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Abstract: The term thermal capacity appears to suggest a storable thermal quantity. However, this
claim is not redeemed when thermal capacity is projected onto “heat”, which, like all energy forms,
exits only in transit and is not a part of internal energy. The storable thermal quantity is entropy,
and entropy capacity is a well-defined physical coefficient which has the advantage of being a
susceptibility. The inverse of the entropy capacity relates the response of the system (change of
temperature) to a stimulus (change of entropy) such as the fluid level responses to a change in
amount of fluid contained in a vessel. Frequently, entropy capacity has been used implicitly, which is
clarified in examples of the low-temperature analysis of phononic and electronic contributions to
the thermal capacity of solids. Generally, entropy capacity is used in the estimation of the entropy
of a solid. Implicitly, the thermoelectric figure of merit refers to entropy capacity. The advantage
of the explicit use of entropy capacity comes with a descriptive fundamental understanding of the
thermal behaviour of solids, which is made clear by the examples of the Debye model of phonons in
solids, the latest thermochemical modelling of carbon allotropes (diamond and graphite) and not
least caloric materials. An electrocaloric cycle of barium titanate close to its paraelectric–ferroelectric
phase transition is analysed by means of entropy capacity. Entropy capacity is a key to intuitively
understanding thermal processes.

Keywords: heat capacity; entropy capacity; susceptibility; Debye model; Sommerfeld coefficient;
graphite; diamond; barium titanate; phase transition; reaction entropy

1. Introduction
1.1. Energy and Entropy

In the traditional approach of thermodynamics, which identifies “heat” as thermal
energy [1], “heat capacity” is a inadequate term. The word capacity conveys the notion that
the quantity “heat” is contained by the receiving vessel, however, it has been pointed out
by several authors that “heat” cannot be stored in a system (e.g., solid). In his paragraph on
the concept of “heat”, Zemansky [2] (p. 76) wrote that “‘heat’ is internal energy in transit”
and “it would be incorrect to refer to the ‘heat’ in a body”. Similarly, Callen [3] (p. 112)
wrote that “‘heat’ refers to a mode of energy flux rather than to an attribute of a state of
a thermodynamic system”. Strunk [4] directly explicated that “‘heat’ is the strange thing
that is flowing only, but disappears upon arrival in any system”. Falk and Ruppel [5]
(p. 92) emphasised that “‘heat’ is not a part of internal energy, but an energy form. The fact
that ‘heat’ is not in a system but only occurs when energy is exchanged, like all energy
forms [6], is one of the most crucial points in thermodynamics, which cannot be stated
often enough [7]”.

By principle, a “heat” current is coupled to an entropy current [5] (p. 92). As accentu-
ated by Falk et al. [8] “. . . one must focus on the substance-like quantities accompanying
the flow of energy if one wants to get a suitable description of energy transfer.” It is helpful
to consider entropy as an energy carrier [8]. The amount of energy carried by entropy is
“heat”. It only makes sense to speak about “heat” (thermal energy) when entropy flows.
Interestingly, Callen [3] (p. 32) wrote that “a quasi-static flux of ‘heat’ into a system is
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associated with an increase of entropy of that system” [9]. Because there is no such thing as
stored thermal energy, but stored entropy, it is reasonable to consider the entropy capacity
of a solid. Although little known, entropy capacity is a well-defined coefficient carrying
the real meaning of a capacity and can be used in that manner with great advantage to the
understanding of thermal processes and has been addressed by several authors.

1.2. Outline

The aim of this work was to provide access to sources of the dispersed knowledge on
entropy capacity and to illustrate the usefulness of this concept. After an overview of the
existing literature on this topic, basic relationships are reviewed. Then, the part of Wiberg’s
textbook [10] related to entropy capacity is recapitulated, which gives a vivid picture of
entropy capacity in general and of carbon allotropes in particular. A bridge is built between
fundamental considerations and current fields of application by presenting the example
of caloric materials and thermoelectrics. The phonon-related entropy capacity of solids is
discussed with respect to the Debye model by examples given in Debye’s classical work [11].
In addition, the concept of entropy capacity is expanded to the electronic contribution
using the model of the free electron gas at low temperature. Entropy capacity is often
implicitly used when separating electronic and phononic contributions from the “heat
capacity”. The discussion turns to persistent confusion due to the disruptive development
of thermodynamics; a probable resolution is to leave dead metaphors behind.

2. Materials and Methods

Experiments to illustrate the analogy with a fluid vessel were performed using red
wine—specifically Monopoles Nicola Napoléon Bordeaux Superior 2018 (Nicola Napoléon
CIE & S.A.R.L, Saint-Émilion, Gironde, France, packager code EMB 33394)—and a glass
of the type Schott Zwiesel Whisky Nose 120 (Zwiesel Kristallglas AG, Zwiesel, Germany).
Video recording and photographing were performed using a Sony DSC-RX100 Mark
3 digital camera (Sony Corporation, Tokyo, Japan). Items were placed on a portable shooting
table (Calumet Photographic Inc., Chicago, IL, USA) and the scene was illuminated using
two Nanlite Lumipad 25 (Guangdong Naguang Photo & Video Systems Co., Ltd., Shantou
City, Guangdong, China). Video editing was performed using HitFilm Express 14 (FXhome,
Norwich, Norfolk, UK). The music in the videos is “Cute” from Bensound.com. Photo
editing was performed using Image J, version 1.53o (Wayne Rasband, US National Institutes
of Health, Bethesda, MD, USA).

Calculations of the graphs were performed using Python embedded into OriginPro,
Version 2022 (OriginLab Corporation, Northampton, MA, USA). Graphs were set and
analysed in OriginPro. Composite figures were arranged in PowerPoint in Microsoft Office
Professional Plus 2016 (Redmond, WA, USA) and exported in portable data format (PDF).

3. Entropy Capacity

Lunn [12] (p. 2) stated that “at constant volume, the capacity of an ideal gas for change
of thermal energy is constant but its capacity for change of entropy varies inversely as the
absolute temperature”, which refers to the Dulong–Petit relation of the ideal gas.

Falk [13,14] recalled that entropy capacity (at the time known as heat capacity) was
introduced by Joseph Black (1728–1799), who refined the term heat (caloric) that has
been around for centuries. Entropy is a resurrection of the caloric [13,15–17] and endows
entropy capacity with the real meaning of capacity. Falk made clear that entropy capacity
is a susceptibility, i.e., a second derivative of a Massieu–Gibbs function with respect to
intensive variable(s), and must be positive within the stability boundaries of the system.
The inverse of the entropy capacity, which has been called heatability by Herrmann and
Hauptmann [18] (p. 28ff), relates the response of the system (change of temperature) to a
stimulus (change of entropy contained). The metrology of entropy capacity is addressed
and so is the fact that at least two different entropy capacities need to be considered for a
gas, e.g., at constant volume and at constant pressure, because the entropy contained in
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gas depends not only on temperature, but also noticeably on pressure. Falk and Ruppel [5]
(p. 297f) addressed these aspects in a condensed form.

Strunk [19] (pp. 57f, 331) mentioned that (specific) entropy capacities are susceptibili-
ties and can be obtained either by differentiating the entropy of the system with respect
to the temperature or by dividing the “heat capacity” by the absolute temperature. He
used the latter relationship to formulate susceptibility matrices for simple phases, which
are symmetric because of the Maxwell relations, and each comprises an entropy capac-
ity on its diagonal, respectively, [20] (pp. 7, 11). Constraints explicitly considered with
respect to entropy capacities are the intensive variables pressure and chemical potential
being constant.

Mareŝ et al. [21] criticised the inconvenient choice of the conceptual basis of thermody-
namics created in the 19th century and identified entropy with the caloric (heat) of older
theories. Entropy capacity [22] is presented by differentiating the entropy of the system
with respect to temperature.

Job [23,24] treated several aspects of entropy capacity and explicitly addressed the
Debye model of solids (p. 114f). The change from parabolic dependence (Debye model)
to hyperbolic dependence (Dulong–Petit relationship) on temperature is interpreted as a
phase transition, which is characterised by a maximum entropy capacity at approximately
a quarter of the Debye temperature. In their undergraduate textbook, Job and Rüffler [25]
dealt with molar and specific (per mass) entropy capacities in analogy to matter capacity
and buffer capacity with demonstrative examples. The accompanying workbook [26]
comprises several exercises on entropy capacity and provides the corresponding detailed
solutions with helpful comments.

Fuchs [27–30] has developed the most extensive view on entropy capacity to date,
which uses analogies to gravitation, hydraulics, electricity, and mechanics, (i.e., mass as
momentum capacitance). With respect to heating, he showed that entropy capacity relates
the rate of change of temperature to the rate of change of the entropy. He mentioned that
the direct measurement of entropy capacity is not simple and addressed the difficulties
involved. He presented a temperature–entropy capacity diagram for the ideal gas and
tables for the entropy capacity of some substances. A formulaic expression for the entropy
capacity of phonons, according to the low-temperature approximation of the Debye model,
is given. The entropy capacity of black body radiation is treated. Consider the entropy
capacity at the constant magnetisation of a paramagnetic substance leads to a vivid and
simple interpretation of magnetocalorics. Thoroughly analysed examples as well as detailed
explanations and exercises with solutions [28] are provided. Fuchs et al. [31,32] put entropy
capacity into the context of the historical development of the caloric theory and linked
its value under different constraints (i.e., constant volume or constant pressure) via the
adiabatic coefficient.

In his student textbook, Wiberg [10] vividly demonstrated that the chemical substances
are capacities for entropy. The abstract terms entropy and reaction entropy are substantiated
as capacity factors for thermal energy analogous to charge in electricity and the amount of
fluid (water) in hydraulics. The intensity factor is then the absolute temperature analogously
to electrical potential in electricity and the height of fluid level in hydraulics. Wiberg [10]
(p. 140) wrote: “When ‘heat’ is supplied to a chemical substance, its entropy content is
increased. In the same way, the fluid level (i.e., the height of the amount of water) is
raised while filling a water vessel with water, the entropy level (i.e., the temperature of
the respective chemical substance) is raised while filling an entropy vessel (e.g., a gas or a
liquid [or a solid]) with entropy. In both cases, the increase in height is dependent on the
shape of the vessel [33].” The shape of the entropy vessel is given by the entropy capacity
of the chemical substance. In the example of the allotropic phase transition from graphite
to diamond or vice versa, which he discussed in a general concept of chemical reactions,
Wiberg very clearly showed the consequence of the changed shape of the entropy vessel,
which can cause the emission of entropy or absorption of entropy. Analogous to traditional
adjectives exothermic and endothermic reactions, the adjectives exotropic and endotropic



Entropy 2022, 24, 479 4 of 21

are suggested, which allow distinguishing reactions with entropy being released (negative
reaction entropy) from reactions with entropy being absorbed (positive reaction entropy),
because of increased or decreased entropy capacity of products compared to educts. Wiberg
gives very detailed figures for the amount of entropy stored in graphite and diamond at
different temperatures.

4. Entropy Capacity versus “Heat Capacity”

The entropy capacity K relates the change in entropy S with the absolute tempera-
ture T:

K :=
∂S
∂T

(1)

regardless of the constraints [13] of constant volume V and a constant number of particles N:

KV,N =

(
∂S
∂T

)
V,N

(2)

or constant pressure p and a constant number of particles N:

Kp,N =

(
∂S
∂T

)
p,N

(3)

If the number of particles is implicitly kept constant, these quantities can be denoted as
the entropy capacity at constant volume KV or the entropy capacity at constant pressure Kp.

The “heat capacity” CV is related to the entropy capacity KV at constant volume by
Equation (4), which refers to the change in internal energy E and thus transferred energy.
Following the approach of Fuchs [29], it is semantically more appropriate to call CV the
temperature coefficient of energy, which reflects its real meaning:

CV = T · KV = T ·
(

∂S
∂T

)
V
=

(
∂E
∂T

)
V

(4)

The “heat capacity” Cp is related to the entropy capacity Kp at constant pressure by
Equation (5), which refers to the change in enthalpy H and thus the transferred enthalpy.
Following the approach of Fuchs [29], it is semantically more appropriate to call Cp the
temperature coefficient of enthalpy, which reflects its real meaning:

Cp = T · Kp = T ·
(

∂S
∂T

)
p
=

(
∂H
∂T

)
p

(5)

The fact that CV and Cp refer to the exchange of different quantities was discussed by
Falk [13] (p. 188). Falk stated that the term “heat capacity” is linguistically and conceptually
a trap.

Zemansky [2] (p. 306) stated that the expression derived from the partition function
in statistical thermodynamics for entropy is simpler than the expression derived for the
internal energy. Interestingly, when Callen [3] (p. 353f) treated the Debye model of solids,
he did not derive the contribution of the phonons to the internal energy but to the molar
entropy. As such, he implicitly used the entropy capacity to deduce the “heat capacity”
as was performed herein in Equations (4) and (5). If temperature is known in addition to
the values of one or the other, CV and KV or Cp and Kp are easily convertible. Values of
entropy capacity for some substances are given in [25,29].

5. Analogy: Storage of a Fluid in a Vessel

Wiberg [10] drew an analogy between the capacity of chemical substances to store
entropy and the hydraulic capacity of a vessel to store a fluid. The latter is illustrated in
Figure 1. The capacity of a glass to store a fluid depends upon its shape, which perhaps
changes with the fluid level. In Figure 1, the fluid level is subsequently raised by equal
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height differences of 25 mm each, but the respective amount of fluid is quite different in
each step, because of the shape of the vessel being wider or narrower.

+ 63 mL + 120 mL + 83 mL + 54 mL

Figure 1. The capacity of a glass to store a fluid (here red wine) depends on the shape of the glass
and changes with the fluid level. Depending on the shape of the glass vessel, different amounts of
fluid are needed to raise the fluid level by 25 mm each. From left to right, the beakers contain 63 mL,
120 mL, 83 mL and 54 mL of fluid, which add to 320 mL when filled into the glass. A video sequence
of filling the glass is available as Video S1.

Of course, the chemical substances are containers for entropy with permeable walls.
Due to entropy permeation through nonadiabatic walls, at a certain rate, the entropy level in
the container will drop when the temperature (entropy level) in the surrounding decreases,
and the entropy level will rise when the temperature in the surrounding increases. For
solids, equilibration takes a long time [34]. The situation with chemical substances in
general is even more than intricate because the flow of entropy under nonisothermal
conditions is associated with the production of additional entropy [23,25,29]. Nevertheless,
for storing entropy in chemical substances, the analogy is very instructive.

6. Entropy Capacity of Diamond and Graphite

The shape of the entropy vessel in Figure 2a corresponds to graphite and that in
Figure 2b to diamond under isobaric conditions. The hatched area in Figure 2a marks
an infinitesimal amount of entropy dS = Kp · dT, which is linked to an infinitesimal
temperature interval dT by the entropy capacity Kp. The wider the vessel is, the more
entropy dS must be filled in to increase the entropy level (i.e., the temperature) by dT.
Easily, the entropy S contained in the vessel at a certain entropy level (i.e., temperature T)
can be estimated according to Equation (6):

S(T) =
∫ T

0
Kp · dT (6)

Interestingly, the entropy is commonly estimated by such integrals with the integrand be-
ing Cp/T, which implicitly refers to the isobaric entropy capacity (as can be seen in
Equation (5)). Using the entropy capacity explicitly comes with the benefit of clarity. The
entropy stored at equivalent temperature intervals of 300 K each can be estimated the same
way and is added to these intervals in Figure 2a for graphite and in Figure 2b for diamond.
From Figure 2c, diamond is obviously the narrower entropy vessel compared to graphite. The
amount of entropy being stored less in diamond compared to graphite in each 300 K interval
is added to the graph. The accumulated entropies of the present paper are in qualitative
agreement with Wiberg’s book [10] (see Table A2), except that Wiberg equated, perhaps for
didactic reasons, the entropy capacities of both carbon allotropes from 600 K upward.

The graphs T as a function of Kp in Figure 2 show the inverse of the entropy capacity,
i.e., ∂T/∂S, which has been called heatability by Herrmann and Hauptmann [18] (p. 28ff).
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(a) (b) (c)

Figure 2. Temperature dependence of isobaric entropy capacity Kp of 1 mol carbon allotropes:
(a) graphite; (b) diamond; (c) graphite and diamond with differences highlighted. Entropy ca-
pacities were calculated according to the multiparameter model by Vassiliev and Taldrik [35] (see
Appendix A.3). Following Wiberg [10].

Usually, the diagrams are plotted as in Figure 3 with the temperature in the axis of
ordinates and the entropy capacity on the axis of abscissae, which, however, does not
change anything regarding its vivid meaning [10]. In Figure 3, in addition to the molar
isobaric entropy capacity K̂p of graphite and diamond, the molar isochoric entropy capacity
K̂V of the Dulong–Petit relationship (hyperbolic) is plotted. The respective Ĉp and ĈV
curves are given in Figure A1, but lack vivid meaning. Above 1800 K, K̂p of graphite
converges to the classical Dulong–Petit relationship, which here is 3 · R · T−1 [36] (p. 427),
and eventually exceeds it, while K̂p for diamond remains below. Here, R is the universal
gas constant.

Graphite is an extreme example that cannot be described by a Debye model with a
single Debye temperature. Its phonon density of states is likely to be excessively com-
plex, which is due to its strong anisotropy with weak van der Waals interplane forces and
strong covalent bonds in the basal plane [37]. Even though diamond does not have such
anisotropy, the Debye model oversimplifies the phonon dispersion and gives an inappro-
priate prediction of the entropy capacity or the temperature coefficient of enthalpy [37]. In
a heuristic approach, some researchers have introduced a temperature-dependent Debye
temperature [38], which allows the maintenance of the Debye model at varying temperature
ranges [39] (p. 105ff), but thwarts the intention to predict the temperature dependence
of the isobaric entropy capacity or the temperature coefficient of enthalpy over a wide
temperature range using a single parameter [36] (p. 459f). As a consequence, quite different
values of the Debye temperature have been reported for diamond depending upon how
the Debye model was fitted to low-, mid- or high-temperature empirical data. Examples
are given in Figure A2.

Moreover, the difference between Kp or Cp (empirical) and KV or CV (model) can be
significant at high temperatures exceeding 10% [40]. The temperature dependence of the
thermal expansion, isothermal compression, and molar volume must be considered to
match the models to empirical data at higher temperatures. Due to incomplete data at high
temperature, the combination of the aforementioned parameters to the Grüneisen param-
eter is often considered. With the assumption of a temperature-independent Grüneisen
parameter, which implies that the Debye temperature is only dependent on the molar
volume, the ratio Kp/KV or Cp/CV can be estimated [39] (p. 102ff). The current approach to
provide model data for the calculation of phase diagrams (Calphad) databases [37,41], how-
ever, is multiparameter fitting to empirical data. The model proposed by Bigdeli et al. [37]
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relies on multiple Einstein temperatures and gives reasonable estimates for a wide tem-
perature range, but fades away from empirical data above 3000 K (graphite) or 1000 K
(diamond). Recently, a reliable description of Cp of the carbon allotropes diamond and
graphite from 0.1 K to the melting point has been given by Vassiliev and Taldrik [35] using
a Debye–Maier–Kelley hybrid model, and was used in this work with the parameters listed
in Table A1 to describe isobaric entropy capacity.

Figure 3. Temperature dependence of molar isobaric entropy capacity K̂p of graphite and diamond
and temperature dependence of molar isochoric entropy capacity K̂V according to the Dulong–
Petit relationship (hyperbolic) of the classical ideal gas. Isobaric entropy capacities were calculated
according to the multiparameter model by Vassiliev and Taldrik [35] (see Appendix A.3). Following
Wiberg [10].

7. Reaction Entropy

Wiberg [10] considered the allotropic phase transition of diamond to graphite as the
special case of a chemical reaction. If the transformation of 1 mol diamond to 1 mol graphite
is considered, integrating the difference between the entropy capacities of the product (i.e.,
graphite) and reagent (i.e., diamond) in Figure 3 leads to the molar reaction entropy ∆Ŝ
according to Equation (7):

∆Ŝdiamond→graphite =
∫ T

0

(
K̂p,graphite(T)− K̂p,diamond(T)

)
· dT (7)

The molar reaction entropy according to Equation (7) is plotted in Figure 4
versus temperature.

The reaction entropy of this work is in qualitative agreement with Wiberg’s book [10]
(see Table A2), except that Wiberg equated, perhaps for didactic reasons, the entropy
capacity of both carbon allotropes from 600 K upward. Therefore, in Wiberg’s diagram,
reaction entropy is constant from 600 K upward, but in Figure 4, the reaction entropy
further increases at a decreasing rate. The reaction entropy at integral multiples of 300 K is
indicated by horizontal dashed lines and corresponds to subsequent sums of the values in
Figure 3.



Entropy 2022, 24, 479 8 of 21

Figure 4. Molar reaction entropy of the transformation of diamond into graphite versus temperature
as calculated according to the multiparameter model by Vassiliev and Taldrik [35] (see Appendix A.3).
Following Wiberg [10].

In an inert atmosphere (absence of oxygen), diamond can be heated to approximately
2000 K. However, its surface is covered by a thin layer of graphite [35,42]. If the transforma-
tion is considered to proceed at constant temperature, the reaction entropy is isothermally
absorbed. Otherwise, the temperature of the resulting graphite would temporarily drop
until the reaction entropy balances the entropy level. Following the term endothermic,
Wiberg [10] coined such a process with positive reaction entropy as endotropic. The reverse
reaction, whereby graphite is transformed into diamond, has been reported to appear at
high temperature (ca. 1573 K to 3573 K), which was achieved by flash heating and high
pressure (ca. 15 GPa), which were applied to keep the graphite at a strictly constant volume
[43,44]. Under this high pressure, due to a rigidly fixed volume, the entropy capacity was
expected to be smaller than the entropy capacity given in Figure 2a. The latter implicitly
refers to a constant ambient pressure (ca. 100 kPa). The transformation of graphite into
diamond has a negative reaction entropy and can thus be classified as an exotropic reaction.
The classification is given as follows:

• Endotropic reaction, ∆S > 0: entropy is isothermally absorbed by the chemical sub-
stance(s) from the environment (Ref. [10], p. 155, Ref. [25], p. 231ff).

• Exotropic reaction, ∆S < 0: entropy is isothermally ejected from the chemical sub-
stance(s) to the environment (Ref. [10], p. 155, Ref. [25], p. 231ff).

Illustrative examples of the isothermal squeezing out or soaking up of entropy (sponge
model) are given in [23,25,45]. If the reaction cannot be exchanged with the environment at
a sufficiently fast rate, however, the temperature of the chemical substance(s) temporarily
changes. In the extreme case, the temperature change is adiabatic. This is discussed in the
example of an electrocaloric material in Section 8.

Wiberg [10] integrated a graph analogous to Figure 4 to produce a vivid picture of the
Gibbs–Helmholtz equation and deduced graphs of Gibbs free energy and enthalpy versus
temperature for the transformation of diamond into graphite. Wiberg clearly deduced
that endotropic reactions are possible at decreasing temperature only if the entropy to be
absorbed (∆S > 0) is sufficiently large to compensate for the Gibbs free energy (e.g., trans-
formation, evaporation, dissociation). In contrast, highly endothermic reactions with small
reaction entropy only occur at very high temperatures. Exotropic reactions (∆S < 0) with
large reaction entropy require highly exothermic conditions to occur at high temperature,
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while weakly exothermic reactions with small reaction entropy to be absorbed are only
possible at low temperature (e.g., condensation, association). Thus, knowledge of reaction
entropy as a function of temperature for the system of products and the system of reagents
is important to obtain a vivid picture of possible reactions, and reaction entropy is closely
linked to the entropy capacity of these systems.

In general, the molar reaction entropy ∆Ŝ can be estimated according to Equation (8)
by integrating the difference of molar entropy capacities of products K̂p,i and reagents K̂p,j
weighted by respective stoichiometric coefficients νi and νj:

∆Ŝ(T) =
∫ T

0

(
products

∑
i

νi · K̂p,i(T)−
reagents

∑
j

νj · K̂p,j(T)

)
· dT (8)

8. Caloric Materials

So-called caloric materials often exhibit polymorphic phase transitions, which cause
the absorption or release of entropy due to changed entropy capacity, and are triggered by
magnetic stress (magnetocaloric [46]), mechanical stress (elastocaloric [47]), electrical field
(electrocaloric [48,49]) or hydrostatic pressure (barocaloric [45]).

Using the example of magnetocaloric materials, Fuchs [29] (p. 234) discussed the
coupling of magnetic and thermal processes. The flow of entropy from the environment
into the material or out of the material into the environment depends on the latent entropy
(with respect to magnetisation) and the entropy capacity KM at constant magnetisation M:

KM =

(
∂S
∂T

)
M

(9)

directly leading to the latent entropy with respect to magnetisation (the extensive magnetic
quantity). Latent entropy is related to the isothermal change of entropy [25] (p. 85) and
it coincidences with what has been called reaction entropy in context of Equation (7) and
Equation (8). “The term latent denotes the property of entropy not to affect the temperature
of the system during phase change [29] (p. 191f).” The common understanding of entropy is
that it changes the temperature of a system. When it does not, it is termed latent entropy in
contrast to sensible entropy. Latent entropy (i.e., latent reaction entropy) gives an illustrative
view of the isothermal absorption of entropy when the magnetisation is lowered. Upon
lowering magnetisation, the entropy vessel becomes wider and can store more entropy at a
given temperature. Recall that the relationship of stored entropy to the entropy capacity is
given by Equation (6).

When considering the adiabatic demagnetisation of a paramagnetic substance, which
is used to reach ultralow temperature, the entropy capacity KH at a constant magnetic field
H (the intensive magnetic quantity) is used:

KH =

(
∂S
∂T

)
H

(10)

These views can easily be extended to other members of the family of caloric materials
with appropriate entropy capacity to be identified. Considering the multitude of thermal
cycles that are possible, countless entropy capacities may be considered. Figure 5 provides
some examples with either intensive or extensive fixed quantities. The respective symbols
are explained in Table 1.

Giant electrocaloric effects have been reported for single-crystal BaTiO3 [50]. In refs. [48,51],
the theoretical electrical entropy versus temperature diagram for BaTiO3 is discussed for
different strengths of the applied electrical field. By differentiating these curves with respect
to temperature, the electrical entropy capacity at constant electrical field KE can be obtained.
However, preference is usually given to the empirical data on the specific temperature
coefficient of energy at the constant electrical field C̃E (see Figure A3b), which were reported
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by Bai et al. [52]. These data were used to deduce the specific entropy capacity at a constant
electrical field K̃E for zero field and E = 10 kV · cm−1 (see Figure A3b).

Table 1. Energy forms in the context of caloric effects and related intensive and extensive quantities.

Caloric Effect Energy Form Conjugated Quantities

Intensive Quantity Extensive Quantity

magnetocaloric magnetisation energy magnetic field H magnetisation M
elastocaloric elastic energy stress σ strain ε
electrocaloric polarisation energy electrical field E polarisation P
barocaloric compression energy pressure p volume V

all thermal energy 1 temperature T entropy S
1 Thermal energy is also called “heat”.

𝐾𝐾 =
𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇

𝐾𝐾𝑀𝑀

𝐾𝐾𝜀𝜀

𝐾𝐾𝑃𝑃

𝐾𝐾𝑉𝑉
𝐾𝐾𝑝𝑝

𝐾𝐾ℰ

𝐾𝐾𝜎𝜎

𝐾𝐾ℋ

Figure 5. Examples of entropy capacity K of caloric materials at different intensive or extensive
quantities being constant.

The electrocaloric cycle given by Scott [48] is adapted to barium titanate and analysed
in Figure 6 with respect to entropy capacity. The cycle starts at zero field at a temperature of
412 K, slightly above the paraelectric–ferroelectric phase transition. With the electrical field
applied in an adiabatic process, BaTiO3 becomes a narrower entropy vessel, which can store
the initial entropy only with the entropy level (i.e., temperature) increased by ∆T = 0.8 K to
412.8 K. Then, the reaction entropy ∆S = 1.45 J ·K−2 · kg−1 is ejected and the temperature
decreases to 412 K again. In another adiabatic process, the electrical field is decreased to
zero again, which makes BaTiO3 a wider entropy vessel, and its temperature decreases
to 411.2 K. Then, the entropy of an amount equal to the reaction entropy is absorbed, the
temperature rises to 412 K, and the cycle is closed. The process is driven by polarisation
energy and leads to the pumping of thermal energy. Note that arrows related to energy
forms have different thicknesses. Reaction entropy ∆S is ejected at a higher temperature
than that at which it is absorbed, which makes the associated thermal energy ejected in the
warm leg of the cycle larger than the thermal energy absorbed in the cold leg of the cycle.
The absorption or ejection of polarisation energy or thermal energy changes the internal
energy, but none of the energy forms are part of the internal energy.
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𝑇𝑇 = 𝑇𝑇1
ℇ = 0

𝑇𝑇 = 𝑇𝑇1 + Δ𝑇𝑇1
ℇ = ℇ𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇0 = 𝑇𝑇1 − Δ𝑇𝑇2
ℇ = 0

𝑇𝑇 = 𝑇𝑇1
ℇ = ℇ𝑚𝑚𝑚𝑚𝑚𝑚

adiabatic

adiabatic

Δ𝑇𝑇2

Δ𝑇𝑇1

absorb
∆𝑆𝑆

𝐸𝐸𝑡𝑡𝑡

∆𝑆𝑆

𝐸𝐸𝑡𝑡𝑡

eject

absorb

𝐸𝐸𝑃𝑃𝛥𝛥𝑃𝑃

eject

𝐸𝐸𝑃𝑃𝛥𝛥𝑃𝑃

co
ns

ta
nt

fie
ld

co
ns

ta
nt

fie
ld

Figure 6. An electrocaloric cycle of barium titanate interpreted using entropy capacity. Irreversibility
is omitted for clarity. A video sequence of squeezing and relaxing a fluid-filled vessel is available as
Video S2 as an analogon. Following Scott [48].

The figures given here for entropy and temperature are not superbly accurate because
the graphs given in [52] were sampled in steps of only 0.5 K and interpolated to 0.1 K
steps using an Akima spline fit. Bai et al. [52] reported a specific reaction entropy of
∆S̃ = 1.9 J · K−2 · kg−1 (∆T = 1.6 K) at 412 K. The values in [52] were estimated from
empirical C̃E(T,E) (see Equation (A6)) and T values using the relationship equivalent to
Equation (11), but without explicitly mentioning entropy capacity:

∆S̃ =
∫ T

0

(
K̃E(T,E)− K̃E(T, 0)

)
· dT (11)

In Figure 6 and the discussion given above, irreversibility is omitted for clarity. For
the treatment of generated reaction entropy in addition to latent reaction entropy, the reader
is referred to [25] (p. 241ff).

9. Thermoelectrics and Thermal Conductivity

The thermoelectric figure of merit f = zT can be expressed as

f =
power factor

Λ
=

power factor
λ

· T := zT (12)

with the open-circuited specific thermal conductivity expressed either as entropy conductiv-
ity Λ or “heat” conductivity λ, which are related by the absolute temperature T according
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to λ = T ·Λ [53,54]. An established method to measure the thermal conductivity is based
on light flash analyser, which estimates the thermal diffusivity Dth [34]. When the density
ρ and the specific isobaric “heat capacity” C̃p or the specific isobaric entropy capacity K̃p
are also known, the “heat” conductivity:

λ = Dth · ρ · C̃p (13)

or the entropy conductivity:

Λ = Dth · ρ · K̃p (14)

can be obtained. The thermal diffusivity Dth can be regarded as the diffusion coefficient
of “heat” as well as the diffusion coefficient of entropy [19]. With temperature T explicitly
showing up in the right part of Equation (12), entropy conductivity is implicitly used
(left part of Equation (12)), which implicitly refers to the entropy capacity according to
Equation (14). Notes on Fourier’s original work support the view to centre considerations
on thermal conductivity around a storable quantity [31].

10. Phononic Contributions to Entropy Capacity: Debye Model

According to Equations (A4) and (A3), the molar isochoric entropy capacity of the
phonon gas with Debye temperature ΘD is given by Equation (15):

K̂V = 9 · R · T2

Θ3
D
·
∫ ΘD

T

0

x4

(ex − 1)2 dx (15)

In Figure 7a, the molar isochoric entropy capacity according to Equation (15) is plotted
as a function temperature for five different Debye temperatures. The examples were taken
from Debye’s original work [11] and correspond to extrapolations for lead (ΘD = 95 K),
silver (ΘD = 215 K), copper (ΘD = 309 K), aluminium (ΘD = 396 K) and diamond
(ΘD = 1830 K, accurate description is given in Figure A2). The parabolic low-temperature
course according to the phonon-related part of Equation (17) is also shown for each De-
bye temperature. The corresponding graphs for the molar temperature coefficient of
energy ĈV versus temperature are plotted in Figure 7b, which follows from combining
Equations (4) and (15).

(a) (b)

𝐶𝐶
𝑉𝑉

Figure 7. (a) Graph of isochoric molar entropy capacity versus absolute temperature; (b) graph of
molar temperature coefficient of energy ĈV versus absolute temperature. The graphs were calculated
according to the Debye model for five different Debye temperatures on the examples given in Debye’s
original work [11] and include low-temperature approximations (i.e., T2 dependence in (a) and T3

dependence in (b)).
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Remember that the purpose of considering the “heat capacity” CV is to estimate
the amount of entropy stored [3] (p. 32, 353f), which can easily be estimated by visually
integrating the graphs in Figure 7a where the entropy stored in 1 mol lead at 300 K is many
times over the entropy stored in 1 mol diamond at the same temperature, which is not
obvious from Figure 7b.

11. Phononic and Electronic Contributions to Entropy Capacity

In the low-temperature limit of the Debye model, the electronic and phononic con-
tributions to the molar temperature coefficient of energy ĈV are traditionally considered
according to Equation (16) [36]:

ĈV = γ · T + β · T3, (16)

Combining Equation (16) with Equation (4), the electronic and phononic contribu-
tions to the molar entropy capacity K̂V in the low-temperature limit of the Debye model
are obtained:

K̂V = γ + β · T2, (17)

Here, γ is the molar isochoric entropy capacity of the electron gas, often called the
Sommerfeld coefficient [36] (p. 47):

γ =
π2

3
· R · kB ·D(EF), (18)

Here, kB is Boltzmann’s constant and D(EF) is the electronic density of states at the
Fermi energy EF.

The coefficient β in the phononic contribution to the entropy capacity is as follows [36]
(p. 459) and allows us to estimate the Debye temperature ΘD:

β =
12
5
· π4 · R ·ΘD

−3 (19)

Equation (17) gives a physical meaning to the so-called Sommerfeld coefficient γ,
which is the electronic contribution to the entropy capacity. Obviously, the electronic
contribution to the entropy capacity is independent of temperature in the low-temperature
approximation of the Sommerfeld–Drude model.

To retrieve the coefficients γ and β in Equation (16), ĈV/T is often plotted as a function
of T2 without reference to the entropy capacity. However, as mentioned previously, it
is indeed the molar entropy capacity K̂V , which is plotted versus T2. Examples of K̂V
regression lines to empirical K̂p data according to Equation (17) are shown in Figure 8 for
gold, silver, copper and aluminium in the nonsuperconducting state. Note that K̂V (model)
and K̂p (empirical) are considered to coincide at very low temperatures.

It is obvious from Table 2 that values for the Debye temperature in [55,56] (Figure 8)
differ from the values in [11] (Figure 7). The former values are higher because they were
obtained from fitting to the empirical data obtained at lower temperatures compared to
the latter.



Entropy 2022, 24, 479 14 of 21

Figure 8. Plot of regression lines to the molar entropy capacity versus temperature squared. Based
on parameters from [55] (Au, Ag, Cu) and [56] (Al) as given in Table 2.

Table 2. Comparison of the molar electronic entropy capacity γ (Sommerfeld coefficient) and Debye
temperature ΘD for the elements displayed in Figures 7 and 8.

Substance
γ ΘD

(mJ K−2 mol−1) (K) (K)

Au 0.743 [55] 1 164.57 [55] 1 N/A [11]
Ag 0.610 [55] 1 225.3 [55] 1 215 [11]
Cu 0.688 [55] 1 343.8 [55] 1 309 [11]
Al 1.35 [56] 2 427.7 [56] 2 396 [11]

1 Data from [55] refer to a corrected 1948 helium vapor pressure–temperature scale. 2 Data from [56] refer to the
1959 helium vapor pressure–temperature scale.

12. Discussion
12.1. Thermal Capacity

The storable thermal quantity is not the energy form “heat”, but the fluid-like quantity
entropy. Thus, it is reasonable to associate the term thermal capacity with entropy capacity,
which has been widely used implicitly. Its explicit use comes with the advantage of
a descriptive fundamental understanding of thermal processes. Entropy capacity is a
susceptibility and its inverse relates the response of the solid (change of temperature) to a
stimulus (change of entropy contained).

12.2. Units of Entropy and Entropy Capacity

To emphasise that entropy is a countable quantity in its own rights, Wiberg [10] intro-
duced for its units the special name Clausius (1 Clausius = 1 cal ·K−1 = 4.1868 J ·K−1). The
use of the special name Carnot for the unit of entropy (1 Carnot = 1 Ct = 1 J ·K−1 [25,57]),
which goes back to a proposal by Callendar [15], has also been suggested. With respect to
Figure 2a, it is then possible to state that 1 mol graphite contains an amount of entropy of
5.66 Ct at 300 K and 5.66 Ct + 8.95 Ct = 14.61 Ct at 600 K, which sounds better than saying
5.66 J ·K−1 or 14.61 J ·K−1. Following this approach, the entropy capacity of 1 mol graphite
at 600 K can be expressed as 0.029 Ct ·K−1, i.e., Carnot per Kelvin, which sounds better
than 0.029 J ·K−2.
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It is a curious irony that a quantity that is central not only to thermal processes but
involved in all dissipative (i.e., irreversible) physical processes has not yet received a special
name in the International System of Units (SI).

12.3. Confusion and Resolution

Zemansky [2] (p. 76) summarised that the “idea” of heat (in older theories) as a form
of energy was put forward in 1839 by Séguin and in 1842 by Mayer. Experiments by Joule
during the period from 1840 to 1849 convinced the world. In 1847, von Helmholtz wrote a
paper in which he applied Joule’s ideas to the sciences of physical chemistry and physiology.
Fuchs [27] (p. 295) put forth the question “What did early experiments on heat prove?”.
The short answer is that these “measurements were too crude” and “did not substantially
add to the progress of thermodynamics”. Identifying heat with energy or an energy form
was guided by prejudice rather than by a logical chain of reasoning.

“Heat capacity” has become a dead metaphor due to semantic shifts in the meaning
of caloric (heat) during the development of thermodynamics from 1830 to 1850 [17,31,58].
Further dead metaphors are “heat storage”, “heat storage density”, “thermal energy stor-
age density”, “heat reservoir” and “heat sink”, which generate images in mind that are
inconsistent with thermodynamics. More examples are given in [31].

Semantic and conceptual impositions of the traditional mechanical theory of “heat”
can be avoided if instead of thermal energy, entropy is seen as a resurrection of Carnot’s
caloric (heat). This view follows notes by Ostwald (Ref. [59] p. 77, Ref. [17] p. 10, [60]) and
others [15,16,27,58,61]. In the first edition of his famous book, Fuchs [27] (p. 289ff) clearly
outlined the misconceptions of the traditional mechanical theory of “heat”, but reconciled
it with the caloric theory of heat by identifying corresponding terms and definitions of
both approaches.

To overcome the dichotomy between theory and clarity, several authors have sug-
gested the correction of the semantics in thermodynamics [17,23,27,29,31,58]. The tradi-
tional “heat” should be substituted by thermal energy and entropy substituted by heat.
The quantity entropy, which is mostly considered difficult, would become such a simple
thing that “any school boy [and school girl] can understand” [15] and that “can be learned
intuitively” [62].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24040479/s1, Video S1: Filling glass vessel with fluid; Video S2:
Squeezing and relaxing a fluid-filled vessel; Computer Code S1: Python code to calculate entropy
capacity and “heat capacity”.
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Symbols
The following symbols are used in this manuscript:

C̃E
specific temperature coefficient of energy (at a constant electrical field)
(specific “heat capacity” at a constant electrical field)

CV
temperature coefficient of energy (at constant volume)
(“heat capacity” at constant volume)

ĈV
molar temperature coefficient of energy
(molar “heat capacity” at constant volume)

https://www.mdpi.com/article/10.3390/e24040479/s1
https://www.mdpi.com/article/10.3390/e24040479/s1
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CV,N
temperature coefficient of energy at a constant number of particles
(“heat capacity” at constant volume and at a constant number of particles)

Cp
temperature coefficient of enthalpy
(“heat capacity” at constant pressure)

Ĉp
molar temperature coefficient of enthalpy
(molar “heat capacity” at constant pressure)

C̃p
specific temperature coefficient of enthalpy
(specific isobaric “heat capacity”)

Cp,N
temperature coefficient of enthalpy at a constant number of particles
(“heat capacity” at constant pressure and at a constant number of particles)

Dth thermal diffusivity (diffusion coefficient of “heat”, diffusion coefficient of entropy)
D(EF) electronic density of states at the Fermi energy
E energy
EF Fermi energy
E electrical field
f dimensionless thermoelectric figure of merit (see also zT)
H enthalpy
kB Boltzmann’s constant
KE entropy capacity at constant electrical field
K̃E specific entropy capacity at constant electrical field
KH entropy capacity at constant magnetic field
KM entropy capacity at constant magnetisation
Kp entropy capacity at constant pressure (isobaric entropy capacity)
K̂p molar isobaric entropy capacity
K̂p,i molar isobaric entropy capacity of substance i
K̂p,j molar isobaric entropy capacity of substance j
Kp,N entropy capacity at constant pressure and at a constant number of particles
K̃p specific isobaric entropy capacity
KP entropy capacity at constant (electrical) polarisation
KV entropy capacity at constant volume (isochoric entropy capacity)
KV,N entropy capacity at constant volume and at a constant number of particles
K̂V molar isochoric entropy capacity
Kσ entropy capacity at constant stress
Kε entropy capacity at constant strain
N amount of substance (number of particles), given in mol
p pressure
P (electrical) polarisation
R universal gas constant
S entropy
T absolute temperature
V volume
x integration variable in Debye model
zT dimensionless thermoelectric figure of merit (see also f )
γ molar isochoric entropy capacity of the electron gas (Sommerfeld coefficient)
β factor in the Debye model (low-temperature limit)
∆S reaction entropy
∆Ŝ molar reaction entropy
∆T temperature difference
ε strain
λ open-circuited specific “heat” conductivity
Λ open-circuited specific entropy conductivity
νi stoichiometric coefficient of substance i
νj stoichiometric coefficient of substance j
ρ density
σ (mechanical) stress
ΘD Debye temperature
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Appendix A. Entropy Capacity and “Heat Capacity” of Graphite and Diamond

Appendix A.1. “Heat Capacity” of Graphite and Diamond According to Vassiliev and Taldrik

Figure A1. Temperature dependence of the molar temperature coefficient of enthalpy Ĉp of graphite
and diamond and the molar temperature coefficient of energy ĈV according to the Dulong–Petit
relationship (constant) of the classical ideal gas. Ĉp values were calculated according to the multipa-
rameter model of Vassiliev and Taldrik [35] (see Appendix A.3).

Appendix A.2. Entropy Capacity and “Heat Capacity” of Diamond

(a) (b)

𝐶𝐶
𝑝𝑝 ,𝐶𝐶

𝑉𝑉

Figure A2. (a) Molar entropy capacity of diamond (K̂p ) according to the multiparameter model of
Vassiliev and Taldrik [35] (see Appendix A.3), compared to the Debye model (K̂V) with two different
Debye temperatures (1830 K [11] and 2240 K [38]). The low-temperature Debye model and Dulong–
Petit relationship are also displayed. (b) Molar temperature coefficient of enthalpy Ĉp of diamond
according to the multiparameter model by Vassiliev and Taldrik [35] (see Appendix A.3), compared
to the Debye model (ĈV) with two different Debye temperatures (1830 K [11] and 2240 K [38]). The
low-temperature Debye model and Dulong–Petit relationship are also displayed.
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Appendix A.3. Multiparameter Modelling of the Entropy Capacity and “Heat Capacity” of
Graphite and Diamond

Recently, a reliable description of the Cp of the carbon allotropes diamond and graphite
from 0.1 K to the melting point was given by Vassiliev and Taldrik [35] using a Debye–Maier–
Kelley hybrid model. In this model, 9 parameters must be estimated. Two parameters (a,
b) are fixed by fitting the Maier–Kelley model to high-temperature empirical Cp values.
An additional six parameters are fixed by fitting the low-temperature empirical Cp using
a linear combination of Debye functions for CV with three Debye temperatures (ΘD,1,
ΘD,2, ΘD,3) and three corresponding prefactors (A1, A2, A3). The last parameter (T0) is
fixed to provide a smooth transition from the temperature coefficient of energy CV to the
temperature coefficient of enthalpy CP. The parameter settings used in this work are listed
in Table A1:

Cp =

a +
b · T
1000

+
3 · R− a(
1 + T

T0

)2

 · CV (A1)

With CV being:

CV = 9 · N · R ·
3

∑
j=1

Aj · f̃D
(
T, ΘD,j

)
·
(

T
ΘD,j

)3

(A2)

Here, f̃D is the Debye function:

f̃D
(
T, ΘD,j

)
=
∫ ΘD,j

T

0

x4

(ex − 1)2 dx =
∫ ΘD,j

T

0

x3

(ex − 1)
dx−

(ΘD,j

T

)4

·
(

e
ΘD,j

T − 1
)−1

(A3)

Using Equations (4) and (5), the entropy capacities have been estimated according to:

Kp =

a +
b · T
1000

+
3 · R− a(
1 + T

T0

)2

 · KV (A4)

With KV being:

KV = 9 · N · R ·
3

∑
j=1

Aj · f̃D
(
T, ΘD,j

)
· T2

Θ3
D,j

(A5)

Table A2 shows good agreement between this work, based on the multiparameter
model of Vassiliev and Taldrik [35], and Wiberg’s book [10] regarding accumulated en-
tropies and reaction entropy. Recall that Wiberg equated the entropy capacity of both
carbon allotropes from 600 K upward.

Table A1. Parameters for Equations (A1)–(A5) according to the Debye–Maier–Kelley hybrid model
in the range of 0.1 K to the melting point for diamond (Table 6, 1b, in [35]) and graphite (Table 6,
2c, in [35]). Reprinted from Journal of Alloys and Compounds, 872, Vassiliev, V.P., Taldrik, A.F.,
Description of the heat capacity of solid phases by a multiparameter family of functions, 159682,
Copyright (2021), with permission from Elsevier.

Phase T0 A1 ΘD,1 A2 ΘD,2 A3 ΘD,3 a b

Diamond 1366 0.031 1833.6 0.488 1968.7 0.482 1824.5 24.59 0.287
Graphite 282.6 0.773 1949.9 0.114 426.4 0.114 947.9 24.25 0.848
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Appendix A.4. Comparison to Wiberg’s Book

Table A2. Amount of accumulated entropy S∆T in graphite and diamond in equal temperature
intervals ∆T of 300 K and the associated integrated reaction entropy ∆S∆T .

Temperature Interval S∆T
graphite S∆T

diamond ∆S∆T

Wiberg [10] 1,2 This work 3 Wiberg [10] 1,2 This Work 3 Wiberg [10] 1,2 This Work 3

1500–1800 N/A 4.43 N/A 4.29 N/A 0.14
1200–1500 N/A 5.22 N/A 5.07 N/A 0.15
900–1200 6.28 6.32 6.28 6.12 0 0.20
600–900 7.49 7.80 7.49 7.39 0 0.41
300–600 8.83 8.95 7.95 7.56 0.88 1.39

0–300 5.78 5.66 2.43 2.33 3.35 3.33
1 Wiberg [10] presented values of entropy in the unit 1 Clausius = 1 cal ·K−1 = 4.1868 J ·K−1. 2 Wiberg likely
used thermochemical data (pp. 24, 149, [10]) from the Landolt–Börnstein [63] to construct entropy capacity versus
temperature diagrams in units of Clausius per Kelvin versus Kelvin. 3 Thermochemical data for graphite and
diamond used in this work rely on the multiparameter model of Vassiliev and Taldrik [35].

Appendix B. Entropy Capacity and “Heat Capacity” of Barium Titanate

Figure A3a was deduced from Figure A3b by sampling graphs for zero field and
E = 10 kV cm−1 in steps of 0.5 K and using Equation (A6).

(a) (b)

Specific
“heatcapacity“ 𝐶𝐶

ℇ
[JK

-1kg
-1]

Temperature [K]

Figure A3. (a) Graph of the specific entropy capacity K̃E of BaTiO3 versus temperature for zero field
and E = 10 kV cm−1; and (b) Graph of the specific “heat capacity” C̃E of BaTiO3 versus temperature
for zero field and 4 different field strength levels from [52]. Figure (b) was reprinted from Physica
Status Solidi A, 209, Bai, Y., Ding, K., Zheng, G.P., Shi, S.Q., Qiao, L., Entropy-change measurement
of electrocaloric effect of BaTiO3 single crystal., 941–944, Copyright (2012), with permission from
Wiley-VCH.

The specific “heat capacity” at a constant electrical field is as follows:

C̃E = T · K̃E = T ·
(

∂S
∂T

)
E

(A6)
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