Ganl16]).

The problem of OSM link discovery is particularly challenging due to the hetero-
geneity of the OSM node representations. Other factors affecting the effectiveness of
OSM node disambiguation in the context of link discovery include place name am-
biguity and limited context [GPLC18]. Furthermore, geographic coordinates in the
VGI sources such as OSM often represent the points of community consensus rather
than being determined by objective criteria [SLHA12] and can thus vary significantly
across sources. For example, the average geographic distance between the coordinates
of the corresponding entities in Germany in the OSM and Wikidata datasets is 2517
meters. This example illustrates that geographic coordinates alone are insufficient to
effectively discover identity links between the corresponding entities in VGI sources.

Although research efforts such as the LinkedGeoData project [SLHA12] and
Yago2Geo [KMK19] have been conducted to lift selected parts of OSM data in the
Semantic Web infrastructure to facilitate link discovery, these efforts typically rely
on manually defined schema mappings. Maintenance of such mappings does not ap-
pear feasible or sustainable, given the large scale, and openness of the OSM schema.
Therefore, link discovery approaches that can address the inherent heterogeneity of
OSM datasets are required.

In this chapter, we propose the novel OSM2KG link discovery approach to es-
tablish identity links between the OSM nodes and equivalent geographic entities in
a knowledge graph. OSM2KG addresses OSM’s heterogeneity problem through a
novel latent representation of OSM nodes inspired by the word embedding archi-
tectures [MSCT13]. Whereas embeddings have recently gained popularity in several
domains, their adoption to volunteered geographic information in OSM is mostly un-
explored. In contrast to state-of-the-art approaches to link discovery in OSM (such
as [KMK19, SLHA12]), OSM2KG does not require any schema mappings between
OSM and the reference knowledge graph.

The core of the OSM2KG approach is a novel latent representation of OSM nodes
that captures semantic node similarity in an embedding. OSM2KG learns this la-
tent, compact node representation automatically from OSM tags. To the best of our
knowledge, OSM2KG is the first approach to address the heterogeneity of the OSM
data by a novel embedding representation. This embedding representation is created

Thttps://www.wikidata.org/wiki/Wikidata:OpenStreetMap
Zhttps://wiki.openstreetmap.org/wiki/Proposed_features/Wikidata
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in an unsupervised fashion and is task-independent. The embedding systematically
exploits the co-occurrence patterns of the OSM’s key-value pairs to capture their se-
mantic similarity. Building upon this embedding, along with spatial and semantic
information in the target knowledge graph, OSM2KG builds a supervised machine
learning model to predict missing identity links. To train the proposed link pre-
diction model, we exploit publicly available community-created links between OSM,
Wikidata, and DBpedia as training data.

Contributions. In this chapter, we address RQ2.1 and RQ2.2. The key contri-
bution of this chapter is the novel OSM2KG link discovery approach to infer missing
identity links between OSM nodes and geographic entities in knowledge graphs, in-
cluding:

e A novel unsupervised embedding approach to infer latent, compact representa-
tions that capture semantic similarity of heterogeneous OSM nodes.

e A supervised classification model to effectively predict identity links, trained us-
ing the proposed latent node representation, selected knowledge graph features,
and existing links.

e We describe an algorithm for link discovery in the OSM datasets that uses the
proposed supervised model and the latent representation to effectively identify
missing links.

e We evaluate the proposed approach on three real-world OSM datasets for dif-
ferent geographic regions, along with the Wikidata and DBpedia knowledge
graphs. OSM2KG achieves an F1 score of 92.05% on Wikidata and of 94.17%
on DBpedia on average, which corresponds to a 21.82 percentage points increase
in F1 score on Wikidata compared to the best performing baselines.

The remainder of this chapter is organized as follows. In Section 4.2, we discuss
related work relevant to OSM2KG. In Section 4.3, we motivate our approach by
discussing the representation of geographic information in OSM and Wikidata and
the existing interlinking between these sources. Then, in Section 4.4, we formally
introduce the link discovery problem addressed in this chapter. In Section 4.5, we
present the proposed OSM2KG approach. Following that, we describe the evaluation
setup in Section 4.6 and provide and discuss our evaluation results in Section 4.7.
Finally, we provide a discussion in Section 4.8.

4.2 Related Work

In this section, we discuss related work in the areas of link discovery, entity linking,
linking geographic data, and geospatial link discovery.
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Link Discovery. is the task of identifying semantically equivalent resources in
different data sources [NHNR17]. Nentwig et al. [NHNR17] provide a recent survey
of link discovery frameworks, with prominent examples, including Silk [VBGKO09] and
LIMES [NAT11].

In particular, the Wombat algorithm, integrated within the LIMES framework
[SNL17], is a state-of-the-art approach for link discovery in knowledge graphs. Link
discovery approaches that operate on Linked Data typically expect datasets in Re-
source Description Framework (RDF) format, having a schema defined by an under-
lying ontology and data exhibiting graph structure. This assumption does not apply
to the OSM data represented as key-value pairs.

Besides the syntactic and structural differences, LIMES relies on several assump-
tions that severely limit its applicability to OSM datasets. First, LIMES assumes a
one-to-one mapping between properties. In contrast, the required mappings between
the Wikidata properties and the OSM keys are 1:n, as a Wikidata property can cor-
respond to several OSM keys. For example, the “instanceOf” property in Wikidata
corresponds to “place,” “natural,” “historic,” and many other keys in OSM. Second,
LIMES requires all instances to contain all considered properties. Therefore, LIMES
is limited to utilize only frequently used properties, such as the name and the geo-
coordinates. To this end, LIMES is not suited to utilize the information from other
infrequent properties for mapping. Finally, the current LIMES implementation does
not adequately support a combination of different data types, such as strings and
geo-coordinates. Given these differences, the application of LIMES to the OSM data
is de-facto restricted to the name matching. We utilize Wombat/LIMES as a baseline
for the evaluation.

In the context of individual projects such as Linked GeoData and Yago2Geo [SLHA12,
KMK19], a partial transformation of OSM data to RDF was conducted using manu-
ally defined schema mappings for selected keys. In contrast, the proposed OSM2KG
approach adopts an automatically generated latent representation of OSM data.

Entity linking. (also referred to as entity disambiguation) is the task of link-
ing mentions of real-world entities in unstructured sources (e.g., text documents) to
equivalent entities in a knowledge base. A recent survey on entity linking approaches
is provided in [SWH15]. Entity linking approaches typically adopt Natural Language
Processing (NLP) techniques and use the context of the entity mentions, such as
phrases or sentences. However, such a context is not available in OSM, where textual
information is mainly limited to node labels (typically available as a specialized name
tag). One of the most popular state-of-the-art models to automatically annotate men-
tions of DBpedia entities in natural language text is DBpedia Spotlight [DJHM13].
DBpedia Spotlight adopts NLP techniques to extract named entities (including lo-
cations) from text and uses a context-aware model to determine the corresponding
DBpedia entities. This approach serves as a baseline in our experiments, whereas we
use the name tag of an OSM node as its textual representation.

Linking geographic data. The most relevant projects in the context of our work
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are LinkedGeoData [SLHA12] and Yago2Geo [KMK19]. LinkedGeoData is an effort to
liftt OSM data into semantic infrastructure. This goal is addressed through deriving a
lightweight ontology from the OSM tags and transforming OSM data to the RDF data
model. LinkedGeoData interlinks OSM nodes represented as RDF with geo-entities
in external knowledge sources such as DBpedia and GeoNames. Yago2Geo aims at
extending the knowledge graph YAGO2 [HSBW13| with geographic knowledge from
external data sources. To this extent, identity links between YAGO2 and OSM are
computed. Both interlinking approaches rely on manually defined schema mappings
and heuristics based on name similarity and geographic distance. The dependence of
both approaches on manual schema mappings restricts the coverage of mapped entity
types and can also negatively affect link maintenance. In contrast, the OSM2KG
approach proposed in this chapter extracts latent representations of OSM nodes fully
automatically. The LinkedGeoData and Yago2Geo interlinking approaches serve as
baselines in our experiments.

The applications of linked geographic data include, for example, the training of
comprehensive ranking models [DA16] or the creation of linked data based gazetteers
[CAST16].

Geospatial link discovery. [SFFN17, ASN18, SDSN17, SK16] refers to the
problem of creating topological relations across geographic datasets. These links
express the topographic relations between entities (e.g., “intersects” and “overlaps”).
For example, [SK16] presented the problem of discovery of spatial and temporal links
in RDF datasets. In Radon [SDSN17], efficient computation of topological relations
between geospatial resources in the datasets published according to the Linked Data
principles was presented. In contrast, in this work, we focus on link discovery for
identity links.

4.3 Motivation

While tags in OSM primarily describe the semantics of OSM objects, the tags can also
be used to specify identity links across datasets, e.g., to link OSM nodes to the equiv-
alent entities in a knowledge graph. For example, the link between the OSM node
representing the city of Berlin and its Wikidata counterpart is established via the tag
“wikidata=Q64" assigned to the OSM node. Here, “Q64”2 denotes the identifier of
the corresponding Wikidata entity. Recent studies indicate that the level of details
provided for the individual OSM nodes is very heterogeneous [TR15]. Contextual
information, e.g., regarding the historical development of the city population, is typi-
cally not available in OSM. Furthermore, the individual keys and tags do not possess
any machine-readable semantics, which further restricts their use in applications.

Country-specific OSM snapshots are publicly available*. In the following, we

3https://www.wikidata.org/wiki/Q64
40OSM snapshots can be found at http://download.geofabrik.de.
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Table 4.1. Number of nodes, tags and distinct keys in the country-specific
OSM snapshots (0SM-[country]) and their respective subsets linked to Wikidata

(Wikidata-0SM- [country]).

(a) France

OSM-FR Wikidata-0SM-FR Ratio

No. Nodes 390,586,064 21,629  0.01%
No. Nodes with Name 1,229,869 20,507 1.67%
No. Tags 27,398,192 199,437  0.73%
No. Distinct Keys 6,009 1,212 20.17%

(b) Germany

OSM-DE Wikidata-0SM-DE Ratio
No. Nodes 289,725,624 24,312 < 0.01%
No. Nodes with Name 1,681,481 23,979 1.43%
No. Tags 37,485,549 212,727 0.56%
No. Distinct Keys 12,392 1,700 13.72%

(c) Ttaly

OSM-IT Wikidata-0SM-IT Ratio
No. Nodes 171,576,748 18,473 0.01%
No. Nodes with Name 557,189 18,420 3.31%
No. Tags 18,850,692 122,248 0.65%
No. Distinct Keys 4,349 892  20.51%

refer to the country-specific snapshots as of September 2018 as the 0SM-[country]
dataset. For instance, the snapshot for Germany is referred to as “0SM-DE”. The linked
sets Wikidata-0SM-FR, Wikidata-0SM-DE, and Wikidata-0SM-IT are the subsets of
the 0SM-[country] datasets obtained by extracting all nodes that link to Wikidata
entities from the respective OSM snapshot. Table 4.1 provides an overview of the
number of nodes, nodes with name, tags, and distinct key contained in the 0SM-
[country] datasets and the respective linked sets Wikidata-0SM-[country]. As we
can observe, only a small fraction of nodes, tags, and distinct keys from the overall
datasets appear in the linked sets. Furthermore, nearly all nodes contained in one of
the linked sets exhibit a name tag.

Knowledge graphs such as Wikidata [VK14], DBpedia [LIJ715], and YAGO [HSBW13]
are a rich source of contextual information about geographic entities, with Wiki-
data currently being the largest openly available knowledge graph linked to OSM.
In September 2018, Wikidata contained more than 6.4 million entities for which ge-
ographic coordinates are provided. Overall, the geographic information in OSM and
contextual information regarding geographic entities in the existing knowledge graphs
are highly complementary. As an immediate advantage of the existing effort to man-
ually interlink OSM nodes and Wikidata entities, the names of the linked OSM nodes
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Figure 4.1. Percentage of frequent OSM node types with links to Wikidata entities
within the OSM datasets for Germany (0SM-DE), France (0SM-FR), and Italy (OSM-IT)
as of September 2018.

have become available in many languages [Gan16].

The links between the OSM nodes and geographic entities in Wikidata are typ-
ically manually annotated by volunteers and community efforts and are still only
rarely provided. Figure 4.1 illustrates the percentage of the four most frequent ge-
ographic entity types (i.e., cities, train stations, mountains, and castles) that link
to Wikidata from the OSM datasets for Germany, France, and Italy. Here, entity
types are obtained from Wikidata using existing links between the OSM nodes and
Wikidata entities. As we can observe, the cities are linked most frequently, with a
link coverage of approximately 70% for all datasets. The link coverage of the other
entity types is significantly lower, with mountains having the smallest coverage across
these four categories with approximately 5% in Germany. Figure 4.2 provides a visual
comparison of the number of Wikidata entities located in Germany and the number
of Wikidata entities to which links from OSM exist. While a significant fraction of
links is still missing, existing links manually defined by volunteers reveal a high po-
tential for being used as training data for supervised machine learning to increase
link coverage automatically.

In summary, volunteered geographic information is a continually evolving large-
scale source of heterogeneous spatial data, whereas knowledge graphs provide com-
plementary, contextual information for geographic entities. The links between VGI
and knowledge graphs are mainly manually specified and are still only rarely present
in the OSM datasets. The existing links represent a valuable source of training data
for supervised machine learning methods to automatically increase the link coverage
between OSM and knowledge graphs. This interlinking can provide a rich source of
openly available semantic, spatial, and contextual information for geographic entities.
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J:

(a) Wikidata (b) Wikidata-0SM-DE

Figure 4.2. Wikidata geo-entities located within Germany and Wikidata geo-entities
linked by OSM. Map image: (©)OpenStreetMap contributors, ODbL.

4.4 Problem Statement

In this chapter, we target the problem of identity link discovery between the nodes
in a semi-structured geographic corpus such as OSM with equivalent entities in a
knowledge graph. To this end, we extend the OSM data model described in Section
2.2.1.

Definition 4.1. Knowledge graph: Let E be a set of entities, R a set of labelled
directed edges and L a set of literals. A knowledge graph KG = (F U L, R) is a
directed graph where entities in E represent real-world entities and the edges in R C
(E x E)U (E x L) represent entity relations or entity properties.

In this work, we focus on interlinking entities in a knowledge graph that possess
geographic coordinates, i.e., longitude and latitude. We refer to such entities as geo-
entities. Typical examples of geo-entities include cities, train stations, castles, and
others.

Definition 4.2. Geo-entity: A geo-entity e € E is an entity for which a relation
r € R exists that associates e with geographic coordinates, i.e., a longitude lon € L
and a latitude lat € L.
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For instance, a geo-entity representing the city of Berlin may be represented as fol-
lows (the example illustrates an excerpt from the Wikidata representation of Berlin):

Entity Property Entity/Literal
Q64 name Berlin

Q64 instance of Big Clity

(64 coordinate location 521'N, 133'FE
64 capital of Germany

We denote the subset of nodes representing geo-entities in the knowledge graph
KG as Egeo C E.

Definition 4.3. Geographic corpus: A geographic corpus C is a set of OSM nodes,
i.e. OSM objects (defined in Section 2.2.1) with type Node.

A noden € C, n = (id, Node, loc, tags,ver) contains an identifier (id), a location
(loc), a set of tags (tags), and version number (ver). Each tagt € tags is represented
as a key-value pair with the key k and a value v: t = (k,v).

For instance, the city of Berlin is represented as follows (the example illustrates
an excerpt from the OSM representation):

1d 240109189
loc 52.5170365, 13.3888599
type Node
verston 137
name= Berlin
place= city
| capital= yes i

Let sameAs(n,e) : C X Egy, — {true, false} be the predicate that holds iff n € C
and e € E,, represent the same real-world entity. We assume that a node n € C
corresponds to at most one geo-entity in a knowledge graph XG. Then the problem
of link discovery between a knowledge graph KG and a geographic corpus C is defined
as follows.

Definition 4.4. Link discovery: Given a node n € C and the set of geo-entities
Eyo € E in the knowledge graph KG, determine e € Eg, such that sameAs(n,e)
holds.

In the example above, given the OSM node representing the city of Berlin, we aim
to identify the entity representing this city in Ee,.
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Figure 4.3. OSM2KG Link discovery pipeline overview.”

4.5 OSM2KG Approach

The intuition of the proposed OSM2KG approach is as follows:

1. Equivalent nodes and entities are located in geospatial proximity. Therefore,
OSM2KG adopts geospatial blocking to identify candidate entities in large-
scale datasets efficiently.

2. OSM nodes are schema-agnostic and heterogeneous. Therefore, OSM2KG re-
lies on an unsupervised model to infer latent, compact node representation that
captures semantic similarity.

3. Equivalent nodes and entities can indicate common representation patterns.
Therefore, OSM2KG adopts a supervised classification model for link predic-
tion.

Figure 4.3 presents the OSM2KG link discovery pipeline. First, in the blocking
step, for each node n € C in the geographic corpus C, a set of candidates £’ C E,,, is
generated from the set of geo-entities Fy., contained in the knowledge graph. In the
next feature extraction step, representations of the node n and the relevant entities
E’ from the knowledge graph are extracted. A latent representation of the node n € C
is a key-value embedding that is learned in an unsupervised fashion. Representations
of the knowledge graph entities in £’ are generated using selected knowledge graph
features. Furthermore, distance and similarity metrics for each candidate pair (n €
C, e € E') are computed. Following that, each candidate pair is processed by a
supervised machine learning model during the link classification step. The model
predicts if the pair represents the same real-world entity and provides a confidence
score for the link prediction. Finally, an identity link for the pair with the highest
confidence among the positively classified candidate pairs for the node n is generated.
In the following, we discuss these steps in more detail.

5The OSM logo is a trademark of the OpenStreetMap Foundation, and is used with their per-
mission. We are not endorsed by or affiliated with the OpenStreetMap Foundation.
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4.5.1 Candidate Entity Generation

Representations of a real-world geographic entity in different data sources may vary;
this can be especially the case for the geographic coordinates in VGI, where the refer-
ence points represent typical points of community consensus rather than an objective
metric [SLHA12]. The blocking step is based on the intuition that geographic coor-
dinates of the same real-world entity representation in different sources are likely to
be in a short geographic distance.

Given a node n € C contained in a geographic corpus and a knowledge graph
KG = (EUL, R), with a set of geo-entities Ey., C E, in the blocking step we compute

a set of candidate geo-entities £’ C E,, from G, i.e., the geo-entities potentially
representing the same real-world entity as n.

The set of candidates £’ for a node n consists of all geographic entities e € Eg,
that are in a short geographic distance to n. In particular, we consider all entities
within the distance specified by the blocking threshold thyoe:

E'={e € Ey, | distance(n,e) < thyoeck },

where distance(n, e) is a function that computes the geographic distance between the
node n and a geo-entity e. Here the geographic distance is measured as haversine
distance [KKO03].

Note that £’ can be computed efficiently by employing spatial index structures
such as R-trees [Gut84]. The value of the threshold thy,ex can be determined exper-
imentally (see Section 4.7.5).

4.5.2 Key-Value Embedding for the Geographic Corpus

In this work, we propose an unsupervised approach to infer novel latent represen-
tations of nodes in a geographic corpus. This representation aims at capturing the
semantic similarity of the nodes by utilizing typical co-occurrence patterns of OSM
tags. Our approach is based on the intuition that semantic information, like for ex-
ample entity types, can be inferred using statistical distributions [PB14]. To realize
this intuition in the context of a geographic corpus such as OSM, we propose a neu-
ral model inspired by the skip-gram model for word embeddings by Mikolov et al.
[MSC*13]. This model creates latent node representations that capture the semantic
similarity of the nodes by learning typical co-occurrences of the OSM tags.

In particular, we aim to obtain a latent representation of the node
n = (id,Node, loc, tags, ver),n € C that captures the semantic similarity of the nodes.
To this extent, we propose a neural model that encodes the set of key-value pairs T
describing the node in an embedding representation. Figure 4.4 depicts the archi-
tecture of the adopted model that consists of an input, a projection, and an output
layer. The input layer encodes the identifier n.id of each node n. In particular, vector
representations are obtained by applying one-hot-encoding of the identifiers, i.e., each
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Figure 4.4. Architecture of the key-value embedding model. The input layer 1-hot
encodes the node identifiers. The embedding matrix transforms the input to the
latent representation in the projection layer. The output layer maps the latent rep-
resentation to the encoded keys and values by applying the softmax function.

identifier n.id corresponds to one dimension of the input layer. The corresponding
entry of the vector representation is set to 1, while other entries are set to 0. The
projection layer computes the latent representation of the nodes. The number of
neurons in this layer corresponds to the number of dimensions in the projection, i.e.,
the embedding size. The output layer maps the latent representation to the encoded
keys and values using softmax [GBC16]. The key-value pairs (k,v) € n.tags for each
node n are encoded by applying one-hot-encoding to both keys and values separately.
As the set of values might be highly diverse, we only consider the top-k most frequent
values to be represented as an individual dimension. The non-frequent values are un-
likely to be indicative for semantic similarity, whereas the information of the presence
of a rare value can be discriminative. Thus, all non-frequent values are mapped to a
single dimension.

The embedding aims to generate a similar representation for the nodes with sim-
ilar properties, independent of their location. Therefore, we do not include location
information, such as geographic coordinates, in the embedding. Note that the value
of name tags are typically not part of the embedding, as names typically have rare
values.

The objective of the proposed model is to maximize the following log probability:

1 . .
|_C,Z > logp(kln.id) + log p(v|n.id).

neC (k,v)en.tags

Here, the term log p(k|n.id)+log p(v|n.id) expresses the node’s log probability with
the identifier n.id to be annotated with the key-value pair (k,v), i.e. (k,v) € n.tags.
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The probabilities are calculated using softmax. The training of the network aims at
minimizing the key-value based loss function. This way, nodes that exhibit similar
keys or values are assigned similar representations in the projection layer. Thus, we
use the activation of the projection layer as a latent representation of each respective
OSM node. This representation captures the latent semantics of the keys and values
of the node. We refer to this feature as KV-embedding. We learn the KV-embedding
for each OSM node. The training is conducted without any supervision. The resulting
node representation is task-independent.

4.5.3 Feature Extraction from KG

This step aims at extracting features for the entities e € E’, where E’ denotes the
set of candidate geo-entities in the knowledge graph for the target node n € C. We
adopt the following features:

Entity Type: Entities and nodes that belong to the same category, for instance
“city” or “train station”, are more likely to refer to the same real-world entity than
the candidates of different types. In the knowledge graph, we make use of the rdf:type®
property as well as knowledge graph specific properties (e.g. wikidata:instanceOf) to
determine the type of e. To encode the type, we create a vector of binary values in
which each dimension corresponds to an entity type. For each type of e, the corre-
sponding dimension is set to “1” while all other dimensions are set to “0”. Concerning
the target node n, the node type is not expected to be explicitly provided in a ge-
ographic corpus. Nevertheless, we expect that the KV-embedding of the geographic
corpora implicitly encodes type information, based on the intuition that types can be
inferred using statistical property distributions [PB14].

Popularity: A similar level of entity popularity in the respective sources can pro-
vide an indication for matching. Popular entities are likely to be described with a
higher number of relations and properties than less popular entities. To represent
entity popularity, we employ the number of edges starting from e in KG as a feature.
More formally: popularity(e) = [{(e,x) € R | x € EU L}|. We expect that the
KV-embedding implicitly encodes the node popularity information in the geographic
corpora as popular nodes have a higher number of tags.

4.5.4 Similarity and Distance Metrics

This step aims at extracting features that directly reflect the similarity between an
OSM node n € C and a candidate geo-entity e € E’. To this extent, we utilize name
similarity and geographical distance.

Name Similarity: Intuitively, a geo-entity and an OSM node sharing the same
name are likely to represent the same real-world object. Therefore, we encode the

brdf: http://www.w3.org/1999/02/22-rdf-syntax-ns
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similarity between the value of the name tag of an OSM node n € C and the rdfs:label”
of a geo-entitiy e € F' as a feature. We compute the similarity using the Jaro-Winkler
distance [Win99], also adopted by [SLHA12]. The Jaro-Winkler distance assigns a
value between [0,1], where 0 corresponds to no difference and 1 to the maximum
dissimilarity. If a name tag or a rdfs:label is not available for a particular pair (n,e),
the value of this feature is set to 1.

Geo-Distance: Based on the intuition that nodes and candidate entities that ex-
hibit smaller geographic distance are more likely to refer to the same real-world entity,
we employ geographic distance as a feature. To this extent, we utilize the logistic
distance function proposed in [SLHA12]:

geo-distance(n,e) = 1/(1 + exp(—12d'(n,e) + 6)),

with d = 1 —d(n, €)/thyec, where d denotes the so-called haversine distance [KK03]
between n and e and takes the spheroid form of the earth into account. thy,.x denotes
the threshold that defines the maximum geographic distance at which the candidates
are considered to be similar. To facilitate efficient computation, the thy,. threshold is
also utilized in the blocking step, described in Section 4.5.1. The intuition behind the
logistic distance function is to allow for smaller differences of the geographic positions
and to punish more significant differences. The Geo Distance feature directly encodes
the geospatial similarity between the node n and the candidate geo-entity e.

4.5.5 Link Classification

We train a supervised machine learning model to predict whether the target node
n € C and a candidate geo-entity represent the same real-world entity. Each target
node n and the set of candidates E’ for this node are transformed into the feature
space. Each node-candidate pair is interpreted as an instance of a supervised machine
learning model by concatenating the respective feature vectors. For training, each pair
is then labelled as correct or incorrect, where labels are obtained from the existing
links to the knowledge graph within the OSM corpus C. Note that the number
of pairs labelled as incorrect (i.e., negative examples) is typically higher than the
number of correct pairs. To allow an efficient training of classification models, we
limit the number of incorrect candidates for each node n to 10 candidates via random
sampling. To address the imbalance of classes within the training data, we employ
oversampling to level out the number of instances per class. In particular, we employ
the state-of-the-art SMOTE algorithm [CBHKO02]. The data is then normalized by
removing the mean and scaling to unit variance. We use the normalized data as input
to the classification model. We consider the following models: RANDOM FOREST,
DEecisioN TREE, NAIVE BAYES, and LOGISTIC REGRESSION. We discuss the model
performance in Section 4.7.3. We optimize the hyperparameters using random search
[BB12].

Trdfs: http://www.w3.org/2000/01/rdf-schema
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Finally, the candidate entity selection is based on the assumption that the knowl-
edge graph contains at most one geo-entity equivalent to the target node. If at least
one node within F’ is classified as correct (with a confidence > 50%), a link between
node n and e,,,, € E' is created, where e,,,, denotes the entity with the highest
confidence score of the model. If all entities are labelled as incorrect, no link for the
node n is created.

4.5.6 Algorithm for Link Discovery

Finally, Algorithm 1 details the process of link discovery. The algorithm integrates the
above described steps, namely candidate entity generation (line 1), feature extraction
(lines 2-7), link classification (lines 8-11) and candidate entity selection (lines 12-16).
Table 4.2 presents a description of the functions used in the algorithm.

Algorithm 1: Link Discovery
Input : Noden €C
Knowledge graph KG
Output: Entity e;, € LG that should be linked to n null if no matching
entity was found

1 E' < generateCandidates(n, KG)

2 features < ||

3 features[n| < KV-embedding(n)

4 forall e € £’ do

5 features[e| <— KG-features(e, KG)

6 | features[e| <— featuresle] U similarity-features(e, n)
7 end

8 confidences « [|; forall e € £’ do

o | confidences|e] + link-classification(features[n], featurese])
10 end

11 €pink $— argmax,. p» (confidences|el)

12 if classifieddsCorrect(eyy;) then

13 ‘ return e,

14 else

15 ‘ return null

16 end
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Table 4.2. Description of functions used in Algorithm 1.

Function Name Returned Result Section
generateCandidates  Candidate entities from KG nearby n 4.5.1
KV-embedding Latent representation of n 4.5.2
KG-features Feature representation for e 4.5.3
similarity-features Similarity features between e and n 4.54
link-classification Confidence score for (n,e) 4.5.5
classifiedAsCorrect True iff a link between (n,e) is classified to be correct 4.5.5

4.5.7 Implementation

In this section, we provide implementation details of the OSM2KG components.
We implemented our overall experimental framework and the proposed algorithm
in Java 8. We stored the evaluation results in a PostgreSQL® database (version
9.6). In a pre-processing step, we extracted relevant data from OpenStreetMap using
Python (version 3.6) and the osmium? library (version 2.14). We extracted relevant
knowledge graph entities from Wikidata with geographic coordinates using pyspark!®
(version 2.2). The geographic data was stored in a PostgreSQL database (version
9.6) and indexed using the PostGIS! extension (version 2.3). The feature extraction
is implemented in Java 8 within our experimental framework. We implemented the
extraction of the KV-embedding in Python 3.6, using Tensorflow'? version 1.14.1.
The machine learning algorithms were implemented in Python 3.7 using the scikit-
learn'® (version 0.21) and the imbalanced-learn'? (version 0.5) libraries. To facilitate
the reproducibility, we make our code available under the open MIT license in a
GitHub repository'®.

4.6 Evaluation Setup

In this section, we describe the datasets, metrics, baselines and OSM2KG configu-
rations utilized in the evaluation.

8https://www.postgresql.org/

9https://osmcode.org/libosmium/

Ohttps:/ /spark.apache.org/docs /latest /api/python /pyspark.html
Uhttps:/ /postgis.net/

https:/ /www.tensorflow.org/

Bhttps://scikit-learn.org/stable/

“https:/ /imbalanced-learn.readthedocs.io/en /stable/api.html
Bhttps://github.com/NicolasTe/osm2kg
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Table 4.3. The number of geographic entities, distinct types and average statements
per geo-entity in the considered knowledge graphs.

Knowledge No. No. Distinct Average No.

Graph Geo-Entities Types Edges/Entity
Wikidata 6,465,081 13,849 24.69
DBpedia-FR 317,500 185 18.33
DBpedia-DE 483,394 129 31.60
DBpedia-IT 111,544 11 31.13

4.6.1 Datasets and Metrics

We conduct our evaluation on three large-scale OSM datasets for France, Germany;,
and Italy as well as the Wikidata and DBpedia knowledge graphs.

Knowledge Graphs: In our experiments, we consider the Wikidata snapshot from
September 2018, as well as DBpedia in its German, French and Italian editions,
snapshots from August 2019, as the target knowledge graphs. Wikidata [VK14] is a
publicly available collaborative knowledge graph. Wikidata is the central repository
for structured information of the Wikimedia Foundation and the currently largest
openly available knowledge graph. DBpedia [L1JT15] is a knowledge graph that ex-
tracts structured data from the information of various Wikimedia projects, e.g., the
Wikipedia!'® encyclopedia. DBpedia is provided in language-specific editions. We
refer to each language-specific edition of DBpedia as DBpedia-[language]. Table
4.3 presents the number of available geographic entities as well as the number of dis-
tinct types and the average number of edges per geo-entity in each knowledge graph.
Note that we consider geo-entities in the knowledge graphs with valid geographic
coordinates, i.e., coordinates that can be located on the globe.

OpenStreetMap: We consider OSM datasets extracted from the three largest
country-specific OSM snapshots as of September 2018. In particular, we consider
the snapshots of Germany, France, and Italy. We denote the country-specific snap-
shots as 0SM-[country]. Furthermore, we extract all nodes that exhibit a link to
a geo-entity contained in Wikidata or DBpedia. For DBpedia, we consider links to
the DBpedia version of the language that corresponds to the country of the individ-
ual OSM snapshot, since the existing links in the country-specific snapshots target
the respective language-specific edition of DBpedia in all cases for the considered
datasets. We denote the considered link datasets as [KG]-0SM-[language]. For in-
stance, DBpedia-0SM-FR denotes the dataset that interlinks the OSM snapshot of
France with the French DBpedia.

Table 4.4 provides an overview of the number of existing links between OSM and
the knowledge graphs. The existing links between the OSM datasets and knowledge

https:/ /www.wikipedia.org
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Table 4.4. The number of existing links between OpenStreetMap, Wikidata and DB-
pedia. OSM-[country] denote the country-specific snapshots of OSM as of September
2018. The existing links serve as ground truth for the experimental evaluation.

Knowledge Graph 0SM-FR 0SM-DE O0SM-IT

Wikidata 21,629 24,312 18,473
DBpedia-FR 12,122 - -
DBpedia-DE - 16,881 -
DBpedia-IT - - 2,353

graphs in these link datasets serve as ground truth for the experimental evaluation
of all link discovery approaches considered in this chapter.

To assess the performance of link discovery approaches, we compute the following
metrics:

Precision: The fraction of the correctly linked OSM nodes among all nodes
assigned a link by the considered approach.

Recall: The fraction of the OSM nodes correctly linked by the approach among
all nodes for which links exist in the ground truth.

F1 score: The harmonic mean of recall and precision. In this chapter, we consider
the F1 score to be the most relevant metric since it reflects both recall and precision.

We apply the 10-fold cross-validation. We obtain the folds by random sampling
the links from the respective link datasets. For each fold, we train the classification
model on the respective training set. We report the macro average over the folds of
each metric.

4.6.2 Baselines

We evaluate the link discovery performance of OSM2KG against the following un-
supervised and supervised baselines:

BM25: This naive baseline leverages the standard BM25 text retrieval model
[IMRS08] to predict links. We created an inverted index on English labels of all geo-
entities (i.e., for all e € E,,) in a pre-processing step to apply this model. Given the
target node n, we query the index using the value of the name tag of n to retrieve
geo-entities with similar labels. We query the index using either the English name
tag of the node n (if available) or the name tag without the language qualifier. We
create the link between n and the entity with the highest similarity score returned by
the index. If the name tag is not available, we do not create any link.

SPOTLIGHT: This baseline employs the DBpedia Spotlight [DJHM13] model to
determine the links. DBpedia Spotlight is a state-of-the-art model to perform entity
linking, i.e., to link named entities mentioned in the text to the DBpedia knowledge
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graph. Given an OSM node n, we use the name tag of this node in the language native
to the specific OSM dataset as an input to the DBpedia Spotlight model in the same
language edition. The model returns a set of DBpedia entities out of which we choose
the entity with the highest confidence score. To increase precision, we restrict the
DBpedia Spotlight baseline to return only entities of type dbo:Place!”. DBpedia
entities are resolved to the equivalent Wikidata entities using existing wikidata:about
links.

GEO-DIST: This baseline predicts the links solely based on the geographic dis-
tance, measured as haversine distance. For a target OSM node n, the link is created
between n and e,,;, € Fye,, Where

Cmin = argmingc g, (distance(n, e)).

Here, distance(n,e) is a function that computes the haversine distance between the
OSM node n and the geo-entity e.

LGD: This baseline implements a state-of-the-art approach of interlinking OSM
with a knowledge graph proposed in the Linked GeoData project [SLHA12]. The LGD
baseline utilizes a combination of name similarity computed using the Jaro—Winkler
string distance and geographic distance. It aims at computing links with high preci-
sion. For each OSM node n a link between n and e € Fy, is generated if the condition
%s(n, e) + %g(n, e, thyjocr) > thg, is fulfilled, where thg, = 0.95 Here, s(n, e) denotes
the Jaro-Winkler distance between the value of the name tag of n and the label of
e. If the name tag is not available, an empty string is used to compute the distance.
g(n, e, thye) is a logistic geographic distance function specified in [SLHA12]. The
parameter thy,.r denotes the maximum distance between a geo-entity and the node
n. In our experiments, we use thy, = 20000 meter to allow for high recall.

LGD-SUPER: We introduce supervision into the LGD baseline by performing
exhaustive grid search for thy,. € {1000, 1500, 2500, 5000, 10000, 20000} meter and
the, € {0.05-4 | i € N;1 <7 <20}. We evaluate each combination on the respective
training set and pick the combination that results in the highest F1 score.

YAGO2GEO: This method was proposed in [KMK19] to enrich the YAGO2
knowledge graph with geospatial information from external sources, including Open-
StreetMap. Similar to LGD, this baseline relies on a combination of the Jaro-
Winkler and geographic distance. In particular, a link between an OSM node n and
e € B, is established if s(n, e) < thy, and distance(n,e) < thyee, with thy, = 0.82,
thioer = 20000 meter. s(n,e) denotes the Jaro-Winkler distance between the value
of the name tag of n and the label of e, and distance(n,e) denotes the geographic
distance between e and n.

YAGO2GEO-SUPER: We introduce supervision into the YAGO2GEOQO base-
line by performing exhaustive grid search for thy € {1000, 1500, 2500, 5000, 10000,
20000} meter and thg, € {0.05-i | 1 € N, 1 <i < 20}. We evaluate each combination

17dbo: DBpedia Ontology
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on the respective training set and pick the combination that results in the highest F1
score.

LIMES/Wombat: The Wombat algorithm, integrated within the LIMES frame-
work [SNL17], is a state-of-the-art approach for link discovery in knowledge graphs.
The algorithm learns rules, so-called link specifications, that rate the similarity of
two entities. The rules conduct pairwise comparisons of properties, which are refined
and combined within the learning process. As LIMES requires the data in the RDF
format, we transformed the OSM nodes into RDF triples, in which the OSM id rep-
resents the subject, the key represents the predicate, and the value represents the
object. We further added geo:lat'® and geo:long properties representing geographic
coordinates of the OSM nodes. LIMES requires all entities to contain all considered
properties. Therefore we limit the properties to the geographic coordinates geo:lat,
geo:lon as well as the name tag in OSM and the rdfs:label'® in the knowledge graph.
We use the default similarity metrics of LIMES, namely Jaccard, trigram, 4-grams,
and cosine similarity and accept all links with a similarity score higher or equal to 0.7.
Note that LIMES does not distinguish between data types when using machine learn-
ing algorithms. Therefore, it is not possible to simultaneously use string similarity
and spatial similarity metrics (e.g. Euclidean distance).

4.6.3 OSM2KG Configurations

We evaluate our proposed OSM2KG approach in the following configuration: RAN-
DOM FOREST as classification model (according to the results presented later in
Section 4.7.3, RANDOM FOREST and DECISION TREE perform similarly on our
datasets), dataset-specific embedding size of 3-5 dimensions (Section 4.7.5), and a
blocking threshold of 20 km for DBpedia-0SM-IT and 2.5 km for all other datasets
(Section 4.7.5).

Furthermore, we evaluate our proposed approach in the following variants:

OSM2KG: In this variant, we run OSM2KG as described in Section 4.5 using the
features KV-embedding, Name Similarity, Geo Distance, Entity Type, and Popularity.
To obtain latent representations of the OSM nodes, we train unsupervised embedding
models as described in Section 4.5.2 on each of the 0SM-FR, 0SM-IT, 0SM-DE datasets.
During training, we consider the top-k most frequent values with k=1000 to be repre-
sented in the value space and compute 1000 epochs using a learning rate of a = 1.0.
We make the key-value embeddings of OpenStreetMap nodes created in our experi-
ments publicly available?®. These key-value embeddings provide a task-independent
compact representation of OSM nodes.

Bgeo: http://www.w3.org/2003/01/geo/wgs84_pos
Yrdfs: http://www.w3.org/2000/01 /rdf-schema
20http://13s.de/~tempelmeier /osm2kg /key-value-embeddings.zip
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OSM2KG-TFIDF: To better understand the impact of the proposed embedding
method on the link discovery performance, in this variant, we exchange the proposed
KV-embedding with a simple TF-IDF representation of the keys and values (i.e.,
term frequency and inverse document frequency). To this extent, we computed the
TF-IDF values of the top 1000 most frequent keys and values for each OSM dataset.
In this representation, each of the keys and values is described by a single dimension,
resulting in a 1000-dimension vector. All other features, such as Name Similarity,
Geo Distance, Entity Type, and Popularity remain the same.

4.7 Evaluation

The main goal of the evaluation is to assess the link discovery performance of OSM2KG
compared to the baselines. Moreover, we analyze the effectiveness of the classification
model and the proposed features and perform parameter tuning.

4.7.1 Link Discovery Performance

Table 4.5 summarizes the overall link discovery performance results of the BM25,
SPOTLIGHT, GeEo-DisT, LGD, LGD-suPER, YAGO2GEO, YAGO2GEQO-SUPER,
and LIMES/WOMBAT baselines as well as our proposed approach in the OSM2KG
and OSM2KG-TFIDF variants. Table 4.5a reports the results of the experiments
conducted on the link datasets from Wikidata, while Table 4.5b reports the result on
the DBpedia datasets. We report the macro averages of the 10-fold cross-validation
conducted on the corresponding link dataset concerning the precision, recall, and F'1
score. In our experiments, we observed that the micro averages behave similarly.

Overall, we observe that in terms of F1 score, OSM2KG performs best on
all Wikidata datasets, where it achieves an F1 score of 92.05% on average and
outperforms the best performing LGD-SUPER baseline by 21.82 percentage points.
Furthermore, we observe that OSM2KG achieves the best performance concern-
ing the recall on all datasets. Moreover, OSM2KG maintains high precision, i.e.,
94.62% on Wikidata and 97.94% on DBpedia, on average. Regarding the DBpedia
datasets, we observe that OSM2KG outperforms the baselines on DBpedia-0SM-FR
and DBpedia-0SM-IT, whereas the difference to the LGD-SUPER baseline is much
smaller, compared to Wikidata. On DBpedia-0SM-DE, LGD-SUPER archives a slightly
higher F'1 score, compared to OSM2KG. This result indicates that, in contrast to
Wikidata, the respective DBpedia and OSM datasets are well-aligned in terms of
names and geographic coordinates, such that simple heuristics utilizing name similar-
ity and geographic distance can already yield good results in many cases. In contrast,
the task of link discovery in Wikidata is more challenging. In these settings, the
advantages of the OSM2KG approach become clearly visible.



Table 4.5. Macro averages for precision, recall and F1 score [%], best scores are bold. Statistically significant (according
to paired t-tests with p < 0.05) F1 score results of OSM2KG compared to all baselines and OSM2KG-TFIDF are marked
with *.

(a) Link prediction performance on the Wikidata datasets

Wikidata-0SM-FR Wikidata-0SM-DE Wikidata-0SM-IT Average
Approach
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
BM25 45.22  42.59  43.86 47.28  41.60  44.26 44.49  41.67  43.04 45.66  41.95 43.72
SPOTLIGHT 65.17  32.26  43.15 69.79  51.03  58.95 54.79  26.89  36.08 63.25 36.73 46.06
GEO-DisT 74.46  74.46  74.46 62.16 62.16  62.16 72.80 72.80  72.80 69.81 69.81 69.81
LGD 100.00 44.09 61.20 100.00 47.46  64.37 100.00 43.59 60.71 100.00 45.05 62.09
LGD-SUPER 100.00 53.25  69.50 100.00 55.34 T71.25 100.00 53.79 69.95 100.00 54.13 70.23
YAGO2GEO 63.66  44.98  52.71 64.48  48.61  55.43 58.40 47.36  52.30 62.18  46.98 53.48
YAGO2GEO-SUPER 7849  47.38  59.09 73.49  48.96  58.76 72.25  48.73  58.20 74.74  48.36  58.69
LIMES/WOMBAT 74.03 1750  28.31 78.54  17.01  27.97 65.28  17.22  27.25 72.62 17.25 27.84
OSM2KG-TFIDF 95.06  90.60  92.77 93.67 86.37  89.87 93.98 87.07  90.39 94.24  88.01 91.01
OSM2KG 95.51 91.90 93.67* 93.98 88.29 91.05* 94.39 88.68 91.45* 94.62 89.63 92.05
(b) Link prediction performance on the DBpedia datasets
DBpedia-0SM-FR DBpedia-0SM-DE DBpedia-0SM-IT Average
Approach
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

BM25 70.04  69.32  69.68 4728  76.84 75.58 44.49  41.67 43.04 53.94  62.61 62.77
SPOTLIGHT 72.40 49.42  58.74 79.08 62.31 69.70 85.38  56.17 67.76 78.95 5597 65.40
GEO-DisT 85.94 8594 85.94 66.49 66.49 66.49 86.17 86.17 86.17 79.53  79.53 79.53
LGD 100.00 61.81  76.40 100.00 60.72 75.56 100.00 64.94 78.74 100.00 62.49 76.90
LGD-SUPER 100.00 88.18 93.72 100.00 84.56 91.63 100.00 86.90 92.99 100.00 86.55 92.78
YAGO2GEO 77.52 7040  73.78 87.41  75.84 81.22 94.74 7847 85.84 86.56  74.90 80.28
YAGO2GEO-SUPER 84.74  82.47  83.59 93.62 80.14 86.36 97.46  81.28 88.64 91.94 81.30 86.19
LIMES/WOMBAT 82.34 60.33  69.64 79.00 68.00 73.09 97.38  70.89 82.05 86.24  66.41 74.93
OSM2KG-TFIDF 98.68  95.35  96.99 95.61  84.93 89.95 98.46  89.83 93.95 97.91  90.04 93.63
OsM2KG 99.06 96.25 97.63* 95.65 85.83 90.47 99.11 90.13 94.41 97.94 90.74 94.17
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The BM25 and SPOTLIGHT baselines adopt name similarity for matching, whereas
SPOTLIGHT can also make use of the knowledge graph context, including entity types.
As we can observe, BM25 shows relatively low performance in terms of both preci-
sion (on average 45.66% (Wikidata) and 53.94% (DBpedia)) and recall (on average
41.95% (Wikidata) and 62.61% (DBpedia)). The SPOTLIGHT baseline can improve on
BM25 regarding precision and F1 score on Wikidata and DBpedia datasets. How-
ever, the absolute precision and F1 scores of SPOTLIGHT, with the maximum F1
score of 65.40% on Wikidata, are not competitive. Overall, we conclude that name
similarity, as adopted by these baselines, is not sufficient for effective link prediction.

The LGD and LGD-SUPER baselines that combine name similarity and geo-
graphic distance achieve the best precision of 100% on all datasets. However, the
LGD baselines suffer from lower recall. LGD-SUPER achieves on average 54.13%
recall on Wikidata and 86.55% recall on DBpedia, overall resulting in lower F1 scores
on average compared to OSM2KG. The YAGO2GEO baseline that uses similar fea-
tures as LGD achieves higher recall scores than LGD (46.98% on Wikidata, 74.90%
on DBpedia on average) but cannot maintain the high precision of LGD (on average
62.18% on Wikidata, 86.56% on DBpedia). Overall, YAGO2GEO achieves lower F1
scores compared to OSM2KG.

Regarding the supervised baselines, Table 4.6 presents the parameters learned by
LGD-suPER and the YAGO2GEO-SUPER during the training process. We observe
that YAGO2GEO-SUPER learns more restrictive parameters, whereas LGD-SUPER
allows for less restrictive threshold values. This result indicates that the ranking
function of LGD-SUPER that combines geographic distance and name similarity is
more robust than the ranking function of YAGO2GEO-SUPER. YAGO2GEO-SUPER
uses geographic distance exclusively for blocking and ranks the candidates based solely
on the name similarity. We observe that both baselines achieve a reasonably good
performance on the DBpedia datasets. On the contrary, both baselines can not reach
comparable performance on the Wikidata datasets and result in 70.23% F1 score for
LGD-SUPER, and 58.69% F1 score for YAGO2GEO-SUPER, on average.

GEO-DIST, which solely relies on the geographic distance, achieves an F'1 score
of 69.81% on Wikidata, and 79.53% on DBpedia on average. Although a significant
fraction of the OSM nodes can be correctly linked solely based on the geographic
distance, still a significant fraction of nodes (on average 30.19% for Wikidata and
20.74% for DBpedia) can not be appropriately linked this way. We observe that the
lower performance of GEO-DIST corresponds to densely populated areas (e.g., large
cities), where we expect knowledge graphs to have a higher number of entities, mak-
ing disambiguation based on geographic distance ineffective. OSM2KG overcomes
this limitation and outperforms the GEO-DIST baseline by 22.24 percentage points
(Wikidata) and 14.64 percentage points (DBpedia) on average concerning F1 score.

The LIMES /WOMBAT baseline that aims to learn rules for link discovery in a su-
pervised fashion does not achieve competitive performance on any considered dataset

and results in 27.84% F1 score for Wikidata and 74.93% F1 score for DBpedia on
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Table 4.6. Parameters learned by the LGD-SUPER and the YAGO2GEO-SUPER base-
lines

LGD-SUPER YAGO2GEO-SUPER

Dataset thblock thstr thblock thatr
Wikidata-0SM-FR 1500 0.1 1000 0.70
Wikidata-0SM-DE 2000 0.1 2000 0.80
Wikidata-0SM-IT 1500 0.1 1000 0.70
DBpedia-0SM-FR 1000 0.1 1000 0.30
DBpedia-0SM-DE 5000 0.1 2000 0.75
DBpedia-0SM-IT 20000 0.3 1500 0.30

average. One of the main reasons for such low performance is that LIMES /WoM-
BAT requires all entities to contain all considered properties. As none of the OSM
tags is mandatory, this baseline is de-facto limited to only frequently used properties,
such as the name and the geo-coordinates. These properties alone are insufficient to
extract the rules leading to competitive performance in the link discovery task on
these datasets.

Comparing the performance of OSM2KG across the datasets, we observe that
scores achieved on the WikidataOSM-FR and DBpedia-0SM-FR datasets (93.67%, and
97.63% F1 score) are higher than on the other language editions. This result can
be explained through a more consistent annotation of the nodes within the 0SM-FR
dataset. For instance, in OSM-FR eight key-value combinations appeared more than
2000 times, whereas in 0SM-DE and 0OSM-IT only two to four combinations are that
frequent.

Comparing the overall link discovery performance on the DBpedia and Wikidata
datasets, we observe that higher F1 scores are achieved on DBpedia by all considered
approaches. Furthermore, the LGD-SUPER and YAGO2GEO-SUPER baselines that
utilize only geographic distance and name similarity heuristics can reach high perfor-
mance on DBpedia (up to 92.78% F1 score on average). In contrast, their maximal
performance on Wikidata is limited to 70.23% F1 score. This result indicates that,
in general, geographic coordinates and entity names of OSM are better aligned with
DBpedia than with Wikidata. This result also suggests that the link discovery task
is more difficult on Wikidata. Our OSM2KG approach is particularly useful in these
settings, where we achieve 21.82 percentage points increase in F1 score compared to
the best performing LGD-SUPER baseline.

4.7.2 Comparison to OSM2KG-TFIDF

Comparing the performance of OSM2KG with the OSM2KG-TFIDF variant, we ob-
serve that the embedding of OSM2KG leads to better performance (1.04 percentage
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points of F1 score for Wikidata and 0.54 percentage points of F1 score for DBpedia
on average).

We observe a statistically significant difference between the F1 scores of OSM2KG
and OSM2KG-TFIDF on all Wikidata datasets and DBPEDIA-OSM-FR, (paired t-
tests with p < 0.01). Through a manual inspection of exemplary instances, we found
that OSM2KG especially improves over OSM2KG-TFIDF on discovering links for
nodes with name information and nodes corresponding to Wikidata types with a small
number of instances. For example, a node corresponding to a private school®! was
wrongly assigned to a trade school?? instead of the entity?®. In this example, the name
of the OSM node and the geo-entity are identical. We believe that through the high
number of dimensions in the TF-IDF representation, the name dimension and the cor-
responding name similarity might lose importance, even though the name is typically
a very effective feature in the context of link discovery. From the RANDOM FOREST
models, we observe that the name similarity achieves a lower mean decrease impurity
[LWSG13] in OsM2KG-TFIDF than in OSM2KG, indicating the lower contribution
of the feature. Moreover, the KV-embedding poses a distributed representation of
the OpenStreetMap tags. We believe that especially for Wikidata types with a small
number of instances the distributed representation might be more robust, whereas in
a TF-IDF representation single tags could introduce bias towards types with a higher
number of instances. In the example above, the tag toilets:wheelchair=yes is
likely to co-occur with both the private school and trade school types but might be
biased towards the more populated type.

We do not observe statistically significant differences between OSM2KG and
OSM2KG-TFIDF on the DBpedia-0SM-DE and DBpedia-0SM-IT datasets. On these
datasets, baselines that exclusively make use of geographic distance and name simi-
larity such as LGD-SUPER achieve the best or close-to-best F'1 score. Therefore, the
individual importance of the K'V-embedding or the TF-IDF feature is not as high as
for the other datasets.

Furthermore, the proposed KV-embedding provides a compact representation that
consists of only 3-5 dimensions, whereas the corresponding TF-IDF representations
consist of 1000 dimensions. Figure 4.5 contrasts the average memory consumption
across the folds of the random forest models of OSM2KG and OSM2KG-TFIDF. We
observe that the usage of the K'V-embedding generally results in a lower memory foot-
print than the TF-IDF variant, which becomes particularly visible for larger datasets.
The difference is largest on the Wikidata-0SM-FR dataset, where the KV-embedding
(0.7 GB) requires only 5% of memory compared to the TF-IDF variant (14 GB). We
observe the smallest difference on DBpedia-0SM-IT. This dataset has the smallest
number of instances (2353), resulting in the small memory difference between the
models (0.1 GB).

https: //www.openstreetmap.org/node/2733503641
Zhttps://www.wikidata.org/wiki/ Q828825
Bhttps://www.wikidata.org/wiki/ Q2344470


https://www.openstreetmap.org/node/2733503641
https://www.wikidata.org/wiki/Q828825
https://www.wikidata.org/wiki/Q2344470

72 Chapter 4 Enriching OpenStreetMap with Links to Knowledge Graphs

8

= N — = OSM2KG

2 0. N § KX OSM2KG-TFIDF
S \ \

7 \

2 N N

o \

o b N N

LN N N §

e 0 | orxa N =N\ ! } —f—
§ Wikidata- Wikidata- Wikidata- DBpedia- DBpedia- DBpedia-

0SM-FR 0SM-DE 0SM-IT 0SM-FR 0SM-DE 0SM-IT
Dataset

Figure 4.5. Average memory consumption across folds of the training of the RANDOM
FOREST models used by OSM2KG and OSM2KG-TFIDF.

We conclude that KV-embedding is an effective, concise, and task-independent
way to represent the OSM information. We believe that this representation makes
OSM data more usable for models that may suffer from the curse of dimensionality
or memory limitations.

4.7.3 Classification Model Performance

Table 4.7 presents the F1 scores achieved by OSM2KG with respect to each dataset
while varying the classification model. In particular, we evaluate the performance of
RANDOM FOREST, DECISION TREE, NAIVE BAYES, and LOGISTIC REGRESSION.
As we can observe, the performance of the classification models is consistent among
the datasets. RANDOM FOREST and DECISION TREE achieve similar F1 scores and
show the best performance, i.e., on average 92.05% (Wikipedia), 94.17% (DBpedia)
F1 score using RANDOM FOREST, and 92.21% (Wikidata), 93.77% (DBpedia) us-
ing DECISION TREE. According to a paired t-test, the observed differences between
the RANDOM FOREST and DECISION TREE are not statistically significant on our
datasets. In contrast, the performance of NAIVE BAYES and LOGISTIC REGRESSION
is much lower, i.e., they achieve on average only 66.99% (Wikidata), 80.93% (DBpe-
dia) F1 score using NAIVE BAYES and 67.54% (Wikidata), 87.49% (DBpedia) using
LoGISTIC REGRESSION.

We conclude that non-linear classification models such as RANDOM FOREST and
DEcCISION TREE are better suited to the problem we address than the linear models.
This result also suggests that the classification problem is not linearly separable. In
our experiments in Section 4.7.1, we made use of RANDOM FOREST classification
models.



4.7 FEvaluation 73

Table 4.7. Comparison of OSM2KG F1 scores [%] with respect to the classification
model, best scores are bold.

(a) Wikidata

. Wikidata- Wikidata- Wikidata- Wikidata-
Classifier

0SM-FR O0SM-DE 0SM-IT Average
RANDOM FOREST 93.67 91.05 91.45 92.05
DECISION TREE 94.45 91.17 91.01 92.21
NAIVE BAYES 70.88 63.64 66.45 66.99
LocgisTic REGRESSION 65.36 66.40 70.87 67.54

(b) DBpedia

. DBpedia- DBpedia- DBpedia- DBpedia-

Classifier 0SM-FR 0SM-DE 0SM-IT Average
RANDOM FOREST 97.63 90.47 94.41 94.17
DECISION TREE 97.12 89.62 94.56 93.77
NAIVE BAYES 76.69 77.69 88.40 80.93
LogisTic REGRESSION 86.84 86.93 88.71 87.49

4.7.4 Feature Evaluation

In this section, we assess the feature contributions of OSM2KG. To assess the con-
tribution of the single features to link discovery, we conducted a leave-one-out feature
evaluation. In particular, we removed each feature individually from the feature set
and determined the difference in F1 score to quantify the feature importance.

Table 4.8 shows the differences in the F1 score of the OSM2KG model when a
single feature is left out compared to the F1 score achieved when the entire feature set
is used. Since no difference is negative, except for DBpedia-0SM-IT, we conclude that
all features typically contribute to better classification performance. Geo Distance
results in the most substantial difference of 13.99 percentage points on average for
Wikidata. On DBpedia, Geo Distance results in the second-largest difference of
4.56 percentage points on average. The most considerable difference for DBpedia
results from the Name feature, with 5.38 percentage points on average. For Wikidata,
the Name feature results in a variation of 2.98 percentage points on average. The
importance of the Name feature on DBpedia indicates that the names of the OSM and
DBpedia datasets are well-aligned. This result confirms our observations in Section
4.7.1, where we discussed the performance of the LGD-SUPER baseline that utilizes
both features.

The KV-embedding feature shows the second-largest difference on Wikidata (3.75
percentage points) and the third-largest difference on DBpedia (1.30 percentage points)
on average. As expected, the contribution of this feature is higher for the more com-
plex link discovery task in Wikidata, as opposed to DBpedia, where simple heuris-
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Table 4.8. Differences in OSM2KG F1 score [percentage points| when leaving out
single features using RANDOM FOREST.

(a) Wikidata

Left out Feature Wikidata- Wikidata- Wikidata- Wikidata-

0SM-FR O0SM-DE 0SM-IT Average
KV-embedding 2.80 3.91 4.53 3.75
Geo Distance 15.28 14.72 11.98 13.99
Entity Type 0.71 2.00 2.77 1.83
Popularity 0.29 1.07 0.94 0.77
Entity Type & Popularity 1.67 9.30 6.94 5.97

(b) DBpedia

DBpedia- DBpedia- DBpedia- DBpedia-
Left out Feature OgM-FR OgM—DE OIS)M—IT A'ferage
KV-embedding 1.94 1.96 0 1.30
Geo Distance 2.81 2.19 8.67 4.56
Entity Type 0.45 0.54 -0.08 0.30
Popularity 0.29 0.28 -0.02 0.18
Entity Type & Popularity 0.84 1.50 -0.08 0.75

tics may suffice. As an extreme example, we do not observe any contribution of
KV-embedding for DBpedia-0SM-IT. As discussed before, simple heuristics (e.g., geo-
graphic distance and name similarity) are sufficient to achieve relatively high perfor-
mance on this dataset.

The Entity Type and Popularity show the smallest differences, where Entity Type
has slightly larger differences than Popularity. For the Wikidata datasets, we observe
that the individual contributions of the features are rather small, i.e. 1.83 percentage
points (Entity Type) and 0.77 percentage points (Popularity) on average. When leav-
ing both features out, we observe a difference of 5.97 percentage points on average.
We conclude that the information encoded in both features is partly redundant. Fur-
thermore, this relatively large difference indicates feature importance. We conclude
that for Wikidata datasets the information of the Entity Type is especially useful when
combined with the Popularity feature. On the contrary, for the DBpedia datasets, we
observe that the contribution of the Popularity feature is nearly identical to the joint
contribution of Entity Type and Popularity. For DBpedia-0SM-IT we observe nega-
tive contributions for both features. Again, this indicates that geographic distance
and name similarity are sufficient for link discovery in this dataset.

Although FEntity Type and Popularity are correlated in many cases, they can pro-
vide complementary information for some instances. Intuitively, the joint information
can help to disambiguate entities similar concerning one of the features, but dissimi-
lar regarding the other. For example, two railway stations of different sizes are likely
to be described with a different number of statements, whereas the type is identical.
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In such cases, in addition to the Entity Type, Popularity can help to disambiguate
entities better.

4.7.5 Parameter Tuning

We evaluate the influence of the parameters such as embedding size and the blocking
threshold value on the performance of OSM2KG.

—e— Wikidata-0SM-FR = - Wikidata-0SM-IT === DBpedia-0SM-DE
—<- Wikidata-0SM-DE DBpedia-0SM-FR ~  -+=- DBpedia-0SM-IT
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Figure 4.6. Influence of the embedding size on F1 score of the RANDOM FOREST
classifier.

Embedding Size

The embedding size corresponds to the number of dimensions (i.e. neurons) in the
projection layer of the neural model presented in Section 4.5.2. Figure 4.6 shows
F1 scores obtained with respect to the number of dimensions of the KV-embedding
achieved by the RANDOM FOREST classifier on all datasets.

We observe similar trends for all datasets except for DBpedia-0SM-IT. Overall,
we can observe a growth of the F1 score of the classifier with an increasing number
of dimensions, between one and four dimensions for all datasets. We conclude that
embeddings with an insufficient number of dimensions are not able to capture all rele-
vant information. When the number of dimensions increases, more information can be
encoded, which leads to better performance. As we can observe, the curve achieves
its maximum at three dimensions for the Wikidata-0SM-FR, and DBpedia-0SM-FR
datasets, at four dimensions for WikidataOSM-IT and at five dimensions for the
Wikidata-0SM-DE and DBpedia-0SM-DE datasets. Further increase of the embedding
size does not lead to an increase in performance. On the contrary, the performance
can drop, indicating that no additional beneficial information is obtained by adding
further dimensions.

For DBpedia-0SM-IT, we observe a near-constant performance around 94% F1
score of the classifier. As discussed in Section 4.7.4, here the contribution of the
KV-embedding is not as high as for the other datasets. Thus, the variation of the
embedding size does not result in any significant performance changes for this dataset.
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Overall, we conclude that 3-5 dimensions are most suited for the datasets that
make effective use of the KV-embedding feature. Thus, we adopted the following
number of dimensions: Wikidata-0SM-FR: 3, Wikidata-0SM-DE:5, Wikidata-0SM-IT:
4, DBpedia-0SM-FR: 3, DBpedia-0SM-DE: 5, DBpedia-0SM-IT: 4.
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Figure 4.7. Influence of the threshold thy,. on the average number of candidates and
recall of the blocking step.

Blocking Threshold

The blocking threshold thy..x represents the maximal geographic distance considered
for candidate entity generation, as discussed in Section 4.5.1. For a single OSM node,
all knowledge graph entities that are closer than thy,... are considered as candidates.
The value of thy.. can be determined experimentally by evaluating the recall of the
blocking step.

Figure 4.7 shows the influence of thy, on the average number of candidates and
the recall of the blocking step. Considering the average number of candidates, we
observe a linear-like rise (i.e., the slope of the curve is nearly constant) of the number
of candidates concerning thy... for all datasets, whereas the datasets differ in slope.
Due to the low geographic density of the DBpedia-0SM-IT dataset, the corresponding
slope is especially low. Concerning recall, we observe that the curve starts with a
steady incline, but quickly saturates with an increasing thy,ex. We conclude that in
most cases, the correct candidate exhibits a geographic distance of about 2.5 km.
Thus, in our experiments, we chose thy,er = 2.5 km. This threshold value allows for
more than 85% recall of correct candidates for the DBpedia datasets and 95% recall
for the Wikidata datasets in the blocking step, while effectively limiting the number
of candidates. For DBpedia-0SM-IT, we adopt a different thyq threshold of 20 km
to increase recall on this dataset.

Figure 4.8 presents the F1 scores regarding the blocking threshold value thyocx.
To make the impact of geospatial blocking comparable across the considered ap-
proaches, we assess the effect of the blocking step on the overall link discovery perfor-
mance. To this extent, we added an additional blocking step to the BM25 and GEO-
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DisT baselines and evaluate the models BM25, GEO-DisT, LGD, YAGEO2GEO and
OSM2KG with the blocking thresholds thyeer € {1, 2.5, 5, 10, 20} km. As we can ob-
serve, the general link discovery performance is not very sensitive to the thy,. value.
However, if thy, value is chosen too low, e.g. 1 km, the link discovery performance
can drop, as shown in Figure 4.8b. Overall, an optimal threshold value depends on the
model as well as on the dataset. For example, LGD may benefit from a lower block-
ing threshold value, as shown in Figure 4.8e, whereas GEO-DIST works better with
a higher threshold (Figure 4.8f). For OSM2KG we do not observe any significant
impact for values of thy,. > 2.5 km for most datasets. For the supervised variants of
the baselines LGD and YAGO2GEO, LGD-SUPER and YAGO2GEO-SUPER, we ob-
serve that the appropriate threshold can be determined during the training process.
The performance of the GEO-DIST baseline is degraded with the limitation of the
additional blocking step, as this limitation does not contribute to precision, but po-
tentially limits recall of this baseline. The BM25 baseline benefits from the blocking
step but is still clearly outperformed by OSM2KG. In summary, as presented by
Figure 4.8, we observe that OSM2KG outperforms all baselines for all values of the
blocking threshold thy,. on all considered datasets concerning F'1 score.

4.7.6 Error Analysis

We conducted an error analysis through manual inspection of a random sample of 100
nodes for which OSM2KG identified no correct link for each of the Wikidata datasets.
Table 4.9 presents the resulting error distribution. As we can observe, the most
common reason for errors is a too restrictive candidate selection leading to an empty
candidate set (in 49.67% of cases), followed by the selection of wrong candidates (in
32.67% of cases) and quality issues in Wikidata such as duplicate entities (in 13.67%)
as well as wrong links in the ground truth data (in 4%). Note that the restrictive
candidate selection is subject to the choice of the blocking threshold value. For this
study, the threshold was chosen in such a way that 95% recall of the blocking step
was achieved. In a few cases (3% on average), the candidate set is not empty, but
the correct candidate is not included in this set. This issue can be addressed by an
adaptive increase of the threshold for the nodes without any candidates.

Furthermore, we observe that the selection of wrong candidates in most cases
happens within the regions with a high geographic density of Wikidata entities, e.g.,
in cities where single houses can represent entities, resulting in a large candidate
set. To further increase the precision of OSM2KG, a dedicated, supervised model
for geographically dense regions can be trained. Such a model can follow a more
restrictive policy, e.g., by requiring higher confidence to establish a link.

Finally, the detection of duplicate entities and wrong ground truth links indicates
the potential to adopt OSM2KG for de-duplication of geo-entities in Wikidata to

increase data quality. These observations provide a basis for an incremental tuning
of OSM2KG in future work.
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Table 4.9. Distribution of error types on nodes for which no correct link could be
found by OSM2KG.

Wikidata- Wikidata- Wikidata-

Error Type OSM-FR 0SM-DE 0SM-IT Avg.
No candidate found 41% 54% 54%  49.67%
Wrong candidate selected 39% 37% 22%  32.6™%
Duplicate entity in Wikidata 17% 4% 20% 13.67 %
Wrong link in ground truth 3% 5% 4% 4.00%

4.7.7 Evaluation Summary

Approaches that mainly rely on name similarity heuristics and do not leverage any
geospatial features are not suitable for effective link prediction for the OSM nodes.
We can observe this by considering the relatively low performance of the BM25 and
SPOTLIGHT baselines, where SPOTLIGHT achieved F1 scores of 46.06% (Wiki-
data) and 65.40% (DBpedia), on average. Geospatial features such as geographic
distance are a reliable indicator to match OSM nodes with knowledge graph entities
in our datasets. This observation is confirmed by the GEO-DIST baseline, which
reached F1 scores of 69.81% (Wikidata) and 79.53% (DBpedia) by solely consider-
ing the geographic distance. However, in a significant fraction of cases, geospatial
information alone is insufficient to disambiguate OSM nodes effectively. Heuristics
using a combination of the name similarity and geospatial features, and in particular
the supervised LGD-SUPER baseline, can achieve competitive performance on the
DBpedia datasets. However, they are insufficient for link discovery in more complex
datasets, such as Wikidata, where the entity names are not well-aligned with OSM.

The proposed OSM2KG approach combines the latent representation of OSM
nodes that captures the semantic similarity of the nodes with geospatial information
and is highly effective for link prediction. OSM2KG is of particular advantage for
link discovery between OSM and Wikidata, where it significantly outperforms the
baselines concerning the recall and F1 score. Overall, we observe that the proposed
latent node representation as key-value embedding combined with geospatial distance
is an effective way to facilitate link discovery in a schema-agnostic volunteered ge-
ographic dataset such as OSM. This representation, with only 3-5 dimensions, is
compact and task-independent.

4.8 Discussion

In this chapter, we enriched geographic Web information by adding links to Open-
StreetMap. We proposed OSM2KG, a novel link discovery approach to predict
identity links between OpenStreetMap nodes and geographic entities in knowledge
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graphs.

OSM2KG combines latent representations of OSM nodes, knowledge graph fea-
tures, and a supervised classification model to effectively predict identity links across
OSM and knowledge graphs. The representation of OSM nodes is highly heteroge-
neous. We tackle the problem of OSM data heterogeneity by introducing an unsu-
pervised key-value embedding capturing the semantics of OSM nodes. In contrast,
knowledge graphs provide well-defined schemas, i.e., ontologies. We capitalize on
these schemas by extracting selected features, e.g., indicating the entity type or pop-
ularity. Based on the feature representations, we use a binary supervised classification
model predicting whether an OSM node and a knowledge graph entity represent the
same real-world entity.

We conducted an extensive evaluation on three large-scale OSM datasets for Ger-
many, France, and Italy and Wikidata and DBpedia knowledge graphs. Our ex-
periments demonstrate that the proposed OSM2KG approach can reliably discover
identity links. OSM2KG achieves an F1 score of 92.05% on Wikidata and of 94.17%
on DBpedia on average, which corresponds to a 21.82 percentage points increase in
F1 score on Wikidata compared to the best performing baselines. We showed the
superior effectiveness of the key-value embeddings compared to traditional TF-IDF
feature representations of OSM nodes regarding link classification performance and
memory consumption. We investigated the contribution of the individual features
and found that all features help in the link discovery process. Finally, we provided
a detailed analysis of parameter tuning considering the embedding size, the blocking
threshold, and the choice of the classification model.

Limitations for the proposed link discovery model can arise from the candidate
generation step, where we consider the set of entities for which geographic coordinates
are available in the knowledge graph only. A promising direction for future research
is to discover identity links between OSM nodes and geographic entities for which
geographic coordinates are not available in the knowledge graph. In this chapter,
we focused the discussion and evaluation of OSM2KG on Wikidata and DBpedia as
target knowledge graphs due to their openness, popularity, and availability of training
data (i.e., the links between these knowledge graphs and OSM). Nevertheless, the
proposed OSM2KG approach is applicable to other knowledge graphs, provided a
set of identity links between OSM and the target knowledge graph is available for
training the OSM2KG classifier.



Enriching Missing Information in Web Markup

In this chapter, we broaden the scope of the thesis by introducing an additional data
source, i.e., semantic Web markup. While semantic Web markup is not limited to
describing geographic entities only, many markup entities relate to geographic places.
For instance, events usually provide venues or coordinates where they take place.
Semantic Web markup data is often sparse, such that important entity properties
may be missing. RQ3 asks how to add such missing information to Web markup
entities. We tackle this problem by presenting an enrichment approach that infers
missing categorical information of Web markup entities.

5.1 Introduction

Semi-structured, entity-centric knowledge has become a key component for the inter-
pretation of Web documents and enable, e.g., effective Web search. Recently, Web
markup facilitated through standards such as RDFa [Wor08], Microdata' and Micro-
formats® has become prevalent on the Web, driven by initiatives such as schema.org.
Such semi-structured Web annotations are a potentially rich source of geographic
Web information.

There is an upward trend of Web markup adoption, where the proportion of pages
containing markup increased from 5.76% to 39% between 2010 and 2016. To this ex-
tent, markup data provides an unprecedented and growing source of explicit entity
annotations to be used when interpreting and retrieving Web documents, to com-
plement annotations otherwise obtainable through traditional information extraction
pipelines, or to train information extraction methods. In addition, while traditional
KGs capture large amounts of factual knowledge, they still are incomplete, i.e. cov-
erage and completeness vary heavily across different types or domains. In particular,

Thttps://www.w3.org/TR/microdata/
2http://microformats.org
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there is a large percentage of less popular (long-tail) entities and properties that are
usually insufficiently represented [BEM™13]. In this context, markup also provides
essential input when incrementally augmenting and maintaining KGs [YGFD17], in
particular when attempting to complement information about long-tail properties and
entities [YGFT19].

The specific characteristics of statements extracted from embedded Web markup
pose particular challenges [YFGD16]. Whereas coreferences are very frequent (for in-
stance, in the WDC 2013 corpus, 18,000 entity descriptions of type schema.org: Product
are returned for the query ‘Iphone 67), these are not linked through explicit state-
ments. In contrast to traditional densely connected RDF graphs, markup statements
mostly consist of isolated nodes and small subgraphs, each usually made up of small
sets of statements per entity description. In addition, extracted RDF markup state-
ments are highly redundant and are often limited to a small set of highly popular
predicates, such as schema.org:name, complemented by a long tail of less frequent
statements. Moreover, data extracted from markup contains a wide variety of er-
rors [MRP16], ranging from typos to the frequent misuse of vocabulary terms [aHP15].
Hence, individual markup extracted from a particular Web document or crawl usually
contains very limited or unreliable information about a particular entity. According
to our analysis, out of 26 million annotated events in the WDC 2016 corpus, less
than 257,000 (0.96%) indicate a more specific event subtype and 59% nodes provide
less than six statements. This strongly limits the meaningfulness of Web markup,
in particular for entities that cannot be mapped to a representation in an existing
knowledge graph.

In this chapter, we introduce an approach to automatically infer missing categor-
ical information for particular entities obtained from Web markup. Building on the
Web-scale availability of markup, and hence, the abundance of potential training data
for the task, we introduce a supervised method to efficiently infer missing categori-
cal information from existing entity markup describing coreferring or similar entities.
Our experiments address the inference of entity (sub-)types, as well as inference of
arbitrary non-hierarchical predicates, such as movie genres. We demonstrate superior
performance compared to both naive baselines and specialized state-of-the-art meth-
ods for type inference and achieve F1 scores of 79% and 83% in two experimental
tasks.

Contributions. In this chapter, we address RQ3 and make the following contri-
butions

e We present a novel supervised classification model to infer missing categorical
information in Web markup.

e We introduce an algorithm to derive training data from unbalanced Web markup
data.

e We conduct an extensive evaluation, comparing our approach to both naive and
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state-of-the-art baselines.

The rest of this chapter is organized as follows: We discuss related work in Section
5.2. Then, in Section 5.3, we motivate our approach by analyzing the distribution
of selected markup properties. Next, we formally define the problem in Section 5.4.
In Section 5.5, we introduce our supervised classification model. In Section 5.6, we
define the evaluation setup. Following that, in Section 5.7, we present the evaluation
results. Finally, we provide a discussion in Section 5.8.

5.2 Related Work

In this section, we discuss related work in the areas of knowledge graph completion and
schema inference for traditional knowledge graphs along with works focused directly
on Web markup.

Knowledge Graph Completion. Existing approaches to knowledge graph
(KG) completion and dataset profiling including its applications to schema infer-
ence have been summarized in recent survey articles [YFGD16, EBB'18]. These
approaches include in particular entity type inference, relation prediction and re-
lation validation. In the context of KG completion, entity type inference is most
commonly addressed as a multi-class prediction problem. [PB13] makes use of prop-
erties and conditional probabilities to infer entity types, building the baseline for our
approach. Schemex is an approach to extract and index schema information from
Linked Open Data (LOD) [KGSS12]. In YAGO+F instance-based matching enables
to enrich Freebase entities with YAGO concepts [DON13]. [GKSS13] made use of
Schemex to analyze schema information of LOD and found that properties provide
information about subject types. In this chapter, we use properties as features for
inferring missing categorical information in general. [GM15] predicts relations be-
tween two nodes by leveraging random walk inference methods using sub-graphs to
improve the path ranking algorithm (PRA), initially proposed in [LC10]. [WLL"16]
also builds on PRA and extends it to a multitask learning approach.

All of the works discussed above have been applied to traditional KGs such as
DBpedia, NELL and YAGO. In contrast, in this chapter we aim at inferring informa-
tion on the Web markup data. Web markup is distinguished from the aforementioned
knowledge graphs by specific characteristics, i.e. annotations are often very sparse or
noisy, vocabularies are not used correctly in many cases and the overall RDF graph
is connected very loosely [DTY 17, MPB14]. For these reasons, existing KG com-
pletion methods are not likely to perform well on Web markup. For instance, KG
completion approaches based on graph topology (e.g. relation prediction discussed
above) rely on the presence of relations, which are not widely available in markup.

Various approaches employ embeddings for KG completion in traditional knowl-

edge graphs. [WMWG17] conducted a survey on KG embeddings for applications
such as link prediction, entity classification and triple classification. [WWG15] makes
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use of embeddings and rules. [LLS™15] propose the TransR model that builds sep-
arate entity and relation embeddings to compute the plausibility of missing triples.
[SCMN13] predicts relations between entities by employing neural tensor networks.
Embeddings techniques have not yet been applied to Web markup yet lend themselves
as direction for future research.

Web Markup. Several recent studies focused on analyzing the characteristics,
evolution and coverage of markup [TD16, SGY 16, DTY*17] and on addressing spe-
cific tasks in the context of Web markup. Meusel et al. proposed heuristics that can
be employed to fix common errors in Web markup [MPB14, aHP15]. In this chapter,
we apply the heuristics proposed in [aHP15] for pre-processing and data cleansing.
[YGFD17, YGZ'16] provide pipelines for data fusion and entity summarization on
Web markup, involving heuristics, clustering and supervised approaches for entity
matching and classification of markup statements. [YGF19] builds on these works
by utilizing fused markup data to augment existing knowledge bases, showing the
complementarity of markup data and its potential to significantly complement infor-
mation from traditional reference KGs.

While these works demonstrate the use of markup data, they suffer from the
sparsity of individual nodes. The inference approach proposed in our work can aug-
ment markup nodes and is likely to boost the performance on both fusion and KG
augmentation tasks. In particular, considering the impact of the use of controlled vo-
cabularies on data reuse [EGT*17], we anticipate that inference of crucial categorical
information can facilitate reuse of markup data.

5.3 Motivation

By today, Web markup data is available at an unprecedentedly large scale, resulting
in a high potential value for data-driven algorithms In the following we illustrate
the challenges and the potential of leveraging Web markup data at the example of
the Web Data Commons (WDC) [MPB14] corpus. We abbreviate the prefix of the
schema.org vocabulary by s:, e.g. s:Movie. We refer to the WDC corpus from October
2016 as the WDC 2016 corpus.

While Web markup constitutes an unprecedented source of semi-structured knowl-
edge, markup is usually sparse and highly redundant, consisting of vast amounts of
coreferences and (near) duplicate statements [YGFD17]. The description of individ-
ual entities extracted from Web markup is usually sparse, such that only a fraction of
the properties foreseen by schema.org for a specific type is provided. Specific nodes
often only provide a label and the entity type. Table 5.1 provides an overview of
the number of quadruples per single node for the specific types (s:Event, s:Mowvie) in
the WDC 2016 corpus. The property distribution follows a power law, where a small
set of terms is very prevalent, yet the majority of properties is hardly used across
the Web. Figure 5.1 shows the top-20 most frequently used properties of movies,
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Table 5.1. Number of quadruples per node for specific types in WDC 2016.

T Total No. Total No. Quadruples Distinct Properties
YP€  Quadruples Nodes

Min. Max Avg. Median Min. Max. Avg. Median

s:Event 1.58-108 2.66 - 107 1 2889 5.55 5 1 32 5.31 5
s:Mowie 1.25- 108 1.62 - 107 1 4547 7.71 6 1 26 5.77 6
107
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Figure 5.1. Top-20 most frequent properties for the type s:Movie in WDC 2016. The
second entry of s:actor is caused by erroneous annotations in Web markup.

highlighting that certain properties occur very often (e.g. s:actor) while others are
provided rarely, such as s:productionCompany. Sparsity is exacerbated by the lack of
connectivity of markup data, where controlled vocabularies, taxonomies, and essen-
tially, links among nodes are hardly present. Previous studies [DTY17] on a specific
markup subset find that, out of a set of 46 million quadruples involving transversal,
i.e. non-hierarchical properties, approximately 97% actually refer to literals rather
than URIs, that is object nodes. These findings underline that markup data largely
consists of rather isolated nodes, which are linked through common schema terms (as
provided by schema.org) at best, but commonly lack relations at the instance level.
In particular for categorical information, such as movie genres or product categories,
this poses a crucial challenge when it comes to interpreting such information.

A particular instantiation of the aforementioned problem is the use of unspecific
types. Figure 5.2 illustrates the number of instances of events annotated with respec-
tive event subtypes. Note that assignment of multiple types is theoretically possible,
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3: s:MusicEvent 8: s:ComedyFEvent 13: s:SocialEvent 18: s:BusinessEvent
4: s:ScreeningFvent  9: s:SportsEvent 14: s:ChildrensEvent
5:

s:EducationFvent  10: s:LiteraryFvent 15: s:Festival

Figure 5.2. Number of occurrences of schema.org event types in WDC 2016 (Y-axis
is logarithmic).

but rarely used in practice (i.e. less than 0.1% of events have multiple types). Appar-
ently, most of the instances are assigned the generic type s:Event, while only 0.96%
of nodes use more specific types like s:TheaterFEvent or s:Festival, hindering data
interpretation.

Whereas individual markup nodes are usually sparsely annotated, markup as a
whole provides a rich source of data, where in particular for categorical, i.e. discrete,
properties a wide variety of instances can be drawn from the long tail. For instance,
referring to Figure 5.2, while only 0.96% of all event nodes are typed with a meaningful
subtype, this still corresponds to a set of 257,000 nodes available as training data
to build supervised models to classify the remaining 26 million insufficiently typed
events. Hence, we follow the intuition that markup data can significantly benefit from
supervised approaches, which learn categorical or discretized properties as a means
to infer missing categorical information for sparsely annotated nodes, i.e. to enrich
markup entities. Overall, augmentation of sparse Web markup nodes can contribute
to the improvement of the interpretability of the markup, the enrichment of knowledge
graphs, and hence, to the effectiveness of the applications using the markup. This
includes search and Web page classification, where in particular categorical and type
information is essential to correctly interpret resources.
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5.4 Problem Statement

In this chapter, we aim at inferring missing categorical information in data sourced
from Web markup. For a given corpus of Websites C, Q¢ denotes the set of RDF
quadruples of the form (s, p,0,u) extracted from the corpus, where s, p, o represent
an RDF triple, i.e. a statement, of the form subject, predicate and object and u
represents the URL of the Web document, from which the triple has been extracted.

A wvocabulary V consists of a set of types T and properties P. A particular property
pi € P has a declared domain d(p;) that defines the set of expected types T; C T a
subject involved in the same triple with p; is meant to be an instance of. The range
r(p;) of a property p; defines the expected types an object involved in the same triple
as p; is meant to be an instance of.

For instance, within the schema.org vocabulary, the domain of the property trans-
lator® is defined as instances of type Event* and Creative Work®, while the declared
range is defined as instances of type Organization® and Person’.

Definition 5.1. Given a vocabulary V', a set of quadruples Qc, for a particular node
representing a subject s; € Qc, this we aim at predicting quadruples q = (s;, pi, 0;, ;)
which are: (a) not present in the markup corpus (q ¢ Qc), (b) valid according to the
definition of vocabulary V', and (c) a valid statement about subject s; in the context

of u;.

The last requirement of the aforementioned definition is experimentally evaluated
according to a ground truth G, where an example is described in Section 5.6.1.

Note that this chapter focuses on categorical properties, i.e. we consider properties
where the corresponding range r(p) is finite. For instance, consider the following
markup triple, extracted from the URL http://www.imdb.com /title/tt0109830/7ref _
=tt_trv_cnn describing the movie ”"Forrest Gump”:

s: | _modea75846¢741abe988abf1c682f1fe26e7

p .| rdf:type
o: | s:Mowvie

For the specific subtask of predicting movie genres (Section 5.7), we aim at predicting
the quadruple involving the following triple (URL omitted) stating the genre of the
movie:

s : | _nodea73846¢7/1abe988abf1c682f1fe26e7
p: | s:genre
o:|”Drama”

3http://schema.org/translator
4http://schema.org/Event
®http://schema.org/CreativeWork
Shttp://schema.org/Organization
"http:/ /schema.org/Person


http://www.imdb.com/title/tt0109830/?ref_=tt_trv_cnn
http://www.imdb.com/title/tt0109830/?ref_=tt_trv_cnn
http://schema.org/translator
http://schema.org/Event
http://schema.org/CreativeWork
http://schema.org/Organization
http://schema.org/Person
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5.5 Supervised Inference Approach

The characteristics of the data at hand suggest that, for most subjects s; which are to
be augmented, e.g. the movie mentioned in the previous example, sufficient training
data can be obtained (Section 5.3). That means, we anticipate that a sufficient num-
ber of entity descriptions (instances) exist, which share the same missing categorical
property p;, e.g. a movie genre in the example above. Thus, we approach the in-
ference problem as a supervised classification problem, where nodes which share the
sought after property p; are used as training data to build a model for the prediction
of respective statements. This section describes our approach, namely the steps taken
for data cleansing, feature extraction and building classification models.

5.5.1 Data Cleansing

Based on studies on common errors on deployed microdata [aHP15], we applied the
following heuristics proposed in [aHP15], to improve the quality of the dataset by
fixing the following errors:

Wrong namespaces: Many terms that deviate from the correct schema.org
namespace can be corrected by adding missing slashes, changing https:// to http://,
removing additional substrings between http:// and schema.org and fixing capital-
ization errors.

Undefined properties and types: The use of wrong capitalization of prop-
erty and type names leads to the presence of undefined terms in markup data. We
corrected the capitalization by using the capitalization defined by the schema.org
vocabulary.

Applying these heuristics aids the feature extraction and classification steps de-
scribed below by providing a larger amount of training data as well as by improving
feature quality.

5.5.2 Feature Extraction

This section describes the considered features for our task and the applied feature
extraction.

pld/tld: Based on the assumption that many Web domains are specialized on par-
ticular topics, e.g. concerts or documentary films, we employ domain-based features.
The intuition is that any particular pay-level-domain (pld) and/or top-level-domain
(tld) usually correlates with particular categorical properties, such as the types of
covered events. Thus, for each node, we extract the pld and the tld from the URL of
the Web page. For instance, taking into account the task of predicting event subtypes,
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consider the quadruple:

s | _mode396540c21b6fa0388¢c7293ebe216583
p | rdf:type

o: | s:Fvent

u:

<http://www.touristlink.com/india/cat/events. html>

From this quadruple we extract the pld "touristlink.com” and the tld ”.com” from
u and use these as features to predict the subtype ”s:MusicEvent” of the described
event. The plds and tlds are mapped into feature space via I1-hot-encoding, resulting
in one dimension for each pld and each tld.

node-vocab: The intuition behind this feature is that there is a correlation be-
tween the used vocabulary terms and the specific classes we aim to predict. For
example, a composer (s:composer) is more likely to be provided for a music event
(s:MusicEvent) than for a sports event. Following this intuition, Paulheim et al.
[PB13] proposed an approach for entity type prediction using vocabulary term cor-
relations. To this extent, they made use of the outgoing and incoming statements of
the node n for type prediction of n in knowledge graphs (i.e. statements that have n
either in the subject or the object position, respectively). In case of Web markup, it
may not be feasible to determine all incoming statements for a given subject at Web
scale. Therefore, in this chapter, we make use of the outgoing statements only and
use these statements to predict categorical properties of the entity described through
the node n. More specifically, for all quadruples @), involving subject n, we extract
all schema.org terms used as predicate. For each node n, we compute a frequency
vector, where each dimension corresponds to a vocabulary term t; and each value is
the normalised number of times ¢; occurs in a quadruple with n as a subject. The
frequencies are normalised using the [* (euclidean) norm.

Example 1. For the node s and URL u

B

the following tuples are present:

~node3957¢770b4f7c0bd1al7805dd8cad06
<https://gdssummits.com/nghealthcare/us/>

[ p: | rdf:type

| o0: | <http://schema.org/BusinessEvent>

[ p: | s:Event/name

| 0: | "NG Healthcare Summit US”@en

[ p: | s:Event/location

| 0: | 7Omni Barton Creek Resort & Spa, Austin, Texas”@en

These tuples result in the following node-vocab: {rdf:type:1, s:Event/name:1,
s:Event/location:1}.
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Note that we concatenated the predicate and the type used as the domain of the
predicate. This way we ensure that: (a) types as well as terms are considered and (b)
the connection between a predicate and its observed domain is preserved. The latter
appears useful, considering that schema.org terms are used in a variety of contexts,
often in ways other than recommended by the vocabulary definition, e.g. by violating
domain and range definitions [DTY17].

page-vocab: The vocabulary used on a Web page within which a subject appears
intuitively correlates with categorical classes associated with nodes on the respective
page. For instance, Websites discussing music albums are more likely to also contain
music events rather than sports events. To take this context into account, we consider
all schema.org vocabulary terms that appear as predicates on the same Web page as
the node under consideration as a feature. Similar to the node-vocab, we create a
frequency vector normalized using the [* (euclidean) norm.

Example 2. Assume that in addition to the quadruples in Example 1, the following
triples are present on the same Web page:

s | :nodea9ff152514bcfb63¢2714bc1336b2b3
. | s:Organization/url

o : | <http://www.gdsinternational.com>

s | -:nodedccbf7t34c95f14168t5fdb47b73ab

p : | rdf:type

o : | s:BusinessEvent

Then the terms from these quadruples are added to the node-vocab to form the page-
vocab: {rdf:type:2, s:Event/name:1, s:Event/location:1, s:Organization/url:1}.

After computing the individual features, all features are concatenated to form a
single feature vector. Finally, the feature vectors are normalized, i.e. the mean is
removed and the features are scaled to unit variance. The feature vectors serve as
input for supervised machine learning approaches that are detailed in Section 5.5.3.

5.5.3 Classification Models

We compare the use of the following classifiers:

Naive Bayes: A Gaussian Naive Bayes classifier that assumes that the likelihood
of the features follows a Gaussian distribution. Since the features are normalized (i.e.
may have negative values), a multinomial Naive Bayes can not be applied. Naive
Bayes classifiers are known to be adoptable to many classification tasks.

Decision Tree: A classifier that successively divides the feature space to maxi-
mize a given metric (e.g. Gini Impurity, Information Gain). Decision Trees are able
to identify discriminative features within high-dimensional data.



5.6 Evaluation Setup 91

Random Forest: A classifier that utilizes an ensemble of uncorrelated decision
trees. Random Forests can utilize a large amount of training data that is likely to be
found in Web crawls.

SVM: A Support Vector Machine with a linear kernel. SVMs have been applied
to a large variety of classification problems.

5.6 Evaluation Setup

While our approach is independent of the respective categorical information to be
inferred, we conducted an evaluation in two specific tasks: (1) predicting subtypes of
s:Fvent instances, and (2) predicting genres (s:genre) of s:Mowvie instances.

5.6.1 Datasets

Training and test datasets were extracted from the Web Data Commons dataset of
October 2016.

Event Classification: This task deals with the prediction of event subtypes.
Schema.org distinguishes between 19 different event subtypes, such as s:BusinessFvent
or s:SportsEvent. Given a generic event, the goal of this task is to predict the correct
subtype of the event, i.e. to predict the object of the rdf:type statement.

Movie Genre Classification: Schema.org allows annotation of movie genres
via the s:genre property. The goal of this classification task is to predict statements
describing the s:genre of respective movies. Since it is possible to assign multiple
genres to a single movie by defining multiple s:genre properties, the classification of
movie genres is a multi-label problem, i.e. a single movie entity can belong to multiple
genre classes. We address this multi-label problem by extracting individual datasets
for each genre upon which a binary classifier for each genre is trained.

Balancing and Sampling

We extracted quadruples that exhibit the respective property of interest by selecting
quadruples which describe nodes of rdf:type s:Event (s:Mowvie) and are annotated
with a more specific event subtype in the case of events and the s:genre predicate
for movies. This results into a single Fvents dataset (containing instances of all
considered subtypes) and an individual dataset for each movie genre. As illustrated
in Figure 5.2, the class distribution is uneven.

To obtain a balanced dataset that is sufficiently large for training of a machine
learning algorithm, we applied the following steps. For Fvents, we picked the top-
7 classes with the highest number of instances. We introduced an additional class
containing all events not included in the top-7 classes. The classes were balanced
by limiting the size of all classes to c., which is the size of the smallest class. For
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Figure 5.3. tld/pld-distribution of s:VisualArtsEvents. The Y-axis is logarithmic.

Movies, we extracted 7 individual datasets corresponding to the top-7 most frequent
movie genres. Each individual genre dataset includes all instances of the particular
genre as well as all the remaining instances, which are labeled as ”Other”. The size
of each genre datasets is limited to c¢,,, which is the size of the smallest class among
all 7 datasets.

We employed two different sampling strategies:

1) Stratified Random Sampling simply chooses c. (¢,,) instances of each class at
random from the whole dataset.

2) pld-Aware Sampling: Figure 5.3 depicts the pld distribution of s: VisualArtsEvents.
The distribution follows a power law, such that a small set of plds provides the major-
ity of events. Random sampling may result in dropping some of the plds with fewer
events and overfitting towards the patterns exhibited by very prominent plds. There-
fore, we employ a sampling approach that ensures representation of long-tail entities
in the sample. To this extent, we calculate a fair share in the sample by dividing the
number of instances by the numbers of plds. We add all instances from plds that have
fewer instances than the fair share. This process is repeated with recalculating the
fair share with respect to the number of missing instances until the dataset contains
¢e (¢m) instances of each class, where ¢, (¢,,) is the number of instances of the smallest
class in the case of events (movies). If all remaining plds contain more instances than
the fair share, each pld contributes the fair share to the final sample.

After the sampling, we split each resulting dataset in an individual training and
test set (80% / 20% of the instances).
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Labeling & Ground Truth

We follow a dataset-specific strategy to obtain class labels, i.e. a ground truth for
training and testing. For assigning event types, we rely on the event subtypes defined
within the schema.org type hierarchy. The class labels for events are thus explicitly
given by the rdf:type-statements.

With respect to the prediction of movie genres, no controlled vocabulary is used
consistently, whereas literals are used widely. Therefore, we map the literals to a
unified genre taxonomy. We make use of the 22 genres defined by the International
Movie Database (IMDB)®. To obtain the class labels, we check for string containment
of the IMDB genre names in the literal values of the s:genre properties. If a genre
name is a substring of the aforementioned property the genre is assigned as class label
to the respective instance. Note that it is possible for one instance to exhibit multiple
labels since multiple genre names may be substrings of a single s:genre property and,
in addition, single instances may have multiple s:genre properties. Intuitively, this
process leads to reasonable class labels for the majority of instances, such that a
sufficiently large amount of correctly labeled training data can be obtained. Yet, we
also anticipate a certain amount of noise. The cleansed and labeled datasets are made
publicly available?.

Table 5.2 provides an overview of the size of the extracted datasets as well as
the amount of included plds. The event datasets are denoted by Fvents and contain
the following classes: PublicationFvent, MusicEvent, ScreeningEvent, ComedyFEvent,
TheaterEvent, EducationFEvent, VisualArtsEvent, Other. For movie genres, the genre-
specific datasets are denoted by the first three letters of the respective genre as follows
{Drama, Comedy, Action, Thriller, Romance, Documentary, Adventure} = {Dra,
Com, Act, Thr, Rom, Doc, Adv}. Movies refers to average values for all genres. The
sampling method is denoted by the subscript, where s represents stratified random
sampling and p represents pld-aware sampling.

5.6.2 Metrics

To evaluate the performance of the different classifiers, we compute the following
metrics:

Precision: The fraction of the correctly classified instances among the instances
assigned to one class.

Recall: The fraction of the correctly assigned instances among all instances of the
class.

F1 score: The harmonic mean of recall and precision. In this chapter, we consider
the F1 score to be the most relevant metric since it reflects both recall and precision.

8http://www.imdb.com/genre/
9The datasets can be found at http://markup.13s.de.
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Table 5.2. Overview of the dataset size and contained plds. Movie genres are abbre-
viated by their first three letters. An own dataset for each genre is extracted since
each genre is treated as a binary classification problem.

Dataset Size Distinct plds Avg. Instances/pld

FEventsg 67,744 1,482 45.71
Events, 67,744 2,064 32.82
Drag 239,030 360 663.97
Dra, 239,030 476 502.16
Comyg 239,030 342 698.92
Com,, 239,030 476 502.16
Acts 239,030 361 662.13
Act) 239,030 476 502.16
Thrs 239,030 342 698.92
Thry, 239,030 476 502.16
Romg 239,030 347 688.85
Rom,, 239,030 476 502.16
Docg 239,030 337 709.29
Doc, 239,030 476 502.16
Advy 239,030 340 703.03
Advy, 239,030 476 502.16
Moviess 239,030 347 689.30
Movies, 239,030 476 502.16

5.6.3 Baselines

We compare our approach to the following baselines:
RANDOM: This baseline chooses a class at random.

SD-TYPE: This baseline leverages conditional probabilities to infer the subject
types using the SD-Type approach [PB13]. The probabilities are based on the incom-
ing and outgoing statements of a particular node. Since SD-Type was not originally
designed to be applied to Web markup, we adapted it by only considering outgoing
statements. This is motivated by the fact that a complete set of incoming statements
can not be obtained for Web markup, where links might (but are unlikely to) originate
from any Web page.

KG-B: This baseline employs a knowledge graph to obtain class labels. The
s:name of a subject is used as input for DBpedia Spotlight [DJHM13] to obtain can-
didate entities from DBpedia (dbp). If the markup is annotated in one of the 12
languages supported by Spotlight'?, the corresponding Spotlight model is used. For
all other cases we employ the English Spotlight model. Labels obtained from DBpedia
may be different from labels found in Web markup (e.g. the genre of the movie ”For-
rest Gump” is stated to be Drama and Comedy in DBpedia, but marked as Drama

Ohttp:/ /www.dbpedia-spotlight.org/faq
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and Romance on imdb.com). In order to avoid noisy and costly matching process,
we address this issue by considering all candidates with a confidence of at least 0.5
as true positives as long as the matching entity shows the correct type (dbp:Event or
s:Event respectively dbp:Movie or s:Movie), independent of whether or not the entity
actually shows the expected categorical property. If no candidate with a suitable type
is found, the instance is assigned to the ”Other”-class. Note that this simplification
significantly boosts the performance of this otherwise naive baseline, yet serves the
purpose of illustrating the lack of sufficient coverage (Section 5.7).

5.7 Evaluation

This section presents the results on the classification performance, the influence of
the sampling methods and the individual features.

5.7.1 Classification Performance

Table 5.3 summarizes the overall results of the baselines (RANDOM, SD-TYPE, KG-
B) as well as our proposed classification models (NAIVE BAYES, DECISION TREE,
RaNDOM FOREST, SVM) for event type (Table 5.3a) and movie genre classifica-
tion (Table 5.3b). For both tasks, we report the macro averages of the results with
respect to precision, recall and F1 scores for both stratified random sampling and
pld-aware sampling. We observe that, for Movies, RANDOM FOREST, closely fol-
lowed by DECISION TREE, performs best across all evaluation metrics, except for
precision/ M ovies,, where it is slightly outperformed by KG-B. This is caused by the
underlying assumption of the KG-B baseline that any entity match is considered as
successful information inference, which unfairly boosts the baseline performance, in
particular for popular entities. For Fvents, RANDOM FOREST shows the highest Re-
call and F'1, closely followed by DECISION TREE, whereas highest precision is achieved
by NAIVE BAYES in this case. The use of a single Decision Tree already results in
relatively high F1 scores, e.g. 81.86% for Movies,. Considering a RANDOM FOR-
EST as an ensemble of Decision Trees, we conclude that additional trees only slightly
improve the outcome (F1 of 83.14%). The SD-TYPE baseline achieves F1 scores of
56.99% for Events. This significant difference in performance between the baseline
and our approach reflects the fundamental difference between knowledge graphs and
data sourced from markup and the need to consider features beyond the structural
connections of entity descriptions when dealing with markup data. For both Fuvents
and Mowvies, KG-B assigns the vast majority of the instances to the ”Other”-class,
resulting in high recall and low precision for the aforementioned class. Due to the
design of the baseline, all classes different from ”Other” exhibit 100% precision but
very low recall, which ultimately results in low F1 scores after computing the macro
average across classes.
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Table 5.3. Macro averages for precision, recall, and F1 score [%] over all datasets.

(a) Event type classification

Classifier FEventsg Events,
Precision Recall F1 Precision Recall F1
RAaNDOM 12.72 12.71 12.71 12.81 12.82 12.81
SD-TYPE 58.35  49.56 40.98 58.71  62.83  56.99
KG-B 39.06 12.59 02.96 39.06 12.59 02.96
NAIVE BAYES 86.04 44.24 40.04 84.06 50.51 47.78
DECISION TREE 70.60 70.26 70.15 7870  77.78 77.25
RANDOM FOREST 73.34 72.46 71.67 80.75 79.71 79.59
SVM 75.51  70.10 67.64 81.45 78.67 77.34
(b) Movie genre classification
Classifier Moviesg Movies,
Precision Recall F1 Precision Recall F1
RANDOM 50.00 50.00 50.00 49.87 49.87 49.86
SD-TYPE 61.67 58.92 56.36 68.34 67.77 67.62
KG-B 76.52 55.70 44.82 76.94 57.16 47.42
NAIVE BAYES 69.06 50.29 33.98 61.55 50.39 34.19
DECISION TREE 72.95 72.88 72.85 82.01 81.89 &1.86
RaANDOM FOREST 74.62 74.49 74.46 83.27 83.16 &83.14
SVM 72.84  72.42  72.27 81.75 81.37 81.27

For Mouwies, Table 5.3b reports the average scores of the individual genre-specific
classifiers. It is worth to mention that the boundary of the classes (genres) might
be fuzzy, e.g. it could be hard to differentiate a movie of genre ”Thriller” from a
movie of genre ”Action”. Since the classification of each genre is formulated as a
binary classification problem, the RANDOM-baseline performance is close to 50% for
all classes. The highest F1 score achieved by SD-TYPE is 67.62%, indicating that the
subject properties used by this baseline might not be sufficient to classify movie genres
precisely. Overall performance of the KG-B baseline is better in this task, driven by
higher recall for instances of type movie, which are better represented in knowledge
bases. Similar to our observations in the event classification task, RANDOM FOR-
EST performs best, closely followed by DECISION TREE. The F1 score of 83.14%
for RANDOM FOREST significantly outperforms the baselines (paired t-test with
p < 0.01) when comparing RANDOM FOREST against the baselines in all configu-
rations. Overall, RANDOM FOREST classification using the features proposed in this
chapter clearly outperforms the baselines in both tasks.
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Table 5.4. Hyperparameters considered for optimization.

Classifier Parameter Range

Gini Impurity,
Information Gain
Min.Impurity Decrease [0,1]

DEcISION TREE Criterion

Gini Impurity,
Information Gain
Min.Impurity Decrease [0,1]

RANDOM FOREST Criterion

No. Estimators [5,20]
SVM Penalty [0,5]
Stopping Tolerance [0,1073]

Classification Hyperparameter

For each classifier used with an exception of the Naive Bayes classifier, we determine
the parameters that maximize the F1 score by employing the random search algorithm
proposed by Bergstra and Bengio [BB12]. The Naive Bayes classifier does not exhibit
parameters that could be optimized. Table 5.4 gives an overview of the parameters
that were considered during the optimization, whereas Table 5.5 summarizes the
hyper-parameters that were determined using random search. All previously shown
performance results were obtained using the specified hyper-parameters.

5.7.2 Influence of Sampling Methods

In this section, we discuss the influence of the different sampling methods. Since the
RanNDOM FOREST classifier achieves the best results, we investigate the effects of
sampling methods on our RANDOM FOREST configuration.

Figure 5.4 shows the F1 scores with respect to the sampling method for Fvents
and the individual Movies genre datasets. The use of pld-aware sampling yields up
to 17% percentage points better results than the use of stratified random sampling.

We observe that the use of a more diverse training set (i.e. a dataset including
more data from long-tail domains e.g. obtained through the pld-aware sampling) has
a significant and beneficial effect on the classification outcome (paired t-test with
p < 0.03).
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Table 5.5. Summary of classifier hyperparameters determined with random search for
the following parameters: Crit: Criterion, Imp: Min. Impurity Decrease, No: No.
Estimators, Pen: Penalty, Tol: Stopping Tolerance.

DEecisioN TREE RANDOM FOREST SVM
Dataset
Crit Imp Crit Imp No Pen Tol
Fventss ent. 0.192 ent. 0.892 13 3.53 0.0043
Events, gini  0.527 ent. 0.892 13 1.88 0.0098
Drag gini  0.360 ent. 0938 16 0.66 0.0037
Dray, gini  0.360 gini 0414 18 0.66 0.0037
Comg gini  0.360 gini 0414 18 0.66 0.0037
Com,, ent. 0.608 gini  0.160 20 0.66 0.0037
Act, gini  0.360 gini  0.160 20 0.66 0.0037
Act), ent. 0.558 gini  0.160 20 0.66 0.0037
Thr, gini  0.360 ent. 0482 16 0.66 0.0037
Thry, ent. 0.608 ent. 0482 13 0.66 0.0037
Romg ent. 0.608 ent. 0482 13 0.66 0.0037
Rom,, ent. 0.287 gini  0.160 20 0.66 0.0037
Docy ent. 0.192 gini  0.160 20 0.66 0.0037
Doc, ent. 0.099 gini  0.068 16 0.66 0.0037
Adv, ent. 0.287 gini  0.160 20 0.66 0.0037
Advy, ent. 0.287 gini  0.068 16 0.66 0.0037
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Figure 5.4. F1 scores macro averages [%] for the RANDOM FOREST classifier with
respect to dataset and sampling method.
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5.7.3 Influence of Features

Next, we discuss the influence of the proposed features. We focus on the best per-
forming classifier (RANDOM FOREST) to explore the effects of varying the features.

Table 5.6 presents the F1 scores obtained through RANDOM FOREST on the
FEvents dataset with respect to different feature combinations. Our results indi-
cate that the influence of features varies strongly dependent on the respective types
and classes. This seems intuitive, given that some classes might be more specifically
characterized by certain features, such as a set of plds. The tld/pld features alone
result in a reasonable performance for Events but not for Movies. This indicates
that the source of the markup node is stronger correlated with its actual type or
category for Fvents than for Movies. This seems intuitive, given that event-centred
Websites tend to be more focused on certain event types than movie-centred Web-
sites are focused on particular genres. However, these observations are likely to vary
strongly dependent on the actual classification task. In contrast, the node-vocab alone
is not sufficient to determine the event subtype with high F1 score. This observation
corresponds to the insufficient performance of the SD-Type baseline.

The combination of tld/pld and node-vocab results only in a slight improvement
of the results for Events,. A dependence between the two features seems intuitive
as pages extracted from the same pld are likely to be maintained by the same orga-
nization and thus typically use the same set of schema.org terms. For instance, an
event database is likely to assign the same set of properties to each event resulting in
a characteristic node-vocabulary for the events of a single pld. Since the page-vocab
considers the terms that occur on the whole page, the number of considered terms
is higher, which results in better chances to find usage of the same terms on other
Web pages. This is reflected by the fact that both combinations of tld/pld, page-vocab
and page-vocab, node-vocab lead to an improvement while the performance of tld/pld,
node-vocab is roughly the same as tld/pld only. The combination of all three features
yields in a slight decrease of the F1 score compared to tld/pld, page-vocab only, indi-
cating once more that the information contributed by node-vocab is already provided

by td/pld.

Table 5.7 shows average F1 scores using the RANDOM FOREST classifier on the
Movies datasets. In contrast to the Events datasets we can achieve relatively good
performance by employing only the node-vocab feature. Another difference is that
we can observe a slightly larger margin between the exclusive use of node-vocab and
tld/pld. This indicates that markup of movies of certain genres tend to exhibit the
same schema.org terms. Any combination of two or more features results in similar
outcomes (with approximately 1 percentage point difference). In both domains we
can see a substantial difference in the performance with respect to the sampling
methods for all feature combinations. pld-aware sampling consistently achieves higher
F1 scores than stratified random sampling, leading to the conclusion that individual
features and feature combinations benefit from pld-aware sampling.
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Table 5.6. Random Forest F1 scores macro averages [%] for different feature combi-
nations (Events datasets).

Features Events; FEvents,
tld/pld 65.30 76.29
page-vocab 62.57 79.8
node-vocab 60.66 68.09
tld/pld,page-vocab 71.01 80.03
tld/pld,node-vocab 65.38 77.65
page-vocab,node-vocab 71.70 80.27

tld/pld,page-vocab,node-vocab  71.67 79.59

Table 5.7. Random Forest F1 scores macro averages [%] for different feature combi-
nations (Movies datasets).

Features Movies; Movies),
tld/pld 66.32 80.56
page-vocab 72.27 82.14
node-vocab 73.96 82.18
tld/pld, page-vocab 72.59 82.68
tld/pld,node-vocab 74.28 82.94
page-vocab,node-vocab 74.33 82.59
tld/pld,page-vocab,node-vocab  74.46 83.14

5.7.4 Evaluation Summary

Our experiments illustrated that traditional knowledge graph completion approaches
that are not specifically designed for Web markup data may not be directly applicable
to this kind of data, mainly due to the sparsity of individuals and the lack of connec-
tivity in Web markup. Moreover, we observed that it is not sufficient to consider only
node-specific features such as node-vocab to infer missing categorical information in
Web markup. In contrast, contextual features such as tld/pld and page-vocab provide
important information to infer missing statements.

In particular, our experiments demonstrated that contextual features such as tld/-
pld and page-vocab are discriminative for both tasks under consideration. These
features are effective because many Websites focus on a particular topic, e.g. the-
ater or music events. We observed that the page-vocab feature is especially useful in
both tasks, as it describes the context of the particular node in a more specific way.
Whereas the use of the tld/pld feature can naturally only be applied to instances from
known plds, i.e. plds that are contained in the training data, performance drops are
expected when classifying data from unknown plds. However, our results indicate
that features representative for certain kinds of plds, such as page-vocab, can serve as
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a potent substitute able to efficiently classify markup from unknown sources.

Limitations arise from the focus on two particular tasks only. We anticipate
variation in performance of particular features when applying this approach to other
kinds of categorical information. Similarly, considering that our ground truth has
been constructed by relying on markup nodes where the sought-after information
was present already on the Web, one might argue that this constraint has led to a
bias towards markup nodes of generally higher quality. Additional experiments on an
unconstrained and randomly selected ground truth will investigate this assumption
further as part of future work.

5.8 Discussion

In this chapter, we unlocked an additional source of geographic Web information, i.e.,
semantic Web markup. We provided a detailed analysis of the intrinsic challenges
resulting from the typical distribution of Web markup data. In particular, we observed
noise, sparsity, and bias towards few prevalent properties and entity types. In contrast
to knowledge graphs, markup nodes are typically isolated and not integrated with
other entities within the Web page or from different data sources.

We enriched the markup by interpreting noisy and sparse Web markup and au-
tomatically inferring categorical information for particular entities. We augmented
sparse markup nodes with information, which often is essential when interpreting
markup and the corresponding Web pages. We leveraged a large amount of pub-
licly available data as training data for a supervised machine learning approach. We
employed Web markup specific features such as tld/pld, node vocabulary and page vo-
cabulary and conducted an extensive evaluation of different classification algorithms,
sampling methods and feature sets.

Our proposed configuration outperforms existing baselines significantly, with RAN-
DOM FOREST providing the most consistent performance across classes and datasets.
Our experiments, conducted on properties of events and movies, show a performance
of 79% and 83% F1 score correspondingly, significantly outperforming existing base-
lines. We demonstrated that supervised inference can enrich entity-centric categorical
information, which is essential when interpreting markup or websites in general.






GeoVectors: A Linked Corpus of OpenStreetMap
Embeddings

After improving the quality of geographic Web information with validation and en-
richment approaches, we illustrate the utility of such information. In this chapter, we
present a first application, i.e., the GeoVectors corpus. GeoVectors provides ready-
to-use embeddings of OpenStreetMap objects to enable the efficient development of
machine learning applications using geographic Web information. GeoVectors builds
on two ideas presented in Chapter 4. First, analogous to the use of key-value embed-
dings to address RQ2.2, we use unsupervised embeddings to capture the semantic of
heterogeneous OSM objects. Second, we use identity links to integrate the GeoVectors
corpus with established knowledge graphs.

6.1 Introduction

Today, OSM data is used in a plethora of machine learning applications such as
road traffic analysis [KGG20], remote sensing [VMSTF21], and geographic entity
disambiguation [TD21a]. However, as observed in Chapter 3 and 4, the effective use
of OSM data with machine learning algorithms is not trivial. Factors including 1)
a varying number of tags and details for specific geographic entities, 2) the lack of
a well-defined ontology resulting in numerous tags with unclear semantics, and 3)
missing values for any given property, substantially hinder the feature extraction for
broader OSM usage in machine learning applications.

A central prerequisite to facilitate the effective and efficient use of geographic data
in machine learning models is the availability of suitable representations of geographic
entities. Recently, latent representations (embeddings) have been shown to have sev-
eral advantages in machine learning applications, compared to traditional feature
engineering, in a variety of domains [LWSY 18, XYW™'16, WL17]. First, embeddings
can capture semantic entity similarity not explicitly represented in the data. Second,
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embeddings facilitate a compact representation of entity characteristics, overall re-
sulting in a significant reduction of memory consumption [TD21a]. Whereas much
work has been performed to provide pre-trained embeddings for textual data and
knowledge graphs [WZJ20, WMWG17], only a few attempts, such as [KS17], aimed
to provide such latent representations for geographic entities and captured selected
entities only. From the technical perspective, the creation of OSM embeddings is
particularly challenging due to the large scale of OSM (more than 1430 GB of data as
of June 2021') and the OSM data format ( “protocolbuffer binary format”?), requir-
ing powerful computational infrastructure and dedicated data extraction procedures.
Furthermore, the semi-structured data format of OSM tags requires specialized em-
bedding algorithms to capture the semantics of entity descriptions. As a result of
these challenges, currently, no datasets that capture latent representations of OSM
entities exist.

The GeoVectors corpus of embeddings presented in this chapter is a significant step
to enable the efficient use of extensive geographic data in OSM by machine learning
algorithms. GeoVectors facilitates access to these embeddings using semantic tech-
nologies. We utilize established representation learning techniques (word embeddings
and geographic representation learning) to capture various aspects of OSM data. We
demonstrate the utility of the GeoVectors corpus in two case studies covering the
tasks of type assertion and link prediction in knowledge graphs. GeoVectors follows
the 5-Star Open Data best practices [BLO6] in data publishing and reuses existing vo-
cabularies to lift OpenStreetMap entities into a semantic representation. We provide
a knowledge graph that semantically represents the GeoVectors entities and interlinks
them with existing resources such as Wikidata, DBpedia, and Wikipedia. With the
provision of pre-computed latent OSM representations, we aim to substantially ease
the use of OSM entities for machine learning algorithms and other applications.

To the best of our knowledge, currently, there are no dedicated resources that pro-
vide extensive reusable embeddings for geographic entities at a scale comparable to
GeoVectors. The absence of comprehensive geographic data following a strict schema
makes it particularly challenging to process geographic data in machine learning en-
vironments. We address these problems by providing models capable of embedding
arbitrary geographic entities in OSM. Moreover, we enable easy reuse by making both
models and encoded data publicly available.

Contributions. The main contributions of this chapter are as follows:

e We provide GeoVectors — a world-scale corpus of embeddings covering over 980
million geographic entities in 188 countries using two embedding models and
capturing the semantic and the geographic dimensions of OSM entities.

e We introduce an open-source embedding framework for OSM to facilitate the

thttps://wiki.openstreetmap.org/wiki/Planet.osm
Zhttps:/ /wiki.openstreetmap.org/wiki/PBF _Format
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reusable embedding of up-to-date entity representations®.

e We provide a knowledge graph to enable semantic access to GeoVectors.

The remainder of this chapter is organized as follows. In Section 6.2, we discuss
related work. Then, In Section 6.3, we discuss the predicted impact of GeoVectors.
In Section 6.4, we present the embedding generation framework. Next, in Section
6.5, we present the GeoVectors knowledge graph. We describe the characteristics of
the GeoVectors corpus in Section 6.6. We illustrate the usefulness of GeoVectors in
two case studies in Section 6.7 and discuss availability and utility in Section 6.8.
Finally, in Section 6.9, we provide a discussion.

6.2 Related Work

This section discusses related work in the areas of word embeddings and knowledge
graph embeddings.

Word Embeddings: A multitude of natural language processing algorithms
adopts word embedding models for downstream tasks. [WZJ20] conducted a re-
cent survey on neural word embeddings algorithms. Recent approaches like BERT
[DCLT19], and ELMo [PNI"18] exploit the context information, e.g., the word or-
der in sentences, to infer latent representations. In contrast, the fastText algorithm
[JGBM17] infers the latent representation of each word individually. As OSM tags
describing geographic entities neither have any natural order nor form any sentences,
we choose fastText over BERT and ELMo to create embeddings.

Knowledge Graph Embeddings: Knowledge graph embeddings have recently
evolved as an important area to facilitate latent representations of entities and their
relations [WMWG17, MJC*20]. General-purpose knowledge graphs like Wikidata
[VK14], DBpedia [LIJ*15], and YAGO [HSBW13], and even specialized KGs like
EventKG [GD19] and LinkedGeoData [SLHA12| typically only include the most
prominent geographic entities. Compared to OpenStreetMap, the number of geo-
graphic entities captured in such knowledge graphs is relatively low [TD21a]. For
instance, as of June 2021, Wikidata contained less than 8.5 million entities with geo-
graphic coordinates, while OpenStreetMap contained more than 7 billion entities. The
specific geographic entities or entity types, e.g., roads or shops, might not be relevant
or prominent enough to be captured by the general-purpose knowledge graphs. Nev-
ertheless, these entities play an essential role for various downstream applications, for
instance, for land use classification [SVAT17] or in the prediction of mobility behav-
ior [WYSG17]. Consequently, pre-trained embeddings of popular knowledge graphs,
such as Wikidata [LWS*19] or DBpedia, lack coverage of geographic entities required
by spatio-temporal analytics applications. In contrast, the GeoVectors embeddings

3https://github.com/NicolasTe/GeoVectors
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proposed in this chapter specifically target geographic entities and ensure adequate
coverage in the resulting dataset.

6.3 Predicted Impact

GeoVectors is a new resource. This section discusses the predicted impact of GeoVec-
tors regarding the advances of state of the art in geographic embedding datasets,
geographic information retrieval, machine learning applications, knowledge graph em-
beddings and broader adoption of semantic web technologies.

Advances of the state of the art: We advance the state of the art by providing the
first large-scale corpus of pre-trained geographic embeddings. We carefully select es-
tablished representation learning techniques to capture both the semantic dimension
(What entity type does the OSM entity represent?) and the spatial dimension (Where
is the entity located?) and adapt these techniques to OSM data to create meaningful
latent representations. The GeoVectors corpus is the first dataset that captures the
entire OpenStreetMap, thus offering the data on the world scale. Therefore, GeoVec-
tors is significantly larger than any existing geographic embedding resources. For
instance, the Geonames embedding [KS17] provides a dataset containing less than
358 thousand entities, whereas GeoVectors contains over 980 million entities.

Impact on geographic information retrieval: Geographic information retrieval (GIR)
is a field focussing on addressing geographic information needs [PCJ*18]. Recent GIR
approaches build on geographic embeddings to address several use cases, including
tag recommendation for urban complaint management [GHW™19], geographic ques-
tion answering [CGMS21], and POI categorization [TKS20]. While these approaches
demonstrate the utility of geographic embeddings for GIR tasks, the laborious gener-
ation process hinders the adaption of geographic embeddings for other GIR tasks such
as geographic named entity recognition, next location recommendation, or geographic
relevance ranking. In this context, the availability of large-scale and accessible ge-
ographic embeddings is a vital prerequisite to stimulate research in the GIR field.
The GeoVectors corpus presented in this chapter addresses these requirements by
providing ready-to-use geographic embeddings of the entire OpenStreetMap.

Impact on machine learning applications: Existing machine learning applications
use geographic data to address numerous use cases including location recommendation
[LWSY18, XYW*16], human mobility prediction [WL17], and travel time estimation
[WLFY21]. The variety of use cases highlights the general importance of geographic
information for machine learning models. However, these approaches conduct a costly
feature extraction process or learn supervised embeddings of geographic entities on
task-specific datasets for specific tasks. In this context, the availability of easy-to-use
representations of geographic entities at scale provided by GeoVectors is crucial to
enabling and easing the further development of geographic machine learning models
and geographic algorithms.
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Impact on knowledge graph embeddings: Knowledge graph embeddings generated
without the specific focus on geographic entities have shown success in a large va-
riety of knowledge graph inference and enrichment tasks, including type assertions
and link prediction [Paul7]. We envision that GeoVectors can further enhance the
quality of embeddings used in the context of these tasks: While geographic entities
are part of many popular knowledge graphs such as Wikidata and DBpedia, their
specific characteristics are still rarely considered. Existing approaches typically focus
on the graph structure, but rarely on the property values assigned to the single nodes
[KKL*19]. However, both tags and coordinates of geographic entities bear valuable
semantics. Specifically, the geographic interpretation of coordinates may heavily lift
the role of coordinates in knowledge graph embeddings. In the future, the GeoVec-
tors embeddings can directly support knowledge graph inference and enrichment and
creation of geographically aware embeddings from other sources.

Impact on adoption of semantic web technologies: In the context of the Seman-
tic Web, a variety of models and applications, including link prediction, creation of
domain-specific knowledge graphs [GD19] and Question Answering for event-centric
questions [CGD20] make use of geographic data. Semantic technologies have been
applied to a variety of domains that require spatio-temporal data, including crime
localization, transport data, and historical maps [RP20, SCCC20, SKD*20]. Further-
more, with the increased availability of mobile devices, location-based algorithms such
as next location recommendation or trip planning evolved. Recently, SPARQL ex-
tensions for integrated querying of semantic and geographic data have been proposed
[HSJ20]. In this context, the availability of easy-to-use representations of geographic
entities at scale is crucial to enable further development of semantic models and
geographic algorithms and their adoption in real-world scenarios. Increasing avail-
ability of geographic data accessible through semantic technologies, as facilitated by
GeoVectors, and seamless integration of this data with other semantic data sources
in the Linked Data Cloud can attract interested users from various disciplines and
application domains, including geography, mobility, and smart cities.

6.4 Framework for Embedding Generation

The GeoVectors framework facilitates the generation of OSM embeddings that cap-
ture geographical (GV-NLFE) and semantic (G V-Tags) similarity of OSM entities. In
this section, we first describe the OSM data model. Then, we provide an overview
of the GeoVectors embedding generation process and present embedding algorithms
that generate the proposed GV-NLE and G'V-Tags embeddings.
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OpenStreetMap Snapshots

Sampling of Pretrained | Load Model Encode OSM Snapshots
e retraine e Parallel
Training Data Word > GVTags ( )

Embeddings e
= DT

Spatial Indexing| | [Tt
GV-NLE Model GV-NLE 17 17
Training Model ] ’ GeoVectors Corpus ‘ ’ GeoVectors KG ‘
Training Phase Encoding Phase

Figure 6.1. Overview of the embedding generation process.

6.4.1 GeoVectors Embedding Generation Overview

The GeoVectors embeddings reflect semantic and geographic relations of OSM enti-
ties, where semantic relations capture semantic entity similarity, expressed through
shared annotations, and geographic relations capture geographic entity proximity. In
general, the relevant relation type is application-dependent. Therefore, we compute
two embedding datasets, one capturing geographic and the other semantic similarity
of OSM entities:

e (1) GV-NLE is our geographic embedding model based on the Neural Location
Embeddings (NLE) [KS17] — an approach to capture the spatial relations of
geographic entities.

e (2) GV-Tags is our semantic embedding model based on fastText [JGBM17] —
a state-of-the-art word embedding model that we apply on the OSM tags.

The embedding generation process that takes as input a set of OSM snapshots and
generates the GeoVectors corpus and the GeoVectors knowledge graph is illustrated
in Figure 6.1. We divide this process into the training phase in which we train the
GV-NLE model and the encoding phase in which we apply embedding models to
encode OSM entities.

The training of an embedding model is typically significantly more expensive than
the application of the model. Due to the large scale of OpenStreetMap (as of June
2021, OSM contains more than 7 billion entities), the training of embedding models
on the entire corpus is not feasible. Therefore, in the training phase, we sample a
subset of OSM entities from OSM snapshots to serve as training data. Formally, we
define an OSM snapshot s taken at a time ¢ in a region r by s = (O, t,r), where O is a
set of OSM objects within the specified region r at this time. We discuss the sampling
process in Section 6.4.2. Based on the sampled data, we train our embedding models.
To generate semantic embeddings, we utilize existing pre-trained word embedding
models.
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In the encoding phase, we first load the trained embedding model and then pass
all individual entities from an OSM snapshot to the model. The application of the
model can be parallelized by applying the model to each snapshot separately. The
model encodes the OSM entities and stores the generated embedding vectors into an
easily processable, tab-separated value file.

We provide an open-source implementation of the embedding framework, includ-
ing the pre-trained embedding models*. This framework enables the computation
of up-to-date embeddings of individual OpenStreetMap snapshots. We also generate
the GeoVectors knowledge graph that enables semantic access to GeoVectors and is
described in detail in Section 6.5.

We performed the entire extraction and embedding process on a server with 6 TB
of memory and 80 Intel(R) Xeon(R) Gold 5215M 2.50GHz CPU cores. Our framework
required about four days for data extraction, model training, and data encoding.

6.4.2 Sampling of OSM Training Data for Embedding
Algorithms

At the beginning of the training phase, we extract a representative entity subset to use
as a training set. To ensure representativeness, we employ the following conditions:
First, the training set should have a balanced geographic distribution to avoid biases
towards specific geographic regions. Second, the training set should only include
meaningful OSM entities. For instance, many OSM nodes do not provide any tags
and only represent spatial primitives for composite entities, such as ways and relations.
Such nodes do not correspond to real-world entities and, taken isolated, do not convey
any meaningful information. Therefore, we exclude nodes without tags from the
training data.

Algorithm 2 presents the sampling process to obtain training data. The input of
the algorithm consists of a minimum number n of training samples to be collected and
a corpus of OpenStreetMap snapshots S (e.g., country-specific snapshots). First, we
calculate the total geographic area covered by all snapshots using the geo_area(s.r)
function (line 1), where s.r denotes the region of the OSM snapshot s. To enforce a
uniform geographic distribution, we calculate the number of samples extracted from
a single snapshot regarding its geographic size. For each snapshot, we determine
the number of samples ng to be extracted proportionally to the geographic area of
the snapshot (line 4). Then, the scan_snapshot function divides the snapshot into
linked, tagged and other entities (line 5). Linked entities provide an identity link to
external datasets. As identity links typically indicate good data quality, our algorithm
includes all linked entities. Tagged entities provide at least one tag. Other entities are
entities that neither provide an identity link nor a tag. Next, the algorithm samples
all linked entities (even if their number exceeds ns) into the result set 7 (line 6). If

4https://github.com/NicolasTe/GeoVectors
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Algorithm 2: Sample Training Data
Input : S: OpenStreetMap snapshots
n: Minimum number of training examples
Output: R: Set of training examples

1 total_area <— ) _ogeo_area(s.r);

2 R« {}

3 forall s € S do

4 | ng<n-geo_area(s.r) / total_area;

5 linked, tagged, other <— scan_snapshot(s);
6 T < linked;

7 | if |T| < n, then

8 | T + T U sample(tagged, (n, — |T1));
9 end

10 | if |T] < n, then

11 | T < T U sample(other, (n, — |T));
12 end

13 R+ RUT;
14 end
15 return R

the size of 7 does not reach ng, the function sample uniformly selects at maximum
ns — |7 | random samples from the tagged entities (lines 7-9). If n; is still not reached,
we sample the remaining examples from the other entities (lines 10-12). Finally, the
algorithm returns the union of all snapshot-specific training examples R (lines 13-15).

6.4.3 GV-NLE Embedding of OSM Entity Locations

The GV-NLE model builds on the neural location embedding (NLE) model [KS17]
that captures the geographic relations of a set of geographic entities in a latent repre-
sentation. The NLE method is an established method to create reusable geographic
embeddings. GV-NLE extends the NLE model with a suitable encoding algorithm to
encode previously unseen OSM entities.

Training: GV-NLE first constructs a weighted graph representing OSM entities
and their mutual distances. The OSM entities form the nodes of the graph. The
edges encode the geographic distance between OSM entities. For each node n, GV-
NLE constructs edges between n and the k geographically nearest neighbor nodes.
Following [KS17], we set k = 50. The edge weights represent the haversine distance
between two nodes in meters, which measures the geographic distance of two points
while taking the earth’s curvature into account. To facilitate an effective distance
computation between OSM entities, we employ a Postgres database that provides
spatial indexes. Based on the graph, a weighted DeepWalk algorithm [PAS14] learns
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the latent representations of the OSM nodes. GV-NLE computes a damped weight
w' = max(1/in(w), e), where w denotes the original edge weight, in the natural loga-
rithm, and e Euler’s number. The use of damped weights further prioritizes short
distances between the nodes. The normalized damped weights serve as a probability
distribution for the transition probabilities of the random walk within the DeepWalk
algorithm.

FEncoding: As the original NLE algorithm does not generalize to unseen entities,
i.e., entities that are not part of the training set, we extend the NLE model with a
suitable encoding algorithm. The idea of the GV-NLE encoding is to infer a repre-
sentation of an entity from its geographically nearest neighbors. We calculate the
weighted average of the latent representation of the geographically nearest k& = 50
entities in the training set.

1 / /
w(o,0) - NLE(o
S (07 ZN (0,0) - NLE(0)
Here, o denotes an OSM entity, NLE(0') denotes the latent representation of an entity
o' according to the NLE algorithm, N, denotes the set of the k geographically nearest
OSM entities in the training set. We define the weighting term w(o, o) as

)
dist(o,0')
where dist(o,0") denotes the geographic distance between o and o’. w(o,0’) assigns

a higher weight to geographically closer entities. We apply a logarithm function to
soften high weights of very close entities.

GV-NLE(o0) =

w(o,0") =In(1+

6.4.4 GV-Tags Embedding of OSM Entity Tags

To infer the G'V-Tags representations, we adopt fastText, a state-of-the-art word
embedding model that infers the latent representation of single words individually
[JGBM17]. As the tags of OSM entities do not have any natural order, we chose
fastText to embed them.

Training: Pre-trained word vectors are available at the fastText website®. As most
of the OSM keys are in English, we chose the 300-dimensional English word vectors
trained on the Common Crawl, and Wikipedia [GBG'18].

Encoding: To encode an OSM entity o, we utilize the individual word embeddings
of the keys and values that form the entity tags 0. 7. We map entities without any
tags to a vector of zeros.

2_\01.T\ D kmeor JHR) + ft(v), if [0.T] >0
{0359, otherwise.

GV-Tags(o) = {

Shttps://fastText.cc/
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Here, {0}% denotes a 300-dimensional vector of zeros, and ft(z) denotes the
fastText word embedding of x.

6.5 GeoVectors Knowledge Graph

Semantic access to the GeoVectors embeddings is of utmost importance to facilitate
the use of the dataset in downstream semantic applications. Therefore, GeoVectors
is accompanied by a knowledge graph that models the embedding metadata. This
metadata facilitates interlinking of the embeddings with established knowledge graphs
such as Wikidata and DBpedia using existing entity links. This way, the GeoVectors
embeddings can be used to enrich geographic entities in these knowledge graphs.
The GeoVectors knowledge graph includes more than 28 million triples and is made
available under a public SPARQL endpoint®.

The GeoVectors knowledge graph is based on three established vocabularies. We
utilize the LinkedGeoData [SLHA12] and the Basic Geo vocabulary” to model the
spatial dimension of geographic entities, as well as the PROV Ontology [BCC*13] for
modeling data provenance, i.e., where the geographic entities were extracted from and
what they represent. Figure 6.2 illustrates the schema of the GeoVectors knowledge
graph, including its prefixes and namespaces.

Each geographic entity in the knowledge graph is typed as geovec:Embedded-
SpatialThing, which encapsulates the classes geo:SpatialThing and prov:Entity.
We group the relevant properties shown in Figure 6.2 regarding these three classes:

e geo:SpatialThing: Each geographic entity is either a node, a way or a re-
lation and assigned to the respective LinkedGeoData class. In addition, the
GeoVectors knowledge graph provides the entity’s latitude and longitude.

e prov:Entity: For tracking the origins of an embedding, each geographic entity
is linked to the dataset it is extracted from (prov:Collection). Through ver-
sioning of these datasets, the GeoVectors corpus and the GeoVectors knowledge
graph can be extended in future versions.

e geo:EmbeddedSpatialThing: The geographic entities are linked to other re-
sources representing the same (owl:sameAs) or a related resource (dcterms:
related) in Wikidata, DBpedia and Wikipedia.

Listing 6.1 presents the triples describing the geographic entity representing the
city of Berlin. These triples provide the geolocation of Berlin, references to its coun-
terparts in Wikidata, DBpedia, Wikipedia and OpenStreetMap, as well as provenance
information (the embeddings were extracted from an OSM snapshot from November

Shttp://geovectors.13s.uni-hannover.de/sparql
Thttps://www.w3.org/2003/01/geo/wgs84_pos
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2020). Access to the GV-Tags and GV-NLE embedding is enabled through the Zen-
odo DOIs 10.5281/zenodo.4321406 and 10.5281/zenodo.4957746 pointing to the
GV-Tags and GV-NLE embeddings, the entity type (1gd:Node) and its identifier
(240109189).

prov:generated

AtTime
[ prov:Collection —ouwt:version
Info
prov:wasDerivedFrom
prov:had

prov:Entity PrimarySource xsd:anyURI

dcterms: xsd:anyURI

| xsd:double | | xsd:double |
w

Igd:Node

geo:longitude

geo:latitude il related
geo:SpatialThing ]—(>{ geo?:;ﬁ.?;}?ﬁ;jded Edfs:label
T dcterms:

Igd:Relation

dcterms:identifier/0W|ZsameAS isPartOf xsd:anyURI

/
[ xsd:nonNegativelnteger | owl:Thing

Prefixes:

geovec: http://geovectors.I3s.uni-hannover.de/resource/ dcterms: http://purl.org/dc/terms/
geovec-s: http://geovectors.I3s.uni-hannover.de/schema/ owl: http://www.w3.0rg/2002/07/owl#
geo: http://www.w3.0rg/2003/01/geo/wgs84 _pos# xsd: http://www.w3.0rg/2001/XMLSchema#
Igd: http://linkedgeodata.org/meta/ rdfs: http://www.w3.0rg/2000/01/rdf-schema#

prov: http://www.w3.org/ns/prov#

Figure 6.2. Schema, prefixes and namespaces of the GeoVectors knowledge graph. —
marks a rdfs:subClassOf relation, — denotes the domain and range of a property.

Listing 6.1: RDF representation of Berlin in the GeoVectors Knowledge Graph.

geovec:v2_n_240109189 a geovec-s:EmbeddedSpatialThing;
a lgd:Node;
geo:longitude "13.3888599"""xsd:double;
geo:latitude "52.5170365"""xsd:double;
dcterms:identifier 240109189;
rdfs:label "Berlin";
dcterms:isPart0f <https://doi.org/10.5281/zenodo .4321406> ;
dcterms:isPart0f <https://doi.org/10.5281/zenodo .4323008> ;
owl:sameAs <https://www.wikidata.org/wiki/Q64>;
dcterms:related
<https://de.wikipedia.org/wiki/Berlin>;
dcterms:related
<http://de.dbpedia.org/resource/Berlin >;
prov:hadPrimarySource


https://doi.org/10.5281/zenodo.4321406
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<https://www.openstreetmap.org/node/240109189>;
prov:wasDerivedFrom geovec:v2/collection.
geovec:v2/collection a prov:Collection;
prov:generatedAtTime "2020-11-10"""xsd:date;
owl:versionInfo "1.0".

6.6 (GeoVectors Embedding Characteristics

In GeoVectors V1.0, we extracted representations of nodes, ways, and relations from
OpenStreetMap snapshots at country-level from October 2020'*. We capture all OSM
entities having at least one tag. Entities without any tags typically represent geomet-
ric primitives that isolated carry no semantics. Compound OSM entities such as ways
and relations typically subsume such geometric primitives and are better suited for
the representation. Table 6.1 summarizes the number of extracted representations
regarding their geographic origin. In addition, Figure 6.3 provides a visualization
of the geographic coverage of the GeoVectors corpus. Overall, we observe high geo-
graphic coverage. In total, GeoVectors contains representations of over 980 million
OpenStreetMap entities.

The most significant fraction of extracted representations is located in Europe
(430 million), followed by North America (240 million) and Asia (150 million). The
number of representations per region follows the distribution of available volunteered
information in OpenStreetMap, most prominent in the regions mentioned above. Nev-
ertheless, GeoVectors provides a considerable amount of entity representations for the
remaining regions, e.g., 97 million entities for Africa. We believe that this amount of
data is sufficient for many real-world applications.

Table 6.1. Number of OSM entities contained in GeoVectors by region.

Continent No. No. No. Total
Nodes Ways Relations

Africa 9.6-106  8.7-107 2.4-10° 9.7-107
Antarctica 6.9-10% 8.4-10% 9.2.103 1.0-10°
Asia 1.5-107 1.8-10° 6.7 -10° 1.5-108
Australia/Oceania 5.2-10°  7.6-10° 1.7-10° 1.3-107
Europe 9.6-107 3.2-108 5.6 - 106 4.3-108
Central-America 4.4-10° 4.1-106 1.6 -10* 4.6 - 109
North-America 51-107  1.9-108 1.8-106 2.4-108
South-America 83-10° 2.6-107 3.9-10° 3.5-107

Total 1.8-108 7.8-108 9.1-106 9.8 - 108
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Figure 6.3. Heatmap visualization of geographic embedding coverage. Map image:
©OpenStreetMap contributors, ODbL.

6.7 Case Studies

To illustrate the utility of the GeoVectors embeddings, we have conducted two case
studies dealing with the type assertion and link prediction tasks. These case studies
were selected to demonstrate how widely adopted machine learning models can benefit
from the GeoVectors embeddings based on semantic and geographic entity similarity.
Other potential use cases include but are not limited to next trip recommendation,
geographic information retrieval, or functional region discovery.

In both case studies, we use the same widely adopted classifiers: The RANDOM
FOREST model is a standard random forest classifier. We use the implementation
provided by the scikit-learn library® with the default parameters. The MULTILAYER
PERCEPTRON model is a simple feed-forward neural network. The hidden network
layers have the dimensions [200, 100, 100] and use the ReLu activation function.
The classification layer uses the softmax activation function. The network is trained
using the Adam optimizer and a categorical cross-entropy loss. We use the default
parameters from the Keras API?. As the purpose of the case studies is to demonstrate
the utility of GeoVectors, rather than achieving the highest possible effectiveness
of the models, we adopt the default model hyper-parameters without any further
optimization.

6.7.1 Case Study 1: Type Assertion

The goal of this case study is to assign Wikidata classes to OSM entities, which aligns
well with the established task of completing type assertions in knowledge graphs
[Paul7]. We expect that this case study particularly benefits from the semantic
dimension of the OSM entities as captured by the GV-Tags embeddings.

8https://scikit-learn.org/
9https://keras.io/
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Test and training dataset generation: To obtain a set of relevant Wikidata classes,
we first extract all OSM entities that possess an identity link to Wikidata. All Wiki-
data classes that are assigned to at least 10,000 OSM entities are selected for this case
study. This way, we obtain 32 Wikidata classes, including “church building”!® and
“street”!!, as well as more fine-grained classes such as “village of Poland”!2. Finally,
we balance the classes by applying random under-sampling and split the data into a
training set (80%, 285k examples) and a test set (20%, 71k examples).

Performance: Table 6.2 presents the classification performance of the RANDOM
FOREST and MULTILAYER PERCEPTRON models using G'V-Tags and GV-NLE in
terms of precision, recall and F1-score.

As expected, we observe that the GV-Tags embeddings achieve a better perfor-
mance than the GV-NLFE embeddings concerning all metrics. In particular, G'V-Tags
achieves an Fl-score of 85.95% and 83.43% accuracy using the MULTILAYER PER-
CEPTRON model. The RANDOM FOREST model using GV-NLE embeddings reaches
an Fl-score of 50.17%. This result can be explained by a few classes such as “village
of Poland” that are correlated with a location. The results of this case study confirm
that the semantic proximity information is appropriately captured by the GV-Tags
embeddings.

6.7.2 Case Study 2: Link Prediction

This case study aims to assign OSM entities to their countries of origin. This task
is a typical example of link prediction, where the missing object of an RDF triple
is identified [Paul7]. We expect that this case study particularly benefits from the
GV-NLE embeddings based on geographic proximity.

Test and training dataset generation: To obtain a set of countries, we sample
OSM entities from the country-specific snapshots'® as described in Algorithm 2 and
preserve the origin information. In analogy to case study 1, we select all countries
with at least 10,000 examples and obtain 88 different countries. Again, we balance
the examples by applying random under-sampling and split the data into a training
set (80%), 687k examples) and a test set (20%, 171k examples).

Performance: Table 6.3 presents the classification performance of the RANDOM
FOREST and MULTILAYER PERCEPTRON models using G'V-Tags and GV-NLE in
terms of precision, recall, and Fl-score. As expected, we observe that GV-NLE
achieves a better performance than the G'V-Tags embeddings concerning all metrics
on this task. In particular, the GV-NLE embeddings achieve an Fl-score of 96.03%
and 94.80% accuracy using the MULTILAYER PERCEPTRON classification model. In
contrast, the GV-Tags embeddings achieve an Fl-score of only 29.91% and 20.20%

Whttps:/ /www.wikidata.org/wiki/ Q16970

Uhttps:/ /www.wikidata.org/wiki/Q79007

https: / /www.wikidata.org/wiki/Q3558970

13Country-specific snapshots are available at https://download.geofabrik.de/.
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Table 6.2. Precision, recall and Fl-score (macro averages) and accuracy [%] of type
assertion.

GV-Tags GV-NLE
Precision Recall F1  Accuracy Precision Recall F1  Accuracy
RANDOM FOREST 92.80 69.07 77.37 69.06 70.97 41.53  50.17 41.53
MULTILAYER PERCEPTRON 90.18 83.41 85.95 83.43 63.70 36.68 41.69 36.66

Table 6.3. Precision, recall and Fl-score (macro averages) and accuracy [%] of link
prediction.

GV-Tags GV-NLE
Precision Recall F1  Accuracy Precision Recall F1  Accuracy
RanpoM FOREST 84.38 20.25 29.91 20.28 99.08 89.79  93.67 89.78

MULTILAYER PERCEPTRON 86.68 17.21  25.39 17.23 96.03 94.89 95.39 94.89

accuracy on this task because the OSM tags of an OSM entity are rarely related
to its country of origin. The results of this case study confirm that the GV-NLE
embeddings appropriately capture geographic proximity.

6.8 Availability & Utility

The GeoVectors website!* provides a dataset description, the embedding framework
as well as pointers to the following resources:

e GeoVectors embeddings: We provide permanent access to the GeoVectors em-
beddings and the trained models on Zenodo under the Open Database License®®.
To facilitate efficient reuse, we provide embeddings in a lightweight TSV format.

e The GeoVectors knowledge graph described in Section 6.5 can be queried through
a public SPARQL endpoint that is integrated into the GeoVectors website?.
In addition, we provide an interface for the label-based search of knowledge
graph resources. The resources can be accessed both via HI'ML pages and via
machine-readable formats. A machine-readable VolD description of the dataset
is provided and integrated into the knowledge graph. New dataset releases will
imply knowledge graph updates, where each release is accompanied by a new
instance of prov:Collection.

e The GeoVectors embedding generation framework presented in Section 6.4 is
available as open-source software on GitHub? under the MIT License.

http://geovectors.13s.uni-hannover.de/
https://opendatacommons.org/licenses/odbl/
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In the beginning of Chapter 6, we have presented the benefits of using geographic
embeddings in a variety of domains [LWSY18, XYW'16, WL17]. With GeoVectors,
we aim at providing access to easily reusable embeddings of geographic entities that
can directly support tasks in these and other domains. Due to the task-independent
nature of our embedding generation framework, we envision high generalizability of
GeoVectors in a variety of application scenarios.

For demonstrating the effectiveness of the GeoVectors embeddings in different
scenarios, we have conducted two case studies presented in Section 6.7, which illus-
trate that the GeoVectors embeddings adequately capture both the semantic and
geographic similarity of OSM entities. Therefore, we believe that GeoVectors eases
the use of OSM data and is of potential use for many machine learning and semantic
applications that rely on geographic data. Finally, the GeoVectors framework can be
reused to infer embeddings from arbitrary OSM snapshots.

For sustainability and compliance with up-to-date OSM data, we plan yearly
releases of new embeddings versions.

6.9 Discussion

In this chapter, we presented GeoVectors — a linked open corpus of OpenStreetMap
embeddings. GeoVectors is entirely constructed from geographic Web information.
GeoVectors contains embeddings of over 980 million OpenStreetMap entities in 180
countries that capture both their semantic and geographic entity similarity.

GeoVectors constitutes a unique resource of geographic entities concerning its scale
and its latent representations. We conducted two case studies, i.e., type assertion
and link prediction, that demonstrated the capability of the latent representations to
capture semantic and geographic properties for machine learning models.

Further, we follow best practices in data publishing and integrate GeoVectors
with other data sources of geographic information on the Web using identity links.
The GeoVectors knowledge graph provides a semantic description of the corpus and
includes identity links to Wikidata and DBpedia. We further provide an open-source
implementation of the proposed GeoVectors embedding framework that enables the
dynamic encoding of up-to-date OpenStreetMap snapshots for specific geographic
regions.



Application to Event Impact Prediction

This chapter presents a second application scenario for geographic Web information.
In particular, we consider the problem of predicting the impact of public special events
on road traffic. Such predictions are especially challenging because they require the
combination of various information sources. First, event information is necessary to
recognize the taking place of an event. Web markup, discussed in Chapter 5 is a
possible source of event information. Second, road network information is essential
to analyze and quantify the event’s impact. OpenStreetMap, discussed in Chapter 3
and 4, is a prominent source for road network data. Third, context information, e.g.,
the event venue capacity, is vital to facilitate accurate predictions. Such information
is often provided by knowledge graphs and is accessible via links as discussed in
Chapter 4. We combine these information sources to measure the event impact on
road traffic. Finally, we facilitate the prediction of event impact using a supervised
machine learning model.

7.1 Introduction

Mobility behavior in urban areas is influenced by a wide variety of factors, such as
seasonal and time-dependent patterns, weather conditions, construction sites, and,
in particular, planned special events such as concerts, fairs or sports matches. In
practice, mobility service providers, urban planners or citizens rely on basic heuristics
to estimate mobility behavior, usually taking into account temporal differences only,
i.e. other prevalent factors are still widely ignored when planning routes or estimating
mobility needs in the short-, medium-, or long-term [JLB16].

Data about mobility behavior as well as influential factors is being generated
at unprecedented scale. This includes floating car data (FCD) generated by built-
in GPS devices, route planning requests to public transportation apps as well as
navigation systems, or data reflecting contextual factors, such as weather conditions

119



120 Chapter 7 Application to Event Impact Prediction

or planned special events. In particular, Web mining can surface unprecedented data
to capture, understand, explain and predict mobility behavior. Whereas data becomes
increasingly available, it is however, usually incomplete and highly heterogeneous,
posing significant challenges with respect to cleansing, smoothing or integration when
aiming to build accurate mobility models.

Recent research has recognized the potential arising from the widespread avail-
ability of mobility data, e.g. to investigate the impact of traffic incidents on road
networks [PDGS15] and to predict the impact of major urban events on public trans-
portation usage [RBRP17] or on road traffic [KMN14]. However, while such events
differ significantly with respect to their scale, venue, scope, type, or audience, limited
research exists on understanding the impact of event characteristics on mobility needs
in urban areas. In addition, no established models are available for computing the
event-induced load, i.e. impact on particular units or subgraphs of a transportation
graph, such as a road network.

In this chapter, we present a supervised approach to predict the spatial and tem-
poral dimensions of the impact of planned special events on road traffic. We utilize
a range of features to characterize events, mobility behavior as well as urban infras-
tructure. We apply our approach to historic data about mobility behavior containing
over 195 million records as well as data about influential events in the city of Hanover
(Germany), spanning a time period from October 2017 to January 2018 in which
150 major urban events took place. Our results demonstrate that, we consistently
outperform both naive and established baselines, demonstrating an error reduction
of up to 27% with respect to mean absolute error (MAE).

Applications of this work include augmentation of route planning apps and jour-
ney recommendations with event-driven traffic predictions, including areas and spe-
cific paths in a transportation graph affected by the urban events, or the long-term
understanding of event impact on mobility patterns to enable more precise planning
of urban mobility infrastructures and services.

Contributions. The key contributions of this chapter include:

a novel formalization and metrics for computing the spatial and temporal di-
mensions of impact of planned special events on road traffic,

e an algorithm to identify subgraphs of the transportation graph that are typically
affected by planned special events,

e the assessment of features and supervised models that are well suited for both
the available data and the considered regression problems,

e insights into the characteristics of event impact and experimentally identified
thresholds able to distinguish event-induced traffic load as opposed to periodic
or temporal traffic fluctuations.
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The remaining chapter is organized as follows: Section 7.2 discusses related work.
Then, Section 7.3 introduces the overall problem of predicting the impact of planned
special events. Section 7.4 proposes dedicated metrics for the prediction of the spa-
tial dimension of event impact on road traffic, while Section 7.5 proposes respective
metrics for the temporal dimension of event impact. Next, Section 7.6 introduces our
supervised approach for impact prediction, i.e. the considered features and regression
models. Section 7.7 introduces our evaluation setup, while Section 7.8 provides a
case study on typically event-affected road networks. Performance results and fea-
ture analysis for the spatial and temporal dimensions of event impact are presented in
Section 7.9 and Section 7.10, respectively. Section 7.11 summarizes key findings and
limitations and briefly discusses future work, while Section 7.12 provides an overall
discussion.

7.2 Related Work

In the following we present related work in the areas of impact of planned special
events on road traffic and public transportation, analysis of urban road networks,
road traffic forecasting and impact of incidents in more detail.

Impact of planned special events on road traffic. To the best of our knowl-
edge, the only approach that directly addresses the task of prediction of impact of
planned special events on urban traffic tackled in this chapter is the category-based
modelling approach (CBMA) proposed by Kwoczek et al. [KMN14]. CBMA is a
simple average model, which predicts the spatial impact of events on road traffic by
computing averages for each event category. The impact is defined as an average traf-
fic delay on streets located within the 500m distance of the event venue. In contrast,
in this chapter we develop specialized machine learning models for impact predic-
tion. We adopt [KMN14] as a baseline in our experiments and demonstrate superior
capacity of our models with respect to [KMN14].

Further aspects of event impact. Several research works addressed other
aspects of planned special events in urban areas and analyzed the corresponding traffic
situations. Whereas the problems addressed by these articles are related to traffic in
the context of events, they address more specific aspects and, in contrast to our work,
do not aim to capture the overall event impact. For example, in [KMN15] the authors
employed an artificial neural network to identify road segments typically affected
by events that take place in a particular venue. Lécué et al. employed semantic
technologies to develop STAR-CITY, a system for traffic prediction and reasoning
[LTH"14], used for spatio-temporal analysis of the traffic status as well as for the
exploration of contextual information such as nearby events. [LWFZ18] investigated
the general predictability of location-based social network data. They conducted a
case study on Foursquare datasets, which is a service on which users can indicate their
geographic location, i.e. user can indicate that they are at a certain event venue. The
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authors do not focus on a specialized prediction task, but provide general insights on
working with the aforementioned data. [JLB16] provides a checklist with measures
to improve traffic flow in the context of events, e.g. through reserving parking spots
or guiding the traffic on particular roads. These works do not aim at predicting an
overall event impact and thus are orthogonal to our research.

Impact of planned special events on public transportation. Planned spe-
cial events can also impact public transportation. Pereira et al. investigated non-
habitual overcrowding of public transportation by using information from social net-
works and specialized event websites [PRPB15]. They proposed a probabilistic model
that divides an overcrowding behavior into explanatory components. [RBRP17] pro-
posed a Bayesian additive model that predicts the total number of public transporta-
tion trips to event venues. [NHG17]| detects events from social media by employing
a hashtag-based algorithm. The event information extracted from the social media
is then used for prediction of the public transportation flow. These studies focus on
public transportation and are orthogonal to the prediction of event impact on road
traffic addressed in this chapter.

Analysis of urban road networks. Urban road networks have been sub-
ject to many studies aiming to identify problematic areas using traffic informa-
tion. Studies focusing on congestion proposed methods for measuring and track-
ing congestion [RR12], [ALVI16], and identifying propagation of congestion patterns
[LJZ17, NLC17]. [JEF16, HZY*15] proposed approaches for the detection of so-called
urban black holes, i.e. traffic anomalies with a greater inflow than outflow. [LGL17]
investigated the maximum capacity of urban street networks. They introduced a
formal upper bound of the capacity and found that the capacity is independent of
individual routing strategies. [KLS18] employed topic modelling to analyze urban
street networks. They proposed the concept of interactional regions, i.e. regions that
commonly bound routes within the street networks. [WWL16] investigated the use of
external datasets like POls, location-based social media, weather and incident data
to find explanations for traffic data. They found that POIs data is correlated with
regular traffic patterns, while location-based social media can be used to explain ir-
regular traffic patterns. In contrast to this chapter, none of these methods aims at
determining impact of planned special events on road traffic.

Road traffic forecasting and impact of incidents. Road traffic forecasting
(see a recent survey conducted by Vlahogianni et al. [VKG14] for an overview) aims at
predicting traffic flow on particular roads on a short term. [PDS12] tackled the prob-
lem of traffic speed prediction in the presence of incidents by introducing the hybrid
H-ARIMA model, which combines a historic average model and the well-established
ARIMA model [BJ90]. [PDGS15] classified different kinds of traffic incidents and
used this classification to predict the impact of each incident type on road traffic.
[ADG™14] used Support Vector Regression and clustering of spatial and temporal
patterns to predict traffic speed for individual units. [WZX14] made use of sparse
FCD data and a context-aware tensor decomposition approach to estimate travel
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times for road segments for which no FCD is available. The information is then used
to estimate the required travel time for a given route. [MYST17] proposed a frame-
work for the city-wide inference of traffic volume. They made use of a semi-supervised
learning algorithm that can be used with sparse loop detector data as well as taxi
GPS data. Similar, [WPC"16] employed a Hidden Markov Model to estimate traffic
speeds of a road network based on sparse floating car data where the speed to be esti-
mated on a single road is considered as a hidden state. [MYWW15] make use of FCD
data to predict congestion, while [KXS*16] tackles this problem by using GPS data
from mobile phones. [MG12] predicted the impact of highway incidents and proposed
a model to predict false reports of incidents. The authors of [KNCO08] investigated the
duration of freeway incidents. They identified variables that influence the duration
of the incidents and propose a Rule-Based-Tree-Model to predict the duration. The
approaches discussed above focus on short-term traffic predictions and on incidents
and congestion that can be clearly assigned to the individual road segments. In con-
trast, in this chapter we aim to predict the more diffuse impact of planned special
events on complex urban road networks, that is subject to the infrastructure and
event characteristics rather than to the short-term traffic fluctuations.

Road traffic forecasting using deep learning. Recently, various approaches
emerged that adopt deep learning techniques (i.e. deep neural networks) for short-
term traffic forecasting. The architectures include feed-forward networks, deep believe
networks and long short term memory networks (see, e.g., [LLWL18, PS17, SKK16,
LXZ"18]). Whereas deep learning approaches become increasingly popular in the
context of road traffic forecasting and impact of incidents, they require large amount
of training data. This requirement makes deep learning hardly applicable to the
problem of impact prediction for planned special events, as the number of large-scale
events in a particular city is typically limited to a range of a few hundred events
per year. In contrast, the approach proposed in this chapter facilitates accurate
predictions of event impact given a limited amount of training data.

7.3 Problem Definition

Planned special events (such as concerts, fairs, or sports matches) can negatively
impact urban traffic. Some parts of the transportation network can experience usage
exceeding the actual network capacity, leading to traffic congestion with slower traffic
speed and longer trip times.

Intuitively, this problem may occur within temporal proximity to the event and
spatial proximity to the event venue, i.e. when event participants arrive at or leave
the venue. However, event impact on the transportation graph can vary significantly
according to the event and venue characteristics as well as further factors.

The aim of this chapter is to predict event impact of planned special events on
the transportation graph, in particular with respect to the spatial and temporal di-
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mensions.

More formally, a transportation graph is a directed multi-graph TG := (V, U) that
represents the road network. V is a set of nodes (representing the crossings of the
road network) and U is a set of edges (also referred to as units in this chapter), i.e.
the road segments. Each node v € V is assigned coordinates. Each edge v € U is
assigned a speed limit lim(u).

In particular we target the following problems:

1. Prediction of the spatial dimension of event impact (impactspatia(ve,t;, TG)):
Given an event that takes place at venue ve, we aim to predict the maximal
distance from the event venue where event impact on the transportation graph
TG in terms of a restricted traffic flow can be observed at time point ;.

2. Identification of the typically affected subgraphs: Given an event venue ve, we
aim to determine the subgraph of the transportation graph 7T'G that is commonly
affected by planned special events taking place at this venue.

3. Prediction of the temporal dimension of event impact (impactiemporai(ve, t;, TG)):
Given an event that takes place at venue ve, we aim to predict the average de-
lay that can be observed at time point ¢; on the units of T'G that are typically
affected in the presence of events in ve.

Furthermore, we aim to analyze the factors that can facilitate such predictions for
both impact dimensions.

In this chapter, we focus our discussion on the impact of the incoming event traffic.
The impact of the outgoing event traffic can be considered analogously, provided that
information about the respective event end times is available. In the following, we
define metrics to estimate the spatial and the temporal dimensions of event impact,
discuss the corresponding factors and build supervised prediction models.

7.4 Spatial Dimension of Event Impact

One of the problems addressed in this chapter is the prediction of the spatial dimension
of event impact. In particular, we aim to build a supervised regression model to
predict impactspatia(ve, t;, T'G), where ve is the event venue, T'G is the transportation
graph and ¢; is the time point for which the prediction is requested. First, we introduce
the necessary concepts and considerations, which are then used in Section 7.4.3 to
define our metric for the spatial dimension of event impact. This metric builds the
basis for the actual prediction task that is addressed as a regression problem later in
Section 7.6.

In order to measure the spatial dimension of event impact on the transportation
graph, we take the following considerations into account:
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e First, events may directly impact the traffic flow on the units (edges) of the
transportation graph T'G through an increased load. Thus, we define a metric
for the unit load ul(u,t;) € [0, 1] that measures the normalized load on unit
at time point ¢;.

e Second, an increased unit load observed on the units of the transportation
graph may or may not be (partially) induced by a particular event. Therefore,
we introduce the concept of an affected subgraph of T'G that indicates event-
induced load, i.e., unit load that can be partially attributed to the event.

e Third, we identify subgraphs of T'G that are typically affected by events in
particular venues.

e Finally, we define a metric for the spatial dimension of event impact at
time point ¢; as a measure of the longest distance from event venue ve to unit
u of the transportation graph where event-induced load is observed at ;.

In the following we present these steps in more detail. Notations frequently used
in this chapter are summarized in Table 7.1.

7.4.1 Unit Load and Average Unit Load

In the following, a unit u € T'G refers to an edge of the transportation graph T'G.
We define the unit load ul(u,t;) € [0, 1] as the relative speed reduction at unit u with
respect to the speed limit lim(u) of the corresponding edge in the transportation
graph in Equation 7.1:

lim(u) — speed(u,t;)

, (7.1)

ul(u,t;) =
( ’ ]) lZTI’L(U)
where speed(u, t;) represents the actual traffic speed at u at time point ¢; € T, where
T is the set of all time points. Here, 1’ corresponds to the maximal speed reduction
(i.e. a congestion when traffic is fully halted), and ’0’ corresponds to the normal
usage, where the traffic can reach the maximal speed allowed by the speed limit.

We represent typical unit load for unit u on a particular week day and day time
via average unit load ulq,,(u,t;). Given a transportation graph T'G and a time point
t;, let UL(u,t;) be a set containing all unit loads for u on the same week day and day
time as t;: UL = {ul(u,t)[tod(t) = tod(t;), dow(t) = dow(t;)}, where dow(t;) and
tod(t;) map t; to its week day and time of day, correspondingly. The average unit
load for unit w at ¢; is then defined as uly,4(u,t;) = avg(UL(u,t;)).

7.4.2 Event-Induced Load an Affected Subgraphs

High load observed on a particular unit of the transportation graph at a certain time
point is not always caused by special events but may be due to recurring temporal
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Table 7.1. Notation summary.

Notation Description

ve Event venue

T Set of all time points

TG Transportation graph

u A unit (i.e. an edge) of TG

speed(u, t;) Traffic speed at unit v at time point ¢,

ul(u,t;) € [0,1] Unit load on unit w at time point ¢;

Ulgng(u,t;) € [0,1] Average unit load on unit u corresponding to t;

ud(u, t;) Unit delay. Delay of travel time on unit u at time point ¢;
iqr(u,t;) € {true, false} Indicates whether ul(u,t;) is an outlier with respect to IQR
distgeo(ve, u) Geographic distance between venue ve and u

distiemp(ti, t;) Temporal distance between two time points

TAS,. Typically affected subgraph of ve

thau Unit load threshold

thiemp Temporal proximity threshold

theg, Minimum percentage of events at which units are considered

typically affected
impact spatia(ve, t;, TG) Spatial impact of an event in venue ve on T'G at t;
impact emporal(vVe, tj, TG)  Temporal impact of an event in venue ve on T'G at t;

patterns, incidents or other factors. Therefore, we consider the event-induced unit
load, i.e. unit load ul(u,t;) that can be partially attributed to an event by considering
several indicators including: (i) temporal proximity of ¢; to event start time t.; (ii)
geographic proximity between unit u and event venue ve; (iii) the (unusually) high
load on unit u; (iv) connectedness of unit u with other units that indicate event-
induced load in the transportation graph.

Temporal prorimity. The intuition behind this indicator is that event-induced
traffic is likely to occur within close temporal proximity to the start or the end time
of the event, when event participants arrive at or leave the venue. Temporal distance
distiemp(te, t;) is the length of the time interval between the time point ¢; € T (at
which the specific load on unit u is observed) and the event time ¢, € 7. Here, . the
is the event start time (event end time works analogously). We say that time point ¢;
is within the temporal proximity of event e if the temporal distance between ¢; and
the event time ¢, is within an interval given by thiemp: distiemp(te,t;) < thiemp, where
thiemp 1s a parameter in our approach.

Geographic proximity. The intuition behind this indicator is that event-induced
traffic is likely to start and end within the close geographic proximity to the event
venue. The dist,.,(ve,u) denotes the geographic distance (i.e. Euclidean distance
that takes the Earth’s curvature into account) between the venue ve represented
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through its coordinates and the unit u. For the distance computation, we represent
the unit through the coordinates of its adjacent nodes in the transportation graph. In
particular, we distinguish the min-dist,,(ve, ) and the maz-dist,e,(ve, u), dependent
on the geographic location of the corresponding node. We say that unit u is within
the geographic proximity of the venue ve if min-distye,(ve, u) < thge,. The threshold
thgeo is a parameter, defined as the walking distance in our approach. Based on the
heuristics proposed in [Per29] we choose a walking distance of thy., = 500 meter in
the following.

Affected unit. Intuitively, when event-induced traffic impacts the road network,
some units can indicate an (unusually) high load. To capture this intuition we propose
a method based on the outlier analysis. In this context, we define a Boolean metric
affected(u,t;) € {true, false}, where “true” denotes that unit u is affected at time
point ¢;, i.e. this unit indicates an (untypically) high load degree. We consider two
indicators of unit affectedness: (a) Absolute unit load: We consider u to be affected
at time point t; € 7T if its load exceeds the pre-defined unit load threshold th,,
i.e. ul(u,t;) > thy. We discuss the influence of the thresholds in the experimental
evaluation in Section 7.9.1. (b) Outliers: To identify the outliers, i.e. the units
whose load at a given time point deviates significantly from their typical load at
comparable times (i.e. the same week day and day time), we employ the interquartile
range (IQR)-rule [KZ00]. We define a Boolean metric igr(u,t;) € {true, false} that
denotes if the unit load ul(u,t;) is an outlier according to the IQR-rule in Equation
7.2.

TTUG, ’lf ul(u,tj) > Ql(u, t]) +1.5- (Qg(’u, tj) — Ql(u,t]‘)>

False, otherwise

iqr(u,t;) = { (7.2)

where (),,(u,t;) denotes the nth quartile of the unit load on unit v with respect to
the week day and day time. Equation 7.3 combines both load indicators presented
above. We say that unit u is affected at ¢; if at least one of both conditions holds,
i.e. either the unit load exceeds the pre-defined load threshold th,;, or the unit load
is an outlier according to the IQR-rule.

affected(u,t;) = (ul(u,t;) > thy) V igr(u,t;). (7.3)

Affected path. Given a venue ve and a time point t;, Equation 7.4 defines an
affected path p as a connected subgraph of the transportation graph T'G, such that
all units of this subgraph are affected at this time point and at least one unit w,, of
this subgraph is within the geographic proximity of venue ve. Moreover, to prevent
affected paths to mainly capture regular traffic patterns, we require the unit w1y most
distant from the event venue within this subgraph to deviate from the regular traffic
pattern. More formally:
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affected(p, ve, t;) =
Vu; € p: affected(u;, t;)
A Juy, € p: min-distye,(ve, uy) < thye, (7.4)
A ug = argmax{u,, € p|maz-distye,(ve, uyy,)}

A igr(ug, tj).

Affected subgraph. Event-induced traffic that starts or ends in a geographic prox-
imity of the venue is likely to be propagated along the transportation graph. To
capture this intuition, we define the concept of an affected subgraph. Equation 7.5
defines an affected subgraph (ASG) of venue ve at time point ¢; as the subgraph of
TG that contains all respective affected paths:

affected(ASG, ve, t;) =
Vu;, € ASG : (3p; C TG : u; € p; A affected(p;, ve, t;)) (7.5)
A =(3px CTG : Juy, € pi : (affected(py, ve, t;) A up & ASG)).

The first line of Equation 7.5 specifies that an affected subgraph ASG only contains
the units u; that are part of at least one affected path p;. The second line ensures
that all affected paths are part of ASG (i.e. no affected path pj exists that is not
part of ASG).

7.4.3 Metric for the Spatial Dimension of Event Impact

In general, spatial distance can be measured using different metrics, including Eu-
clidean distance, as well as path-based or grid-based distance, whereas the suitability
of the metric depends on the particular application scenario. In this chapter, we
adopt Euclidean distance to make the notion of the spatial dimension of event im-
pact comparable across venues and also better explainable to the end users. As road
networks are diverse, the length of the paths measured on the directed road network
on different paths within a given radius from the venue may vary. Euclidean distance
is a grid-independent indicator. This indicator compensates the differences in the
network topology, provides an external view on the event-related traffic around the
venue, makes it comparable across venues and also allows for an intuitive explana-
tion. For example, Euclidean distance facilitates statements such as “The event e
that takes place at venue ve will impact the area within  km from the venue”. This
way, the affected area around the venue can be avoided by the vehicles not directly
involved in the event.

Given an event e starting at t. with distem,(te,t;) < thiemp at venue ve, we define
the spatial dimension of event impact impactspatiai(ve, t;, TG) of e on the transporta-
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Figure 7.1. Visualization of the spatial dimension of event impact. The green point
marks the event venue ve. Blue units form the affected subgraph, while red units
form an affected path within this subgraph. The brown line illustrates the distance
to ve that denotes the spatial dimension of event impact. The orange circle visualizes
the threshold ¢/ ge,.

tion graph T'G at time point ¢; as the maximal distance between the event venue and
a unit vy of TG at which load induced by e is observed at ¢;.

impact spatia(ve, t;, TG) = (7.6)

max{maz-distyeo(ve,uy) | ug € ASG C TG A affected(ASG,ve, t;)},
where ug4 is a unit of the transportation graph with the following properties: (i) ugq is a
unit of an affected subgraph ASG C T'G; and (ii) ug is the furthest distant unit from
ve among the units in the affected subgraph. Fig. 7.1 illustrates affected subgraphs,
affected paths and the spatial dimension of event impact.
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7.4.4 Typically Affected Subgraphs

Considering individual event venues, certain units are commonly affected if a planned
special event takes place in the respective venue. To this extent, we define typically
affected subgraphs (T'AS,e) to be venue-specific subgraphs of T'G that consist of units
commonly affected in presence of planed special events at a particular venue ve.

Algorithm 3 formalises the calculation of the typically affected subgraph T AS,.
for a single venue ve. The intuition of the algorithm is to identify units that are
frequently affected by events that take place in ve. To this extent, a joint event
subgraph SG. is computed. This graph contains all units affected at any time point
in temporal proximity of a single event e that took place in ve. SG. can be viewed
as the temporal union of affected subgraphs for a single event. The typically affected
subgraph is then constructed from all units that are present in a certain percentage
(i.e. at least thy,) of event-specific subgraphs. We define a typically affected threshold
thy, € ]0,1] as the minimum percentage of event-specific subgraphs in which a unit
need to be present to be considered as typically affected.

7.5 Temporal Dimension of Event Impact

This section introduces our method to quantify the temporal dimension of event im-
pact by measuring travel time delay in presence of planned special events. In Section
7.4, we defined a methodology to quantify the spatial dimension of event impact, i.e.,
to measure how far from the event venue affected units can be observed. Comple-
mentary, another question of interest is to which extent the units will be affected, i.e.,
to measure the travel time delay on these units introduced by an event. To quantify
the temporal dimension of event impact, we rely on the following intuition: For in-
dividual event venues, some units are commonly affected when an event takes place,
i.e. event-induced load can be observed on these units.

To quantify the temporal dimension of event impact, we propose the following
methodology: (1) we compute the typically affected subgraph T'AS,. of the event
venue ve, and (2) we measure the average delay in the presence of events on the units
contained in T'AS,..

Algorithm 3 describes the computation of a typically affected subgraph T'AS,,. for
a single venue ve. For each venue, in which at least one event takes place, we apply
the algorithm to obtain an individual T'AS,. for this venue. Algorithm 3 is subject to
the parameters thy;, thiemp and thy,. Section 7.8 discusses the effect of the individual
parameters on the extracted subgraphs and suggests useful configurations.

We define the temporal dimension of event impact impactiemporar(ve, t;, T'G) of an
event taking place in the venue ve at the time point ¢; on the transportation graph
TG as an average delay in the travel time on the units that are part of the respective
typically affected subgraph T'AS,. C TG:
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Algorithm 3: Calculation of TAS,. for a single venue ve
Input : ve - Event venue
thiemp - Threshold for the temporal proximity
thy, - Minimum percentage of events at which units are considered
typically affected
Output: TAS, - The typically affected subgraph of ve

1 E + getAllEvents(ve) // Determine events that took place in we
2 counts[] <+ () // Empty mapping between units and counts
3 forall e € I do

a | T« {t; € T | distiemp(te,t;) < thiemp}

5 end

/* Joint event specific subgraph SG. across all time points in
temporal proximity to e */

6 SGe | J{ASG C TG|3t; € T, : affected(ASG, ve,t;)}

/* Count how often each unit appears in event specific subgraphs
*/
7 forall u € SG, do
| countsu] < increment(counts[u))
9 end

/* Add all units to T'AS,. that appear more often than th, */

10 forall u € counts|| do
11 if counts|u]/|E| > thy, then

12 ‘ TAS,. < TAS,.Uu
13 end
14 end

15 return TAS,,
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impactiemporai(ve, t;, TG) = avg({ud(u,t;)|u € TAS,}), (7.7)

where v is a unit contained in T'AS,. and avg denotes the arithmetic mean. ud(u, ;)
(unit delay) is defined in Equation 7.8 as a function that specifies the additional
amount of time it takes to pass the unit v at time point ¢;, compared to the ideal
situation when travelling at the maximum allowed speed is possible.

length(u)  length(u)
" speed(u, t;) lim(u)

ud(u,t;) = max(0 ), (7.8)
where lim(u) denotes the speed limit on unit u, speed(u,t;) denotes the possible
speed on w at t; and length(u) denotes the length of u. The first fraction of Equation
7.8 expresses the required time to pass u at t;, while the second fraction expresses
the required time when travelling with the maximum allowed speed is possible. Note,
that we do not consider negative delays (e.g. when people are travelling faster than
the speed limit).

The proposed impactiemporai(Ve, t;, TG) function computes the average unit delay
and summarizes the overall temporal event impact on the respective TAS,.. This
function aggregates the individual unit delays and requires only the speed information
on the units. This computation weights all units in the typically affected subgraph
TAS,. equally and does not require any traffic volume information. Note, that the
average can easily be replaced by a weighted average if additional information, e.g. the
number of vehicles on a unit, is available and indicates large variations. Furthermore,
a weighted average can also be considered to further differentiate the type of the units
(e.g. major roads and smaller streets).

7.6 Event Impact Prediction: Features and Models

We treat event impact prediction as a regression problem. In this section we introduce
the features designed to enable accurate predictions including characteristics of events,
mobility behavior and infrastructure.

7.6.1 Features

Table 7.2 provides an overview of the features we employ to predict both spatial and
temporal dimensions of event impact. In the following, we present these features
in more detail. To determine the best combination of the features we conduct an
exhaustive grid search [BB12]. I.e., we train an individual model for each possible
combination of features and finally select the model with the best performance.
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Table 7.2. Overview of adopted features. Categorical features are 1-hot encoded.

Feature

Representation Notation

Event characteristics

Day of Week Categorical Cdow
Start Time Numerical est
Venue Categorical €y
Category Categorical €c
Workday Binary €wd
Reoccurring Binary er
No. Participants Numerical enp
Entity Popularity Numerical €ep
Mobility Behaviour

Average Venue Impact Numerical m;
Average Nearby Affected Units Numerical Mpau
Characteristics of the Infrastructure

Nearby Road Types Numerical Tnrt

Event Characteristics

The individual characteristics of the particular event may influence its impact on
urban transportation. Therefore, we adopt the following event characteristics as
features:

Day of Week (€e4,,,). The intuition behind this feature is that traffic may indicate
weekday specific patterns, e.g. people might leave work early on Fridays. We apply 1-
hot encoding such that each day of the week is represented as an individual dimension.
For a particular day, the corresponding dimension is set to 1 while all other dimensions
are left as 0.

Start Time (ey). Traffic patterns vary significantly with respect to the time of
the day, e.g. during rush hours. We map the scheduled start time of the event to a
continuous numerical representation, where each hour is mapped to a number, e.g.

13:15 — 13.25.

Venue (e,). Venues located near different parts of the transportation graph might
exhibit specific impact patterns. The event venue feature is 1-hot encoded.

Category (e.). Events in different categories (e.g. concert, fair, or sports) might
attract different audiences that exhibit specific mobility behavior. For example, fair
visitors might arrive just-in-time or spread across a whole day, whereas concert au-
dience might arrive early to secure a place in the front. We distinguish between 7
event categories that are most typical for the dataset used in our experiments (see
Section 7.7.1 for details): {Comedy, Fair, Convert, Football, Show, Party, Other}.
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Note that the set of categories can be easily adjusted to fit the most frequent events
in a particular city. The event category feature is 1-hot encoded.

Workday (e,q). On workdays urban road networks are highly influenced by
work-related traffic (e.g. due to commuting between work and residential areas),
while on weekends the traffic exhibits other patterns. The workday is a binary feature
that indicates whether the event takes place on a working day or on the weekend.

Recurring (e,). Recurring events are likely to attract a similar audience, and
therefore can exhibit common mobility patterns. We consider events of the same
category that take place in the same venue to be recurring if they are part of an
event series (e.g. football matches in a tournament). Whether an event is recurring is
represented as a binary feature. Note that binary encoding in a combination with the
venue is sufficient to represent event series in case the venue typically accommodates
event series of the same kind. For instance, if recurring events in the football stadium
are always football games with similar audience, binary encoding is sufficient. In
case different event series take place in the same venue, the binary encoding can be
replaced by a 1-hot encoding, where each specific event series is represented by an
individual dimension.

No. Participants (e,,). The number of participants who attend an event is
likely to correlate with the event impact on urban traffic. If the number of participants
is not available, we can make use of an approximate value. This value can be estimated
using the venue capacity, or the typical number of participants of comparable events
in the past (if available). In this chapter, we use the venue capacity as an estimate in
cases where the exact number of participants is not known. This feature is represented
as an integer. In our experiments, we annotate the number of participants manually,
using Web search.

Entity Popularity (e,). The intuition behind this feature is that popularity of
the key actors involved in the event (e.g. popular musicians, celebrities, politicians,
etc.) is likely to correlate with the event impact on urban traffic. We approximate
entity popularity using the number of search results obtained through a state-of-the-
art search engine (Google search engine in our experiments). In particular, we extract
surface forms of named entities from the event title and use these as search engine
queries. If multiple named entities are mentioned, the most salient is chosen. In our
experiments, we annotated the entities manually. In practice, these surface forms can
be extracted from the event titles automatically using named entity recognition and
disambiguation (NERD) methods. We employ the number of hits returned by the
search engine as a feature represented by an integer.

Mobility Behavior

Mobility behavior features reflect the traffic situation at a particular time point rele-
vant to predict the spatial impact of an event.

Average Venue Impact (m;). Average venue impact is the measure of the
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typical traffic situation around the event venue. This feature represents an average
impact of the venue ve on traffic at a specific week day and day time.

Given a venue ve, a time point ¢; and a transportation graph T'G' an average venue
impact m;(ve,t;) = impactq,g(ve,t;, TG) is computed analogously to the event im-
pact computation detailed in Section 7.4 with the following adjustments: (1) instead
of the unit load, average unit load is adopted: VYu € TG : ul(u,t;) = ulgyy(u,t;);
(2) for the definition of the unit affectedness, only the unit load threshold is consid-
ered, since the IQR-rule is not relevant for the average impact, i.e. affected(u,t;) =
Ulgpg(u,tj) > thy. An average venue impact is represented as a real number.

Average Nearby Affected Units (m,,,). The average traffic situation near
a venue in the presence of an event can also be characterized by the number of the
nearby affected units. We determine an average number of the affected units near the
venue as:

Mpau(ve, t;) = {u € TG|ulgyg(u, t;) > thy, min-distye,(ve,u) <1},

where we consider the ranges r € {500m, 1000m, 2000m,4000m}. For each range,
Mnau 1S TEpresented as a real number.

Infrastructure characteristics

Mobility patterns are highly dependent on the city infrastructure since the infrastruc-
ture is likely to determine the paths people choose to reach their destinations. Thus,
we propose the following feature:

Nearby Road Types (i,). For each event, we identify the type of the road
segments located within the geographic proximity of the venue. Given T'G, an event
venue ve and a set of road types RT', the count of nearby road types is computed as
follows:

inrt(ve,rt) = [{u € TG|min-distye,(ve,u) < thyeo, type(u) = rt}|,

where rt € RT represents a single type, thye, = 500m as discussed in Section 7.4.2
and type(u) is a function that provides the road type of a given unit. For RT we
make use of the taxonomy defined by OpenStreetMap, which is detailed in Section
7.7.1. The count for each type rt is combined to form a vector of integers.

7.6.2 Regression Models

Finally, we combine the features to form a regression model aimed at the prediction
of the spatial dimension of event impact. In particular, we take the following steps:
(1) feature normalization; (2) model selection; and (3) hyperparameter optimization.

Feature normalization. First, we normalize the features by removing the mean
and by scaling all values to unit variance.
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Model selection. The number of events that can be observed in a single city
is rather small for machine learning methods. Therefore, we choose the regression
models that can work effectively when limited amount of training data is available.

SVR Support Vector regression has been applied to a large variety of scenarios.
One-hot encoding is well suited for use with SVRs since they are able to create decision
boundaries between the dimensions.

KNN The k-nearest-neighbor algorithm takes into account the k-nearest-neighbors
only. Therefore, this algorithm is not constrained by the limited amount of training
data.

RIDGE Ridge regression is a linear regression that introduces a penalty to the size
of the learned coefficients [HK00]. This leads to more robust coefficients, especially
in the context of small training sets.

Note that we do not consider deep learning regression models because of the
large amount of training data they require. Since each record in the training dataset
corresponds to a planed large-scale special event, the number of training examples
in a particular city is typically limited to a range of a few hundred events per year.
This number is not sufficient to achieve an optimal performance using current deep
learning approaches.

Hyperparameter optimization. We optimize hyperparameters by employing
the random search algorithm proposed by Bergstra et al. [BB12]. The following
parameters are optimized: SVR: C: the penalty parameter, tol: tolerance for the
stopping criterion. RIDGE «: regularization strength. KNN: k: the number of
neighbors considered, leafsize: size of the leafs used by the algorithms BallTree.

7.7 Evaluation Setup

This section describes the evaluation setup for our approach.

7.7.1 Data Sources

The data sources used to evaluate our approach include data about events, mobility
infrastructure as well as traffic data.
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Figure 7.2. Visualization of the transportation graph TGy extracted from OSM,
which contains all major roads within 20 km distance to the city center of Hanover.

Mobility Infrastructure Dataset.

OpenStreetMap is a provider of publicly available map data. We make use of the
OSMs road network to form the transportation graph TG . In particular, we extract
streets that are located within the 20 km distance to the city center of Hanover.
Note, that this distance is sufficient to entirely capture all observed event impacts.
Considering the OSM-taxonomy for road types, we restrict the transportation graph
to contain only major roads, as reliable traffic information for smaller streets is rarely
available. In particular, we extract all roads that belong to one of the following
classes: {primary, primary_link, secondary, secondary_link, tertiary, tertiary_link, mo-
torway, motorway_link, trunk, trunk_link}. OSM partitions roads in smaller road seg-
ments that correspond to the units of the transportation graph T'Gy. The extracted
transportation graph contains 23,000 units and 13,000 nodes in total. For each unit
u € TGy information about the speed limit lim(u) as well as the road type is avail-
able from OSM. Fig. 7.2 visualizes the extracted transportation graph by marking
all included units with red color.

Traffic Dataset.
The experiments conducted in this chapter employ a proprietary traffic dataset that
contains aggregated floating car data. This dataset is available to the authors in the
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context of the research project "DatadUrbanMobility”!. In particular, the dataset
provides traffic speed records for each unit u of the transportation graph T'Gy. The
dataset is collected by a company that offers routing software distributed under an
open license. The dataset contains data contributions obtained from a variety of
sources, including the data collected from the users of the routing software as well as
traffic data acquired from third party data providers. Although particular statistics
of these contributions, such as the number or the types of the monitored cars, are not
available to the authors, due to a variety of sources involved we do not expect any
particular biases towards certain vehicle types or expense classes. The dataset covers
the time span from October 2017 to January 2018 and contains approximately 195
million records in total. The records within the traffic dataset contain the average
traffic speed on the individual transportation graph units at discrete time points, i.e.
speed(u, t;), recorded every 15 minutes. The average speed records are computed by
the data provider through calculating the average traffic speed from the raw floating
car data, averaged over all vehicles for which the data is available for the given unit and
time interval. To ensure data quality, in particular with respect to the availability
of a sufficient number of speed records per unit, only major roads extracted from
OpenStreetMap are considered in this chapter (see the paragraph ”OpenStreetMap”
above for the description of the corresponding road categories). The data for such
major roads is captured on a regular basis within the dataset. On average, 8422.79
records are available per transportation graph unit. We believe that this number is
sufficient to capture typical traffic patterns.

Event Dataset.

We extracted an event dataset containing information regarding events that took
place in the Hanover region, Germany from various regional event-related websites.
Examples are the official website of the city of Hanover, football websites and local
magazines. The events included in this dataset took place between October 2017 and
January 2018. We selected the venues in the Hanover region that have a capacity
for at least 1000 participants, which resulted in 7 different venues such as concert
halls (“T'UI-Arena”, “Capitol”, “Swiss Life Hall”, “Kuppelsaal”, “Aegi-Theater”), a
football stadium (“HDI-Arena”) and a fairground. We further restricted our event
dataset to the events that took place in these venues. In total, 150 major events
were obtained which occurred during the time period described above. Since the
events were collected from different websites they did not exhibit a shared taxonomy
of categories. We analyzed the most frequent categories with respect to each website
and harmonized the data by manually defining a shared taxonomy to which the
categories were aligned. We obtained 7 events categories such as “party”, “comedy”,
“football”, “concert”, “fair”, “show” and “other”.

In addition, contextual information regarding events including event venue, event
category, event start time, the number of participants and the most popular entities
mentioned in the event title were annotated by the authors manually using infor-

Thttp://datadurbanmobility.13s.uni-hannover.de/
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mation obtained via Web search. The annotated event dataset is made publicly
available?.

7.7.2 Configurations of the Impact Computation

The spatial dimension of the event impact defined in Section 7.4 is subject to pa-
rameters such as the unit load threshold th,; and the temporal proximity threshold
thiemp. In our experimental settings, we vary these parameters to analyze their influ-
ence. In particular, the unit load threshold th,,; € [0,1] corresponds to the degree of
unit impairment. For the experimental settings, we choose three different threshold
values corresponding to a high, medium and low level of unit impairment, namely

tha € {0.7,0.5,0.3}.

Regarding temporal proximity, we investigate the spatial impact ahead of the
event, i.e. the impact of traffic caused by the event participants arriving at the event
venue. In particular, we consider the following time points: t; = ¢, t; = t. — 30 min,
tj =t — 60 min, t; = t. — 90 min, where t. corresponds to the event start time.

For each event and each combination of the th,; and t; values, we compute the
spatial dimension of the event impact using the metric presented in Section 7.4.3.
These impact values serve as numerical labels in the experimental setting.

Temporal event impact is further subject to the threshold th,,, which specifies the
minimum percentage of events at which units are considered typically affected. We
investigate the effect of thresholds on the extraction of typically affected subgraphs
in Section 7.8. Based on these insights, we consider the thresholds th,, = 0.3 and
thy, = 0.7 in our experiments.

7.7.3 Baselines

We considered the following baselines for our experiments:

CBMA: The Category Based Modelling Approach was proposed by Kwoczek et
al. in [KMN14]. This baseline is based on the intuition that events that belong to the
same category result in similar impact on road traffic. To this extent this baseline
considers all events within the same event category and uses the average impact as
prediction.

CBMAZ2: The experimental setting in [KMN14] considered only the events that
take place at the same venue. To provide a fair comparison following our experimental
setup, we extended the CBMA baseline to calculate separate averages for each venue
and event category. This should further improve the performance of the CBMA
baseline.

2The dataset can be found here: http://www.13s.de/~tempelmeier/crosstown_events.zip
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Table 7.3. Overview of considered models.

Model Prediction Based on
Baselines

CBMA Event category [KMN14]
CBMA2 Event category and venue
AVGT Historic traffic averages

Proposed Regression Models

SVR Linear Support Vector regression
KNN k-nearest-neighbors regression
RIDGE Ridge regression

AVGT: We consider the impact prediction based on average traffic as another
baseline. In particular, the average impact values are computed for each venue wve,
each day of the week and each time point of the day where measurements are available.
The intuition behind this baseline is that, in the absence of information regarding
particular events, predictions can be made based on the average traffic typical for
the particular weekday and daytime. The average venue impact was introduced in
Section 7.6.1 and is used as a baseline as well as one of the features in our approach.

The CBMA and CBMAZ2 baselines are used for the prediction of both spatial
and temporal dimensions of event impact. The AVGT baseline is a naive baseline
for prediction of the spatial dimension of event impact.

7.7.4 Evaluation Setup and Metrics

Table 7.3 provides an overview of the baselines and the regression models (following
the approach proposed in Section 7.6). The listed approaches use the configurations
introduced in Section 7.7.2. The events, which represent the instances of the described
problem, are split into a test and training set. In particular, we divide them in
fractions of 10%/90% and apply 10-fold cross validation. For each fold we ensure
that no feature is extracted from traffic data that was collected on any day in which
an event contained in the test set took place.

The models are evaluated using the following metrics.

MAE. The mean absolute error measures the absolute error of the model predic-
tion. This measure is computed as an average of the absolute errors:
MAE = %Z?Zl ly; — y;|, where n denotes the number of samples in the test set,
y; denotes the prediction and g; denotes the actual observations.

RMSE. root  mean  squared  error is  computed as  follows:
RMSE = \/% > j—1(y; — 9;)?, where the notation is identical. Like MAE, RMSE

is a metric for prediction errors. As all errors are squared, RSME is more sensitive
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to larger errors than MAE.

7.8 Identifying Dataset-Specific Parameters for Af-
fected Subgraphs

Optimal values for the parameters introduced in the above sections are strongly de-
pendent on the dataset at hand. In order to illustrate the effect of various parame-
ters on TASs, this section discusses such effects and motivates the parameter values
adopted in the experimental evaluation. The extraction of TASs is dependent on the
following parameters:

® thiemp: The temporal proximity threshold.
e thy;: The unit load threshold.

e th;,: The minimum percentage of events at which units are considered as typi-
cally affected.

For the case study, we choose thiem, = 90 min for our experimental setting. As
discussed above, we consider only the time ahead of the event. Fig. 7.3 compares
different configurations of th,; and thy, for the extraction of typically affected sub-
graphs of the football stadium in Hanover. The largest graphs are identified with
low thresholds as seen in Fig. 7.3a. When th,; increases, only heavily affected units
remain and the graph shrinks, which can be seen in Fig. 7.3e and Fig. 7.3c. With
high values of thy, and low values of th,;, as observed in Fig. 7.3d, the subgraph is no
longer connected. Isolated parts of the subgraph are thus connected to the remain-
der by the units of the transportation graph that are not frequently affected. This
indicates that such a configuration is not suitable to capture typical traffic patterns.
For high values of th,;, no major differences between different values of th,, can be
observed, as shown in Fig. 7.3c, 7.3f. This implies that the units that are heavily
affected are affected on a regular basis as well.

Fig. 7.4 depicts the temporal dimension of event impact for a single football
game that took place on January 13th, 2018 in the city of Hanover. The impact was
computed on typically affected subgraphs with the above introduced configurations
of thy and thy,. For smaller graphs (e.g. th, = 0.5, thy, = 0.5) increased impacts
are observed within the temporal proximity of the start time of the football game.
Moreover, peaks are present before the start of the game and after an approximate
end of the game, indicating the arrival and the departure of the audience. Note that
although we can estimate the end time based on the typical duration, precise end
time is not available in the dataset and may vary across events. In contrast, for larger
graphs, (e.g. thy = 0.3 and thy, € {0.3,0.7}), the peaks can not be clearly identified.
For thy, = 0.3 even the increased impacts can only be weakly observed. For higher
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Figure 7.3. Comparison of the effects of th,; and th;, on the identification and ex-
traction of typically affected subgraphs around the football stadium ("HDI-Arena”)
in Hanover. Higher thresholds lead to smaller subgraphs of T'G that are considered
as typically affected.
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Figure 7.4. Temporal event impact with respect to th,; and thy, for a football game
in Hanover on the January 13th, 2018.

threshold values (e.g. th,, = 0.3, thy, = 0.7) the peaks can still be observed, but the
extent of the observed impact is relatively small. In case of restrictive configurations,
only few units contribute to the impact and units that are only moderately affected
are left out.

We conclude from these observations that the choice of the parameters is an
important factor for computing the temporal dimension of event impact. Especially
larger graphs extracted with low thresholds are not suited for the temporal impact
computation. While smaller graphs obtained with high thresholds are better suited,
a balanced configuration yielded the best results.

Therefore, the following configurations are considered in our experiments:
thy = 0.5, thyy = 0.3; thy = 0.5, thyy = 0.7; thy = 0.7, thy, = 0.7.

7.9 Evaluation of the Spatial Impact Prediction

This section presents the experimental evaluation of the prediction of the spatial di-
mension of event impact. In particular, we discuss the overall performance of the
proposed approach and provide an analysis of the most indicative features. Further-
more, the performance depending on event venues and event categories is discussed.

7.9.1 Spatial Impact Prediction Performance

First, we present the overall performance of the proposed approach for the task of
prediction of the spatial dimension of event impact (in terms of MAE and RMSE) in
Tables 7.4a, 7.4b and 7.4c.
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Table 7.4. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for
the prediction of the spatial dimension of event impact. Scores outperforming the
baselines are underlined, best scores are marked bold. ¢, is event start time.

(a) thy = 0.7
Model tj =1t —90 min t; =1t.—60nnun t; =1t.— 30 min t; =t
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
CBMA 0.541 0.833 0.657 1.183  0.753 1.395 0.874  1.799
CBMA2 0.449 0.793 0.526 0.928 0.561 1.022 0.638 1.314
AVGT 0.615 1.019  0.668 1.246 0.751 1.459 0.831 1.760
SVR 0.409 0.745 0.469 0.914 0.469 1.024 0.522  1.400
KNN 0.435 0.741 0.467 0.786 0.470 0.873 0.477 0.990
RIDGE 0.414 0.748 0.489 0.909 0.530 0.995 0.596  1.282
(b) thy = 0.5
Model tj =1t —90 min t; =1t —060min t; =1t — 30 nun t; =t
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
CBMA 1.124 3.110 1.332 3.238 1.392 3.287 1.115 1.961
CBMA2 1.144 3.229  1.227 3.223 1.310 3.254  0.889 1.557
AVGT 0.953 3.011 1.010 3.035 1.043 3.081 0.797 1.609
SVR 0.859 3.028 0.935 3.072 0.966 3.118 0.738 1.573
KNN 1.023 3.128 1.069 3.065 1.093 3.132 0.737 1.401
RIDGE 0.966 3.044 1.071 3.067 1.129 3.102  0.819 1.490
(c) thy =0.3
Model tj=1te—90 min t; =1, —60mmin t; =1t — 30 nun t; =t
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
CBMA 3.433 6.119 2.812 5.188  2.646 4983 2.009 3.766
CBMA2 3.604 6.953 2.681 5.266 2.874 5.427 2.000  3.823
AVGT 2.694 5.784 2.394 4.887 2.382 4.797 1.777 3.543
SVR 2.631 5913 2.236 5.004 2.233 5.082 1.648 3.659
KNN 3.067 5.327 2.612 4984 2.503 5.065 1.762  3.593
RIDGE 2.983 5.844  2.449 4.972  2.447 4.864 1.737  3.545
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In particular, we present the evaluation results of event impact prediction at dif-
ferent points in time ahead of the event start ¢, (i.e. t; € {t.—90 min, t. —60 min,t.—
30 min,t. — 0 min}, as well as for the different values of the unit load threshold th,,
presented in Section 7.4.2, namely th,; € {0.7,0.5,0.3}. Given the unit load of a spe-
cific unit w at time point ¢; (i.e. ul(u,t;)), the threshold th,,; determines if this unit is
considered to be affected, i.e. if the unit load is particularly high. Note that smaller
values of the MAE and RMSE error metrics correspond to better model performance.

As we can observe, our approach performs best for all considered configurations
with respect to MAE and comparable with respect to RMSE. In particular, the
proposed SVR model consistently outperforms all the baselines (CBMA, CBMA2,
AVGT) for th, € {0.7,0.5,0.3} for all considered time points.

Other considered regression models such as KNN and RIDGE demonstrate per-
formance comparable to SVR for the higher value of the th,, threshold, i.e. th,, = 0.7,
whereas for the lower load threshold values th,; € {0.3,0.5} the performance of KNN
and RIDGE is less stable compared to SVR. As in the majority of cases SVR
achieves best MAE scores, we conclude that SVR is the overall best suited regression
model for the spatial impact prediction task on our dataset.

Among the baselines, the CBMA2 baseline that takes into account event and
venue information achieves the best performance for high values of load threshold
(i.e. thy = 0.7). CBMAZ2 also outperforms the CBMA baseline that does not take
venue information into account for th,;, € {0.7,0.5}. This indicates that considering
the average traffic situation is not sufficient for predicting the complex strong impact
that events might have on urban traffic situations. For the lower load threshold values
thy € {0.5,0.3}, the AVGT baseline shows the best results with respect to MAE
and RMSE among the baselines. This indicates that unit loads observed when using
lower threshold values can resemble periodic or temporal traffic fluctuations that can
be predicted using historical traffic information used by AVGT.

For the smaller values of the unit load threshold, e.g. th, = 0.3, the AVGT
baseline results indicate a comparable performance to the proposed SVR model. With
respect to the time dimension, for th,, = 0.3 AVGT achieves the best improvement
over CBMAZ2 at t; = t. —90 min, indicating that the impact is relatively weak at this
amount of time ahead of the event. We conclude that impacts measured using smaller
values of the unit load threshold th,; and longer temporal intervals ahead of the event
are likely to capture repeated traffic patterns rather than extraordinary traffic peaks
and thus, can be approximated by rather straightforward baseline models.

In general, our proposed approach works best for predicting impacts based on
high load thresholds th,;. High thresholds represent a high degree of affectedness
and therefore are likely to capture uncommon, event-induced traffic pattern. SVR
yields the best results in most of the cases and achieves comparable performance in
the remaining cases. The error reduction of CBMA2 over CBMA illustrates the
influence of the event venue. Since each venue is represented by an own dimension,
the SVR benefits from its ability to separate between dimensions.
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Figure 7.5. Relative error reduction of SVR over CBMAZ2 for the prediction of the
spatial dimension of event impact.

Fig. 7.5 depicts the relative error reduction (with respect to MAE) of SVR over
CBMAZ2 (computed as MAE%?;‘WE“C?;A]YA’:ESVR). While SVR is always able to reduce
the error (with relative error reduction in the interval [9% - 27%]), SVR improves
the most for the lower load threshold values th,, € {0.3,0.5}. Highly likely this is due
to CBMAZ2 baseline lacking information about the average traffic situation, which

dominates when using lower load thresholds.

7.9.2 Feature Analysis

Table 7.5 summarizes the best performing feature configurations for all combinations.
For th, = 0.3, m; (the average venue impact) plays an important role. This corre-
sponds to the previous observations that low thresholds can capture periodic traffic
patterns. Considering higher threshold values, i.e. th, € {0.5,0.7}, event charac-
teristics play the most important role for the prediction of the spatial impact. In
particular, eg,, and e,q are frequently present. This indicates the importance of the
day on which an event takes place. The event category e, is not used in any of the
feature sets, i.e. e. does not add any additional information. A likely explanation
is that events of the same category are likely to take place in the same venue, e.g.
football matches take place in a football stadium. m,q, and i,,; are present in only
a few configurations. We conclude that the information about mobility behavior and
infrastructure is partly contained in the event characteristics, e.g., in e,.

Fig. 7.6 presents the feature correlation matrix. Each cell of the matrix corre-
sponds to the value of the suitable correlation metric (or in case of the categorical
feature pairs an association metric). The correlation between the pairs of continu-
ous features is measured using Pearson correlation coefficient (PCC). The association
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Table 7.5. Best performing feature combinations for all configurations for the predic-
tion of the spatial dimension of event impact. Features included in a configuration
are marked with an ”x”.

‘ thu ‘ tj ‘ Edow ‘ €st ‘ €y ‘ €c ‘ Cwd ‘ Er ‘ Enp ‘ €ep ‘ mg ‘ Mnau ‘ Tnrt ‘
0.3 | -90 X X b'e b'e
0.3 | -60 X
0.3 | -30 X
03 |0 X X
0.5 | -90 X X X X X
0.5 | -60 X X X X b'e
0.5 | -30 X X X
05 |0 X X b'e b'e
0.7 |-90 X X X
0.7 | -60 X b'e X
0.7 |-30 X X X
0.7 |0 X X X b'e X X

between the pairs of categorical features is measured using Cramér’s V (CV). The cor-
relation between the pairs including continuous and categorical features is measured
using intraclass correlation coefficient (ICC). Features that include multiple dimen-
sions (e.g. i includes one dimension for each road type) are considered separately
for each dimension.

As we can observe in Fig. 7.6, some of the event characteristics and some other
features in our dataset are highly correlated. In the following, we discuss these corre-
lations in more detail. First, the day of week (e4,,) and the working day feature (e,4)
are highly correlated in general (CV=0.98). This is expected as e,4 can be inferred
from egy,,. As we can observe from Table 7.5, the best performing feature combina-
tions often include the more fine granular information encoded by the day of week,
whereas the combination of the both features can be beneficial for the prediction of
the spatial dimension of event impact in some cases. Second, the feature e, that
indicates the reoccurrence of an event is strongly correlated with the event category
e. (CV=0.91) and the event venue e, (CV=0.71). This is because reoccurring events
in our dataset belong to certain categories and typically take place at the venues spe-
cialized for this event type. For example, football matches are typically a part of an
event series that takes place at the football stadium "HDI-Arena”. Consequently, as
we can observe in Table 7.5, e. appears redundant in these settings and is not included
in any of the best performing feature combinations, dominated by e, and e,. Note
that specific correlations between the event venue, the event category and the event
reoccurrence observed in our dataset depend on the particular event venue settings in
the considered urban region. Therefore, we recommend taking the correlation of these



148 Chapter 7 Application to Event Impact Prediction

ec 24 0.49 0.30 -0.01 0.11
e
€dow 0.35 -0.02 0.00 -0.01 0.03 -0.02 0.03 0.04 0.44
€ws 10.49 0. 0.28 -0.01 -0.00 -0.01 0.01 -0.01 -0.01 -0.01 0.
e 0.29 0.02 0.01 0.22 -0.01 0.46
€np 10.30 0.41 -0.02 -0.01 0.29 .04 -0. -0.11-0.21 -0.30 -0.39 -0.44
€ep 1-0.01 0.06 0.00 -0.00 0.02 -0.04 0.26 -0.12 -0.07 -0.04 -0.05 -0.10 -0.12 -0.15 -0.06 0.03
i, 10. -0.01-0.01 0.01 -0.09 0.26 -0.27 -0.20 -0.18 -0.17 -0.25 -0.39 -0.38 -0.11 0.12
iz, 0.03 0.01 0.22 =-o.12 -0.27 0.01 -0.37 -0.19 -0.40
P2, -0.02 -0.01 -0.01 -0.27 -0.07 -0.20
it 0.03 -0.01 0.46
ir?rt
m; e 44 0.5 -0.11-0.10-0.25 0.01 0.41
me., -0.21-0.12 -0.39 -0.37
m3,, -0.30 -0.15 -0.38 -0.19
m2,, -0.39 -0.06 -0.11 -0.40
ml

€ & Cdow Ewd € CEmw Cep . R By gy B M M., My MI, My,

Figure 7.6. The feature correlation matrix. The correlation between the pairs of
continuous features was measured as Pearson correlation coefficient (PCC). The as-
sociation between the pairs of categorical features was measured as Cramér’s V (CV).
The correlation between the pairs including continuous and categorical features was
measured as intraclass correlation coefficient (ICC). The correlation of continuous
features with more than one dimension (e.g. i,,;) was determined for each dimension
individually. The respective dimension is indicated by the superscript.
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features into consideration while applying the methods proposed in this chapter to
further regions. Third, considering the near road types (i), we observe a moderate
to strong correlation between the individual road types (0.52 < |[(PCC)| < 0.99).
Moreover, the road types are perfectly correlated (ICC=1.0) with the event venue
ey, since the road types are static features specific for the particular event venue.
Finally, the features encoding the number of nearby affected units (12,4,) exhibit
mutual correlations. This illustrates the dependency of the number of affected units
that are present in different spatial ranges, i.e. the more units are affected nearby
the event venue, the more units will be affected at further distances. We further
observe a correlation between m,,, and e, in a range of 0.75 < ICC < 0.87. We
conclude that the number of units typically affected in presence of special events is
venue-specific. In summary, some features describing event characteristics and venues
can be highly correlated as we have observed on the dataset considered in this chap-
ter. Whereas highly correlated features do not contribute much to the prediction
in general, the particular correlations can depend on the settings in a given urban
region. In general, different feature configurations can be required to capture differ-
ent dimensions of the event impact. I.e., for the coarse grained configurations (i.e.
th, = 0.3) historical averages such as m; play an important role, whereas at finer
granularity (th,, € {0.5,0.7}) the consideration of the specific event characteristics is
required. The optimal configuration can be determined by performing an exhaustive
grid search, i.e. by training individual models for all possible features combination
and selecting the best performing one. Note that generally costly process of grid
search is feasible in our scenario since the size of the event datasets on which the
models are trained is typically small. For larger datasets, ensemble methods such as
bagging and boosting can be employed.

7.9.3 Venue Dependence

Fig. 7.7 depicts the MAE scores for t; = t. — 30 min and th, € {0.5,0.7} with
respect to the event venue wve.

In both cases, the MAE is highly dependent on ve. Each venue is located in a
different part of the city and therefore is exposed to a different mobility context.
Another factor might be the event category in the respective venues, e.g. fairs taking
place at the fairground are rather infrequent large-scale events and therefore their
impact is harder to predict.

For th,; = 0.7 the AVGT performance is worse compared to th,; = 0.5. Once
more, this illustrates that simple averaging models are only of limited use for the
prediction of the spatial dimension of event impact.
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Figure 7.7. MAE for the prediction of the spatial dimension of event impact for
t; = te — 30 mun with respect to event venue ve. Note that the lines between the
marks do not correspond to continuous values but are included to improve readability.
Red color stands for the baseline approaches, blue color for the proposed regression
models.

7.9.4 Event Category Dependence

Fig. 7.8 shows MAE scores with respect to the event category for ¢t; = t. — 30 min
and th, € {0.5,0.7}. Like in Fig. 7.7 red color stands for baseline approaches, blue
color for the proposed regression models.

The AVGT baseline shows the same behavior as already observed for the venue
analysis in Section 7.9.3. A difference between th,; = 0.5 and th,; = 0.7 are the scores
for the events in the category "show”. In our case, shows take place at venues which
are especially sensitive to th,, e.g. the ” Aegi-Theatre” which is a central spot within
the city of Hanover and surrounded by some hub traffic nodes. For both cases, the
impact of fairs results in rather high MAE scores. Here the KNN model achieves
the best performance. This might be an indicator of lack of sufficient training data
for SVR, especially considering that the task of predicting the impact of a fair on
complex urban traffic networks is particularly challenging. Fairs typically are all day
events where participants may arrive at nearly any time of the day. Therefore, the
impact of fairs is likely to be more diffuse and therefore harder to predict at few fixed
time points in the advance of an event. Furthermore, fairs show higher diversity with
respect to the overall number of participants compared to other event categories in
our dataset.
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Figure 7.8. MAE for the prediction of the spatial dimension of event impact for
t; = te — 30 min with respect to event category. Note that the lines between the
marks do not correspond to continuous values but are included to improve readability.
Red color stands for the baseline approaches, blue color for the proposed regression
models.

7.10 Temporal Impact Evaluation

This section presents the experimental evaluation of the prediction of the temporal
dimension of event impact. In particular, we discuss the overall performance as well
as the venue-dependent performance.

7.10.1 Temporal Impact Prediction Performance

This section discusses the performance of the prediction of the temporal dimension
of event impact.

First of all, the overall performance of the proposed approach is presented. Tables
7.6a, 7.6b, 7.6¢c present the results of the proposed approach for temporal impact
prediction in terms of MAE and RMSE. Analogously to the spatial impact prediction,
we present the results at time points ahead of the event start t. (ie. t; € {t. —
90 min,t. — 60 min,t. — 30 min,t, — 0 min}) as well the configurations discussed
in Section 7.8, namely th,; = 0.5, thy, = 0.3; thy, = 0.5, thy, = 0.7; and th, = 0.7,
thy = 0.7.

As we can observe, our approach performs best for all considered configurations
and time points with respect to MAE and RMSE. We can observe a consistent be-
havior among all configurations which we detail in the following.

Among the considered regression models, the best scores are achieved by SVR and
KNN. In most of the cases SVR achieves the lowest errors for
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Table 7.6. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for
the prediction of the temporal dimension of event impact. Scores outperforming the
baselines are underlined, the best scores are marked in bold. %, is event start time.

(a) thy = 0.7, thyg = 0.7

tj=1te—90 min t; =t.—60min t;=1t.— 30 min t; =t
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CBMA 1.370 1.876  1.280 1.886  1.313 2.045 1.343  2.068
CBMA2 0.808 1.345  0.906 1.584 1.076 1.878 1.150 1.971

SVR 0.713 1.350 0.809 1.584 0.912 1.734 0.967  1.997
KNN 0.743 1.262 0.821 1.480 0.880 1.678 0.960 1.769
RIDGE 0.750 1.319 0.821 1.558 0.956 1.831 1.073  1.970

Model

(b) thy = 0.5, thy, = 0.7

tj =1t —90 min t; =t.—60min t;=1t.— 30 min t; =te
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CBMA 1.801 2.243 1.688 2.182  1.656 2.235 1.662  2.249
CBMA2 0.762 1.270  0.875 1.508 1.061 1.795 1.131 1.900

SVR 0.678 1.174 0.796 1.456 0.905 1.694 0.967 1.864
KNN 0.739 1.332  0.822 1.488 0.914 1.627 0.934 1.680
RIDGE 0.727 1.214 0.832 1.480 0.985 1.706 1.062  1.782

Model

(¢) thy = 0.5, thyy = 0.3

tj =te —90 min t; =t. —60 min t; =t.— 30 min t; =te
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CBMA 1.854 2281 1.772 2.316  1.800 2453 1776 2.432
CBMA2 0.796 1.228 0.928 1.518 1.093 1.795 1.147  1.910

SVR 0.691 1.133 0.809 1.461 0.928 1.698 1.017  1.903
KNN 0.748 1.205 0.831 1.518 0.909 1.630 0.920 1.641
RIDGE 0.745 1.187 0.873 1.545 1.031 1.704 1.080 1.801

Model
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t; € {te — 90 min,t. — 60 min} and KNN for ¢t; € {t. — 30 min,t.}. This might
indicate that the complexity of the traffic situation increases in temporal proximity
to the event such that not enough training data for complex models like SVR is avail-
able. Nevertheless, the simpler KINN-model can still be effectively trained. While
RIDGE outperforms the baselines as well, it never achieves better scores than the
other considered regression models.

Considering different configurations, we observe that high thresholds lead to the
highest error scores e.g. KNNs MAE of 0.96 for ¢; = t., thy = 0.7 and thy, = 0.7
in Table 7.6a. We conclude that the difficulty of the regression task increases with
the value of the thresholds. This is expected, as higher thresholds result in small
typically affected subgraphs that may contain only few units. Thus, the regression
task needs to predict delays at a fine granularity, which is more difficult than with
lower threshold values.

In comparison to the performance of the prediction of the spatial event impact,
our proposed models consistently outperform the baselines with respect to RMSE for
the temporal impact prediction. This indicates, that the task of prediction of the
temporal dimension of event impact is not as sensitive to the extreme values as the
task of spatial impact prediction.

Regarding the baselines, CBMA2 outperforms CBMA in all cases. Since the
only difference between the baselines is that CBMAZ2 also considers the event venue
ve, we conclude that the venue plays an important role. Our proposed approach
achieves a relative error reduction of up to 19.8% over CBMAZ2 in this task.

7.10.2 Venue Dependence

Fig. 7.9 depicts MAE scores at time point ¢; = t. — 30 min with respect to the event
venue and the model for the chosen configurations.

Generally, both SVR and KNN exhibit similar performance across all configu-
rations except for the venue ”Fairground”. The fairground mostly hosts fairs, which
seem to be problematic for the temporal impact prediction. For this venue, the KNN
achieves by far the best performance for all configurations. This might be an indi-
cator for an insufficient amount of training data for more complex models like SVR.
This observation is similar to the respective observation for the task of spatial impact
prediction.

The venue "TUI-Arena”, which mainly hosts concerts, is located within the same
fairground. However, we can not observe a similar problem. We conclude that the
difficulty of the problem is not only induced by the geographic location of the venue
but also by the event type that takes place.

The venue ”Kuppelsaal” clearly exhibits the highest errors. The venue is located
in the city center. Therefore, the traffic around the venue is likely to be subject to
a large variety of the influence factors, which makes it especially hard to predict the
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Figure 7.9. MAE for the prediction of the temporal dimension of event impact for
t; = t. — 30min with respect to event venue ve. Note that the lines between the
marks do not correspond to continuous values but are included to improve readability.
Red color stands for the baseline approaches, blue color for the proposed regression
models.

temporal dimension of event impact for this particular venue.

7.11 Evaluation Summary

This section summarizes the evaluation of the prediction of both the spatial and
temporal dimensions of event impact. In particular, findings, limitations and future
work are discussed.

Findings. Our approach outperforms the baselines for the prediction of the spa-
tial and temporal dimensions of event impact. Overall, we observe an error reduction
by up to 27% (spatial dimension) and 19.7% (temporal dimension) by our method
compared to the best performing baseline (CBMA2), dependent on the configuration.

With higher impact values (th,,; threshold of 0.7 compared to 0.5), the differences
between the CBM A2 baseline and the proposed regression model increases. Smaller
spatial impact values can be well predicted by the AVGT baseline, that captures the
average traffic information, whereas specialized event models enable more accurate
prediction of more significant event-induced traffic impact. This underlines our obser-
vation that small impact thresholds tend to characterize impacts which might be due
to a variety of influence factors, most notably temporal fluctuations in traffic, while
larger threshold values tend to be directly connected to extra-ordinary incidents, such
as planned special events.
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Among the adopted regression models, SVR shows overall the best performance,
whereas in the individual configurations, especially for higher values of th,;, other
regression models can perform slightly better. Therefore, we recommend adopting
SVR as a default model. The available data is typically use case specific (e.g. some
cities may be dominated by a few events or event venues, other cities may be very
dependent on a couple of major roads). When fine-tuning the model for a particular
use case, we recommend to additionally investigate the performance of the other
regression models considered in this chapter (KNN, RIDGE) to achieve an optimal
performance. Among the adopted features, the most important feature group is event
characteristics, which reflect diverse information such as the venue, the time and the
day of week of the event. There are several possible combinations that indicate similar
performance (which is useful if not all features are available or are costly to compute).

The largest errors in prediction of event impact occur at the fairground venue,
which is partially due to rather diverse events that happen in this venue, where the
number of participants varies from 9000 to 65000 in our dataset.

Limitations & Future Work. Our definition of event impact fits best to specific
types of events that have a well-defined starting point where the majority of the
participants arrives at the venue. This definition fits well to certain event types, such
as football games or concerts. However, it is less suitable for events spread over a
longer duration, such as fairs, where the attendance of individuals is spread over a
longer period of time.

In this chapter, we provide the definition of the spatial and the temporal dimen-
sions of event impact. To this end, we facilitate prediction of the maximum distance
from the event venue where event-induced load can be observed at a particular point
in time as well as an average delay that is present on the units contained in the typ-
ically affected subgraphs of the transportation graph. Furthermore, we facilitate the
identification of the subgraphs typically affected by events.

The sets of features considered in this chapter represent event-, mobility- and
infrastructure characteristics. We assume that a wide range of additional factors can
influence event impact, such as weather conditions, as well as availability and use
of public transportation infrastructure. In the future work, we will consider such
features to incrementally enhance models and predictions.

The correlations between planned special events and traffic delays considered in
this chapter may also be impacted by further unobserved factors, such as traffic
accidents, temporal construction sites or extreme weather conditions in geographic
and temporal proximity of the event. Therefore, the observed traffic delays are not
necessarily always caused by the event-specific traffic, i.e. the vehicles going to or from
the event venue. Nevertheless, regular patterns observed for specific event venues and
event types enable an accurate prediction of event impact on urban traffic. Causal
analysis is an interesting direction of future research, subject to availability of the
corresponding data.
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In this chapter, we do not address handling of multiple simultaneous events and
focus on the impact prediction for individual large-scale events. Although in general
the question of cumulative event impact prediction is important, it appears more
relevant for cities, where several large-scale event venues are located in geographic
proximity. In the settings of the urban region of Hanover the relevant venues (i.e., the
venues with the capacity of at least 1000 participants) are distributed across the city,
such that we do not expect to observe cumulative event impacts regularly. Handling
of simultaneous events can be an interesting direction for future research, dependent
on the event venue settings in the specific urban region.

7.12 Discussion

In this chapter, we used geographic Web information to analyze and predict the
spatial and temporal dimensions of event impact. In particular, we use (i) event and
event venue information collected from knowledge graphs and the Web, and (ii) road
network information collected from OpenStreetMap.

We proposed a method for quantifying the spatial and temporal dimensions of
event impact for planned special events in urban areas. We applied this method to
create training data for supervised machine learning models. In particular, we identify
affected subraphs of the road network that measure the spatial dimension of event
impact. We further determine typically affected subgraphs that consist of commonly
affected roads across events. We derive the temporal dimension of event impact from
the typically affected subgraphs by measuring the average delay during an event.

We presented supervised regression models that accurately predict the distance
from the event venue where event-induced traffic can be observed ahead of the event
start time. Furthermore, these models facilitate the prediction of the average delay
that can be observed on the typically affected subgraphs of the transportation graph.
Our evaluation results on a set of real-world events in seven categories demonstrate
that the proposed method outperforms existing and naive baselines in various config-
urations for both considered dimensions of the event impact. We analyzed the impact
of feature sets in different categories, including event-, mobility- and infrastructure
characteristics. Potential applications of the proposed model include integrating the
proposed models into routing algorithms and next location recommendation.



Conclusion and Future Work

The amount of available geographic information on the Web is continuously growing.
The quality, coverage, and description types heavily vary across geographic regions
and data sources. On the one hand, this information has potentially high value for
many location-based applications such as route planning, POI recommendation, and
geographic information retrieval. On the other hand, the often incomplete, isolated,
and not verified datasets hinder the effective use of geographic Web information.
Existing information enrichment and validation approaches fail to address the intrinsic
data heterogeneity of, for instance, volunteered geographic information sources such
as OpenStreetMap. We tackled these problems by developing specialized machine
learning approaches that enrich and validate geographic Web information and enable
the effective data use to its full advantage.

8.1 Summary of Contributions

In this thesis, we investigated various sources of geographic information on the Web
such as OpenStreetMap, knowledge graphs, and semantic Web markup. In the follow-
ing, we summarize our contributions in the areas of validation of geographic Web in-
formation, enrichment of geographic Web information, and applications of geographic
Web information.

8.1.1 Validation of Geographic Web Information

In Chapter 3, we have presented an approach for validating geographic Web informa-
tion trough automated vandalism detection in OpenStreetMap. Vandalism detection
in OpenStreetMap is critical and remarkably challenging due to the large scale of
the dataset, the sheer number of contributors, various vandalism forms, and the lack
of annotated data to train machine learning algorithms. We presented the OVID
(OpenStreetMap Vandalism Detection) model - a supervised machine model - to

157
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address the aforementioned challenges.

OVID relies on a neural network architecture that adopts a multi-head atten-
tion mechanism to summarize information indicating vandalism from OpenStreetMap
changesets effectively. Furthermore, we extract a dataset of real-world vandalism in-
cidents from the OpenStreetMap’s edit history for the first time and provide this
dataset as open data. Our evaluation results on real-world vandalism data demon-
strate that the proposed OVID method outperforms the baselines by eight percentage
points regarding the F1 score on average.

8.1.2 Enrichment of Geographic Web Information

In this thesis, we have considered two problems of enriching geographic Web informa-
tion, i.e., (i) the enrichment of OpenStreetMap with links to knowledge graphs and
(ii) the enrichment of Web markup with missing categorical information.

Enrichment of OpenStreetMap with Links to Knowledge Graphs

In Chapter 4, we tackled the problem of enriching OpenStreetMap with identity links
to knowledge graphs, i.e., to identify knowledge graph entities that correspond to the
same real-world entity as a given OSM node. The problem of link discovery in these
settings is particularly challenging due to the lack of a strict schema and heterogene-
ity of the user-defined node representations in OSM. We introduced the OSM2KG
model for link discovery consisting of the candidate generation, feature extraction, and
link classification stages. For candidate generation, OSM2KG employs a geographic
blocking approach. For feature extraction, we introduced the key-value embedding
to capture the semantics of OSM nodes. The key-value embedding addresses the in-
trinsic inconsistency of OSM annotations by employing an unsupervised embedding
model to infer latent representations of OSM nodes. For knowledge graph entities,
we introduced selected features to capture the entity semantics. We combined the
key-value embeddings and entity features in a supervised classification model that
effectively discovers links. Our experiments conducted on several OSM datasets, as
well as the Wikidata and DBpedia knowledge graphs, demonstrate that OSM2KG
can reliably discover identity links, achieving an F1 score of 92.05% on Wikidata and
of 94.17% on DBpedia on average.

Enrichment of Web Markup with Missing Categorical Information

In Chapter 5, we describe the problem of enriching Web markup with missing cat-
egorical information. We highlighted the challenges arising from the overall distri-
bution of Web markup data, such as property sparsity, the use of incomplete types,
and incorrect annotations. We addressed these challenges by employing domain-
level information and vocabulary usage as features for a supervised type classification
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model. Furthermore, we exploited the domain-level information to extract more di-
verse training datasets for the machine learning model. Our experiments, conducted
on properties of events and movies, show a performance of 79% and 83% F1 score
correspondingly, significantly outperforming existing baselines.

8.1.3 Applications of Geographic Web Information

We highlighted the relevance of rich geographic Web information in the example
of two application scenarios. First, we constructed a large-scale corpus of latent
representations of OSM entities that enable many downstream geographic machine
learning applications. Second, we investigated the prediction of event impact on
road traffic by exploiting diverse geographic Web information such as road network
information, event information, and event venue information.

The GeoVectors Corpus of Geographic Entity Embeddings

In Chapter 6, we presented the GeoVectors corpus containing latent representations
of OSM entities. Using standard OSM entities in machine learning models is challeng-
ing due to the large scale of OSM, the extreme heterogeneity of entity annotations,
and a lack of a well-defined ontology to describe entity semantics and properties. To
address these issues, we introduced the GeoVectors corpus of OSM embeddings. The
GeoVectors corpus captures the semantic and geographic dimensions of OSM enti-
ties in latent representations and makes these entities directly accessible to machine
learning algorithms and semantic applications. GeoVectors is a unique, comprehen-
sive world-scale, linked resource covering the entire OSM dataset and providing latent
representations of over 980 million geographic entities in 180 countries. Furthermore,
we created a semantic description of GeoVectors, including identity links to the Wiki-
data and DBpedia knowledge graphs to supply context information. We made this
semantic description available as SPARQL endpoint — a semantic interface offering
direct access to the GeoVectors metadata.

Application to Event Impact Prediction

In Chapter 7, we tackled the problem of predicting the spatial and temporal impact of
special public events on road traffic. First, we introduced two novel formalizations to
measure the spatial and the temporal dimension of event impact on road traffic. Then,
we presented a supervised machine learning approach to predict the event impact
from geographic Web information such as venue information, event information, and
road network information. Our evaluation results on real-world event data containing
events from several venues in the Hanover region in Germany demonstrate that the
proposed combinations of event-, mobility- and infrastructure-related features show
the best performance. The proposed spatio-temporal model can accurately predict
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the spatial and temporal impact on road traffic in the event context in this region.

8.2 Open Research Directions

In this thesis, we have presented novel approaches for enriching and validating geo-
graphic Web information. Furthermore, we have discussed two application scenarios
of geographic Web information. The findings presented in these areas pave the way
for the following connected research areas.

Data Fusion of Geographic Web Information

In this thesis, we have presented multiple approaches to improve the data quality of in-
dividual geographic Web information sources. Another research direction to improve
the data quality is to combine entity descriptions from overlapping data sources. Data
fusion denotes the process of combining multiple incomplete data sources to obtain a
single consistent, correct, and more complete data source. Typical data fusion chal-
lenges include data inconsistency, data confliction and data imperfection [MJYP20].
While data fusion approaches are often adopted in distributed sensor networks, e.g.,
for Internet of Things applications [AMK™17], there is a lack of models for the fusion
of geographic Web data.

The fusion of geographic data requires addressing unique challenges. First, the
comparison of geographic entities requires the use of a common coordinate system.
Different data sources may use different coordinate systems and may have to be
transformed accordingly. Furthermore, the comparison of geographic geometries often
requires a planar projection such that additional coordinate system transformations
may be necessary. Second, the fusion of inconsistent geographic data types requires
specialized algorithms. For instance, it is not trivial to compare or merge a point with,
e.g., a polygonal chain. The Web data provenance imposes additional challenges to the
fusion process. First, the large scale of available geographic Web data requires scalable
fusion architectures. Second, as discussed in Chapter 4 and 5 the heterogeneity in Web
data sources is typically high and requires adaptive algorithms. Third, as observed
in Chapter 3, the trustworthiness of Web data sources varies and may affect the
information correctness.

In Chapter 4 we presented an approach for discovering identity relations between
geographic Web entities. First evidence indicates that these links are helpful for, e.g.,
schema alignment of OSM and knowledge graphs [DTD21]. Therefore, these identity
relations are potentially valuable information for future data fusion pipelines.
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Exploitation of Tabular and Textual Information

This thesis considers semi-structured geographic Web information sources, such as
OpenStreetMap, knowledge graphs, and semantic Web markup. Other widely used
Web information sources are tabular (e.g., tables on websites) and textual information
(e.g., Wikipedia texts). These sources have proven their utility for various problems,
including knowledge base augmentation, question answering, and knowledge graph
generation [ZB20, HLS18].

However, the exploitation of these information sources in the geographic informa-
tion domain is widely unexplored due to the following challenges. First, the detection
of geographic references in text or tabular data is not trivial. For instance, the name
“Sydney” could refer to the city in Australia or to a person’s first name. The natu-
ral language description of geographic places such as “near” or “next to” introduces
further ambiguity of geographic references. Second, inconsistent descriptions in texts
and tables hinder the extraction process. For instance, one table could provide the co-
ordinates of a city as point geometries, while another source could define polygons to
describe a city’s location. These challenges require specialized algorithms to extract
geographic Web information from tabular and textual information effectively.

Application to Geographic Information Retrieval

Geographic information retrieval (GIR) is a field focussing on addressing geographic
information needs [PCJ*18]. Popular GIR problems include location-based Web
search [ABO07] and geographic question answering [CGMS21]. Similar to general in-
formation retrieval, modern GIR approaches rely on machine learning models, for
instance, to rank the relevance of search results for a particular query. These ma-
chine learning models are inherently limited by data quality. In this thesis, we have
introduced several approaches to validate (Chapter 3) and enrich (Chapter 4, Chapter
5) geographic Web information and ultimately to increase the data quality. Further,
we constructed a corpus of geographic entity embeddings that enable fast adoption
of geographic entities in machine learning applications in Chapter 6. As a future
research direction, it would be interesting to explore the effects of data quality in
downstream GIR applications.
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