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Abstract 

In the real world, a significant challenge faced in the safe operation and maintenance of infrastructures is the lack of 

available information or data. This results in a large degree of uncertainty and the requirement for robust and efficient 

uncertainty quantification (UQ) tools in order to derive the most realistic estimates of the behavior of structures. While 

the probabilistic approach has long been utilized as an essential tool for the quantitative mathematical representation 

of uncertainty, a common criticism is that the approach often involves insubstantiated subjective assumptions because 

of the scarcity or imprecision of available information. To avoid the inclusion of subjectivity, the concepts of imprecise 

probabilities have been developed, and the distributional probability-box (p-box) has gained the most attention among 

various types of imprecise probability models since it can straightforwardly provide a clear separation between aleatory 

and epistemic uncertainty. 

This thesis concerns the realistic consideration and numerically efficient calibraiton and propagation of aleatory 

and epistemic uncertainties (hybrid uncertainties) based on the distributional p-box. The recent developments including 

the Bhattacharyya distance-based approximate Bayesian computation (ABC) and non-intrusive imprecise stochastic 

simulation (NISS) methods have strengthened the subjective assumption-free approach for uncertainty calibration and 

propagation. However, these methods based on the distributional p-box stand on the availability of the prior knowledge 

determining a specific distribution family for the p-box. The target of this thesis is hence to develop a distribution-free 

approach for the calibraiton and propagation of hybrid uncertainties, strengthening the subjective assumption-free UQ 

approach.  

To achieve the above target, this thesis presents five main developments to improve the Bhattacharyya distance-

based ABC and NISS frameworks. The first development is on improving the scope of application and efficiency of 

the Bhattacharyya distance-based ABC. The dimension reduction procedure is proposed to evaluate the Bhattacharyya 

distance when the system under investigation is described by time-domain sequences. Moreover, the efficient Bayesian 

inference method within the Bayesian updating with structural reliability methods (BUS) framework is developed by 

combining BUS with the adaptive Kriging-based reliability method, namely AK-MCMC. The second development of 

the distribution-free stochastic model updating framework is based on the combined application of the staircase density 

functions and the Bhattacharyya distance. The staircase density functions can approximate a wide range of distributions 
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arbitrarily close; hence the development achieved to perform the Bhattacharyya distance-based ABC without limiting 

hypotheses on the distribution families of the parameters having to be updated. The aforementioned two developments 

are then integrated in the third development to provide a solution to the latest edition (2019) of the NASA UQ challenge 

problem. The model updating tasks under very challenging condition, where prior information of aleatory parameters 

are extremely limited other than a common boundary, are successfully addressed based on the above distribution-free 

stochastic model updating framework. Moreover, the NISS approach that simplifies the high-dimensional optimization 

to a set of one-dimensional searching by a first-order high-dimensional model representation (HDMR) decomposition 

with respect to each design parameter is developed to efficiently solve the reliability-based design optimization tasks. 

This challenge, at the same time, elucidates the limitations of the current developments, hence the fourth development 

aims at addressing the limitation that the staircase density functions are designed for univariate random variables and 

cannot acount for the parameter dependencies. In order to calibrate the joint distribution of correlated parameters, the 

distribution-free stochastic model updating framework is extended by characterizing the aleatory parameters using the 

Gaussian copula functions having marginal distributions as the staircase density functions. This further strengthens the 

assumption-free approach for uncertainty calibration in which no prior information of the parameter dependencies is 

required. Finally, the fifth development of the distribution-free uncertainty propagation framework is based on another 

application of the staircase density functions to the NISS class of methods, and it is applied for efficiently solving the 

reliability analysis subproblem of the NASA UQ challenge 2019. 

The above five developments have successfully strengthened the assumption-free approach for both uncertainty 

calibration and propagation thanks to the nature of the staircase density functions approximating arbitrary distributions. 

The efficiency and effectiveness of those developments are sufficiently demonstrated upon the real-world applications 

including the NASA UQ challenge 2019. 

Keywords: Uncertainty quantification; Imprecise probabilities; Stochastic model updating; Bhattacharyya distance; 

Staircase density function. 
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Zusammenfassung 

In der realen Welt stellt der Mangel an verfügbaren Informationen oder Daten eine wesentliche Herausforderung für 

den sicheren Betrieb und die Instandhaltung von Infrastruktur dar. Daraus resultiert ein hohes Ausmaß an Unsicherheit 

und der Bedarf an robusten und effizienten Instrumenten zur Unsicherheitsquantifizierung (UQ), um möglichst 

realistische Schätzungen des Strukturverhaltens abzuleiten. Der probabilistische Ansatz dient seit langem als 

wesentliches Instrument zur quantitativen mathematischen Darstellung der Unsicherheit. Hierbei wird jedoch häufig 

kritisiert, dass dieser Ansatz aufgrund der Knappheit oder Ungenauigkeit der verfügbaren Informationen oft 

ungerechtfertigte subjektive Annahmen beinhaltet. Zur Vermeidung der Einbeziehung von Subjektivität wurden 

Konzepte für unscharfe Wahrscheinlichkeiten entwickelt, wobei die verteilungsbezogene Wahrscheinlichkeitsbox (P-

Box) unter den verschiedenen Arten von ungenaue Wahrscheinlichkeitsmodellen die meiste Aufmerksamkeit erlangt 

hat, da sie eine klare Trennung zwischen aleatorischer und epistemischer Unsicherheit bieten kann. 

Diese Arbeit befasst sich mit der realistischen Betrachtung sowie numerisch effizienten Kalibrierung und 

Fortpflanzung von aleatorischen und epistemischen Unsicherheiten (hybride Unsicherheiten) auf Basis der 

verteilungsbezogenen P-Box. Die jüngsten Entwicklungen, einschließlich der auf der Bhattacharyya-Distanz 

basierenden „approximate Bayesian computation (ABC)“ und „non-intrusive imprecise stochastic simulation (NISS)“, 

haben den subjektiven, annahmefreien Ansatz zur Kalibrierung und Fortpflanzung von Unsicherheit verbessert. Die 

Methoden setzen jedoch die Verfügbarkeit des Wissens über die Verteilungsfamilie der P-Box voraus. Das Ziel dieser 

Arbeit ist es daher, einen verteilungsfreien Ansatz für die Kalibrierung und Fortpflanzung hybrider Unsicherheiten zu 

entwickeln, der den subjektiven, annahmefreien UQ-Ansatz kräftigt.  

Um das oben genannte Ziel zu erreichen, werden in dieser Arbeit fünf Hauptentwicklungen zur Verbesserung der 

Bhattacharyya-Distanz-basierten ABC- und NISS-Framework vorgestellt. Die erste Entwicklung betrifft die 

Erweiterung des Anwendungsbereichs und Verbesserung der Effizienz des Bhattacharyya-Distanz-basierten ABC. 

Hierbei werden Verfahren der Dimensionsreduktion zur Bewertung der Bhattacharyya-Distanz eingeführt, die System 

untersuchen, welche durch Sequenzen im Zeitbereich beschrieben werden. Darüber hinaus wird ein effizienter 

Bayes'scher Inferenzalgorithmus entwickelt, der auf „Bayesian updating with structural reliability methods 

(BUS)“ basiert. Die BUS wird dazu mit „adaptive Kriging-Markov chain Monte Carlo (AK-MCMC)“ kombiniert. Die 
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zweite Entwicklung des verteilungsfreien stochastischen Modellaktualisierungsframeworks basiert auf der 

verknüpften Anwendung der Treppendichtefunktionen und des Bhattacharyya-Distanz. Mit Treppenfunktionen lässt 

sich ein breites Spektrum von Verteilungsfunktionen beliebig nah approximieren; Wodurch die ABC, basierend auf 

der Bhattacharyya-Distanz, durchgeführt werden kann, ohne einschränkende Hypothesen über die Verteilungsfamilie 

der zu aktualisierenden Parameter treffen zu müssen. Beide Entwicklungen werden dann in die dritte Entwicklung 

integriert, um eine Lösung für die aktuellste Auflage (2019) des NASA UQ-Problems zu liefern. Diese Aufgabe der 

Modellaktualisierung beinhaltet anspruchsvolle Bedingungen, in denen die Vorkenntnisse der aleatorischen Parameter, 

bis auf eine gemeinsame Randbedingung, extrem limitiert sind. Ferner konnte dies mit dem verteilungsfreien 

stochastischen Framework zur Modellaktualisierung erfolgreich angegangen werden. Zusätzlich wird durch den 

Ansatz der NISS die hochdimensionale Optimierung mithilfe der inkludierten „high-dimensional model representation 

(HDMR)“ in jeweils eindimensionale Probleme zerlegt. Diese Herausforderung verdeutlicht gleichzeitig die Grenzen 

der diskutierten Entwicklungen. Aus diesem Grund zielt die vierte Weiterentwicklung darauf ab, die Einschränkung 

zu beseitigen, dass die Treppendichtefunktionen für univariate Zufallsvariablen konzipiert sind und die 

Parameterabhängigkeiten nicht berücksichtigen können. Um die Verbundverteilung der korrelierten Parameter zu 

justieren, wird das verteilungsfreie stochastische Framework zur Modellaktualisierung erweitert, indem die 

aleatorischen Parameter als Gaußsche Copulas mit Randverteilungen als Treppendichtefunktionen charakterisiert 

werden. Dies stärkt weiter den annahmefreien Ansatz zur Kalibrierung von Unsicherheiten, bei dem kein Vorwissen 

über das Vorhandensein der Parameterabhängigkeiten erforderlich sind. Schließlich basiert die fünfte Entwicklung des 

Frameworks zur Fortpflanzung verteilungsfreien Unsicherheiten auf eine weitere Anwendung der 

Treppendichtefunktionen auf die NISS-Methodenklasse. Ferner wird dies auf das Teilproblem der 

Zuverlässigkeitsanalyse der NASA UQ Challenge 2019 angewandt, um dies effizient zu lösen. 

Die oben genannten fünf Entwicklungen haben den annahmefreien Ansatz sowohl für die Kalibrierung als auch 

für die Fortpflanzung der Unsicherheit erfolgreich verstärkt, dank der Eigenschaft das Treppenfunktionen beliebige 

Verteilungen approximieren kann. Die Effizienz und Effektivität dieser Entwicklungen werden durch Anwendungen 

in der Praxis, einschließlich der NASA UQ Challenge 2019, ausreichend demonstriert. 

Schlüsselwörter: Unsicherheitsquantifizierung; unscharfe Wahrscheinlichkeiten; stochastische 

Modellaktualisierung; Bhattacharyya-Distanz; Treppendichtefunktion 
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Chapter 1                                                                                  

Introduction 

1.1   Research background 

Over the past few decades, civil infrastructures such as highway bridges have been aging in many countries, and 

more and more infrastructures are being classified as structurally deficient. For instance, in Japan as seismically-prone 

region, the use of seismic isolators has been promoted after the 1995 Kobe Earthquake for mitigating the risk of seismic 

damages on highway bridges, however aging deterioration is being confirmed in many rubber bearings after the service 

years exceeding ten years. Isolated bridges are typically designed to absorb earthquake energy by the rubber bearings 

and reduce the seismic force on superstructures; hence, deterioration of the rubber bearings can significantly affect the 

seismic capacity of the entire bridge systems. In fact, the rubber bearings ruptured during the 2011 off the Pacific coast 

of Tohoku Earthquake and 2016 Kumamoto Earthquake, causing the loss of serviceability of several highway bridges. 

More recently, the Morandi Bridge in Genova, Italy collapsed in 2018, which caused 43 deaths. Visual inspections of 

the bridge in 2015 confirmed deterioration of the stays in the pier, where the collapse occurred. Retrofitting for ensuring 

the necessary support was planned in 2017; however, the collapse transpired prior to the procedure. As such, structural 

deficiencies in key infrastructures can result in the massive consequences of possible failures, and the development of 

a framework for safe operation and maintenance of the infrastructures in order to ensure the infrastructure resilience is 

one of our centennial challenges.  

Structural health monitoring (SHM) has been establishing itself as a key instrument for condition assessment and 

service life monitoring of existing structures mainly due to the recent advancements in sensing technology. The use of 

monitoring data is becoming increasingly common for assessing the safety and serviceability of structural designs and 

deriving decisions regarding the maintenance and repair. Moreover, the exponential growth in computational capacities 

facilitates the employment of computationally more and more complex models, enabling simulations of real structures 

in an ever-increasing level of detail. In structural engineering community, for instance, finite element (FE) models with 

hundreds to even millions of degrees of freedom are increasingly being utilized for analyzing, e.g., internal forces and 

displacements of the structure as a whole in a very detailed manner. Hence, model-based SHM approaches have drawn 



2                                                                                                                                                          Chapter 1 Introduction 

 

particular attentions for coupling real structures and numerical models in order to derive the most realistic estimates of 

the behavior of structures, in which model updating techniques (e.g., the vibration-based FE model updating), that are 

aimed at calibrating model parameters based on measurements such that the best possible fit is obtained between model 

predictions and measurements, plays a central role. 

However, no matter how sophisticated the models become, model predictions can show an incomplete agreement 

with the actual behavior of the structures. This discrepancy is typically caused by uncertainties in the model parameters 

and the models themselves. The former type of uncertainty is referred to as parameter uncertainty, and it indicates the 

inherently variable parameters or the lack of knowledge about the true values of the parameters. Typical examples of 

the inherent variability include the material properties, geometry dimensions, and boundary conditions of the structures 

varying due to the manufacturing processes, damaged conditions, or surroundings, whereas an example of the lack of 

knowledge is that the exact loading conditions of the structures during extreme events such as earthquakes are unknown 

a priori. On the other hand, the latter type of uncertainty is referred to as modeling uncertainty, and it is caused by the 

simplifications and approximations that have to be made for numerically representing real structures. Typical examples 

of such are the linearized representation of nonlinear structural behaviors, frictionless assumption of mechanical joints, 

and discretization over the time and space. In addition to the aforementioned uncertainties in simulations, uncertainties 

are also inevitable in measurements, e.g., the noise from environmental influences and the measurement system errors, 

and such type of uncertainties is referred to as measurement uncertainty. 

Consequently, the main interest of current researches in the fields of SHM and model updating concerns methods 

for uncertainty quantification (UQ) of both simulations and measurements. UQ includes various tasks, e.g., uncertainty 

characterization, uncertainty calibration, and uncertainty propagation, aimed at providing a quantitative description 

and reduction of uncertainties based on non-deterministic modelling approaches. The conventional non-deterministic 

modelling approaches rely on the probabilistic descriptions; however, the construction of probabilistic models involves 

a significant amount of subjective judgements or assumptions because quantitative data from SHM is often very scarce 

and collecting more data may not be possible. To avoid the inclusion of subjectivity, the imprecision and vagueness in 

the modelling can be considered by using the concepts of imprecise probabilities, which combine probabilistic and set-

theoretical frameworks to provide the bounds on probabilities for the events of interest. This thesis mainly focuses on 

the state-of-the-art developments in the field of imprecise probabilities, and the key challenge addressed is the realistic 

consideration and efficient quantitative evaluation of uncertainties under significantly limited prior information on the 

underlying probabilistic models. 
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1.1.1 Uncertainty characterization 

Uncertainties can be generally classified into two categories: aleatory uncertainty and epistemic uncertainty (Der 

Kiureghian and Ditlevsen, 2009). Aleatory uncertainty (also called irreducible uncertainty, objective uncertainty, and 

variability) denotes the intrinsic variation or randomness of a phenomenon. An example of aleatory uncertainty is the 

variable mass of any part that can be produced by a manufacturing process. This kind of uncertainty is irreducible since 

it is inherent of the phenomenon. In fact, the uncertainty in the mass of the parts because of the manufacturing process 

can only be reduced by modifying the manufacturing and quality control processes. Epistemic uncertainty (also called 

reducible uncertainty, subjective uncertainty, and lack of knowledge), on the other hand, denotes the lack of knowledge 

or data about a phenomenon. An example of epistemic uncertainty is the constant but unknown mass of a specific part 

that can be produced by a manufacturing process. As the mass of the part can measure directly, if more information is 

acquired, this type of uncertainty can be reduced. Furthermore, if sufficient information is given, epistemic uncertainty 

can, in principle, be eliminated. 

Among different sources of uncertainty, modeling and measurement uncertainties should both be categorized as 

epistemic uncertainty. In fact, modeling uncertainty can be reduced by improving numerical approximations and using 

higher fidelity models. Measurement uncertainty can also be reduced by using more accurate methods of measurement. 

Comparatively, as mentioned earlier, parameter uncertainty is categorized into either aleatory or epistemic uncertainty 

depending on the circumstances. However, a clear distinction between aleatory and epistemic uncertainty is not always 

trivial in characterizing the model parameters. For example, the variation in the mass of any part which can be produced 

by a manufacturing process is impossible to be precisely determined if only a small number of samples can be collected 

from the population. In this case, the uncertainty in the mass of the parts is considered to be the combination of aleatory 

and epistemic uncertainty, and such combination is in general referred to in literature as hybrid uncertainties or mixed 

uncertainties. By obtaining more samples of the manufactured parts, the variation in the mass of the parts can be more 

accurately determined as a result of the reduction of epistemic uncertainty. If one can obtain a sufficiently large number 

of samples, then epistemic uncertainty can be eliminated and only aleatory uncertainty remains in the mass of the parts 

due to its intrinsic variation. 

Uncertainty characterization is in particular aimed at mathematically describing parameter uncertainty by means 

of uncertainty models (UMs). Several categories of the model parameters can be defined in this context based on their 

origin as aleatory or/and epistemic uncertainty:  
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Category I: Parameters without any uncertainty, represented as explicit constants; 

Category II: Parameters with only aleatory uncertainty, represented as random variables with a fully prescribed 

stochastic description; 

Category III: Parameters with only epistemic uncertainty, represented as unknown-but-fixed constants; 

Category IV: Parameters with both aleatory and epistemic uncertainties, represented as random variables with an 

unknown-but-fixed stochastic description. 

It should be emphasized that, in uncertainty characterization, it is of crucial importance to properly distinguish between 

aleatory and epistemic uncertainty because these two uncertainties have apparently different effects on the subsequent 

uncertainty calibration and propagation tasks. Take reliability analysis as an example of uncertainty propagation, where 

estimating the failure probability of the structure is one’s main concern, and the presence of aleatory uncertainty results 

in a random failure because of the intrinsic property of the structure. Epistemic uncertainty, on the contrary, does not 

affect the true value of the failure probability, however it prevents us from estimating it precisely. These properties also 

hold for the two kinds of uncertainties in the category IV parameters. 

The UMs in literature can be generally categorized into three groups based on the probabilistic or/and possibilistic 

information delivered, as probability models, non-probabilistic models, and imprecise probability models.  

Precise probability models 

Probability models (also called precise probability models by comparing imprecise probability models) are based 

on the well-established probability theory, and are typically suitable for characterizing the category II parameters. The 

probability models require the definition of a probability space (Ω, ℱ, 𝒫), where Ω denotes the sample space containing 

all possible outcomes, ℱ being the 𝜎-algebra as the set of events containing zero or more outcomes, and 𝒫: ℱ → [0, 1] 

the probability measure that assigns the probability to an event 𝜔 ∈ ℱ. In this context, a random variable 𝑋 is defined 

by the mapping 𝑋: (Ω, ℱ) → (𝒟𝑋, ℬ(𝒟𝑋)), where 𝒟𝑋 ⊂ ℝ represents the support domain of 𝑋 and ℬ(𝒟𝑋) denotes the 

Borel 𝜎-algebra on 𝒟𝑋. The above definition holds that 𝑋−1(𝑥) = {𝜔 ∈ Ω|𝑋(𝜔) ∈ 𝑥} ∈ ℱ for the event 𝑥 ∈ ℬ(𝒟𝑋), 

and the probability of the event 𝑥 is expressed as: 

𝒫𝑋(𝑥) = 𝒫 ∘ 𝑋
−1(𝑥) = 𝒫{𝜔: 𝑋(𝜔) ∈ 𝑥} (1.1) 

A typical representation form of the probability models that fully characterizes the random variable 𝑋 is the cumulative 

distribution function (CDF) 𝐹𝑋 assigning the probability to the event {𝑋 ≤ 𝑥}, and is expressed as: 
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𝐹𝑋(𝑥) = 𝒫𝑋(𝑋 ≤ 𝑥) (1.2) 

Its derivative, denoted as 𝑓𝑋(𝑥), is known as the probability density function (PDF). The PDF means the likelihood of 

𝑋 being in the neighborhood of 𝑥. In the definition, the CDF increases monotonically with 𝑥, and the PDF holds that 

𝑓𝑋(𝑥) ≥ 0 for all 𝑥 ∈ 𝒟𝑋. Furthermore, the dependence structure among multiple variables can be represented using a 

joint CDF 𝐹𝑋1,𝑋2,⋯,𝑋𝑛𝑥(𝑥1, 𝑥2, ⋯ , 𝑥𝑛𝑥) = 𝒫𝑋(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, ⋯ , 𝑋𝑛𝑥 ≤ 𝑥𝑛𝑥). According to Sklar’s theorem (Nelsen, 

2006), the joint CDF with marginal distributions 𝐹𝑋𝑖(𝑥𝑖) = 𝒫𝑋(𝑋𝑖 ≤ 𝑥𝑖) can be uniquely written as: 

𝐹𝑋1,𝑋2,⋯,𝑋𝑛𝑥(𝑥1, 𝑥2, ⋯ , 𝑥𝑛𝑥) = 𝐶 (𝐹𝑋1
(𝑥1), 𝐹𝑋2(𝑥2),⋯ , 𝐹𝑋𝑛𝑥(𝑥𝑛𝑥)) (1.3) 

where 𝐶 denotes a copula, which contains all information on the dependence structure. 

Non-probabilistic models 

Non-probabilistic models (Faes and Moens, 2020) are set-theoretical models and typically used for characterizing 

the category III parameters. The typical non-probabilistic models include the interval/convex models, fuzzy set model, 

and the associated possibility theory (Helton et al., 2010). The non-probabilistic models assign bounds between which 

the parameters are considered to lie, without assigning the likelihood to each value within the bounds. 

An interval model requires the definition of a crisp set ℰ which, considering the sample space Ω, the event 𝜔 will 

be included in the set if the binary membership function (also called the characteristic function) is 𝜉(𝜔) = 1 and vice 

versa if 𝜉(𝜔) = 0. In this context, an interval variable 𝑌 is expressed by the bounds as: 

𝑌 = [𝑦, 𝑦] = {𝑦 ∈ 𝒟𝑌 |𝑦 ≤ 𝑦 ≤ 𝑦} (1.4) 

where 𝒟𝑌 ⊂ ℝ denotes the support domain of 𝑌. The interval model generally does not consider dependency between 

multiple variables. The interval model with multiple variables is thus expressed by the Cartesian product 𝒀 =×
𝑖=1

𝑛𝑦 𝑌𝑖 =

×
𝑖=1

𝑛𝑦 [𝑦𝑖 , 𝑦𝑖], and the support domain is denoted as a rectangle or hyper-rectangle. A convex model, on the other hand, 

is defined by a set where, for any two points in the set, all points along the connecting line between the two points are 

also included in the set. The convex models are in many ways similar to the interval models, but also allow to consider 

dependency between multiple variables. In fact, an interval model of multiple variables can be interpreted as a specific 

case of the hyper-rectangular convex model. One of the most widely used convex models is the ellipsoid model (Jiang 

et al., 2013), and can be expressed by 𝒀 = {𝒚 ∈ 𝒟𝒀|(𝒚 − 𝒄𝒀)
′𝐆(𝒚 − 𝒄𝒀) ≤ 1}, where 𝐆 denotes a symmetric positive-
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definite characteristic matrix, which determines the size and orientation of the ellipsoid, and 𝒄𝒀 is the ellipsoidal centre. 

The characteristic matrix 𝐆 demonstrates the degree of dependence between the variables. The marginal model of each 

variable 𝑌𝑖 can be still expressed by an interval 𝑌𝑖 = [𝑦𝑖 , 𝑦𝑖]. 

A fuzzy set model can be regarded as an extension of the intervals. Considering the sample space Ω, a fuzzy set 

is defined by ℰ̃ = {𝜔, 𝜉(𝜔)|𝜔 ∈ Ω}, where 𝜉: Ω → [0, 1] means a continuous membership function. Figure 1.1 shows 

the difference between the crisp and fuzzy sets. The triangular and trapezoidal fuzzy sets are herein depicted. In the 

above context, for a fuzzy variable 𝑌, the support is defined by 𝒴 = [𝑦, 𝑦] = {𝑦 ∈ 𝒟𝑌|𝜉𝑌(𝑦) > 0}. In addition, the 𝛼-

cut level interval can be similarly defined as: 

𝑌𝛼 = [𝑦𝛼, 𝑦𝛼] = {𝑦 ∈ 𝒟𝑌|𝜉𝑌(𝑦) ≥ 𝛼} (1.5) 

where 𝛼 ∈ [0, 1] indicates the 𝛼-cut level. The 𝛼-cut procedure can provide nested intervals as 𝑌𝛼𝑖 ⊆ 𝑌𝛼𝑗 when 𝛼𝑖 ≥

𝛼𝑗. Therefore, larger membership value indicates higher risk that the unknown true value 𝑌∗ might be lie outside of the 

𝛼-cut interval. If the analyst does not want to take any risk, a large interval with the high confidence, i.e., 𝒴, should be 

used, whilst one can derive a narrower interval with less confidence by taking a certain degree of risk.  

 

Figure 1.1 Illustration of crisp and fuzzy sets. 

The possibility theory can be derived from the fuzzy set model. As the probability theory associates the probability 

distribution with the random variable, the possibility theory assigns the possibility distribution to the fuzzy variable 𝑌. 
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Consider a possibility space (Ω, 𝑟), where 𝑟(𝑦) = 𝜉𝑌(𝑦) indicates the possibility distribution function and provides a 

confidence measure that is assigned to each event within the support 𝒴 = [𝑦, 𝑦] ⊂ ℝ. Intuitively, 𝑟(𝑦) = 1 means that 

𝑦 is entirely possible in the sense that sense that no contradictory information is available, and 𝑟(𝑦) = 0 indicates that 

𝑦 is not possible in light of the available information. The possibility theory provides two measures of likelihood, i.e., 

possibility and necessity, for each subset 𝑌 ⊆ 𝒴 as: 

Pos(𝑌) = sup
𝑦
{𝜉𝑌(𝑦)} (1.6) 

Nec(𝑌) = 1 − Pos(𝑌𝑐) = inf
𝑦
{1 − 𝜉𝑌(𝑦)} (1.7) 

It holds that Nec(𝑌) ≤ Pos(𝑌). In this context, the fuzzy variable 𝑌 is characterized by both the cumulative possibility 

function (upper bound) and cumulative necessity function (lower bound) as: 

Pos(𝑌 ≤ 𝑦) = sup
𝑦
min {𝜉𝑌(𝑦), 𝜉𝑦(𝑦)} (1.8) 

Nec(𝑌 ≤ 𝑦) = inf
𝑦
max {1 − 𝜉𝑌(𝑦), 𝜉𝑦(𝑦)} (1.9) 

Imprecise probability models 

Imprecise probability models (Beer et al., 2013) are the combination of probabilistic and set theoretical methods, 

and are capable aleatory and epistemic uncertainty to be handled separately within a unified framework, thanks to the 

hierarchical model structure. Hence, they are especially useful to characterize the category IV parameters. The typical 

imprecise probability models include the Dempster-Shafer structure (Dempster, 1967; Shafer, 1976), probability boxes 

(Faes et al., 2021), and fuzzy probability model (Stein et al., 2013). 

The Dempster-Shafer (DS) structure is rooted in the evidence theory (also called the Dempster-Shafer’s theory 

of evidence). The evidence theory loosens the strict assumption in the probability theory that the probability measure 

𝒫 is precisely known, by taking two measures, i.e., belief and plausibility, into account for each event 𝜔 in the sample 

space Ω. Consider an evidence space (Ω, ℱ,𝑚), where ℱ denotes the countable collection of focal elements of Ω and 

𝑚 is the basic probability assignment (BPA). Note that, in the probability theory, ℱ is required to be a 𝜎-algebra, while 

for the evidence theory, it is not necessary. The BPA of a focal element 𝒳 = [𝑥, 𝑥] ⊂ ℝ can be defined as: 

𝑚(𝒳) = {
> 0   if 𝒳 ∈ ℱ                      
0        if 𝒳 ⊂ Ω and 𝒳 ∉ ℱ

 (1.10) 
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∑𝑚(𝒳)

𝒳∈ℱ

= 1 (1.11) 

The BPA associates the likelihood no longer with the specific event 𝑥 ∈ 𝒳, but rather with the focal element 𝒳. Figure 

1.2 illustrates the difference between the probability measure and BPA. The belief and plausibility of the event 𝑥 is 

then expressed as: 

Bel(𝑥) = ∑ 𝑚(𝒳)

𝒳⊂𝑥

 (1.12) 

Pl(𝑥) = ∑ 𝑚(𝒳)

𝒳⋂𝑥≠∅

 (1.13) 

It holds that Bel(𝑥) ≤ 𝒫𝑋(𝑥) ≤ Pl(𝑥), and the probability theory can be seen as a special case of the evidence theory 

when Bel(𝑥) = 𝒫𝑋(𝑥) = Pl(𝑥). In the above context, a DS structure is expressed by {(𝒳1 = [𝑥1, 𝑥1], 𝑚(𝒳1)) , (𝒳2 =

[𝑥2, 𝑥2], 𝑚(𝒳2)) ,⋯ , (𝒳𝑛𝑥 = [𝑥𝑑, 𝑥𝑑], 𝑚(𝒳𝑛𝑥))}. With the DS structure representation, the random variable 𝑋 can be 

characterized by a set of the cumulative belief function, corresponding to the lower bound, and cumulative plausibility 

function, corresponding to the upper bound, as: 

Bel(𝑋 ≤ 𝑥) = ∑ 𝑚(𝒳𝑖)

𝒳𝑖⊂𝑥

 (1.14) 

Pl(𝑋 ≤ 𝑥) = ∑ 𝑚(𝒳𝑖)

𝒳𝑖⋂𝑥≠∅

 (1.15) 

 

Figure 1.2 Illustration of probability measure and basic probability assignment. 
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Probability boxes (also called p-boxes) can be regarded as a combined use of the probability distributions and 

intervals. A p-box provides a pair of lower and upper CDFs [𝐹𝑋, 𝐹𝑋] for describing an unknown CDF 𝐹𝑋 of the random 

variable 𝑋. It holds that 𝐹𝑋(𝑥) ≤ 𝐹𝑋(𝑥) ≤ 𝐹𝑋(𝑥) for all 𝑥 ∈ 𝒟𝑋. These lower and upper CDFs are represented by the 

lower and upper probabilities of the event {𝑋 ≤ 𝑥} as 𝐹𝑋(𝑥) = 𝒫𝑋(𝑋 ≤ 𝑥) and 𝐹𝑋 = 𝒫𝑋(𝑋 ≤ 𝑥), respectively. In case 

no further assumptions are made concerning the set of possible CDFs within the bounds, this type of p-boxes is usually 

denoted as distribution-free p-boxes (also called non-parametric p-boxes). This is the most general type of the p-boxes 

since any CDF complying with the lower and upper CDFs is admissible including, for example, non-smooth functions. 

In this context, a distribution-free p-box is expressed by the set of all the possible CDFs {𝐹𝑋 ∈ 𝔽|𝐹𝑋(𝑥) ≤ 𝐹𝑋(𝑥) ≤

𝐹𝑋(𝑥), 𝑥 ∈ 𝒟𝑋}, where 𝔽 is the set of all CDFs on 𝒟𝑋. The interval [𝐹𝑋(𝑥), 𝐹𝑋(𝑥)] represents the amount of epistemic 

uncertainty caused by incomplete information on 𝐹𝑋 for all 𝑥 ∈ 𝒟𝑋. The distribution-free p-boxes can be regarded as 

a continuous form of the DS structure. In fact, the belief function Bel(𝑋 ≤ 𝑥) is equivalent to 𝐹𝑋(𝑥) and the plausibility 

function Pl(𝑋 ≤ 𝑥) is equivalent to 𝐹𝑋(𝑥).  

On the other hand, in case the distribution family associated with 𝑋 can also be determined, this type of p-boxes 

is in general denoted as distributional p-boxes (also called parametric p-boxes). A distributional p-box yields a family 

of CDFs whose hyper-parameters 𝜃𝑖 (e.g., the mean and variance) are unknown but contained within intervals [𝜃𝑖 , 𝜃𝑖], 

for 𝑖 = 1,⋯ , 𝑛𝜃. These hyper-parameters are collected as 𝜽 ∈ 𝒟𝛩, where 𝒟𝛩 ⊂ ℝ indicates the support domain of 𝜽, 

and is represented by the Cartesian product 𝒟𝛩 =×𝑖=1
𝑛𝜃 𝜃𝑖 =×𝑖=1

𝑛𝜃 [𝜃𝑖 , 𝜃𝑖] when the intervals are independent each other. 

In this context, a distributional p-box is represented by the set of the constrained possible CDFs {𝐹𝑋(∙ |𝜽) ∈ 𝔽|𝜽 ∈ 𝒟𝛩}. 

The distributional p-boxes can clearly distinguish between aleatory uncertainty, described by the distribution families, 

and epistemic uncertainty, represented by the intervals for the hyper-parameters 𝜽. The lower and upper CDFs of the 

distributional p-box can be computed as: 

𝐹𝑋(𝑥) = min{𝐹𝑋(𝑥|𝜽) ∈ 𝔽|𝜽 ∈ 𝒟𝛩} (1.16) 

𝐹𝑋(𝑥) = max{𝐹𝑋(𝑥|𝜽) ∈ 𝔽|𝜽 ∈ 𝒟𝛩} (1.17) 

Figure 1.3 illustrates the above two types of p-boxes. A distributional p-box on the left-hand side consists of a Gaussian 

distribution family with the mean bounded as 𝜇 = [−1.0, 1.0] and the variance bounded as 𝜎 = [0.6, 1.4]. The lower 

CDF 𝐹𝑋 is obtained as a combination of the distribution with maximum mean and minimum variance (Realization #2) 
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and the distribution with maximum mean and maximum variance (Realization #4). The upper CDF 𝐹𝑋 is computed in 

a similar manner by a combination of the distributions with minimum mean. Besides, a distribution-free p-box on the 

right-hand side is bounded by the exactly same lower and upper CDFs as the above distributional p-box. Note that this 

distribution-free p-box is not equivalent to the distributional p-box on the left-hand side because the former p-box also 

yields the CDFs within the boundary CDFs not belonging to the distribution family of the latter p-box (i.e., the Gaussian 

distribution family). 

 

Figure 1.3 Illustration of distributional p-box (left figure) and distribution-free p-box (right figure). 

A fuzzy distribution model can be regarded as an extension of the p-boxes as same way a fuzzy set model can be 

regarded as an extension of the intervals. Considering a fuzzy set ℰ̃𝐹𝑋 = {𝐹𝑋, 𝜉(𝐹𝑋)|𝐹𝑋 ∈ 𝔽}, the support of the fuzzy 

distribution can be defined by the interval [𝐹𝑋, 𝐹𝑋] = {𝐹𝑋 ∈ 𝔽|𝜉(𝐹𝑋) > 0}, then the corresponding 𝛼-cut interval can 

be similarly defined as: 

𝐹𝑋𝛼 = [𝐹𝑋𝛼, 𝐹𝑋𝛼] = {𝐹𝑋 ∈ 𝔽|𝜉(𝐹𝑋) ≥ 𝛼} (1.18) 

In this context, the 𝛼-cut procedure can provide nested intervals as 𝐹𝑋𝛼𝑖
(𝑥) ⊆ 𝐹𝑋𝛼𝑗

(𝑥) for all 𝑥 ∈ 𝒟𝑋 when 𝛼𝑖 ≥ 𝛼𝑗. 

Moreover, each 𝛼-cut leads to a distribution-free p-box with the lower CDF 𝐹𝑋𝛼 and the upper CDF 𝐹𝑋𝛼. Besides to 

the above definition, it is also possible to define the fuzzy distribution by assigning a fuzzy set to the hyper-parameters 

𝜽 of the probability distribution. Considering a fuzzy set ℰ̃𝜽 = {𝜽, 𝜉(𝜽)|𝜽 ∈ 𝒟𝛩}, the support of the hyper-parameters 

is given by Θ = [𝜽, 𝜽] = {𝜽 ∈ 𝒟𝛩|𝜉(𝜽) > 0} and leads to a set of the possible CDFs {𝐹𝑋(∙ |𝜽) ∈ 𝔽|𝜽 ∈ Θ}. Similarly, 

the 𝛼-cut interval is defined as:  
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𝜽𝛼 = [𝜽𝛼 , 𝜽𝛼] = {𝜽 ∈ 𝒟𝛩|𝜉(𝜽) ≥ 𝛼} (1.19) 

and leads to a set of the possible CDFs {𝐹𝑋(∙ |𝜽) ∈ 𝔽|𝜽 ∈ 𝜽𝛼}. In this context, the 𝛼-cut procedure can provide nested 

intervals as 𝜽𝛼𝑖 ⊆ 𝜽𝛼𝑗 when 𝛼𝑖 ≥ 𝛼𝑗. Furthermore, each 𝛼-cut leads to a distributional p-box with the interval valued 

hyper-parameters [𝜽𝛼 , 𝜽𝛼]. Therefore, larger 𝛼 value implies higher risk that the unknown true probability distribution 

𝐹𝑋
∗ might be lie outside of the 𝛼-cut interval. 

Aleatory and epistemic spaces 

In this thesis, it is assumed that the category II parameters are described by the CDFs, the category III parameters 

are presented by the intervals, and the category IV parameters are expressed by the distributional p-boxes. In addition, 

the fuzzy sets and fuzzy distributions are supplementary utilized to determine the amount of epistemic uncertainty in 

the category III and IV parameters remaining after the uncertainty calibration process (which will be further discussed 

in the next subsection). The above assumption is consistent with many real-world UQ applications, such as the initial 

(2014) and latest (2019) editions of the NASA UQ challenge problem (Crespo et al., 2014; Crespo and Kenny, 2019). 

Indeed, most of the novel developments for uncertainty calibration and propagation in this thesis was motivated by the 

NASA UQ challenge 2019. 

Finally, a double-loop sampling scheme is introduced to generate samples of the above three category parameters 

by differentiating between aleatory and epistemic uncertainty, as illustrated in Figure 1.4. An outer loop samples from 

the interval valued parameters, i.e., the category III parameters and the hyper-parameters of the category IV parameters. 

These interval valued parameters only contain epistemic uncertainty; therefore without loss of generality, the Cartesian 

product of all intervals 𝒟𝑒 =×𝑖=1
𝑛𝑦 [𝑦𝑖 , 𝑦𝑖] ×𝑖=1

𝑛𝜃 [𝜃𝑖 , 𝜃𝑖] can be denoted as epistemic space. A reduced epistemic space 

can be achieved through the uncertainty calibration process when additional information is available. In addition, the 

true values of the epistemic parameters 𝒆∗ ∈ 𝒟𝑒  will result if epistemic uncertainty is eliminated. The above sampling 

is simply performed uniformly within the intervals. Note that this does not mean that these parameters are uniformly 

distributed in nature. Each epistemic space realization results in a precise CDF for the category IV parameters. Then, 

an inner loop samples from the CDFs of both the category II and IV parameters. These CDFs only contain aleatory 

uncertainty and the CDF values are bounded by the unit hyper-rectangle 𝒟𝑎 = (0, 1]𝑛𝑎 , where 𝑛𝑎 is the total number 

of the category II and IV parameters. Hence, the hyper-rectangle 𝒟𝑎 can be denoted as aleatory space, and it is clear 

that 𝒟𝑎 cannot be reduced by further collecting additional information. 
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Figure 1.4 Double-loop sampling scheme in aleatory and epistemic spaces. 

1.1.2 Uncertainty calibration 

After the UM of all model parameters is constructed based on the available data for the parameters, the epistemic 

space reflects the state of knowledge about the consistency of the numerical model to reality. The aim of uncertainty 

calibration is to refine the UM by reducing the epistemic space, so that it improves the fidelity of the model predictions 

to the actual behaviors of the system. This reduction is attained based on the availability of the quantitative data which 

represents operating conditions of the system. 

Deterministic vs. stochastic model updating 

Uncertainty calibration can be generally classified into two paradigms: the deterministic and stochastic calibration 

(Simoen et al., 2015). The deterministic calibration (also called the deterministic model updating) investigates only the 

category III parameters, i.e., the parameters with only epistemic uncertainty, and is usually aimed at finding the optimal 

parameter values which result in the best possible fit between the model predictions and observed data. This can be 

attained by solving a (constrained) optimization problem where the objective is minimizing the discrepancy between 

the model predictions and observations with respect to suitable response metrics which are sensitive to the variation of 

the investigating parameters. The sensitivity method (Mottershead and Friswell, 1993) is one of the most successful 
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local approaches to the deterministic model updating, and in recent years has been utilized in a broad range of practical 

applications, including the correction of large-scale FE models (Mottershead et al., 2011). However, the deterministic 

calibration faces three main criticisms: (i) It assumes that the numerical model employed can fully describe the actual 

structure, i.e., it is not affected by modeling uncertainty; (ii) it also assumes that the observed data of the true UM 𝒆∗ ∈

𝒟𝑒 can be ideally used, i.e., it is not affected by measurement uncertainty; (iii) it does not consider that the observed 

behaviors of the structure might inherently vary due to the presence of aleatory uncertainty. 

The stochastic calibration (also called the stochastic model updating), on the other hand, investigates not only the 

category III but also the category IV parameters, i.e., aleatory uncertainty is present in the problem (Mares et al., 2006; 

Mottershead et al., 2006). In the similar sense with the deterministic model updating, the stochastic model updating is 

ultimately aimed at finding the optimal parameter distributions which result in the best possible fit between the clouds 

of the model predictions and observations. However, the inherent variability in the observed behaviors of the structure 

cannot be fully distinguished from the above two unavoidable sources of uncertainties, and thus it should be aimed at 

not a single set of the optimal epistemic parameters but a reduced epistemic space which achieves a trade-off between 

the fidelity-to-data and robustness-to-uncertainty. It is noted that, these two sources of uncertainties can exist regardless 

of the presence of aleatory uncertainty and model updating approaches under these uncertainties can, broadly speaking, 

be referred to as the stochastic model updating. The stochastic model updating methodologies in the literature can be 

generally categorized into two groups: probabilistic approaches, e.g., Monte Carlo based model updating (Sairajan and 

Aglietti, 2012; Bi et al., 2013) and perturbation methods (Khodaparast et al., 2008), and non-probabilistic approaches, 

e.g., interval model updating (Khodaparast et al., 2011; Govers et al., 2015). This thesis focuses on the probabilistic 

stochastic model updating.  

Bayesian model updating 

Among the probabilistic approaches, one of the most well-established is the Bayesian model updating framework 

(Beck and Katafygiotis, 1998; Katafygiotis and Beck, 1998). A key advantage of the Bayesian model updating lies in 

its capability to combine prior information on the parameters to be inferred with the observed data to yield a posterior 

stochastic representation of the parameters that indicates the state of knowledge after integrating additional information 

yielded by the observed data. This is achieved through the well-known Bayes’ theorem: 

𝑃(𝝑|𝑫) =
𝑃𝐿(𝑫|𝝑)𝑃(𝝑)

𝑃(𝑫)
 (1.20) 
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whereby 

 𝑃(𝝑) represents the prior distribution of the parameters to be inferred 𝝑; 

 𝑃(𝝑|𝑫) represents the posterior distribution of the parameters 𝝑; 

 𝑃(𝑫) represents the evidence of the observed data 𝑫; 

 𝑃𝐿(𝑫|𝝑) represents the likelihood function of the observed data 𝑫 for an instance of 𝝑. 

The prior distribution 𝑃(𝝑) reflects one’s a priori knowledge on the calibrating parameters 𝝑 before any observed 

data is available. The category III parameters and the hyper-parameters of the category IV parameters are the candidates 

of the calibrating parameters. Without loss of generality, independence between the calibrating parameters is assumed 

and the prior distribution is thus expressed by 𝑃(𝝑) = 𝑃(𝜗1, 𝜗2, ⋯ , 𝜗𝑛𝜗) = ∏ 𝑃(𝜗𝒊)
𝑛𝜗
𝑖=1 . A priori knowledge may come 

in forms of expert opinions, lab-scale experiments, and previous uncertainty calibration results. In theory, any type of 

distribution can be chosen depending on the amount of available information, and the principle of maximum entropy 

is most widely employed for choosing the prior PDF. The principle of maximum entropy expresses that the probability 

distribution that best represents the current state of knowledge on the parameters 𝝑 is the distribution resulting in the 

largest information entropy. The principle results in the prior distribution e.g., as a Gaussian distribution when a priori 

available information of a parameter consists of the mean and relative error, and a uniform distribution when only the 

lower and upper bounds are known for a parameter. It should be noted that, for multivariate cases, the principle always 

leads to independent prior PDF, which supports the above independent assumption between the calibrating parameters. 

It is also important to note that, by adopting the uniform distribution as the prior distribution, the posterior distribution 

will be simply proportional to the likelihood function. In this thesis, it is assumed that the category III parameters and 

the hyper-parameters of the category IV parameters are represented by the intervals; hence, a uniform distribution on 

the epistemic space 𝒟𝑒 is used as the prior. 

The posterior distribution 𝑃(𝝑|𝑫) reflects the updated knowledge on the parameters 𝝑 based on new information 

obtained from the observed data 𝑫. Except for some special cases, such as when conjugate prior distributions are used, 

the posterior distribution cannot be derived analytically. Alternatively, it is usually estimated through sampling methods, 

such as Markov chain Monte Carlo (MCMC) methods (Tierney, 1994). In general, the support domain of the posterior 

distribution occupies a much smaller volume than that of the prior, because combinations of the parameters that fail to 

describe the observed data are excluded from the posterior. In this context, the support domain of the posterior can be 

regarded as the reduced epistemic space. At the same time, the posterior distribution the maximum value of which is 
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normalized to one can serve as a membership function to treat the parameters as fuzzy variables. It is noted that, when 

the parameters 𝝑 are the hyper-parameters of the category IV parameters, the resultant category IV parameters will be 

represented as the fuzzy distributions. With this procedure, a larger 𝛼-cut level results in a smaller reduced epistemic 

space. When the 𝛼-cut level is 𝛼 = 1, the reduced epistemic space is identical with the support domain of the posterior 

whilst, when the 𝛼-cut level is 𝛼 = 0, it comprises a set of the crisp values that correspond to the most probable values 

(MPVs) of the posterior. If the posterior distribution is sharply peaked, the analyst might employ 𝛼 = 0 with the high 

confidence that the MPVs are equivalent to the true values of the epistemic parameters 𝒆∗. Conversely, if the posterior 

distribution is relatively flat, the analyst might use an adequately small 𝛼-cut level to ensure that the reduced epistemic 

space still include the true values 𝒆∗. 

The evidence (also called as marginal likelihood) 𝑃(𝑫) is expressed as: 

𝑃(𝑫) = ∫ 𝑃𝐿(𝑫|𝝑)𝑃(𝝑)𝑑𝝑
𝒟𝝑

 (1.21) 

The evidence is a constant and serves as a normalization factor to ensure that the posterior distribution integrates to 

one. Furthermore, it measures the plausibility of the assumed model class 𝑀 given by the observed data 𝑫. Therefore, 

one can use multiple candidate model classes to describe the observed data and associate the evidence with each model 

class to determine the most probable model class. This procedure is referred to as Bayesian model class selection (Beck 

and Yuen, 2004). However, it is typically non-trivial to compute the evidence due to the multi-dimensional integral in 

Equation (1.21), and is thus usually estimated numerically using MCMC methods (see, e.g., Ching and Cheng, 2007; 

Cheung and Beck, 2009). On the contrary, the evidence does not affect the shape of the posterior distribution and can 

be neglected in sampling from the posterior distribution. In this manner, the posterior distribution would be known up 

to a proportionality, i.e.,  

𝑃(𝝑|𝑫) ∝ 𝑃𝐿(𝑫|𝝑)𝑃(𝝑) (1.22) 

and point-wise for any generated samples of 𝝑. Generally, methods for sampling from the posterior distribution are not 

necessarily suitable to estimate the evidence, and vice versa. However, the Bayesian inference algorithms used in this 

thesis can address both tasks simultaneously as summarized later.  

The likelihood function 𝑃𝐿(𝑫|𝝑) is the key component in the Bayesian model updating and reflects the degree of 

agreement between the model predictions 𝑀(𝝑) and observed data 𝑫. The mathematical relation between the model 

predictions and observed data can be generally expressed by 𝑫 = 𝑀(𝝑) + 𝜖, where 𝜖 indicates the error caused by the 
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three sources of uncertainties (i.e., parameter uncertainty, modeling uncertainty, and measurement uncertainty). The 

likelihood function will return a high value for an instance of 𝝑 when the corresponding error 𝜖 is small and low value 

when the error is large. Assuming that the observations 𝑫(𝑘) ∈ ℝ1×𝑛 (𝑘 = 1,⋯ ,𝑁obs), comprising 𝑛 response metrics, 

are independently and identically distributed, the likelihood function can be then expressed as: 

𝑃𝐿(𝑫|𝝑) = ∏ 𝑃(𝑫(𝑘)|𝝑)

𝑁obs

𝑘=1

 (1.23) 

It is noteworthy that the likelihood function is a function of 𝝑 and not of 𝑫. When 𝝑 comprises only the category III 

parameters, the model outputs 𝒛(𝝑) ∈ ℝ1×𝑛: 𝒛 = 𝑀(𝝑), for an instance of 𝝑, would be deterministic. In this context, 

the uncertainty in the observations is purely due to measurement uncertainty. Since the model outputs are deterministic, 

the assumption that the error between the model outputs and observations follows a Gaussian distribution with zero 

means and fixed variances is often made to assign a probability distribution to each 𝝑 instance. It leads to the common 

choice of the likelihood function by the Gaussian distribution: 

𝑃𝐿(𝑫|𝝑) = ∏(∏
1

𝜎𝑖√2𝜋

𝑛

𝑖=1

)exp [−∑
(𝐷𝑖

(𝑘) − 𝑧𝑖(𝝑))
2

2𝜎𝑖
2

𝑛

𝑖=1

]

𝑁obs

𝑘=1

 (1.24) 

However, the criticism exists that the magnitude of the errors is often not precisely known. On the other hand, when 𝝑 

comprises the hyper-parameters of the category IV parameters (and the category III parameters), then the model outputs 

𝒛(𝝑) ∈ ℝ𝑁sim×𝑛, for an instance of 𝝑, would be stochastic. In this context, the variability in the observations is due to 

the inherent property of the system while they are also contaminated by measurement uncertainty. Because the model 

outputs are stochastic, they compose the probability distribution and thus the probability 𝑃(𝑫(𝑘)|𝝑) in Equation (1.23) 

can be computed by 𝑃(𝑫(𝑘)|𝝑) = 𝑓𝒛(𝝑)(𝑫
(𝑘)). Nevertheless, the PDF of the model outputs is required to be estimated 

respectively for each instance of 𝝑. This estimation is typically performed by the kernel density estimation (KDE), and 

a tremendous number of model outputs is necessary for precise estimation of the PDF. Furthermore, the total number 

of instances would also be significantly large throughout the Bayesian model updating; hence, in practical applications, 

the repeated KDE for every instance of 𝝑 can be rather time-consuming. 

Approximate Bayesian computation 

Recently, approximate Bayesian computation (ABC) methods (Turner and Zandt, 2012; Safta et al., 2015) have 

been developed to circumvent the computationally expensive or even intractable likelihood evaluations by replacing 
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the full likelihood function with the kernel based on selected summary statistics: 

𝑃𝐿(𝑫|𝝑) ∝
1

𝜀
𝐾 (

‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖

𝜀
) (1.25) 

where 𝐾(∙) denotes the kernel function, 𝑠(∙) indicates the selected summary statistics based on the data, e.g., the means 

and quantiles, and 𝜀 indicates the so-called width factor which controls the radius of the acceptable hypersphere around 

the target statistic 𝑠(𝑫). In other words, a large 𝜀 leads to a flat posterior distribution and, inversely, a small 𝜀 leads to 

a peaked posterior distribution. The peaked posterior implies the parameter is more likely to converge to the true value, 

while a too small 𝜀 results in a necessity of significant calculation cost for convergence. The determination of 𝜀 is thus 

the trade-off between the accuracy and efficiency, and depends on specific applications. A recommended interval of 𝜀 

is [10−3, 10−1] (Patelli et al., 2015). The kernel 𝐾 will return a high value when the norm ‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖ is small, 

but it will penalize the instance 𝝑 when the norm is large. Therefore, the kernel based on the summary statistics can 

serve as an approximation of the likelihood function. Furthermore, in general, its computation is much affordable since 

estimation of the summary statistics requires a smaller number of the model outputs compared with that of the PDF. 

Various types of the kernel shape are investigated in the ABC literature, such as the Gaussian kernel (Rocchetta et al., 

2018a): 

1

𝜀
𝐾 (

‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖

𝜀
) =

1

𝜀√2𝜋
exp (−

‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖
2

2𝜀2
) (1.26) 

the Epanechnikov kernel (Beaumont et al., 2002): 

1

𝜀
𝐾 (

‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖

𝜀
) = {

3

4𝜀
(1 −

‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖
2

𝜀2
)    if ‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖ ≤ 𝜀 

0                                                         if ‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖ > 𝜀

 (1.27) 

and the sharp kernel (Safta et al., 2015): 

1

𝜀
𝐾 (

‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖

𝜀
) = {

1

2𝜀
   if ‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖ ≤ 𝜀 

0     if ‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖ > 𝜀
 (1.28) 

Figure 1.5 shows the shapes of the above three kernel functions for the case that the width-factor is selected to be 𝜀 =

0.01. In this thesis, the Gaussian kernel is used since it has a long tail that results in the smooth transition from prior 

to posterior. 
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Figure 1.5 Illustration of kernel functions for 𝜀 = 0.01. 

Distance-based UQ metrics 

In general, the norm ‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖ is computed using the 𝐿2 norm as: 

‖𝑠(𝑫) − 𝑠(𝒛(𝝑))‖  = √∑[𝑠(𝑫𝑖) − 𝑠(𝒛𝑖(𝝑))]
2

𝑛

𝑖=1

 (1.29) 

When the summary statistic employed is the mean as 𝑠(𝑫) = �̅� and 𝑠(𝒛(𝝑)) = �̅�(𝝑), Equation (1.29) is equivalent to 

the well-known Euclidian distance: 

𝑑𝐸(𝑫, 𝒛(𝝑)) = √∑[�̅�𝑖 − �̅�𝑖(𝝑)]
2

𝑛

𝑖=1

= √(�̅� − �̅�(𝝑))(�̅� − �̅�(𝝑))
𝑇

 (1.30) 

The Euclidian distance has been without doubt the most widely used metric, in the field of model updating, to quantify 

the difference between the model predictions and observations. Nevertheless, as a point-to-point distance measure, the 

Euclidian distance quantifies the geometric distance between the centres of mass of two datasets, but it discards other 

useful information such as dispersion information of the datasets. As a matter of fact, in the Bayesian model updating, 
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the Euclidian distance-based approximate likelihood function is effective in calibrating the category II parameters and 

the mean parameters of the category IV parameters which are directly related to the centre of mass of the model outputs, 

however it is unsuitable in precisely inferring the higher-order moment parameters of the category IV parameters (Bi 

et al., 2019).  

In the above context, it is natural to use statistical distances quantifying higher statistical information. For example, 

the Mahalanobis distance, more precisely pooled Mahalanobis distance, quantifies the correlation between two datasets 

by employing their covariance matrices as a weighting factor in the Euclidian distance. Its mathematical definition is 

given as: 

𝑑𝑀(𝑫, 𝒛(𝝑)) = √(�̅� − �̅�(𝝑))𝐶pool
−1 (�̅� − �̅�(𝝑))

𝑇
, 𝐶pool =

(𝑁obs − 1)𝐶𝑫 + (𝑁sim − 1)𝐶𝒛
𝑁obs +𝑁sim − 2

 (1.31) 

where 𝐶pool
−1  denotes the pooled covariance matrix involving the covariance matrix of the observed data 𝐶𝑫 and that of 

the model outputs 𝐶𝒛. While the pooled Mahalanobis distance is a population-to-population distance, it is proven to be 

inappropriate for the purpose of calibrating the higher-order moment parameters of the category IV parameters, because 

covariance information merely measures the dependency between the two datasets but does not measure the similarity 

between them (Bi et al., 2017). Thus, the Bhattacharyya distance (Bhattacharyya, 1946), that is a more comprehensive 

statistical distance quantifying the difference between probability distributions of two datasets, is also investigated in 

Bi et al. (2017). Its original definition is given as: 

𝑑𝐵(𝑫, 𝒛(𝝑)) = − log [∫ √𝑓𝑫(𝒛)𝑓𝒛(𝝑)(𝒛)𝑑𝒛
𝒟𝒁

] (1.32) 

where 𝑓𝑫(∙) and 𝑓𝒛(𝝑)(∙) denote the PDFs of the observed data and model outputs, respectively, and ∫ (∙)𝑑𝒛
𝒟𝒁

 indicates 

the integration performed over the whole support domain. The Bhattacharyya distance is essentially a measure of the 

overlap between two probability distributions; thus, not only mean information but whole statistical information of the 

two datasets can be considered. Nevertheless, because it requires PDF estimation, usually via KDE, the computational 

cost of the Bhattacharyya distance-based approximate likelihood is equivalent to that of the full likelihood function. In 

addition, a converged estimation in KDE is generally unavailable for the observed data due to the very limited number 

of observations, especially for applications where measurements are difficult or expensive. To tackle this issue, the so-

called binning algorithm is proposed in Bi et al. (2019) to evaluate the probability mass function (PMF) of a discrete 

distribution, so that the discrete Bhattacharyya distance (Patra et al., 2015) is used instead: 
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𝑑𝐵(𝑫, 𝒛(𝝑)) = − log(∑ √𝑃𝑫
(𝑘)𝑃𝒛(𝝑)

(𝑘)

𝑁bin

𝑘=1

) (1.33) 

where 𝑃𝑫
(𝑘)

 and 𝑃𝒛(𝝑)
(𝑘)

 are the PMF values at the 𝑘th bin for the observed data and model outputs, respectively. In general, 

the PMF evaluation requires much fewer model outputs compared with PDF estimation; hence, the computational cost 

of the Bhattacharyya distance-based approximate likelihood function would be affordable. The binning algorithm for 

the PMF evaluation consists of the following steps: 

1) Define a common interval 𝐼𝑖  of both the observed data 𝑫𝑖 and model outputs 𝒛𝑖(𝝑), for 𝑖 = 1,⋯ , 𝑛, according to 

the 𝑖th response metric, by finding the general minimum and maximum in both 𝑫𝑖 and 𝒛𝑖(𝝑); 

2) Divide each defined interval into an arbitrarily decided number of bins 𝑛bin; 

3) Count the joint PMF values at each bin, 𝑃𝑫
(𝑘)

 and 𝑃𝒛(𝝑)
(𝑘)

. Note that the total number of bins employed is 𝑁bin = 𝑛bin
𝑛 . 

The principle of 𝑛bin in Step 2) is that a smaller 𝑛bin results in a smaller value of the Bhattacharyya distance and larger 

𝑛bin in a larger value of the Bhattacharyya distance. In the extreme case when 𝑛bin = 1, Equation (1.33) always return 

the Bhattacharyya distance 𝑑𝐵(𝑫, 𝒛(𝝑)) = 1 for arbitrary 𝑫 and 𝒛(𝝑). In addition, too small as well as too large 𝑛bin 

results in a significantly biased PMF evaluation, as shown in Figure 1.6; thus, the appropriate choice of 𝑛bin is crucial 

to achieve reasonable updating results.  

 

Figure 1.6 PMF of 100 data points for different number of bins 𝑛bin. 
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Two-step ABC updating with the Euclidian and Bhattacharyya distances 

Another important aspect of the Bhattacharyya distance is that, as long as two datasets have no overlap, it returns 

a value that is infinite and is thus insensitive to the relative position of the centres of mass of them. To this end, a two-

step ABC updating framework is proposed in Bi et al. (2019), where the preliminary step is utilized to force an overlap 

between 𝑫 and 𝒛(𝝑) by using Euclidian distance-based likelihood, while comprehensive uncertainty characteristics of 

them are further quantified in the main step using the Bhattacharyya distance-based likelihood. Figure 1.7 shows the 

principle illustration of the two-step ABC updating framework. The feasibility of this framework is demonstrated on a 

subproblem related to uncertainty calibration (Subproblem A) of the NASA UQ challenge 2014. The high-dimensional 

epistemic space is reduced satisfactory according to the available observed data by updating both the mean and variance 

parameters. Moreover, it is reported that the computational burden is significantly reduced compared with the Bayesian 

approach using the full likelihood function (Safta et al., 2015) by a factor 104 whereas achieving equivalent updating 

results.  

 

Figure 1.7 Illustration of two-step ABC updating framework. 

The above two-step ABC updating framework with both the Euclidian and Bhattacharyya distances is a favorable 

general-purpose approach for uncertainty calibration. However, open problems still exist: (i) While the computational 

cost of the Bhattacharyya distance-based likelihood estimation is much lower than that of the full likelihood estimation, 

it is still not affordable for practical applications using high-fidelity models (e.g., FE models) because of the necessity 

of hundreds to thousands repeated model evaluations for each instance of the parameters 𝝑; (ii) The original definition 

of the Bhattacharyya distance is only applicable to scalar quantities (e.g., system natural frequencies) since PMFs need 
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to be estimated based on a number of samples, and cannot be directly employed for time-domain sequences; (iii) The 

category IV parameters are characterized by the distributional p-boxes, however, the distribution families are often not 

known beforehand due to the scarce and/or incomplete available data for the parameters, i.e., the distribution families 

themselves can be epistemic uncertainty to be calibrated. Note that, instead of the Bhattacharyya distance, other types 

of stochastic metrics, such as the Wasserstein distance (Panaretos and Zemel, 2019) and the Jensen-Shannon divergence 

(Lin, 1991), have also been proposed in the ABC literature (see, e.g., Bernton et al., 2019; Yang et al., 2022), but they 

equally face the similar problems above in principle. 

Transitional Markov chain Monte Carlo 

As mentioned above, in the Bayesian model updating, the posterior distribution is usually estimated by sampling 

methods. However, sampling from the posterior distribution is not a straightforward task because the posterior is only 

known implicitly, i.e., point-wise in terms of the outcome of the numerical model employed. Furthermore, the posterior 

distribution can be appeared as a broad range of distribution shapes from flat to very peaked one, and even as a multi-

modal distribution because of the potential ill-posedness of the model updating problem. Therefore, the standard Monte 

Carlo method is inapplicable and MCMC methods constitute a popular class of methods to sample from the posterior 

distribution. One problem of MCMC methods is that an appropriate length of the burn-in period (i.e., the initial phase 

until the Markov chain reaches the stationary distribution) to ensure that the Markov chain produces samples from the 

posterior is often non-trivial. In addition, many MCMC methods become inefficient when the number of the parameters 

to be inferred is large. 

The transitional Markov chain Monte Carlo (TMCMC) method (Ching and Cheng, 2007) belongs the class of the 

sequential particle filter methods (Chopin, 2002), and is based on MCMC sampling. The method tries to overcome the 

aforementioned problems in MCMC by gradually pushing the samples from the prior to posterior distribution by means 

of a sequence of the non-normalized intermediate distributions {𝑃𝑗(𝝑): 𝑗 = 0,⋯ ,𝑚} that converge to the posterior. For 

this purpose, Equation (1.22) is modified to: 

𝑃𝑗(𝝑) ∝ 𝑃𝐿(𝑫|𝝑)
𝑞𝑗𝑃(𝝑) (1.34) 

where 𝑞𝑗 ∈ [0, 1] is chosen such that 𝑞0 = 0 < 𝑞1 < ⋯ < 𝑞𝑚−1 < 𝑞𝑚 = 1. Consequently, the method starts sampling 

from the prior distribution (i.e., 𝑃0(𝝑) = 𝑃(𝝑)), thus initially populating all the space of parameters, and finally allows 

to sample from the posterior distribution up to a proportionality (i.e., 𝑃𝑚(𝝑) ∝ 𝑃(𝝑|𝑫)). In this context, the parameter 

𝑞𝑗 can be interpreted as a measure of the amount of information employed in the 𝑗th intermediate step. The principle 
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behind the TMCMC method is to smoothly and gradually transit from the prior to posterior distribution by choosing a 

proper value of 𝑞𝑗. Consider the plausibility weight of the 𝑘th sample generated at the 𝑗th step, 𝑤𝑗𝑘 , defined as: 

𝑤𝑗𝑘 =
𝑃𝑗+1(𝝑𝑗𝑘)

𝑃𝑗(𝝑𝑗𝑘)
= 𝑃𝐿(𝑫|𝝑𝑗𝑘)

𝑞𝑗+1−𝑞𝑗
 (1.35) 

The degree of uniformity of the plausibility weights is an indicator to evaluate the similarity between two consecutive 

intermediate distributions 𝑃𝑗(𝝑) and 𝑃𝑗+1(𝝑). Therefore, the value of 𝑞𝑗+1 is chosen so that the coefficient of variation 

(COV) of the plausibility weights is close to one (Betz et al., 2016): 

𝑞𝑗+1 = arg min
𝑞

(|CV𝒘𝑗(𝑞) − 1|) (1.36) 

where CV𝒘𝑗(𝑞) with 𝑞 ∈ [𝑞𝑗, 1] is the COV of the set of the plausibility weights {𝑤𝑗𝑘 = 𝑃𝐿(𝑫|𝝑𝑗𝑘)
𝑞−𝑞𝑗: 𝑘 = 1,⋯ ,𝑁𝑠}, 

where 𝑁𝑠 indicates the number of samples generated at each step. Equation (1.36) can be solved, for example, by the 

bisection method. The smooth and gradual transition between two consecutive intermediate distributions results in the 

capability of the TMCMC method in inferring large number of parameters at one time (Ortiz et al., 2015; Patelli et al., 

2017) and sampling from complex-shaped distributions (Patelli et al., 2015).  

Once 𝑞𝑗+1 (𝑗 = 0,⋯ ,𝑚 − 1) is estimated, MCMC sampling using the Metropolis-Hastings algorithm (Hastings, 

1970) is employed for sampling from the 𝑗 + 1th intermediate distribution. The seeds of the Markov chains are selected 

from samples at the 𝑗th step with a probability that is identical to their normalized plausibility weights: 

�̅�𝑗𝑘 =
𝑤𝑗𝑘

∑ 𝑤𝑗𝑙
𝑁𝑠
𝑙=1

 (1.37) 

The normalized plausibility weight is a measure of the plausibility that the sample 𝝑𝑗𝑘 follow the distribution 𝑃𝑗+1(𝝑). 

As such, the selected seeds are asymptotically distributed as 𝑃𝑗+1(𝝑), indicating all Markov chains reach the stationary 

distribution from the very beginning, thus the burn-in period is unnecessary. Note that all Markov chains are perfectly 

parallel and the TMCMC method can be easily parallelized. In general, the proposal distribution is chosen as a Gaussian 

distribution centered at the seed sample. The covariance matrix of the Gaussian proposal distribution is expressed as: 

Σ𝑗 = 𝛽
2∑�̅�𝑗𝑘(𝝑𝑗𝑘 − �̅�𝑗)(𝝑𝑗𝑘 − �̅�𝑗)

𝑇

𝑁𝑠

𝑘=1

, �̅�𝑗 =∑�̅�𝑗𝑘

𝑁𝑠

𝑘=1

𝝑𝑗𝑘  (1.38) 

where 𝛽2 indicates the scaling parameter to control the rejection rate in MCMC sampling. Furthermore, the TMCMC 
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method can estimate the evidence 𝑃(𝑫) as a by-product (Ching and Cheng, 2007): 

𝑃(𝑫) = ∏(
1

𝑁𝑠
∑𝑤𝑗𝑘

𝑁𝑠

𝑘=1

)

𝑚−1

𝑗=0

 (1.39) 

The TMCMC algorithm can be summarized as follows: Note that the logarithmic of the likelihood function (log-

likelihood) ℒ(𝑫|𝝑) = ln𝑃𝐿(𝑫|𝝑) is used instead to avoids numerical problems such as arithmetic underflow with the 

computation of the likelihood function. 

1. Initialize 𝑁𝑠 and 𝛽2; 

2. Let 𝑗 = 0 and 𝑞𝑗 = 0. Generate 𝑁𝑠 samples of the calibrating parameters 𝝑𝑗𝑘 (𝑘 = 1,⋯ ,𝑁𝑠), according to the prior 

distribution 𝑃(𝝑); 

3. Determine 𝑞𝑗+1 by solving Equation (1.36); 

4. For all samples 𝝑𝑗𝑘 (𝑘 = 1,⋯ ,𝑁𝑠), compute the plausibility weight by 𝑤𝑗𝑘 = exp{(𝑞𝑗+1 − 𝑞𝑗)ℒ(𝑫|𝝑𝑗𝑘)}, and the 

normalized plausibility weight �̅�𝑗𝑘 using Equation (1.37); 

5. Compute the covariance matrix of the Gaussian proposal distribution, Σ𝑗, using Equation (1.38); 

6. Use the Metropolis-Hastings algorithm to generate 𝑁𝑠 samples from the 𝑗 + 1th intermediate distribution 𝑃𝑗+1(𝝑). 

For 𝑘 = 1,⋯ ,𝑁𝑠, do the following: 

 Select the 𝑣th Markov chain from the set {1,⋯ ,𝑁𝑠} according to their probability equal to �̅�𝑗𝑘 (𝑘 = 1,⋯ ,𝑁𝑠). 

Let the seed sample 𝝑seed = 𝝑𝑗𝑣  and compute the corresponding log-likelihood ℒseed = ℒ(𝑫|𝝑𝑗𝑣); 

 Generate a candidate sample 𝝑cand from the Gaussian proposal distribution and compute ℒcand = ℒ(𝑫|𝝑cand); 

 Generate a sample 𝑟 from a uniform distribution on [0, 1]; 

 If 𝑟 ≤ min (1, exp [𝑞𝑗+1(ℒ
cand − ℒseed)

𝑃(𝝑cand)

𝑃(𝝑seed)
]), let 𝝑𝑗+1𝑘 = 𝝑

cand. Otherwise, let 𝝑𝑗+1𝑘 = 𝝑
seed; 

7. If 𝑞𝑗+1 < 1, let 𝑗 = 𝑗 + 1 and return to Step 3. Otherwise, let 𝑚 = 𝑗 + 1 and end the algorithm. 

Bayesian updating with structural reliability methods 

More recently, another class of methods to sample from the posterior distribution, called Bayesian updating with 

structural reliability methods (BUS) has been proposed by Straub and Papaioannou (2015). BUS converts the Bayesian 

updating problem into an equivalent reliability problem. In structural reliability analysis, estimation of probabilities of 

rare events (i.e., failure probabilities) are of one’s main concern. By interpreting estimation of the posterior distribution 



1.1 Research background                                                                                                                                                 25 

 

as rare event estimation, existing structural reliability methods can be utilized to perform the Bayesian model updating. 

The principle behind BUS is to add an auxiliary random variable that is uniformly distributed, 𝜋 ∈ 𝒟𝜋 = [0, 1], to the 

space of the calibrating parameters, 𝒟𝝑. The Bayesian updating problem is then expressed as a reliability problem in 

the augmented space 𝒟𝝑 × 𝒟𝜋. The performance function 𝑔(𝝑, 𝜋) and the failure domain 𝑍 of this reliability problem 

is defined as: 

𝑔(𝝑, 𝜋) = 𝜋 − 𝑐 ∙ 𝑃𝐿(𝑫|𝝑) (1.40) 

𝑍 = {𝜋 ≤ 𝑐 ∙ 𝑃𝐿(𝑫|𝝑)} (1.41) 

where 𝑐 is chosen such that 𝑐 ∙ 𝑃𝐿(𝑫|𝝑) ≤ 1 is held for all 𝝑. In this context, the quantity 𝑐 ∙ 𝑃𝐿(𝑫|𝝑) is expressed as 

(Betz et al., 2018): 

𝑐 ∙ 𝑃𝐿(𝑫|𝝑) = ∫ 𝑑𝜋
𝜋∈𝑍

 (1.42) 

Consequently, Equation (1.22) is expressed as: 

𝑃(𝝑|𝑫) ∝ 𝑃𝐿(𝑫|𝝑)𝑃(𝝑) = 𝑐
−1∫ 𝑃(𝝑)𝑑𝜋

𝜋∈𝑍

 (1.43) 

The integral ∫ 𝑃(𝝑)𝑑𝜋
𝜋∈𝑍

 can be estimated by sampling in the failure domain, according to the prior distribution 𝑃(𝝑). 

As such, sampling from the posterior is converted to sampling from the failure domain of the aforementioned reliability 

problem. Furthermore, an estimate for the evidence 𝑃(𝑫) is obtained as a by-product of BUS (Straub and Papaioannou, 

2015):  

𝑃(𝑫) = 𝑐−1∫ ∫ 𝑃(𝝑)𝑑𝜋𝑑𝝑
𝜋∈𝑍𝒟𝝑

= 𝑐−1𝑝𝑓 (1.44) 

where 𝑝𝑓 denotes the failure probability. 

The principle behind the choice of 𝑐−1 is that it should not be smaller than the maximum value of the likelihood 

function while conservatively large 𝑐−1 decreases the efficiency of the method. Naturally, its optimal choice would be 

𝑐−1 = max𝑃𝐿(𝑫|𝝑). Nevertheless, the maximum value of the likelihood is not always known in advance, and in such 

cases, it is difficult to determine 𝑐−1 appropriately. Two different strategies that avoid determining 𝑐 have been recently 

proposed. In DiazDelaO et al. (2017), the equivalent reliability problem is redefined such that the performance function 

depends on the likelihood function but not 𝑐. In Betz et al. (2018), an extended variant of BUS, termed aBUS (adaptive 
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BUS), is developed, in which the selection of 𝑐 is not required a priori while appropriate values for 𝑐−1 are adaptively 

selected during the simulation. Note that, in this thesis, the distance-based approximate likelihood functions are used; 

thus, the appropriate value for 𝑐 is straightforwardly available (see, Figure 1.5). 

Any structural reliability method can be used in the BUS framework. The simplest application of BUS is rejection 

sampling that is equivalent to crude Monte Carlo simulation (MCS), however, it becomes inefficient when the number 

of the calibrating parameters is large. Therefore, the combination of BUS with subset simulation (Au and Beck, 2001) 

would be of particular interest (see, e.g., Straub and Papaioannou, 2015; Betz et al., 2018), since subset simulation is 

efficient in estimating small failure probabilities which may arise in BUS and does not depend on the dimension of the 

parameters. Subset simulation expresses the failure domain 𝑍 by means of a sequence of intermediate nested domains 

{𝑍𝑗: 𝑗 = 1,⋯ ,𝑚} which hold 𝑍1 ⊃ ⋯ ⊃ 𝑍𝑚−1 ⊃ 𝑍𝑚 = 𝑍. The intermediate domain is defined as 𝑍𝑗 = {𝑔(𝝑, 𝜋) ≤ 𝑏𝑗}, 

where 𝑏𝑗 is the threshold which maintains 𝑏1 > ⋯ > 𝑏𝑚−1 > 𝑏𝑚 = 0. As such, the failure probability can be expressed 

as the product 𝑝𝑓 = ∏ 𝑝𝑗
𝑚
𝑗=1  of relatively large conditional probabilities 𝑝𝑗 = 𝒫({[𝝑𝑗−1𝑘 , 𝜋𝑗−1𝑘]: 𝑘 = 1,⋯ ,𝑁𝑠} ∈ 𝑍𝑗), 

where [𝝑0𝑘, 𝜋0𝑘] are initial samples which are populated in all the space of the parameters. The value of 𝑏𝑗 is adaptively 

determined such that each conditional probability 𝑝𝑗 corresponds to a pre-defined value 𝑝0. Samples conditional on 𝑍𝑗, 

{[𝝑𝑗𝑘 , 𝜋𝑗𝑘]: 𝑘 = 1,⋯ ,𝑁𝑠}, can be generated by MCMC sampling, in which the seeds of the Markov chains are selected 

as samples at the 𝑗 − 1th step which hold 𝑔(𝝑𝑗−1𝑘 , 𝜋𝑗−1𝑘) ≤ 𝑏𝑗, and the proposal distribution is typically chosen as an 

independent Gaussian distribution centered at the seed sample and having the common variance 𝑠𝑞 . A component-wise 

variant of the Metropolis-Hastings algorithm (Au and Beck, 2001) has been broadly employed in the subset simulation 

algorithms. Besides, the so-called conditional sampling has been recently proposed in Papaioannou et al. (2015), and 

the similar algorithm has been proposed by independent researchers (Au and Patelli, 2016). It should be noted that, the 

conditional sampling is capable of generating 𝑁𝑠 samples simultaneously per step, and hence its computation can be 

easily parallelized.  

An algorithm for the combination of BUS with subset simulation can be summarized as follows: It is noted that, 

for convenience, the reliability problem is transformed to the underlying standard normal space by expressing 𝑔(𝝑, 𝜋) 

equivalently as 𝑔(𝝑, 𝜋) = 𝐻(𝒖) = Φ(𝑢1) − 𝑐 ∙ 𝑃𝐿(𝒚|𝑇(𝒖
∗)), where 𝒖 represents the (𝑛𝜗 + 1)-dimensional standard 

normal random variables with 𝑢1 = Φ−1(𝜋) and 𝒖∗ = T−1(𝝑); Φ(∙) is the standard normal CDF; T(∙) denotes one of 

the classical transformations, e.g., the Rosenblatt transformation (Hohenbichler and Rackwitz, 1981) and the marginal 

transformation by the Nataf model (Der Kiureghian and Liu, 1986).  
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1. Initialize 𝑁𝑠, 𝑐, 𝑝0, and 𝑠𝑞; 

2. Let 𝑗 = 0. Drawn 𝑁𝑠 samples 𝒖𝑗𝑘 (𝑘 = 1,⋯ ,𝑁𝑠), according to the (𝑛𝜗 + 1)-variate standard normal distribution; 

3. For all samples 𝒖𝑗𝑘 (𝑘 = 1,⋯ ,𝑁𝑠), compute the performance function 𝐻(𝒖𝑗𝑘); 

4. Define the intermediate domain 𝑍𝑗+1 = {𝐻(𝒖) ≤ 𝑏𝑗+1} by selecting 𝑏𝑗+1 as the 𝑝0 percentile of 𝐻(𝒖𝑗𝑘); 

5. Find conditional samples located in 𝑍𝑗+1 as {𝒖
𝑗𝑣

(𝑍𝑗+1)
: 𝑣 = 1,⋯ ,

𝑁𝑠

𝑝0
} = {𝒖𝑗𝑘: 𝑣 = 1,⋯ ,𝑁𝑠} ∈ 𝑍𝑗+1; 

6. Use the conditional sampling to drawn 𝑁𝑠 conditional samples in 𝑍𝑗+1. For 𝑘 = 1,⋯ ,𝑁𝑠, do the following; 

 Choose the 𝑣th Markov chain from the set {1,⋯ ,
𝑁𝑠

𝑝0
}. Let the seed sample 𝒖seed = 𝒖

𝑗𝑣

(𝑍𝑗+1)
; 

 Generate a candidate sample 𝒖cand from the Gaussian proposal distribution and calculate the corresponding 

performance function value 𝐻cand = 𝐻(𝒖cand); 

 If 𝐻cand ≤ 𝑏𝑗+1, let 𝒖𝑗+1𝑘 = 𝒖
cand. Otherwise, let 𝒖𝑗+1𝑘 = 𝒖seed. 

7.  If 𝑏𝑗+1 > 0, let 𝑗 = 𝑗 + 1 and return to Step 3. Otherwise, let 𝑚 = 𝑗 + 1 and obtain 𝝑𝑚 = T(𝒖𝑚
∗ ). 

Both the TMCMC and BUS methods have been proved to be very efficient in high-dimensional problems (Betz 

et al., 2016; Betz et al., 2018). This makes these methods particularly appropriate for stochastic model updating, where 

not the model parameters themselves but their hyper-parameters are considered as the calibrating parameters. In fact, 

the TMCMC method is employed to perform the aforementioned two-step ABC updating framework in Bi et al. (2019), 

where, it was reported, for the application to Subproblem A of the NASA UQ challenge 2014, the TMCMC algorithm 

was converged after total of 1.3 × 104 likelihood evaluations in the main step with the Bhattacharyya distance-based 

likelihood. However, because each computation of the Bhattacharyya distance utilized with a sample with 𝑁sim = 103, 

the procedure rendered totally 1.3 × 107 model evaluations. Such a significant number of required model evaluations 

might not be affordable in practical applications; thus, the development of a furthermore efficient inference method is 

necessary. 

1.1.3 Uncertainty propagation 

After the UM is calibrated based on available information on the system of interest, uncertainty propagation aims 

at propagating both types of uncertainty (i.e., aleatory and epistemic uncertainty) from the model parameters into the 

model predictions through the underlying numerical model, in order to quantify uncertainty in the model predictions. 

This propagation is typically attained based on the availability of efficient stochastic simulation methodologies. 
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Two main tasks of uncertainty propagation include the sensitivity analysis and reliability analysis. The sensitivity 

analysis aims at measuring the contribution of uncertainty in each parameter to uncertainty in the model predictions. 

The sensitivity indices can be used for ranking the importance of epistemic parameters, and are useful for planning the 

future data collection and/or model updating with the target of effectively reducing uncertainty in the model predictions. 

The available sensitivity analysis methods in the literature can be generally classified into two categories: the local and 

global sensitivity analysis method. One can refer to Wei et al. (2015) for comprehensive reviews and comparisons of 

the sensitivity analysis methods.  

The reliability analysis, on the other hand, aims at estimating the failure probabilities, i.e., the probabilities that 

undesired failure events due to the intrinsic property of the system happen, and the failure event is typically expressed, 

using the performance function (also called the g-function), as 𝑔 ≤ 0. This implies that at least one aleatory parameter 

(i.e., the category II or IV parameter) needs to be involved in the g-function. Comparatively, the involvement of only 

the category III parameters (due to purely epistemic uncertainty) does not result in the intrinsic failure but makes the 

model predictions imprecise and might result in another type of the failure because of a poor or unsatisfactory design 

and management. The propagation of the category III parameters is typically involved the optimization algorithms (see, 

e.g., Jiang et al., 2013; Faes and Moens, 2020). 

Precise reliability analysis 

With only aleatory uncertainty being present (i.e., the involvement of only the category II parameters), the failure 

domain can be generally expressed as 𝑍 = {𝒙: 𝑔(𝒙) < 0} with the aleatory parameters 𝒙 described by the probability 

models (i.e., the PDFs) 𝑓𝑿(𝒙). The failure probability is then expressed as: 

𝑝𝑓 = ∫ 𝑓𝑿(𝒙)𝑑𝒙
𝒙∈𝑍

= ∫ 𝐼𝑍(𝒙)𝑓𝑿(𝒙)𝑑𝒙
ℝ𝑛𝑥

 (1.45) 

where 𝐼𝑍(∙) denotes the indicator function of 𝑍 that is formulated by 𝐼𝑍(𝒙) = 1 if 𝒙 ∈ 𝑍, and else 𝐼𝑍(𝒙) = 0. Plenty of 

methods found in the literature are applicable for estimating the failure probabilities according to the properties of the 

underlying performance function 𝑔(𝒙). These available methods can be typically categorized into three categories, i.e., 

the approximate analytical methods, stochastic simulation methods, and metamodel methods. Their combined methods 

are also investigated. 

Approximate analytical methods include first-order reliability method (Hasofer and Lind, 1974) and second-order 

reliability method (Der Kiureghian and Stefano, 1991) and aim at analytically deriving the failure probability based on 
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statistical moments of the g-function values which are computed by, for example, the Taylor series expansion of the g-

function around the so-called design point. This class of methods is extremely efficient but can be inaccurate when the 

performance function shows strong nonlinearity.  

Stochastic simulation methods are, in principle, numerical integrations based on random sampling, and the most 

straightforward and simplest method is crude MCS. The MCS first generates a set of aleatory samples according to the 

distribution of interest, 𝑓𝑿(𝒙), and then obtain an estimator of the failure probability by the rate of the samples located 

in the failure domain. The MCS is well-known to be robust to the type and dimension of the performance function, but 

not suitable for estimating small failure probabilities (e.g., 𝑝𝑓 ≤ 10
−3) because the number of samples (i.e., the number 

of model evaluations) that is required to achieve a given accuracy is proportional to 1 𝑝𝑓⁄ . In general, advanced MCS 

methods thus aim at reducing the variance of estimators for efficiently estimating small failure probabilities while, at 

the same time, they lose application robustness. For instance, importance sampling (Au and Beck, 1999) aims to shift 

the distribution of interest towards the failure domain by the so-called importance sampling density, while its success 

is known to be dependent on the prior knowledge of the failure domain. Line sampling (Schuëller et al., 2004) searches 

the failure domain with a set of lines that are all parallel to the importance direction and is particularly efficient in the 

high-dimensional problems, while its performance is known to be highly dependent on the chosen importance direction. 

Comparatively to these methods, subset simulation (Au and Beck, 2001) is, as already mentioned in the last subsection, 

found to play a balance between the efficiency and robustness. In addition, the recently proposed conditional sampling 

techniques (Papaioannou et al., 2015; Au and Patelli, 2016) have a potential to further improve efficiency of the method 

in high-dimensional problems.  

Metamodel (also called the surrogate model) methods aim at substituting the expensive-to-evaluate performance 

function 𝑔 with a surrogate �̂�, that is much faster to evaluate, in order to reduce the number of actual model evaluations. 

Various surrogates are available in the literature, including but not limited to the (linear or quadratic) response surfaces 

(Bucher and Bourgund, 1990), neural networks (Hurtado and Alvarez, 2001), support vector machines (Hurtado, 2004), 

kriging (Kaymaz, 2005) and polynomial chaos expansions (Blatman and Sudret, 2010). Regardless of the type of the 

surrogates, it is usually built by a set of training samples of the aleatory parameters and the corresponding performance 

function values. The training samples can be generated according to a design of experiment (DOE) using, for example, 

MC sampling or Latin hypercube sampling. However, conventional “static” DOEs require many samples in the DOE 

to establish a satisfactory surrogate for estimating small failure probabilities, because the samples are rarely generated 

in the vicinity of the failure surface.  
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Adaptive DOE-based metamodels 

Comparatively, adaptive DOEs, that aim at enriching the training sample pool by dynamically adding samples in 

the vicinity of the failure surface, gain attention in recent years. Among various types of the metamodel based on the 

adaptive DOEs, adaptive Kriging is most widely used due to its significant accuracy and efficiency in estimating small 

failure probabilities. The well-known method in this class is AK-MCS (Echard et al., 2011), which combines Kriging 

and the adaptive DOE based on MC sampling, and a lot of its improved versions, such as AK-IS (Echard et al., 2013) 

and AK-SS (Huang et al., 2016), have been also proposed. The principles behind AK-MCS are two folds: (i) the method 

iteratively searches the optimal training sample to be added that results in the best improvement of the Kriging model; 

(ii) the method is automatically finished if the stopping criterion that ensure a given accuracy of the Kriging model is 

achieved. These properties are both based on the so-called learning function (also called U-function): 

𝑈(𝒙) =
𝜇�̂�(𝒙)

𝜎�̂�(𝒙)
 (1.46) 

where 𝜇�̂�(∙) means the mean estimator of 𝑔 by the Kriging model and 𝜎�̂�(∙) means similarly the variance estimator. In 

general, the sample in the DOE that returns the minimum U-function value is considered as the optimal training sample 

in the vicinity of the failure surface, and the stopping criterion is defined by min[𝑈(𝒙)] ≥ 2 which corresponds to the 

case that the signs of the g-function at all the samples in the DOE are correctly classified with a probability of Φ(2) =

0.977. The AK-MCS methods enable to drastically reduce the number of actual model evaluations, however they rely 

on “static” sampling techniques and require many samples in the DOE (while the model is evaluated at a small number 

of these samples).  

More recently, a new adaptive Kriging method, called AK-MCMC, has been proposed by Wei et al. (2019a). The 

adaptive DOE strategy in this method is based on MCMC sampling, where samples in the vicinity of the sequence of 

intermediate surfaces, which is gradually converged to the failure surface, are dynamically added to the training sample 

pool. Figure 1.8 demonstrates the principle illustration of the AK-MCMC procedure for the case when 𝑚 = 2. For the 

aforementioned purpose, the U-function in Equation (1.46) is modified as: 

𝑈𝑗(𝒙) =
𝜇�̂�(𝒙) − 𝑏𝑗

𝜎�̂�(𝒙)
, ∀𝑗 = 1, 2,⋯ ,𝑚 (1.47) 

AK-MCMC can be iterpreted as the combination of AK-MCS and subset simulation. The method enables to drastically 

reduce the number of required samples in the DOE by efficiently pushing the samples forward to the failure domain, 

and thus especially efficient in estimating very small failure probabiities (e.g., 𝑝𝑓 ≤ 10−6).   
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Figure 1.8 Illustration of AK-MCMC procedure. 

Imprecise reliability analysis 

With both aleatory and epistemic uncertainty being present, on the other hand, the failure domain can be generally 

represented as 𝑍 = {𝒙, 𝒚: 𝑔(𝒙, 𝒚) < 0} with the aleatory parameters 𝒙 described by the imprecise probability models 

(e.g., the p-boxes) 𝑓𝑿(𝒙, 𝜽) and the epistemic parameters 𝒚 described by the non-probabilistic models (e.g., the interval 

models). The failure probability is then expressed as: 

𝑝𝑓(𝜽, 𝒚) = ∫ 𝑓𝑿(𝒙, 𝜽)𝑑𝒙
𝒙∈𝑍

= ∫ 𝐼𝑍(𝒙, 𝒚)𝑓𝑿(𝒙)𝑑𝒙
ℝ𝑛𝑥

 (1.48) 

As such, the failure probability becomes a function of the epistemic parameters 𝒚 and 𝜽. In general, estimation of this 

failure probability function involves a double-loop strategy to propagate aleatory and epistemic uncertainty separately. 

Two distinct strategies can be developed while both aim at constructing the p-box of the g-function. In the first strategy, 

the outer loop performs optimization in the epistemic space 𝒟𝑒 to find two sets of the epistemic parameters that result 

in the lower and upper bounds of g-function, while the inner loop propagates the aleatory parameters to the g-function, 

conditioned on each pair of the epistemic parameters. The simplest method in this class is double-loop MCS (Rocchetta 

et al., 2018b) but more sophisticated methods have been also developed, e.g., advanced line sampling (De Angelis et 

al., 2015), which allows for using the same importance direction for the entire p-box analysis and reusing samples that 

are generated in an inner loop for other iterations of the outer loop, significantly increasing the computational efficiency. 

In addition, the AK-MCS technique is also employed for this starategy (Schöbi et al., 2017). In the second strategy, on 

the other hand, the outer loop samples in the aleatory space 𝒟𝑎 to retrieve the corresponding epistemic focal element, 

while the inner loop performs optimization in each focal element to find the minimum and maximum g-function values. 
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The most well known method in this class is interval MCS (Zhang et al., 2010; Zhang et al., 2013). Furthremore, this 

strategy can be also combined with subset simulation (Alvarez et al., 2018) and the AK-MCS technique (Schöbi et al., 

2017). Figure 1.9 shows difference between these double-loop strategies. It should be noted that, in the second strategy, 

the distributional p-box is converted into a distribution-free p-box having the same boundary CDFs.  

 

Figure 1.9 Illustration of two double-loop strategies. 

Non-intrusive imprecise stochastic simulation 

Aimed at breaking the aforementioned double-loop, another class of methods for estimating the failure probability 

functions, called extended MCS (EMCS), has been developed by Wei et al. (2014), which is applicable for propagating 

distributional p-boxes. EMCS is based on importance sampling, where a single well-chosen realization of the p-box is 
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propagated and the obtained g-function values are reweighted to infer the failure probability function. The method is 

extremely efficient since only one stochastic simulation is necessary and thus its computational cost is identical to that 

of the conventional reliability analysis. In addition, the global version of the method has been also proposed to achieve 

a better global performance of the estimators in the epistemic space (Wei et al., 2019b). However, the variability of the 

EMCS estimators can be substantial when the dimension of the epistemic parameters is high.  

More recently, the EMCS methods have been integrated with the high-dimensional model representation (HDMR) 

decompositions to compute the estimators in low-dimension and the sensitivity analyses to measure the importance of 

the epistemic parameters, so as to develop the so-called non-intrusive imprecise stochastic simulation (NISS) methods 

(Wei et al., 2019b; Wei et al., 2019c). Two types of NISS methods, i.e., the local and global NISS methods, have been 

developed based on the local and global versions of EMCS, respectively. The latter has been furthermore generalized 

for propagating distributional p-boxes and interval models simultaneously (Song et al., 2019). The generalized version 

of the global NISS method is employed and improved in this thesis to address the NASA UQ challenge 2019; thus, its 

brief review will be provided to close this section. 

The global NISS method decomposes the failure probability function in Equation (1.48) by the random sampling 

(RS)-HDMR decomposition: 

𝑝𝑓(𝜽, 𝒚) = 𝑝𝑓0 +∑𝑝𝑓𝜃𝑖(𝜃𝑖)

𝑛𝜃

𝑖=1

+∑𝑝𝑓𝑦𝑖(𝑦𝑖)

𝑛𝑦

𝑖=1

+ ∑ ∑ 𝑝𝑓𝜽𝑖𝑗(𝜽𝑖𝑗)

𝑛𝜃

𝑗=𝑖+1

𝑛𝜃−1

𝑖=1

+ ∑ ∑ 𝑝𝑓𝒚𝑖𝑗(𝒚𝑖𝑗)

𝑛𝑦

𝑗=𝑖+1

𝑛𝑦−1

𝑖=1

+∑∑𝑝𝑓𝜃𝑖𝑦𝑗(𝜃𝑖, 𝑦𝑗)

𝑛𝑦

𝑗=1

𝑛𝜃

𝑖=1

+⋯+ 𝑝𝑓𝜽𝒚(𝜽, 𝒚) 

(1.49) 

where 𝜽𝑖𝑗 = [𝜃𝑖 , 𝜃𝑗] and 𝒚𝑖𝑗 = [𝑦𝑖 , 𝑦𝑗], and the functional components on its right-hand side can be expressed as: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑝𝑓0 = ∫𝑝𝑓(𝜽, 𝒚)𝑓𝜣(𝜽)𝑓𝒀(𝒚)𝑑𝜽𝑑𝒚                                                                                              

𝑝𝑓𝜃𝑖(𝜃𝑖) = ∫𝑝𝑓(𝜽, 𝒚)𝑓𝜣−𝑖(𝜽−𝑖)𝑓𝒀(𝒚)𝑑𝜽−𝑖𝑑𝒚 − 𝑝𝑓0                                                               

𝑝𝑓𝑦𝑖(𝑦𝑖) = ∫𝑝𝑓(𝜽, 𝒚)𝑓𝜣(𝜽)𝑓𝒀−𝑖(𝒚−𝑖)𝑑𝜽𝑑𝒚−𝑖 − 𝑝𝑓0                                                               

𝑝𝑓𝜽𝑖𝑗(𝜽𝑖𝑗) = ∫𝑝𝑓(𝜽, 𝒚)𝑓𝜣−𝑖𝑗(𝜽−𝑖𝑗)𝑓𝒀(𝒚)𝑑𝜽−𝑖𝑗𝑑𝒚 − 𝑝𝑓𝜃𝑖(𝜃𝑖) − 𝑝𝑓𝜃𝑗(𝜃𝑗) − 𝑝𝑓0             

𝑝𝑓𝒚𝑖𝑗(𝒚𝑖𝑗) = ∫𝑝𝑓(𝜽, 𝒚)𝑓𝜣(𝜽)𝑓𝒀−𝑖𝑗(𝒚−𝑖𝑗)𝑑𝜽𝑑𝒚−𝑖𝑗 − 𝑝𝑓𝑦𝑖(𝑦𝑖) − 𝑝𝑓𝑦𝑗(𝑦𝑗) − 𝑝𝑓0              

𝑝𝑓𝜃𝑖𝑦𝑗(𝜃𝑖 , 𝑦𝑗) = ∫𝑝𝑓(𝜽, 𝒚)𝑓𝜣−𝑖(𝜽−𝑖)𝑓𝒀−𝑗(𝒚−𝑗)𝑑𝜽−𝑖𝑑𝒚−𝑗 − 𝑝𝑓𝜃𝑖(𝜃𝑖) − 𝑝𝑓𝑦𝑗(𝑦𝑗) − 𝑝𝑓0

 (1.50) 

where 𝜽−𝑖 = [𝜃1, ⋯ , 𝜃𝑖−1, 𝜃𝑖+1, ⋯ , 𝜃𝑛𝜃]  and 𝜽−𝑖𝑗 = [𝜃1, ⋯ , 𝜃𝑖−1, 𝜃𝑖+1, ⋯ , 𝜃𝑗−1, 𝜃𝑗+1, ⋯ , 𝜃𝑛𝜃] , and 𝒚−𝑖  and 𝒚−𝑖𝑗   have 
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the similar structures as 𝜽−𝑖 and 𝜽−𝑖𝑗 for 𝒚. As such, the probability distributions of 𝜽 and 𝒚 are necessary to perform 

the above integrations while these parameters are supposed to be interval parameters. This gap is usually addressed by  

assigning purely instrumental PDFs to 𝑓𝜣(𝜽) and 𝑓𝒀(𝒚) and the common choice for the instrumental PDF is an uniform 

distribution within the interval of interest. 

The principle behind the global NISS method is to first perform a stochastic simulation for estimating the constant 

component 𝑝𝑓0, and reuse the same samples to estimate the remaining component functions in Equation (1.50) by the 

reweighting procedure. Note that, in Equation (1.50), only the first- and second-order component functions are derived 

while the higher-order component functions can be similarly derived. Nevertheless, it has been demonstrated that very 

often the second-order HDMR decomposition provides a satisfactory approximation of the failure probability function 

(see, e.g., Wei et al., 2019b; Wei et al., 2019c). Hence, the following NISS estimators are only derived in low-dimension, 

which leads to a better estimation of the failure probability function in the high-dimensional epistemic space compared 

with EMCS. The NISS estimators of Equation (1.50) can be expressed as: 

{
 
 
 
 

 
 
 
 �̂�𝑓0 =

1

𝑁𝑠
∑ 𝐼𝑍(𝒙𝑘, 𝒚𝑘)

𝑁𝑠

𝑘=1
                                                   

�̂�𝑓𝜃𝑖(𝜃𝑖) = �̂�𝑓0𝑟𝜃𝑖(𝒙𝑘|𝜃𝑖 , 𝜽−𝑖,𝑘)                                          

�̂�𝑓𝑦𝑖(𝑦𝑖) = �̂�𝑓0𝑟𝑦𝑖(𝑦𝑖|𝑍)                                                        

�̂�𝑓𝜽𝑖𝑗(𝜽𝑖𝑗) = �̂�𝑓0𝑟𝜃𝑖𝑗(𝒙𝑘|𝜽𝑖𝑗 , 𝜽−𝑖𝑗,𝑘)                                  

�̂�𝑓𝒚𝑖𝑗(𝒚𝑖𝑗) = �̂�𝑓0𝑟𝒚𝑖𝑗(𝒚𝑖𝑗|𝑍)                                                 

�̂�𝑓𝜃𝑖𝑦𝑗(𝜃𝑖, 𝑦𝑗) = [�̂�𝑓𝜃𝑖(𝜃𝑖) + �̂�𝑓0]𝑟𝑦𝑗(𝑦𝑗|𝑍) − �̂�𝑓𝑦𝑗(𝑦𝑗)

 (1.51) 

with 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑟𝜃𝑖 (𝒙𝑘

|𝜃𝑖,𝜽𝑘)=
𝑓𝑿 (𝒙𝑘|𝜃𝑖,𝜽−𝑖,𝑘)
𝑓𝑿 (𝒙𝑘|𝜽𝑘)

−1                                                                     

𝑟𝑦𝑖 (𝑦𝑖|𝑍)=
𝑓𝑌𝑖

(𝑦𝑖|𝑍)

𝑓𝑌𝑖
(𝑦𝑖)

−1                                                                                        

𝑟𝜽𝑖𝑗 (𝒙𝑘
|𝜽𝑖𝑗,𝜽𝑘)=

𝑓𝑿 (𝒙𝑘|𝜽𝑖𝑗,𝜽−𝑖𝑗,𝑘)

𝑓𝑿 (𝒙𝑘|𝜽𝑘)
−
𝑓𝑿 (𝒙𝑘|𝜃𝑖,𝜽−𝑖,𝑘)
𝑓𝑿 (𝒙𝑘|𝜽𝑘)

−
𝑓𝑿 (𝒙𝑘|𝜃𝑗,𝜽−𝑗,𝑘)

𝑓𝑿 (𝒙𝑘|𝜽𝑘)
+1

𝑟𝒚𝑖𝑗 (𝒚𝑖𝑗|𝑍)=
𝑓𝒀𝑖𝑗

(𝒚𝑖𝑗|𝑍)

𝑓𝒀𝑖𝑗
(𝒚𝑖𝑗)

−
𝑓𝑌𝑖

(𝑦𝑖|𝑍)

𝑓𝑌𝑖
(𝑦𝑖)

−
𝑓𝑌𝑗

(𝑦𝑗|𝑍)

𝑓𝑌𝑗
(𝑦𝑗)

                                                 

 (1.52) 

where 𝑆 = {[𝒙𝑘 , 𝜽𝑘, 𝒚𝑘]: 𝑘 = 1,⋯ ,𝑁𝑠} denotes 𝑁𝑠 sets of samples generated from the joint PDF 𝑓𝑿(𝒙|𝜽)𝑓𝛩(𝜽)𝑓𝑌(𝒚), 

𝑓𝑌𝑖(𝑦𝑖|𝑍) and 𝑓𝒀𝑖𝑗(𝒚𝑖𝑗|𝑍) are the conditional PDFs of 𝑦𝑖  and 𝒚𝑖𝑗, respectively, on the failure domain 𝑍. The conditional 

PDFs 𝑓𝑌𝑖(𝑦𝑖|𝑍) and 𝑓𝒀𝑖𝑗(𝒚𝑖𝑗|𝑍) can be estimated by KDE using the sample sets 𝑆. Theoretically, any kind of stochastic 

simulation methods is applicable to the above framework, e.g., subset simulation (Wei et al., 2019c) and line simulation 
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(Song et al., 2020). In addition, the framework can be also combined with the metamodel methods (Wei et al., 2019c; 

Song et al., 2020). 

The sensitivity indices can be then estimated as a by-product for each component function as: 

{
 
 
 
 

 
 
 
 𝑆𝜃𝑖 =

V[𝑝𝑓𝜃𝑖(𝜃𝑖)]

V[𝑝𝑓(𝜽, 𝒚)]
             

𝑆𝜽𝑖𝑗 =
V [𝑝𝑓𝜽𝑖𝑗(𝜽𝑖𝑗)]

V[𝑝𝑓(𝜽, 𝒚)]
        

𝑆𝜃𝑖𝑦𝑗 =
V [𝑝𝑓𝜃𝑖𝑦𝑗(𝜃𝑖 , 𝑦𝑗)]

V[𝑝𝑓(𝜽, 𝒚)]

 (1.53) 

where V[∙] indicates the variance operator, and 𝑆𝑦𝑖 and 𝑆𝒚𝑖𝑗 can be similarly defined. The above sensitivity indices are 

known as the Sobol’ sensitivity indices (Sobol’ et al., 2007). The sensitivity indices measure the relative importance of 

each epistemic parameter to the failure probability function, and thus can be used to identify the component functions 

that are negligible in estimating the failure probability function. Furthermore, they can also serve as a measure of the 

truncation error due to e.g., a HDMR decomposition with the second-order truncation. As such, the global NISS method 

can properly address numerical estimation errors. 

The above generalized global NISS method provides a fascinating general framework for uncertainty propagation 

of all the category II, III, and IV parameters simultaneously. However, the open problem still exist. In the current NISS 

framework, the category IV parameters are restricted only to the parameterized imprecise probability models (e.g., the 

distributional p-boxes) that impose constraints on admissible distribution functions by defining a specific distribution 

family. As already mentioned in the last subsection, it is often the case that the distribution families cannot be properly 

determined beforehand due to the scarce and/or incomplete available data for the parameters. With such condition, the 

distribution families themselves should be treated as epistemic uncertainty to be propagated to the failure probability 

function; thus, the NISS method is necessary to be further improved so as to propagate any distribution family enclosed 

within the concerned p-boxes. 

1.2   Aims and objectives 

As can be shown in the previous section, the state-of-the-art developmentes in the field of imprecise probabilities 

have strengthened the subjective assumption-free probabilistic frameworks for uncertainty calibration and propagation, 

however, they still rely on the proper hypotheses on the underlying distribution families. Consequently, the aim of this 
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thesis is on the distribution-free uncertainty calibration and propagation under the presence of the hybrid uncertainties, 

and the focus will be on the approximate Bayesian computation (ABC) with the Bhattacharyya distance for uncertainty 

calibration and on the generalized version of the non-intrusive imprecise stochastic simulation (NISS) for uncertainty 

propagation. Herein, “distribution-free” indicates no limiting hypotheses on the distribution families are necessary for 

calibrating and propagating the category IV parameters. It is noted that this is not equivalent to the case that the category 

IV parameters are represented by non-parameterized imprecise probability models (e.g., the distribution-free p-boxes). 

In fact, it is still assumed in this thesis that the category IV parameters are characterized by the distributional p-boxes 

to calibrate them by reducing the hyper-parameters’ epistemic space and to propagate them with respect to each hyper-

parameter. Instead, a novel class of the distributional p-boxes based on staircase density functions (Crespo et al., 2018) 

is investigated. Staircase density functions are four parameter distributions that enable to flexibly approximate a wide 

range of distributions arbitrary close by selecting a proper quadruple of the hyper-parameters. As a consequence, hybrid 

uncertainties can be characterized by the hierarchical structure, in which the outer loop interval models of the hyper-

parameters representing epistemic uncertainty while the inner loop probability distributions with the arbitrary formats 

characterizing aleatory uncertainty. Besides to the category IV parameters, it is assumted in this thesis that the category 

III parameters are represented by the interval models. 

The objective of this thesis is first to improve the two-step ABC updating framework with both the Euclidian and 

Bhattacharyya distances in order to extend the scope of application to the case that the prior knowledge on the aleatory 

parameters is extremely limited as well as to the case that the system of interest is described by time-domain sequences. 

In addition, a highly efficient Bayesian inference algorithm is also developed to improve the computational efficiency 

of the framework. The second objective is to similarly improve the generalized NISS framework in order to extend the 

scope of application to the case that the distribution families of the aleatory parameters cannot be assumed. There are 

consequently five specific objectives: 

(1) Develop a dimension reduction procedure for the time-domain sequences to deal with the curse of dimensionality 

in the evaluation of the Bhattacharyya distance; 

(2) Develop a highly efficient Bayesian inference algorithm by combining BUS and AK-MCMC; 

(3) Implement the staircase density functions into the two-step ABC updating framework to calibrate the probabilistic 

distributions of the category IV parameters whose distribution families are unknown; 

(4) Further generalize the ABC updating framework with the Bhattacharyya distance to calibrate the joint probabilistic 

distribution by combining the staircase density functions and Gaussian copula function; 
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(5) Implement the staircase density functions into the generalized NISS framework so as to propagate the category IV 

parameters whose distribution families are unknown. 

1.3   Original contributions 

The contributions of this thesis are mainly on the development of distribution-free methodological frameworks 

for stochastic model updating and uncertainty propagation of dynamic black-box systems under hybrid uncertainties. 

This development furthermore leads to providing a solution to the NASA UQ challenge problem 2019. The five main 

contributions are summarized as follows. 

First, the two-step ABC updating framework with both the Euclidian and Bhattacharyya distances is extended to 

the calibration of dynamic systems described by time-domain sequences. A dimension reduction procedure is proposed, 

where the high-dimensional discrete time signals are evenly divided by a given window length and are degraded to a 

series of scalars by taking root mean square (RMS) of the time signals within each window. The Bhattacharyya distance 

is then evaluated for each RMS value and an approximate likelihood is defined by employing their RMS value as the 

summary statistic. A highly efficient Bayesian inference algorithm is also developed based on the combination of BUS 

and AK-MCMC. This algorithm is rooted in the conventional combination of BUS and subset simulation, however the 

model evaluations at most of the samples are substituted for the Kriging surrogate. Since the adaptive DOE is designed 

based on subset simulation, the algorithm can properly address very small failure probabilities which may arise in BUS. 

Moreover, the use of common random numbers is also proposed to address the stochastic nature of the Bhattacharyya 

distance in the construction of the Kriging surrogate for the Bhattacharyya distance-based performance function.  

Second, a distribution-free stochastic model updating framework is developed by combining the staircase density 

functions and Bhattacharyya distance to calibrate the category IV parameters whose distribution families are unknown. 

The probability distributions of the category IV parameters are described by the staircase density functions. The prior 

distributions of their hyper-parameters are derived based on the moment constraints and updated by the two-step ABC 

updating procedure. The preliminary step with the Euclidian distance is served as a preconditioner to avoid non-unique 

solutions while the main step with the Bhattacharyya distance quantifies the comprehensive uncertainty characteristics 

of the observed features. By altering the problem setting of the model updating subproblem in the NASA UQ challenge 

2014, the proposed model updating framework is demonstrated to be capable of calibrating the probability distributions 

arbitrary close to the target distributions without limiting hypotheses on the distribution families. 

Then, a solution to the latest edition (2019) of the NASA UQ challenge problem is provided. Four key techniques 
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are proposed to tackle the challenge: (i) a distribution-free Bayesian model updating framework for the calibration of 

the uncertainty model; (ii) an adaptive pinching approach to analyze and rank the relative sensitivity of the epistemic 

parameters; (iii) the probability bounds analysis to estimate failure probabilities; and (iv) a NISS approach to identify 

optimal design parameters. It should be noted that, among the above four techniques, the author mainly contributes to 

the techniques (i) and (iv). For calibrating the dynamic black-box system described in time-domain, the aforementioned 

distribution-free stochastic updating framework is further combined with the dimension reduction procedure developed 

in the first contribution. The NISS approach is developed for the reliability-based optimization subproblem, where the 

high-dimensional optimization is simplified to a set of one-dimensional searches by a first-order HDMR decomposition 

with respect to the design parameters. It is demonstrated that the approach can efficiently estimate the locally optimal 

design parameters. 

Further, the above distribution-free stochastic model updating framework is generalized for calibrating the joint 

probabilistic distribution of the multivariate parameters accounting for the correlation structure. The staircase density 

functions are defined for univariate random variables and cannot account for the parameter dependencies. Hence, it is 

proposed to describe the joint probability distribution by a Gaussian copula function whose marginals are modeled by 

the staircase density functions. The prior distribution of the hyper-parameters of the staircase density functions and the 

correlation coefficients of the Gaussian copula is derived from the moment and correlation coefficient constraints, and 

are updated by the ABC updating procedure with the Bhattacharyya distance. This development reveals the importance 

of considering the correlation structure in stochastic model updating. 

Finally, a distribution-free uncertainty propagation framework under the hybrid uncertainties is also proposed by 

incorporating the staircase density functions into the NISS framework in order to efficiently propagate the category IV 

parameters with no limiting assumptions on the distribution families. A hybrid NISS method is proposed, in which the 

local NISS method is used for propagating the p-boxes described by the staircase density functions while the global 

NISS method is used for propagating the interval models. By utilizing the proposed procedure, the reliability analysis 

subproblem in the NASA UQ challenge 2019 is solved with a satisfactory accuracy and efficiency compared with the 

aforementioned probability bounds analysis approach. 

The above five original contributions are integrated as a distribution-free uncertainty calibration and propagation 

framework under hybrid uncertainties, and are successfully improved the scope of application and efficiency of hybrid 

uncertainty calibration and propagation in particular for the case that specific distribution families cannot be assumed 

due to the very scarce and/or incomplete available data for the parameters.  
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1.4   Structure of the thesis 

This thesis is composed of seven chapters including five journal articles. Each article is aimed at demonstrating 

the five original contributions summarized in the previous section one by one. Specifically, this thesis is organized as 

follows. 

Following this introduction, Chapter 2 introduces the first research article. In this article, the dimension reduction 

procedure aimed at evaluating the Bhattacharyya distance based on time-domain sequences and the Bayesian inference 

algorithm by the combination of BUS and AK-MCMC are developed for the two-step ABC updating framework with 

both the Euclidian and Bhattacharyya distances. The feasibility of the proposed approach is demonstrated on a seismic-

isolated bridge pier model updating problem using simulated seismic response data. In addition, the proposed Bayesian 

inference algorithm is compared with the TMCMC algorithm to demonstrate its efficiency. 

Chapter 3 brings up the second research article, in which the two-step ABC updating framework is improved to 

calibrate the category IV parameters whose distribution families are unknown by modeling the probability distributions 

to be calibrated as the staircase density functions. A well-known simple engineering example developed by Beck and 

Au (2002) is modified to demonstrate the principle of the proposed procedure. The procedure is further applied to the 

model updating subproblem in the NASA UQ challenge 2014 by modifying the problem setting and demonstrated to 

be capable of achieving satisfactory updating results without any prior knowledge on the distribution families of the 

parameters to be calibrated. 

Chapter 4 presents the third research article which provides a solution to the NASA UQ challenge problem 2019. 

Five subproblems, including model calibration and UQ of the subsystem, uncertainty reduction, reliability analysis of 

baseline design, reliability-based design, and model update and design tuning, are successfully solved. These problems 

are aimed at representing the difficulties which are frequently encountered in the design of safety-critical systems based 

on the availability of very limited knowledge and data. The distribution-free Bayesian model updating framework with 

three key components, such as the staircase density functions for modeling the aleatory parameters, the Bhattacharyya 

distance for quantifying the uncertainty characteristics of the observations, and the dimension reduction procedure for 

evaluating the Bhattacharyya distance based on time-domain sequences, is demonstrated as a robust tool for uncertainty 

characterization and quantification throughout the challenge problem. Moreover, the NISS approach based on a HDMR 

decomposition of the failure probability function with respect to the design parameters is proposed so as to efficiently 

solve the reliability-based design optimization problem. 
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In Chapter 5, the fourth research article is brought up, which strengthens the stochastic model updating framework 

developed in the second and third articles to calibrate the joint probability distribution of multivariate parameters with 

the consideration of the correlation structure. For this purpose, the joint distribution is modeled by the Gaussian copula 

function with the marginals described by the staircase density functions, and then updating the correlation coefficients 

as well as the hyper-parameters to the posterior. The proposed method is first demonstrated on the engineering example 

used in the second article and another simple engineering example, and then applied to the seismic-isolated bridge pier 

model updating problem using simulated seismic response data. 

Chapter 6 presents the fifth research article, in which the generalized NISS framework is improved to propagate 

the category IV parameters the distribution families on which are unknown by characterizing them as the distributional 

p-boxes based on the staircase density functions. To achieve a good balance between the efficiency in propagating the 

staircase density-based p-boxes and the accuracy in propagating the interval models for the epistemic parameters, the 

hybrid NISS method is proposed, where the local NISS method is performed for the staircase density-based p-boxes 

while the global NISS method is used for the interval models. The proposed uncertainty propagation approach is first 

demonstrated by solving the reliability analysis subproblem in the NASA UQ challenge 2019. 

Chapter 7 draws concluding remarks from the developed uncertainty calibration and propagation frameworks and 

the application to the real-world engineering problems including the NASA UQ challenge problems. The thesis closes 

giving an outlook for future work in the field of hybrid uncertainty quantification. 
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Chapter 2                                                                                      

Research article 1: Bayesian model updating in time domain with 

metamodel-based reliability method 

This is the first phase in the main part of this thesis, that aims at extending the two-step ABC updating framework 

with both the Euclidian and Bhattacharyya distances to the calibration of dynamic systems described by time-domain 

sequences. As has been mentioned in the introduction chapter of this thesis, the two-step ABC updating framework is 

originally developed for calibrating modal properties of the system of interest. In general, the time-domain sequences 

are more representative of dynamic systems than the modal properties, and they can provide more information of the 

systems including their nonlinear properties. For instance, the seismic-isolated bridge is typically designed to dissipate 

the earthquake energy at rubber bearings by plastically deforming them earlier than the other members, so as to reduce 

the seismic force on e.g., reinforced concrete (RC) piers, where the plastic deformation is undesirable. Therefore, it is 

quite important to quantify the uncertainty characteristics of the nonlinear parameters of the rubber bearings (e.g., the 

post-yield stiffness) using seismic response data described by time-domain sequences, resulting in reliable estimate of 

the seismic performance of the entire bridge system. Nevertheless, the direct application of the two-step ABC updating 

framework to the calibration of dynamic systems described by time-domain sequences is intractable mainly due to the 

following two reasons: (i) The original definition of the Bhattacharyya distance-based approximate likelihood is only 

applicable to scalar quantities because PMFs of the quantities of interest need to be estimated by a number of samples, 

and cannot be employed for time-domain sequences; (ii) The computational cost to analyze response time histories is 

generally higher than that to analyze modal properties, and thus the computation of the Bhattacharyya distance becomes 

intractable because of the necessity of hundreds to thousands repeated model evaluations for each computation of the 

Bhattacharyya distance during the updating procedure. 

To cope with the first issue, a dimension reduction procedure is proposed, where high-dimensional discrete time 

histories are evenly divided by a given window length and are degraded to a series of scalar values by taking RMS of 

them within each window. A novel Bhattacharyya distance-based approximate likelihood for time-domain sequences 

is then defined by utilizing the RMS value of the Bhattacharyya distances evaluated for each scalar quantity above as 
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the selected summary statistic. Moreover, to address the second issue, a highly efficient Bayesian inference algorithm 

is developed by combining BUS and a state-of-the-art adaptive Kriging metamodeling technique, called AK-MCMC, 

which is in particular efficient in estimation of extremely small failure probabiities (typically less than 10−6). The use 

of common random number is also proposed in the main step of the ABC updating framework to address the variability 

of the training samples for establishing the Kriging surrogate due to the stochastic nature of the Bhattacharyya distance.  

The proposed procedure is demonstrated on the model updating problem of a seismic-isolated bridge pier model, 

where the probabilistic distribution of three stiffness parameters including the post-yield stiffness of the rubber bearings 

are calibrated based on the multiple sets of the simulated seismic response data. This application demonstrates that the 

novel Bhattacharyya distance-based approximate likelihood is capable to capture wholly the uncertainty characteristics 

of the observed time sequences, and the combination of BUS with AK-MCMC enables to accurately infer the posterior 

distribution with a significantly reduced computational burden compared with the TMCMC algorithm. 
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Abstract: In this study, a two-step approximate Bayesian computation (ABC) updating framework using dynamic 

response data is developed. In this framework, the Euclidian and Bhattacharyya distances are utilized as uncertainty 

quantification (UQ) metrics to define approximate likelihood functions in the first and second steps, respectively. A 

novel Bayesian inference algorithm combining Bayesian updating with structural reliability methods (BUS) with the 

adaptive Kriging model is then proposed to effectively execute the ABC updating framework. The performance of the 

proposed procedure is demonstrated with a seismic-isolated bridge model updating application using simulated seismic 

response data. This application denotes that the Bhattacharyya distance is a powerful UQ metric with the capability to 

recreate wholly the distribution of target observations and the proposed procedure can provide satisfactory results with 

much-reduced computational demand compared with other well-known methods, such as transitional Markov chain 

Monte Carlo (TMCMC). 

Keywords: Stochastic model updating; Bayesian model updating; Bhattacharyya distance; Adaptive Kriging; 

Metamodeling; Bayesian updating with structural reliability methods. 

2.1    Introduction 

Bayesian model updating using observed dynamic response data has a broad range of applications in a number 

of engineering fields (Beck and Katafygiotis, 1998; Katafygiotis and Beck, 1998; Cheung and Beck, 2009; Jensen et 

al., 2013; Rocchetta et al., 2018). In the campaign of model updating, uncertainties in both modelling and observation 

procedures should be appropriately considered; hence, uncertainty quantification (UQ) metrics are significant so as to 

comprehensively and quantitatively measure the stochastic discrepancy between model predictions and observations. 
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In the context of UQ, parameters can be categorized according to the involvement of aleatory or/and epistemic 

uncertainties as (Kennedy and O’Hagan, 2001; Crespo et al., 2014):  

I) Parameters without any uncertainties, appearing as explicit constants; 

II) Parameters with only aleatory uncertainty, appearing as random variables with fully determined probability 

characteristics such as density functions and distribution coefficients;  

III) Parameters with only epistemic uncertainty, appearing as unknown-but-fixed constants bounded by given 

intervals; 

IV) Parameters with both aleatory and epistemic uncertainties, appearing as imprecise random variables with only 

vaguely determined probability characteristics. 

Both Categories III and IV parameters are considered in Bayesian model updating, whose target is not a single set of 

the crisp values of the parameters but a reduced space of epistemic uncertainty that is achieved based on the posterior 

distribution, such as reduced intervals of Category III parameters and reduced bounds of the cumulative probability 

function (CDF) of Category IV parameters. 

The geometric discrepancy between model predictions and observations caused by Category III parameters can 

be quantified using the classical Euclidian distance as the UQ metric. On the other hand, quantifying the stochastic 

discrepancy caused by Category IV parameters requires a more comprehensive UQ metric that is capable of capturing 

a higher level of statistical information. The Bhattacharyya distance (Bhattacharyya, 1946) has been recently proposed 

as such a potential UQ metric (Bi et al., 2017). The Bhattacharyya distance provides a stochastic measure between two 

sample sets (i.e., the model predictions and observations) that quantifies the degree of the overlap of their probability 

distributions.  

Bi et al. (2019) has developed a Bayesian model updating framework, in which the Bhattacharyya distance is 

employed as the UQ metric to define an approximate but efficient likelihood function based on the approximate 

Bayesian computation (ABC) method (Turner and Van Zandt, 2012; Safta et al., 2015). This framework has been 

demonstrated upon a three degree of freedom (DOF) spring-mass system example and shown to have a potential to 

recreate wholly the target observations. While the target outputs in this example are scalar modal responses, the direct 

computation of the Bhattacharyya distance becomes infeasible if the target outputs are described as high-dimensional 

dynamic responses because of the so-called curse of dimensionality. A dimension reduction procedure is thus proposed 

in this study to calculate the Bhattacharyya distance based on dynamic response data. 
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On the other hand, Markov chain Monte Carlo (MCMC) algorithms are generally accepted as the most attractive 

Bayesian inference techniques (Beck and Au, 2002; Cheung and Beck, 2009). Of particular importance among these 

algorithms is transitional Markov chain Monte Carlo (TMCMC) (Ching and Chen, 2007; Betz et al., 2016) and Bi et 

al. (2019) has also utilized TMCMC to perform the ABC updating framework. Although TMCMC is quite flexible and 

general, it requires a large number of model evaluations for calculating the likelihood function. In the ABC updating 

framework, the approximate likelihood function is defined based on the Bhattacharyya distance, the computation of 

which requires random samples of model predictions generated by Monte Carlo (MC) sampling. Thus, the total number 

of model evaluations is extremely large compared with general model updating and the computational burden becomes 

excessive in cases of time-consuming model evaluations, which are often involved in predicting dynamic responses. 

Straub and Papaioannou (2015) has recently developed a formulation called Bayesian updating with structural 

reliability methods (BUS). The key idea of this formulation is to transform the Bayesian updating problem into an 

equivalent reliability problem, allowing to obtain samples from the posterior distribution as conditional samples that 

are located in the failure domain of this reliability problem. By employing Subset simulation techniques (Au and Beck, 

2001), BUS has shown great efficiency in estimating posterior distributions (Betz et al., 2018). Its efficiency depends 

on the choice of the so-called likelihood multiplier. While the optimal multiplier ensuring the best acceptance rate is 

generally not available, it can be defined a priori for the proposed approximate likelihood function. Hence, BUS has a 

great potential to be effectively integrated with the ABC updating framework.  

At the same time, BUS can further improve its efficiency by applying metamodeling techniques (Giovanis et al., 

2017).  Among various types of the metamodels, the adaptive Kriging model has been shown to be one of the most 

accurate and efficient methods in solving reliability problems (Echard et al., 2011; Echard et al., 2013; Huang et al., 

2016). However, the failure probability associated with the equivalent reliability problem in BUS is generally known 

to be extremely small. In such rare events, the adaptive Kriging model becomes significantly inefficient because the 

number of candidate samples should be extremely large to ensure that enough samples are contained in the failure 

domain. On the other hand, Wei et al. (2019) has recently proposed a new algorithm called AK-MCMC, in which the 

Kriging model is adaptively trained on dynamically updated MCMC populations. This algorithm is especially suitable 

for extremely rare event problems. The objective of this study is consequently to develop an efficient ABC updating 

framework using dynamic response data by combining BUS and the AK-MCMC algorithm.  

The structure of this paper is as follows. In Section 2.2, we describe the dimension reduction procedure to evaluate 

the Bhattacharyya distance for high-dimensional dynamic response data, and the proposed ABC updating framework. 
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Section 2.3 outlines the novel Bayesian inference algorithm combining BUS and the adaptive Kriging model based on 

the AK-MCMC algorithm. The principle and illustrative applications are then detailed in Section 2.4, using a model 

updating problem of a seismic-isolated bridge pier using simulated seismic response data. The computational efficiency 

of the proposed scheme is also presented by comparing with the results using TMCMC. Finally, some conclusions are 

given in Section 2.5. 

2.2    Approximate Bayesian computation using dynamic response data 

2.2.1 Formulations of the Bhattacharyya distance for dynamic response data 

In the context of Bayesian model updating, the system under investigation can be expressed as: 

𝐲 = ℎ(𝐱) (2.1) 

where 𝐱 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] denotes a vector of 𝑛 input parameters; 𝐲 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑚] is a vector of the output features 

as 𝑚-dimensional dynamic responses; ℎ(∙) is the simulator (e.g., finite element model). The uncertainties of the system 

are first characterized by the input parameters defined as various categories (refer to Section 2.1) and then propagated 

through the simulator into the uncertain output features. In general, randomly sampled values of the input parameters 

and output features are used in Bayesian model updating. Suppose the required sample size is 𝑁sim, the simulator ℎ is 

executed 𝑁sim times to generate the sample set of the simulated features 𝐘sim ∈ ℝ𝑁sim×𝑚: 

𝐘sim = [𝐲1, 𝐲2, ⋯ , 𝐲𝑁sim
]

𝑇
, with 𝐲𝑖 = [𝑦1𝑖 , 𝑦2𝑖 , ⋯ , 𝑦𝑚𝑖], ∀𝑖 = 1, 2, ⋯ , 𝑁sim (2.2) 

In addition to the simulated features, observed features are required as the target of model updating. Suppose the 

number of observations is 𝑁obs, the sample set of the observed features has a similar structure as Equation (2.2), where 

only the number of rows is changed: 𝐘obs ∈ ℝ𝑁obs×𝑚. The objective of Bayesian model updating can be then expressed 

as to minimize the stochastic discrepancy between 𝐘obs and 𝐘sim by inferring the uncertainty characteristics (i.e., the 

probability distributions), of the input parameters. 

In the following, possible UQ metrics are defined for capturing the discrepancy between 𝐘obs and 𝐘sim. The most 

classical Euclidian distance metric is expressed as: 

𝑑𝐸(𝐘obs, 𝐘sim) = √(𝐘obs − 𝐘sim)(𝐘obs − 𝐘sim)𝑇 (2.3) 
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where 𝐘(∙) denotes a row vector of means of the features. The Euclidian distance is a point-to-point distance capable to 

capture the geometric discrepancy caused by Category III parameters. On the other hand, in the presence of Category 

IV parameters, it is desirable to employ a more comprehensive UQ metric that is capable to consider a higher level of 

statistical information from the sample sets. 

The Bhattacharyya distance is herein proposed as such a stochastic metric for robustly measuring the degree of 

overlap between distributions of two sample sets. Its original definition is given as: 

𝑑𝐵(𝐘obs, 𝐘sim) = − log [∫√𝑝obs(𝑦)𝑝sim(𝑦)
𝕪

d𝑦] (2.4) 

where 𝑝(∙)(𝑦) is the probability density function (PDF) of each feature sample; 𝕪 is the 𝑚-dimensional feature space; 

∫ (∙)
𝕪

d𝑦 indicates the integration performed over the whole feature space. Differently from the Euclidian distance, the 

Bhattacharyya distance takes not only the means but also the variances, covariances, and even the distribution shapes, 

of the sample sets into account. However, the direct evaluation of Equation (2.4) is not feasible since precise estimation 

of the PDF is generally unavailable, especially for applications where observations are difficult or expensive. Bi et al. 

(2019) hence proposed the so-called binning algorithm to evaluate the probability mass function (PMF) of a discrete 

distribution, so that the discrete Bhattacharyya distance is used instead. The PMF is a function which maps the possible 

values of a discrete random variable to the probabilities of its occurrence (Grimmett and Stirzaker, 2001). The discrete 

Bhattacharyya distance is defined as (Patra et al., 2015): 

𝑑𝐵(𝐘obs, 𝐘sim) = − log { ∑ ⋯ ∑ √𝑝obs(𝑏𝑖1,𝑖2,⋯,𝑖𝑚
)𝑝sim(𝑏𝑖1,𝑖2,⋯,𝑖𝑚

)

𝑛𝑏𝑖𝑛

𝑖1=1

𝑛𝑏𝑖𝑛

𝑖𝑚=1

} (2.5) 

where 𝑝(∙)(𝑏𝑖1,𝑖2,⋯,𝑖𝑚
) is the PMF value of the bin 𝑏𝑖1,𝑖2,⋯,𝑖𝑚

. The bin has 𝑚 subscripts because it is generated under a 

𝑚-dimensional joint PMF space. More detailed information of the binning algorithm can be referred to Bi et al. (2019). 

In this study, the output features are assumed as very high-dimensional dynamic responses. In such circumstances, 

the direct evaluation of Equation (2.5) becomes infeasible since the total number of bins is exponentially increasing 

with the dimension 𝑚 because of the so-called curse of dimensionality. To overcome this issue, a dimension reduction 

procedure consisting of the following steps is herein proposed (Kitahara et al., 2020). 

1) Define the window length 𝐿 and divide 𝐲𝑖 of 𝐘sim, ∀𝑖 = 1, 2, ⋯ , 𝑁sim into ⌈𝑚 𝐿⁄ ⌉ intervals, where ⌈∙⌉ indicates the 

upper integer of the investigated values. The same procedure is also applied to 𝐘obs; 
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2) Compute the root mean square (RMS) values of the discrete time histories within each interval to obtain a matrix 

𝐑 = [𝑅1, 𝑅2, ⋯ , 𝑅⌈𝑚 𝐿⁄ ⌉] and generate the sample set of the RMS values 𝐑𝐘sim
∈ ℝ𝑁sim×⌈𝑚 𝐿⁄ ⌉ : 

𝐑𝐘sim
= [𝐑𝐘sim

1 , 𝐑𝐘sim

2 , ⋯ , 𝐑𝐘sim

⌈𝑚 𝐿⁄ ⌉
], with 𝐑𝐘sim

𝑗
= [𝑅𝑗

1, 𝑅𝑗
2, ⋯ , 𝑅𝑗

𝑁sim]
𝑇

, ∀𝑗 = 1, 2, ⋯ , ⌈𝑚 𝐿⁄ ⌉ (2.6) 

and 𝐑𝐘obs
∈ ℝ𝑁obs×⌈𝑚 𝐿⁄ ⌉. It is noted that, 𝐑𝐘obs

 has a similar structure as Equation (2.6), where only the number 

of rows is changed; 

3) Evaluate the Bhattacharyya distance 𝑑𝐵𝑗   between two sample sets of the RMS values 𝐑𝐘obs

𝑗
  and 𝐑𝐘sim

𝑗
, ∀𝑗 =

1, 2, ⋯ , ⌈𝑚 𝐿⁄ ⌉; 

4) Obtain the RMS value of the Bhattacharyya distances and employ it as a UQ metric. 

The principle behind the window length 𝐿 is that a smaller 𝐿 leads to employing more detailed information of the 

target dynamic response data, whereas it leads to a larger computational demand at the same time. It is found that 𝐿 =

0.025 ∙ 𝑚 is a reasonable choice in this study. This choice corresponds to the case where each RMS contains 2.5 % of 

the overall target signals.  

2.2.2 Approximate Bayesian computation 

The ABC updating framework with the distance-based UQ metrics is summarized here. Bayesian model updating 

is based on the Bayes’ theorem (Beck and Katafygiotis, 1998): 

𝑃(𝐱|𝐘obs) =
𝑃𝐿(𝐘obs|𝐱)𝑃(𝐱)

𝑃(𝐘obs)
 (2.7) 

where 𝑃(𝐱) indicates the prior distribution of 𝐱, representing the initial knowledge about the parameters 𝐱; 𝑃(𝐱|𝐘𝑜𝑏𝑠) 

indicates the posterior distribution of 𝐱, which represents the updated knowledge about the parameters 𝐱 based on the 

availability of the observed data; 𝑃(𝐘𝑜𝑏𝑠) is the normalized factor (also called the evidence) ensuring that the posterior 

distribution 𝑃(𝐱|𝐘𝑜𝑏𝑠) integrates to one; 𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱) is the likelihood function of 𝐘𝑜𝑏𝑠 for an instance of the parameters 

𝐱.  

The likelihood function is one of the key components in Bayesian model updating, because it quantifies the degree 

of relevance of a model with a given instance of the parameters to be calibrated, by representing the possibility of the 

observations. Under the assumption of independence between each observation, the likelihood function in Equation 

(2.7) is theoretically defined as: 
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𝑃𝐿(𝐘obs|𝐱) = ∏ 𝑃(𝐘𝑘|𝐱)

𝑁obs

𝑘=1

 (2.8) 

where 𝑃(𝐘𝑘|𝐱) indicates the PDF value of the 𝑘th observed data 𝐘𝑘 conditional to the corresponding instance of the 

parameters 𝐱. Note that, the precise estimation of the PDF requires a large number of simulated features. Consequently, 

an analytical formula of the likelihood in Equation (2.8) demands a huge number of model evaluations and it can be 

almost infeasible for complex simulators. 

The ABC method (Turner and Van Zandt, 2012; Safta et al., 2015) is utilized to overcome the above obstacle by 

replacing the full likelihood with an approximate but efficient function that contains information of the observations 

and the instance of the parameters 𝐱. In the approximate likelihood, any types of statistics can be used to measure the 

stochastic discrepancy between model predictions and observations (Turner and Van Zandt, 2012); hence, it is natural 

to define it employing the distance metrics. Various functional formulas have been investigated in the literature for the 

ABC method, including the Gaussian (Turner and Van Zandt, 2012), sharp (Rocchetta et al., 2018), and Epanechnikov 

(Safta et al., 2015) functions. Nevertheless, the basic principle of the approximate likelihood is that it should return a 

high value when the distance metric is small, whereas it penalizes the 𝐱 instance when its corresponding distance metric 

is large. In this study, an approximate likelihood function based on the Gaussian function is proposed as: 

𝑃𝐿(𝐘obs|𝐱) ∝ 𝑒𝑥𝑝 {−
𝑑2

𝜀2
} (2.9) 

where 𝑑 is the distance metric; 𝜀 denotes the so-called width factor, which is a pre-defined coefficient controlling the 

centralization degree of the posterior distribution. Based on a series of tests in various applications, 𝜀 is determined to 

lie into the interval [10−3, 10−1] (Patelli et al., 2017). A smaller 𝜀 corresponds to a more peaked posterior distribution 

which is more likely to converge to the true value but requires more computational demand for convergence. 

By employing the Bhattacharyya distance, the proposed approximate likelihood function is capable of capturing 

comprehensive uncertainty information from both model predictions and observations. However, the Bhattacharyya 

distance in Equation (2.5) will be infinite if the initial 𝐘sim is too far from 𝐘obs, i.e., there is no overlap between the 

two sample sets, and thus cannot be directly employed in the likelihood. Hence, Bi et al. (2019) has proposed the two-

step ABC updating framework, where a preliminary step with the Euclidian distance-based likelihood is employed to 

force an overlap between 𝐘obs and 𝐘sim. The comprehensive uncertainty characteristics of the parameters are then 

calibrated in the main step with the Bhattacharyya distance-based likelihood. This two-step strategy is also employed 
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in this study. The reader can refer to Bi et al. (2019) for detailed information of the two-step procedure. 

2.3    Bayesian updating with adaptive Kriging model 

2.3.1 Bayesian updating with structural reliability methods (BUS) 

In this section, the BUS formulation (Straub and Papaioannou, 2015; DiazDelaO et al., 2017) is briefly reviewed. 

The BUS formulation is based on the conventional rejection principle. Let c denotes the so-called likelihood multiplier 

such that the following inequality holds for all the parameters x: 

𝑐𝑃𝐿(𝐘obs|𝐱) ≤ 1 (2.10) 

In this context, a sample distributed as the posterior distribution 𝑃(𝐱|𝐘obs) ∝ 𝑃𝐿(𝐘obs|𝐱)𝑃(𝐱) in Equation (2.7) can be 

generated by the following rejection principle: 

1) Generate 𝑢 uniformly distributed on [0, 1] and 𝐱 distributed as the prior distribution 𝑃(𝐱); 

2) If 𝑢 < 𝑐𝑃𝐿(𝐘obs|𝐱), return 𝐱 as a posterior sample. Otherwise, go back to Step 1).  

Although the rejection sampling is theoretically viable, it will become inefficient with increasing the number of 

observations due to the large rejection rate. Hence, BUS transforms the Bayesian updating problem into an equivalent 

reliability problem so as to maintain the advantage of the rejection principle but have much higher efficiency. Consider 

a reliability problem with uncertain parameters (𝐱, 𝑢) according to the joint PDF 𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1), where 𝐼(∙) means 

the indicator function that is equal to one if its argument is true and zero otherwise. The limit state function and failure 

domain of this reliability problem can be defined as: 

𝐺 = 𝑢 − 𝑐𝑃𝐿(𝐘obs|𝐱) (2.11) 

𝐹 = {𝐺 < 0} (2.12) 

The PDF of the failure sample (𝐱′, 𝑢′) can be then obtained as: 

𝑝𝐱′,𝑢′(𝐱, 𝑢) = 𝑝𝐹
−1𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1)𝐼(𝑢 < 𝑐𝑃𝐿(𝐘obs|𝐱)) (2.13) 

where 

𝑝𝐹 = ∬ 𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1)𝐼(𝑢 < 𝑐𝑃𝐿(𝐘obs|𝐱))𝑑𝑢𝑑𝐱  
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denotes the failure probability of the reliability problem. In this formulation, the PDF of the failure sample 𝑝𝐱′,𝑢′(𝐱, 𝑢) 

and the failure probability 𝑝𝐹  both correspond the posterior distribution 𝑃(𝐱|𝐘obs) and normalized factor 𝑃(𝐘obs) in 

Equation (2.7), respectively. Consequently, the samples for deriving the posterior distribution can be generated as the 

conditional samples falling into the failure domain by existing reliability analysis methods, such as Subset simulation 

(Au and Beck, 2001). 

A key component in BUS is the likelihood multiplier, because the acceptance rate in BUS is directly proportional 

to it. Therefore, it should be selected as large as possible along with satisfying the inequality in Equation (2.10) for all 

the parameters 𝐱 and its optimal choice is defined as 𝑐 = [max𝑃𝐿(𝐘obs|𝐱)]−1. While the optimal multiplier is generally 

unknown a priori, it can be employed as 𝑐 = 1 for the proposed approximate likelihood function, since the approximate 

likelihood function is maximized when the distance metric is minimized to be zero. Therefore, BUS can be efficiently 

utilized as the Bayesian inference tool in the two-step ABC updating framework. 

2.3.2 Adaptive Kriging-based BUS algorithm 

BUS has shown great efficiency in estimating the posterior distribution by utilizing Subset simulation techniques 

(Betz et al., 2018). However, the failure probability of the equivalent reliability problem in BUS becomes significantly 

small and can reach 10−6 or even smaller with increasing the number of observations. In such very rare events, a large 

number of limit state function evaluations is required for estimating the failure probabilities even for Subset simulation. 

Furthermore, in the main step of the proposed updating framework, the limit state function involves the Bhattacharyya 

distance which is evaluated based on random samples of model predictions. Consequently, BUS with Subset simulation 

demands a huge number of model evaluations and it can be almost infeasible for complex simulators. 

BUS can further improve its efficiency by employing metamodeling techniques (Giovanis et al., 2017).  Among 

various types of the metamodels, the adaptive Kriging model has been paid significant attention as one of the most 

accurate and efficient methods in solving reliability problems. It can be interpreted as the classification method for the 

failure domain by the Kriging model, also known as the Gaussian process model. In this model, the estimated responses 

follow a Gaussian distribution with the Kriging means and Kriging variances. The basic rationales of the kriging model 

can be found in Echard et al. (2011).  

The key idea of the adaptive Kriging model is to adaptively identify samples close to the limit state function from 

the candidate MC samples based on the Kriging means and Kriging variances. The well-trained Kriging model by 

those samples enables to provide a precise classification for the failure domain and thus the failure probability can be 
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efficiently estimated by this model. Nevertheless, the failure probabilities of the equivalent reliability problem in BUS 

can be significantly small. In such rare events, the adaptive Kriging model becomes very inefficient since the candidate 

sample pool should be enlarged to ensure that enough samples are contained in the failure domain.  

Meanwhile, Wei et al. (2019) proposed a new algorithm called AK-MCMC. In this algorithm, the classification 

for a seres of intermediate failure domains 𝐹𝑖 = {𝐺 < 𝑏𝑖} is performed, where 𝑏𝑖 is the intermediate failure thresholds 

(𝑏1 > 𝑏2 > ⋯ > 𝑏𝑚 = 0). An illustration of a two-dimensional case following the AK-MCMC algorithm is provided 

in Figure 2.1. Figure 2.1(a) presents its initial step as the classification for the initial intermediate failure domain 𝐹1 =

{𝐺 < 𝑏1} upon MC samples given by the plots. The grey and black plots indicate the arbitrary selected initial training 

samples and the additional training samples adaptively selected based on the Kriging means and Kriging variances, 

respectively. In addition, the dashed and solid lines show the initial intermediate failure surface and the Kriging model 

trained by the above samples, respectively. On the other hand, Figure 2.1(b) illustrates the classification for the failure 

domain 𝐹𝑚 = {𝐺 < 𝑏𝑚(= 0)} upon MCMC samples given as the squared points. Note that, this figure corresponds to 

the case where 𝑚 = 2. As same as Figure 2.1(a), the black plots indicate the adaptively selected training samples and 

the dashed and solid lines show the failure surface and the Kriging model trained by all the training samples. As shown 

in these figures, this algorithm provides the classifications for a sequences of intermediate failure domains, which will 

finally converge to the classification for the true failure domain, and is much more efficient than the direct classification 

for the failure domain. As a consequence, this algorithm enables to efficiently employed for extremely rare events and 

thus it has a great potential to be combined with BUS. 

 

Figure 2.1 Illustration of the AK-MCMC algorithm: (a) Classification for the initial intermediate failure domain; (b) 

Classification for the failure domain. 
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In this study, a novel Bayesian inference algorithm is thus proposed by combining BUS with the adaptive Kriging 

model using the AK-MCMC algorithm. The flowchart of this algorithm is summarized in Figure 2.2 and the procedure 

is described in detail as below: 

1) Let 𝑖 = 1. Then, generate an 𝑁 MC samples population 𝐖1 of the parameters (𝐱, 𝑢) according to the joint PDF 

𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1); 

2) Randomly select 𝑁0 samples from 𝐖1 and evaluate the limit state function in Equation (2.11) on these samples. 

Attribute these 𝑁0 samples to the training samples population 𝐖𝑡; 

3) Train or update the Kriging model �̂�𝑖(𝐱, 𝑢) with 𝐖𝑡; 

4) Predict the limit state function value for each non-training sample contained in 𝐖𝑖 using the Kriging model �̂�𝑖(𝐱, 𝑢). 

Evaluate or update the intermediate failure threshold value 𝑏𝑖 based on the principle that ⌊𝑝0𝑁⌋ samples in 𝐖𝑖 is 

conditional on the intermediate failure domain 𝐹𝑖. Here, 𝑝0 is the pre-defined target probability and ⌊∙⌋ is the lower 

integer of the investigated values; 

5) Compute the following learning function as: 

𝑈(𝐱, 𝑢) = |𝜇𝐺(𝐱, 𝑢) − 𝑏𝑖| 𝜎𝐺(𝐱, 𝑢)⁄  (2.14) 

where 𝜇𝐺(𝐱, 𝑢) indicates the Kriging mean and 𝜎𝐺(𝐱, 𝑢) is the Kriging standard deviation. If the stopping criterion 

as min(𝑈(𝐱, 𝑢)) ≥ 2 is satisfied for all the 𝑁 samples, go to the next step. Otherwise, find the non-training sample 

in 𝐖𝑖 that corresponds to the minimum value of the learning function in Equation (2.14) and evaluate the true limit 

state function. Attribute the sample to 𝐖𝑡 and return to Step 3); 

6) If 𝑏𝑖 ≤ 0, let 𝑚 = 𝑖, save the Kriging model �̂�𝑚(𝐱, 𝑢). Identify samples in 𝐖𝑚 located into the failure domain 𝐹. 

Keep these samples as the seeds 𝐖𝑠 and go to the next step. Otherwise, generate an 𝑁 MCMC samples population 

𝐖𝑖+1 of the parameters (𝐱, 𝑢) conditional on the intermediate failure domain 𝐹𝑖 by calling the Kriging model �̂�𝑖(𝐱) 

by e.g., the modified Metropolis-Hastings algorithm (Au and Beck, 2001). Let 𝑖 = 𝑖 + 1 and �̂�𝑖(𝐱) = �̂�𝑖−1(𝐱), and 

return to Step 4). 

7) Drawn 𝑁𝑝 posterior samples in 𝐹 with the seeds 𝐖𝑠 by calling the Kriging model �̂�𝑚(𝐱, 𝑢) based on the modified 

Metropolis-Hastings algorithm. 

The learning function in Equation (2.14) has been proposed by Echard et al. (2011). Because the Kriging predictor 

follows a Gaussian distribution, Φ(𝑈(𝐱, 𝑢)) indicates the probability of making a wrong classification on the sign of 



54      Chapter 2 Research article 1: Bayesian model updating in time domain with metamodel-based reliability method 

 

�̂�(𝐱, 𝑢) − 𝑏𝑖, where Φ denotes the standard normal cumulative distribution function. Therefore, the stopping criterion 

(min(𝑈(𝐱)) ≥ 2) corresponds to the case that the probability of making a wrong classification on the sign of �̂�(𝐱) −

𝑏𝑖 is less than Φ(−2) = 0.023. 

 

Figure 2.2 Flowchart of the proposed Bayesian inference algorithm. 

The advantage of the proposed Bayesian inference algorithm is that it only requires a small number of evaluations 

to the computationally demanding limit state function for estimating the posterior distributions. Furthermore, no prior 

information about the failure probability 𝑝𝐹  is required for implementing the algorithm, because the population size 𝑁 
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depends on the target probability 𝑝0 which is defined by the analyst in advance. Nevertheless, in the main step of the 

ABC updating framework, the stochastic property of the Bhattacharyya distance might cause unsatisfactory inaccuracy 

in the classification of the failure surface by the Kriging model. Therefore, the use of common random numbers (CRN) 

(Kleinman et al., 1999) is also proposed in this step. CRN attempts to induce a positive correlation between stochastic 

outputs (i.e., Bhattacharyya distances) for different inputs and thereby reduces the variance in the difference between 

the stochastic outputs. Therefore, it works to avoid the inaccuracy in the establishment of the adaptive Kriging model 

of the Bhattacharyya distance-based limit state function.   

2.4    Numerical example 

2.4.1 Description of the Bayesian model updating problem 

The proposed two-step ABC updating framework using dynamic response data is demonstrated through a model 

updating problem of a seismic-isolated bridge pier model based on simulated seismic response data. The target bridge 

is a seismic-isolated bridge, with lead rubber bearings, that is designed based on Japan Road Association (JRA) (2016). 

Descriptions of the target bridge are listed in Table 2.1. The reinforced concrete (RC) pier with the rubber bearings is 

modeled as a 2-DOF lumped mass system shown in Figure 2.3(a), where the superstructure and RC pier are represented 

as lumped masses and the rubber bearings and RC pier are characterized as nonlinear horizontal springs. The boundary 

condition at the surface is assumed to be fixed. The rubber bearings are idealized by a bi-linear model with the ratio of 

the yield stiffness 𝐾𝐵1 to the post-yield stiffness 𝐾𝐵2 as 6.5: 1 based on JRA (2004). On the other hand, the hysteresis 

and skeleton curves of the RC pier are idealized by a bi-linear model with the elasto-plastic characteristic and a stiffness 

degradation model, so-called Takeda model (Takeda et al., 1970), respectively. Rayleigh damping is assumed in which 

damping ratios of the rubber bearings and RC pier are given as 0 % and 2 %, respectively.  

Table 2.1 Descriptions of the target bridge. 

Member Model parameter Nominal value 

Superstructure Mass 𝑀𝑠 (ton) 604.0 

Rubber bearings Yield strength (kN) 1118 

Yield stiffness 𝐾𝐵1 (kN/m) 40000 

Post-yield stiffness 𝐾𝐵2 (kN/m) 6000 

RC pier Mass 𝑀𝑃 (ton) 346.2 

Yield strength (kN) 3374 

Yield stiffness 𝐾𝑃 (kN/m) 110100 

Yield displacement (m) 0.0306 

Ultimate displacement (m) 0.251 
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Figure 2.3 (a) 2-DOF lumped mass system; (b) Time-history of the acceleration response at the superstructure. 

The objective of the model updating problem is to capture the uncertainties in the post-yield stiffness of the rubber 

bearings 𝐾𝐵2, which characterize the nonlinear behavior of the target bridge under strong earthquakes, as well as in the 

other stiffness parameters 𝐾𝑃 and 𝐾𝐵1 using simulated seismic response data. The remaining parameters are assumed 

to be fixed constants with the nominal values, as shown in Table 2.1. The time-history of the acceleration response at 

the superstructure subjected to the level-2 type-II-II-2 earthquake, determined in JRA (2016), is employed as the output 

features whose uncertainties are driven by the three uncertain parameters 𝐾𝑃, 𝐾𝐵1, and 𝐾𝐵2. Dynamic response analysis 

of the 2-DOF system is carried out using Newmark 𝛽 method (𝛾 = 1 2⁄  and 𝛽 = 1 4⁄ ) with a time step ∆𝑡 = 0.001 s. 

Figure 2.3(b) depicts a time-history of the acceleration response at the superstructure for the case where all parameters 

are considered as the nominal values in Table 2.1. The duration time of the time-history is 40 s with the time step ∆𝑡 =

0.001 s; hence, the output features are in the 40,000 dimensional-space. Both aleatory and epistemic uncertainties are 

involved in this system and included by modeling 𝐾𝑃, 𝐾𝐵1, and 𝐾𝐵2 as independent Gaussian random variables, where 

the means and standard deviations are not fixed but unknown lying within given intervals. According to the parameter 

categories in Section 2.1,  𝐾𝑃, 𝐾𝐵1, and 𝐾𝐵2 are Category IV parameters while the remaining parameters are Category 

I parameters. The given intervals of the means 𝝁 and standard deviations 𝝈 associated to 𝐾𝑃, 𝐾𝐵1, and 𝐾𝐵2 are detailed 

in Table 2.2. 

Table 2.2 Uncertain characteristics and target epistemic inputs of the 2-DOF system. 

Parameter Uncertainty characteristic Target value of epistemic input 

𝐾𝑃 Gaussian, 𝜇1 ∈ [0.5, 1.5], 𝜎1 ∈ [0, 0.15] 𝜇1 = 1.0, 𝜎1 = 0.07 

𝐾𝐵1 Gaussian, 𝜇2 ∈ [0.5, 1.5], 𝜎2 ∈ [0, 0.15] 𝜇2 = 1.0, 𝜎2 = 0.07 

𝐾𝐵2 Gaussian, 𝜇3 ∈ [0.5, 1.5], 𝜎3 ∈ [0, 0.15] 𝜇3 = 1.0, 𝜎3 = 0.07 



2.4 Numerical example                                                                                              57 

 

The target of the updating procedure, 𝐘obs, is multiple sets of the output features obtained by assigning the target 

values of the epistemic inputs 𝜇1, 𝜇2, 𝜇3, 𝜎1, 𝜎2, and 𝜎3 shown in Table 2.2. Those target values are set based on Adachi 

(2002). The sample size of the observed features is set to be 𝑁𝑜𝑏𝑠 = 100, generated by evaluating the model 100 times 

with the model parameters sampled from the assigned Gaussian distribution with the target epistemic inputs. 

In addition to the target values in Table 2.2, a set of initial values of the epistemic inputs is arbitrary chosen within 

the pre-defined intervals but different from the target values. The sample size of the initial simulated features is set to 

be 𝑁𝑜𝑏𝑠 = 500, generated by evaluating the model 500 times with the model parameters sampled from their assigned 

Gaussian distribution with the initial epistemic inputs. Figure 2.4 illustrates the relative positions of the target observed 

features and initial simulated features. The RMS values of both the observed and simulated features for each interval 

divided based on the given window length 𝐿 = 0.025 × 40000 = 1000 are computed and five arbitrary selected RMS 

values RMSACC
𝑗

 are illustrated in this figure. The diagonal subfigures compare histograms of the observed and initial 

simulated features. Since the initial values of the epistemic inputs are assigned differently from there target values, the 

scatters and histograms of the initial simulated features are clearly apart from those of the target observed features. It 

is noted that, Bayesian model updating is not really started from these initial values, but from the prior distribution of 

the epistemic inputs, shown in the second column of Table 2.2. 

 

Figure 2.4 Target observed scatters (in blue) and initial simulated scatters (in green); unit: m s2⁄ . 
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2.4.2 Updating results with the Euclidian distance 

In the first step where the Euclidian distance is taken as the metric, the geometric distance between the centre of 

mass of the two sample sets is measured, whereas the dispersion and distribution information of the sample sets cannot 

be considered. Hence, only the mean parameters are calibrated, whose prior distribution is set to be uniform within the 

intervals shown in Table 2.1, by representing the model parameters by the mean parameters through this step. 

The parameters of the proposed algorithm are set as 𝑁 = 3000, 𝑁0 = 12, 𝑝0 = 0.01, and 𝑁𝑝 = 500. The width 

factor in the approximate likelihood is set as 𝜀 = 0.1. Totally four intermediate failure surfaces are produced to finally 

provide the classification for the true failure domain. It implies that the failure probability of the equivalent reliability 

problem herein reaches around 10−8. Even for such a challenging problem, the number of the total training samples is 

229, selected by evaluating the limit state function based on the Euclidian distance metric 229 times. The computation 

of the Euclidian distance needs a single model evaluation with the parameter means. Thus, only 229 model evaluations 

are required throughout this step.  

As illustrated in Figure 2.5, the posterior distribution of the parameter means well converges to their target values 

shown in the red lines. The horizontal axes of the figure are set to correspond to their prior intervals listed in Table 2.2. 

Table 2.3 presents the updated values of the parameter means obtained by estimating means of the posterior distribution. 

Percentage errors compared with the target values are also provided in the parentheses after the updated values.  

 

Figure 2.5 Posterior distribution of the parameter means after updating with the Euclidian distance. 
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Table 2.3 Updated epistemic inputs with both the Euclidian and Bhattacharyya distances. 

Input Target value Updated value  

  With Euclidian distance With Bhattacharyya distance 

𝜇1 1.0 0.9682 (3.18 %) 1.0125 (1.25 %) 

𝜇2 1.0 0.9772 (2.28 %) 1.0159 (1.59 %) 

𝜇3 1.0 1.0276 (2.76 %) 1.0024 (0.24 %) 

𝜎1 0.07 – 0.0604 (13.7 %) 

𝜎2 0.07 – 0.0572 (18.3 %) 

𝜎3 0.07 – 0.0813 (16.1 %) 

Moreover, Figure 2.6 shows the relative positions of the target observed features and updated simulated features. 

The updated simulated features are obtained by evaluating the model 500 times with the model parameters sampled 

from their assigned Gaussian distributions with the updated means shown in Table 2.3 and variances arbitrary selected 

from the prior intervals. It can be seen that the simulated features are progressively shifted toward the observed features 

as a result of minimizing the Euclidian distance metric, corresponding to the maximization of the likelihood. However, 

there are still some discrepancies between the observed and simulated features. These discrepancies are addressed in 

the next step using the Bhattacharyya distance as the metric. 

 

Figure 2.6 Target observed scatters (in blue) and simulated scatters after updating with the Euclidian distance (in 

green); unit: m s2⁄ . 
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2.4.3 Updating results with the Bhattacharyya distance 

This section presents the second step where the Bhattacharyya distance is employed as the metric. The posterior 

distribution obtained in the first step is taken as the prior distribution of the parameter means in this step. At the same 

time, the prior distribution of the parameter variances is set to be uniform within their intervals listed in Table 2.1. The 

model parameters are represented as the assigned Gaussian distribution having the means and variances sampled from 

the prior distribution, so that both the parameter means and variances are updated simultaneously. In each computation 

of the Bhattacharyya distance, 100 random samples of the model parameters are generated and similarly 100 simulated 

features are obtained. 

The parameters of the proposed algorithm are set to be same as those in the preliminary step. The width factor in 

the approximate likelihood is set to be 𝜀 = 0.01. After four intermediate failure surfaces are produced, the final Kriging 

model providing the classification for the true failure domain is obtained. It indicates that the failure probability of the 

equivalent reliability problem herein also reaches around 10−8. The number of the training samples is 521, selected by 

evaluating the limit state function based on the Bhattacharyya distance metric 521 times. Differently from the first step, 

the computation of the Bhattacharyya distance requires 100 model evaluations; hence, totally 52100 model evaluations 

are executed throughout this step.  

Figure 2.7 presents the finally updated posterior distribution of all the epistemic inputs. The posterior distributions 

of the means are further updated to be more centralized to their target values compared with those shown in Figure 2.5. 

This is caused by introducing the posterior samples in the first step as the prior samples in this step. More attention is 

paid to the posterior distributions of the standard deviations, which almost well converge to their target values presented 

in the red lines. The estimated means of the posterior distributions are summarized in the last column of Table 2.3 as 

the updated values of the epistemic inputs. The parameter means indicate quite high updating precisions with predicted 

errors less than 2%, whereas the parameter standard deviations denote relatively large predicted errors more than 13%. 

This fulfils the general experience that dispersion information of the parameters is much more difficult to be precisely 

updated than mean information. Nevertheless, the finally updated simulated features obtained by evaluating the model 

500 times with the model parameters sampled from their assigned Gaussian distributions with these updated epistemic 

inputs well coincide with the target observed features, as shown in Figure 2.8. This demonstrates that the Bhattacharyya 

distance is a powerful UQ metric with the capability to recreate wholly the distribution of the target observations that 

are described as the dynamic response data. 
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Figure 2.7 Posterior distribution of the epitemic inputs after updating with the Bhattacharyya distance. 

 

Figure 2.8 Target observed scatters (in blue) and simulated scatters after updating with the Bhattacharyya distance (in 

green); unit: m s2⁄ . 

2.4.4 Computational efficiency 

Finally, computational efficiency of the proposed procedure is demonstrated. For comparison, the two-step ABC 

updating procedure is also executed using the TMCMC algorithm. The number of samples generated from the posterior 
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distribution are set to be 𝑁𝑝 = 500 as same as that in the proposed procedure. The width factors in the approximate 

likelihoods are set to be also same as those in the proposed procedure in order to keep the same computational demand 

for convergence as in the proposed procedure. All the computations are processed using a local parallelization on a 12 

cores machine installing an Intel core 2.10 GHz processor. 

Table 2.4 summarizes the total computational time (in minutes) to reach convergence for both the first and second 

steps, where the Euclidian and Bhattacharyya distances are used as metrics, respectively. In this context, computational 

efficiency is indicated as the ratio of the computational time by TMCMC and the proposed algorithm combining BUS 

and the adaptive Kriging model, and is shown in the parentheses after the computational time of the proposed algorithm. 

It can be seen that the second step with the Bhattacharyya distance needs much more computational demands than the 

first step with the Euclidian distance. The computational time in the second step is more than 300 times of that in the 

first step for TMCMC and is about 50 times of that in the first step for the proposed algorithm. It is obviously due to 

the necessity of MC sampling for each computation of the Bhattacharyya distance. Nevertheless, the difference in the 

computational time of those two steps is successfully decreased in the proposed procedure by confining the evaluation 

of the likelihood function only for the Kriging approximation. 

Table 2.4 Comparison of computational efficiency. 

Method Computational time (minutes)  

 With Euclidian distance With Bhattacharyya distance 

TMCMC 39.1 12437.5 

BUS with the adaptive Kriging 7.9 (5.0) 394.4 (31.5) 

In addition, it is noted that the proposed procedure reaches convergence with one-fifth of the computational time 

in the first step and with less than one-thirty of that in the second step, compared with TMCMC. This is mainly because 

the number of the model evaluations is significantly reduced by employing the adaptive Kriging model in the proposed 

procedure. It should be noted that the adaptive Kriging model can be also implemented in TMCMC. However, several 

modifications are necessary to employ the adaptive Kriging model in TMCMC as the approximation of the likelihood 

function (Angelikopoulos et al., 2015; Jensen et al., 2017), because it has been originally developed as the classification 

method in reliability problems. Meanwhile, the proposed algorithm transforms the Bayesian updating problem into the 

equivalent reliability problem; thus, the adaptive Kriging model is naturally implemented as the classification method 

for the associated limit state function. As a consequence, the proposed Bayesian inference algorithm combining BUS 

and the adaptive Kriging model is capable to produce satisfactory results with the much-reduced computational demand 

compared with TMCMC. 
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2.5    Conclusions 

In this study, a novel Bayesian inference algorithm combining BUS and the adaptive Kriging model is developed 

so as to effectively carry out the two-step ABC updating framework using dynamic response data. The distance-based 

approximate likelihood function in this framework is capable of maximizing the acceptance rate in BUS, because the 

optimal likelihood multiplier is straightforwardly applicable. Furthermore, to cope with the tremendous computational 

demand in the Bhattacharyya distance evaluation, the adaptive Kriging model is implemented based on the AK-MCMC 

algorithm to provide the classification for the limit state function associated with the Bhattacharyya distance. The AK-

MCMC algorithm provides the classifications for a series of intermediate failure domains, which will finally converge 

to the classification for the true failure domain, thus it is much efficient compared with the direct classification for the 

failure domain. The proposed procedure is demonstrated upon the seismic-isolated bridge pier model updating example 

using simulated seismic response data. This example demonstrates that the Bhattacharyya distance is a powerful UQ 

metric with the capability to recreate wholly the distribution of the target observations and that the proposed inference 

algorithm is enable to provide satisfactory results with much-reduced computational demand compared with TMCMC. 
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Chapter 3                                                                                      

Research article 2: Nonparametric Bayesian stochastic model 

updating with hybrid uncertainties 

This is the second phase in the main part of this thesis, that aims at developing a distribution-free stochastic model 

updating framework for calibrating the category IV parameters distribution families of which are unknown a priori. In 

the current literature, stochastic model updating frameworks to calibrate the category IV parameters are generally based 

on the availability of prior information on the distribution families of the inferred parameters. This is also the case for 

the Bhattacharyya distance-based ABC updating framework, where, during the updating procedure, the Bhattacharyya 

distance is evaluated for each pair of the inferred parameters, i.e., the hyper-parameters of pre-determined distributions 

of the category IV parameters, for assigning the likelihood to it. In engineering applications, however, prior information 

on the parameters is often very limited due to scarce or/and incomplete available data for the parameters, and thus the 

distribution families of the parameters cannot be pre-determined with confidence. For instance, the latest (2019) edition 

of the NASA UQ challenge problem, which will be addressed in the next section, requires a model calibration task in 

an extremely challenging situation that no distribution information of the aleatory parameters is available other than a 

common bounded support domain. In such situation, not only the distribution hyper-parameters but also the distribution 

families themselves should be considered as epistemic uncertainty to be calibrated through the updating procedure, so 

that the calibrated category IV parameters follow arbitrary shaped distributions from which the model outputs identical 

to the observations can be obtained. 

To achieve this challenging expectation in stochastic model updating, the present article proposes the use of the 

staircase density functions in conjunction with the Bhattacharyya distance-based ABC model updating. The staircase 

density function is a recently proposed novel class of distribution families, defined as a piecewise constant function on 

the bounded support set, based on the quadruple of the first four moments. It can flexibly approximate a wide range of 

distributions, including very skewed or/and multimodal distributions, arbitrary close by employing the corresponding 

quadruples of the first four moments. The category IV parameters can be straightforwardly described using the staircase 

density functions by defining the first four moments as interval valued hyper-parameters. Herein, the support set of the 
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first four moments can be derived based on moment constraints conditional on the given support set of the parameters. 

In this manner, by employing the staircase density functions, no detailed prior information on the parameters, such as 

their distribution families and the support set of their hyper-parameters, is necessary to perform model updating other 

than the support set of the parameters. 

Consequently, a novel ABC updating framework is developed, in which the category IV parameters are described 

as the staircase density functions and their hyper-parameters are calibrated based on the Bhattacharyya distance-based 

approximate likelihood function. All the possible density shapes on the given support set are considered in its first step, 

while most of them are disregarded through the updating procedure such that only the density shapes which correspond 

to the hyper-parameters within the posterior support set are remained in the finally calibrated p-boxes. If the posterior 

distribution of the hyper-parameters is sharply converged to their true values, then the true distributions can be uniquely 

inferred. The proposed updating procedure is first demonstrated upon a well-known simple engineering example. The 

target distribution of the model parameters in this example shows bimodality and does not belong to the standard class 

of distribution families. In this example, a preliminary step with the Euclidian distance-based approximate likelihood 

function is also employed to serve as a preconditioner to avoid non-unique solutions due to the bimodality of the target 

distribution. This example demonstrates that the procedure has the capability to estimate arbitrary shaped distributions 

of the parameters identical to their target distributions.  

Furthermore, the model updating subproblem of the NASA UQ challenge problem 2014 is addressed as a complex 

real-world application. Whereas the distribution families of all the three aleatory parameters are pre-determined in its 

original problem, an altered problem setting ignoring information on the distribution families is defined in this article, 

making the problem more challenging. This application demonstrates that the proposed procedure is capable to achieve 

a satisfactory narrow p-box of the model predictions containing the CDF of the observed data as a result of the reduction 

of epistemic uncertainty in both the distribution hyper-parameters and distribution families. 
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the Euclidian distance is performed as preconditioner to avoid non-unique solutions. The performance of the proposed 
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benchmark problem for uncertainty treatment. These examples demonstrate the feasibility of the combined use of the 

staircase random variables and Bhattacharyya distance in stochastic model updating and uncertainty characterization. 
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3.1    Introduction 

It has been widely acknowledged that uncertainties should be appropriately considered in the campaign of model 

updating. The uncertainties can be typically classified into the two categories, i.e., aleatory and epistemic uncertainties 

(Oberkampf et al., 2004; Roy and Oberkampf, 2011). Aleatory uncertainty is the inherent variation or randomness, and 

thus cannot be reduced, but it enables to be described as precise probability models. Conversely, epistemic uncertainty 

is due to lack of knowledge, and is not completely avoidable, although it can be reduced through model updating using 

available data. 
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The complexity of model updating depends on the presence of different levels of uncertainties. The deterministic 

model updating generally considers the case with the presence of only epistemic uncertainty, in which parameters are 

unknown-but-fixed constants and are represented as non-probabilistic models, such as interval/convex models (Moore 

et al., 2009) and fuzzy set theory (Faes and Moens, 2020). The deterministic model updating is aimed at a single set of 

parameter values and at generating a single model prediction with maximum fidelity with regard to the observation.  

On the other hand, the presence of both aleatory and epistemic uncertainties simultaneously (i.e. hybrid or mixed 

uncertainties) is considered by the stochastic model updating. In this situation, parameters are represented as imprecise 

probability models, where parameters are indeed aleatory uncertainty but their distribution parameters, e.g., means and 

variances, are epistemic uncertainty. Commonly used imprecise probability models include evidence theory (Sentz and 

Ferson, 2002), probability-box (also known as p-box) (Ferson et al., 2003), and fuzzy probability model (Beer et al., 

2013). In particular, those parameterized ones such as parametric p-box have attracted the most attentions due to their 

simplicity and ease of applications. The stochastic model updating aims at not the single set of parameter values but a 

reduced space of epistemic uncertainty and at generating stochastic model predictions capable to represent uncertainty 

characteristics of multiple sets of observations. 

The uncertainties during the stochastic model updating procedure, i.e., the reasons for the stochastic discrepancy 

between the model predictions and observations, can be summarized as follows: 

 Parameter uncertainty. The input parameters of the numerical model, such as material properties and boundary 

conditions, are imprecisely determined; 

 Modelling uncertainty. The numerical model always contains inevitable simplifications and approximations of 

the physical system; 

 Measurement uncertainty. The measurements are driven by hard-to-control randomnesses, e.g., environmental 

noises and measurement system errors. 

A broad range of stochastic model updating methods has been investigated, such as perturbation method (Mares 

et al., 2006; Khodaparast et al., 2008), Monte Carlo method (Sairajan and Aglietti, 2012; Bi et al., 2017), and Bayesian 

inference (Goller et al., 2011; Patelli et al., 2017). No matter which method is utilized in the stochastic model updating, 

it is significant to define a comprehensive uncertainty quantification (UQ) metric capable of quantifying the statistical 

discrepancy between the model predictions and observations due to the above uncertainties. The Euclidian distance, 

Mahalanobis distance, and Bhattacharyya distance are different levels of distance metrics. These distances have been 

investigated as UQ metrics and the Bhattacharyya distance has been demonstrated to be able to capture a higher level 
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of statistical information from the investigated sample sets (Bi et al., 2017). Moreover, Bi et al. (2019) has developed 

a Bayesian model updating framework, in which the Bhattacharyya distance is utilized as the UQ metric to define an 

approximate likelihood function by the approximate Bayesian computation (ABC) framework (Beaumont et al., 2002; 

Turner and Van Zandt, 2012). This framework has been demonstrated to be a comprehensive updating procedure with 

the capability to recreate wholly the distribution of target observations. 

However, stochastic model updating methods in the literature including Bi et al. (2019) are in general based on 

the parameterized imprecise probability models; hence, it relies upon the pre-hypothesis of the distribution format for 

propagating epistemic uncertainty into parameters. For instance, in the NASA UQ challenge problem 2014 (Crespo et 

al., 2014), which has gained attentions as the real-size practical uncertainty quantification problem, prior information 

about the distribution formats is fully provided to perform model updating. On the other hand, it is often the case that 

the distribution formats are unknown a priori due to scarce and incomplete available data for the parameters. Hence, it 

is desired to develop a nonparametric model updating framework, where epistemic uncertainty is propagated into the 

parameters without prior knowledge about the distribution formats. 

Crespo et al. (2018) recently proposed a family of random variables having a bounded support set and prescribed 

values for the first four moments. The variables are called staircase random variable since the density function is given 

as piecewise constant functions on pre-defined subintervals partitioning the support sets. Moment constraints for the 

existence of such variables are obtained as a series of inequalities conditioned upon the support sets. As a consequence, 

the staircase random variable can represent a broad range of density shapes, including very skewed and/or multimodal 

distributions. The staircase random variable belongs to the precise probability models, however, its combination with 

the non-probabilistic models has the potential to provide a non-parameterized imprecise probability model, where the 

parameters are indeed aleatory uncertainty but the first four moments are epistemic uncertainty. 

The objective of this work is consequently to propose a novel methodology that fulfils the challenging expectation 

in the stochastic model updating to calibrate the probabilistic distribution of parameters without prior knowledge about 

the distribution format. To achieve this objective, an ABC model updating framework is developed by employing the 

Bhattacharyya distance and staircase random variables. At the same time, a Bayesian updating based on the Euclidian 

distance is performed as preconditioner to avoid non-unique solutions. This updating framework is independent of the 

distribution format of investigated parameters; hence, it demonstrates clear advantages in calibrating parameters whose 

probabilistic distribution cannot be defined analytically. The proposed framework is demonstrated using a simple shear 

building model for illustration. Moreover, it is applied to the NASA UQ challenge problem 2014. We focus on solving 
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Sub-problem A (uncertainty characterization), where the distribution formats of the investigated parameters are given, 

however we redefine the problem ignoring them to demonstrate the performance of the proposed framework.  

The rest part of this paper is organized as follows. In Section 3.2, we describe the theoretical and methodological 

bases of the Bhattacharyya distance metric and staircase random variables. Section 3.3 outlines the novel development 

of the Bayesian updating with the staircase random variables, and the proposed two-step ABC updating procedure. The 

principle and illustrative application are presented in Section 3.4, using a simple shear building model, and in Section 

3.5, concentrating on the demonstration of the performance of the framework upon the highly challenging NASA UQ 

problem. Finally, some conclusions are given in Section 3.6. 

3.2    Theories and methodologies 

3.2.1 Bhattacharyya distance metric 

In the context of stochastic model updating, the system under investigation is characterized as: 

𝐲 = ℎ(𝐱) (3.1) 

where 𝐱 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] denotes a vector of 𝑛 input parameters; 𝐲 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑚] is a vector of 𝑚 output features; 

ℎ(∙) denotes the simulator. The simulator herein is usually presented as either a sophisticated numerical analysis code, 

e.g., finite element model, or a metamodel. 

The uncertainties of the system are first characterized by the input parameters described as precise probability 

models, non-probabilistic models, and imprecise probability models depending on the presence of different levels of 

uncertainties (refer to Section 3.1). The uncertainties are then propagated through the simulator into the output features 

presenting various forms of uncertainty as well, such as probabilistic distributions, intervals, and fuzzy sets. In general, 

regardless of the form of uncertainty, randomly sampled values of the parameters and features are used in the stochastic 

model updating. Suppose the required sample size be 𝑁sim, the simulator ℎ is executed 𝑁sim times for generating the 

sample set of the simulated features 𝐘sim ∈ ℝ𝑁sim×𝑚: 

𝐘sim = [𝐲1, 𝐲2, ⋯ , 𝐲𝑚], with 𝐲𝑖 = [𝑦1𝑖 , 𝑦2𝑖 , ⋯ , 𝑦𝑁sim𝑖]
𝑻
, ∀𝑖 = 1, 2,⋯ ,𝑚 (3.2) 

In addition to the simulated features, observed features that are collected from the campaign of experiments or 

measurements are also required as the target of model updating. Suppose the number of observations be 𝑁obs, then the 
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sample set of the observed features has a similar structure as Equation (3.2), where only the number of rows is changed: 

𝐘obs ∈ ℝ𝑁obs×𝑚. The objective of the stochastic model updating can be then expressed as to minimize the discrepancy 

between 𝐘obs and 𝐘sim by updating uncertainty characteristics of the input parameters. 

After the simulated and observed features are available, the UQ metric is defined for quantifying the discrepancy 

between 𝐘obs and 𝐘sim. The classical Euclidian distance metric is expressed as: 

𝑑𝐸(𝐘obs, 𝐘sim) = √(𝐘obs − 𝐘sim)(𝐘obs − 𝐘sim)𝑇 (3.3) 

where 𝐘(∙) refers to a row vector of means of the features. The Euclidian distance is a point-to-point distance between 

the centre of the mass of two sample sets and is generally used in the deterministic model updating. Comparatively, in 

the stochastic model updating, it is more desirable to employ a more comprehensive metric that is capable to consider 

not only the means but also a higher level of statistical information, e.g., variances, covariances, and even distribution 

shapes. 

The Bhattacharyya distance is herein proposed as a stochastic metric measuring the degree of the overlap between 

distributions of two sample sets. Its original definition is given as: 

𝑑𝐵(𝐘obs, 𝐘sim) = − log [∫√𝑝obs(𝑦)𝑝sim(𝑦)
𝕪

d𝑦] (3.4) 

where 𝑝(∙)(𝑦) is the probability density function (PDF) of each feature sample; 𝕪 is the 𝑚-dimensional feature space; 

∫ (∙)
𝕪

d𝑦 indicates the integration performed over the whole feature space. Differently from the Euclidian distance, the 

Bhattacharyya distance takes not only the means but also the variances, covariances, and even the distribution shapes, 

of the sample sets into account. However, the direct evaluation of Equation (3.4) is not feasible since precise estimation 

of the PDF is generally unavailable due to the very limited number of observations. Bi et al. (2019) thus proposed the 

so-called binning algorithm for evaluating the probability mass function (PMF) of a discrete distribution, such that the 

discrete Bhattacharyya distance is used instead. The PMF is a function to map the possible values of a discrete random 

variable to the probabilities of their occurrences (Grimmett and Stirzaker, 2001). The discrete Bhattacharyya distance 

is evaluated as (Patra et al., 2015): 

𝑑𝐵(𝐘obs, 𝐘sim) = − log { ∑ ⋯ ∑ √𝑝obs(𝑏𝑖1,𝑖2,⋯,𝑖𝑚)𝑝sim(𝑏𝑖1,𝑖2,⋯,𝑖𝑚)

𝑛𝑏𝑖𝑛

𝑖1=1

𝑛𝑏𝑖𝑛

𝑖𝑚=1

} (3.5) 
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where 𝑝(∙)(𝑏𝑖1,𝑖2,⋯,𝑖𝑚
) is the PMF value of the bin 𝑏𝑖1,𝑖2,⋯,𝑖𝑚

. The bin has 𝑚 subscripts because it is generated under a 

𝑚-dimensional joint PMF space.  

The binning algorithm for the PMF calculation consists of the following steps: 

1) Define a common interval 𝐼𝑖  of both 𝐘obs and 𝐘sim according to the 𝑖th feature 𝐲𝑖, ∀𝑖 = 1, 2,⋯ ,𝑚, by finding the 

maximum and minimum values of 𝐲𝑖 in both 𝐘obs and 𝐘sim; 

2) Within the defined interval, arbitrary decide the number of bins 𝑛bin; 

3) Count the joint probability mass for each bin 𝑝(∙)(𝑏𝑖1,𝑖2,⋯,𝑖𝑚). It should be noted that, the total number of bins in the 

𝑚-dimensional feature space is 𝑁bin = 𝑛bin
𝑚 . 

The principle of 𝑛bin in Step 2) is that a larger 𝑛bin results in employing more detailed information of the distribution 

characteristics and to a larger value of the Bhattacharyya distance, while it also leads to a larger computational cost. In 

Bi et al. (2019), 𝑛bin is recommended to be 𝑛bin = ⌈
max(𝑁obs,𝑁sim)

10
⌉, where ⌈∙⌉ is the upper integer.  

3.2.2 Staircase random variables 

In this study, parameters with hybrid uncertainties are characterized as staircase random variables. The staircase 

random variable 𝑥 is constrained to possess a bounded support set [𝑥, 𝑥] and a pair of variables 𝛉𝑥 = [𝜇,𝑚2, 𝑚3, 𝑚4] 

consisting of the mean 𝜇, variance 𝑚2, third-order central moment 𝑚3, and fourth-order central moment 𝑚4. Moment 

constraints of the pair of variables 𝛉𝑥 to realize the staircase random variable 𝑥 conditional on its support set [𝑥, 𝑥] are 

given as a series of inequalities: 𝛩 = {𝛉𝑥: 𝑔(𝛉𝑥) ≤ 0} (Sharma et al., 2009; Kumar, 2002), and are given in Table 3.1.  

Table 3.1 Moment constraints of the pair of variables 𝛉𝑥. 

 Moment constraints 

Mean 𝜇 𝑔1 = 𝑥 − 𝜇 𝑔2 = 𝜇 − 𝑥 

Variance  𝑚2 𝑔3 = −𝑚2 𝑔4 = 𝑚2 − 𝑣a 

Third-order 

central 

moment  𝑚3 

𝑔5 = 𝑚2
2 − 𝑚2(𝜇 − 𝑥)

2
− 𝑚3(𝜇 − 𝑥) 𝑔6 = 𝑚3(𝑥 − 𝜇) − 𝑚2(𝑥 − 𝜇)2 + 𝑚2

2 

𝑔7 = 4𝑚2
2 + 𝑚3

2 − 𝑚2
2(𝑥 − 𝑥)

2
 𝑔8 = 6√3𝑚3 − (𝑥 − 𝑥)

3
 

𝑔9 = −6√3𝑚3 − (𝑥 − 𝑥)
3
  

Fourth-order 

central 

moment  𝑚4 

𝑔10 = −𝑚4 𝑔11 = 12𝑚4 − (𝑥 − 𝑥)
4
 

𝑔12 = (𝑚4 − 𝑣𝑚2 − 𝑢a𝑚3)(𝑣 − 𝑚2) + (𝑚3 − 𝑢𝑚2)
2 𝑔13 = 𝑚3

2 + 𝑚2
3 − 𝑚4𝑚2 

  a 𝑢 = 𝑥 + 𝑥 − 2𝜇 and 𝑣 = (𝜇 − 𝑥)(𝑥 − 𝜇).  

Considering that the chosen support set [𝑥, 𝑥] is partitioned into 𝑛𝑏 subintervals of equal length 𝜅 = (𝑥 − 𝑥) 𝑛𝑏⁄ , 
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the staircase density function 𝑓𝑥(𝑥) is expressed as: 

𝑓𝑥(𝑥)  = {
𝑙𝑖    ∀𝑥 ∈ (𝑥𝑖 , 𝑥𝑖+1], for 1 ≤ 𝑖 ≤ 𝑛𝑏

0   otherwise                                     
 (3.6) 

where 𝑙𝑖 indicates the staircase density height of the 𝑖th bin; 𝑥𝑖 = 𝑥 + (𝑖 − 1)𝜅 is the partitioning point of the 𝑖th bin. 

Note that, 𝑙𝑖 satisfies that  𝑙𝑖 ≥ 0 for all bins and 𝜅 ∑ 𝑙𝑖
𝑛𝑏
𝑖=1 = 1. The staircase density heights 𝒍 conditional on 𝛩 can be 

determined by solving a following convex optimization problem: 

�̂� = argmin
𝑙≥0

{𝐽(𝒍): ∑∫ 𝑥𝑙𝑖𝑑𝑥
𝑥𝑖+1

𝑥𝑖

= 𝜇

𝑛𝑏

𝑖=1

,∑∫ (𝑥 − 𝜇)𝑟𝑙𝑖𝑑𝑥
𝑥𝑖+1

𝑥𝑖

= 𝑚𝑟

𝑛𝑏

𝑖=1

, 𝑟 = 2, 3, 4} (3.7) 

where 𝐽 denotes an arbitrary cost function. Equation (3.7) can be written as: 

�̂� = argmin
𝒍≥0

{𝐽(𝒍): 𝐀(𝛉𝑥 , 𝑛𝑏)𝒍 = 𝒃(𝛉𝑥), 𝛉𝑥 ∈ 𝛩} (3.8) 

where 

𝐀 =

[
 
 
 
 

𝜅𝐞
𝜅𝐜

𝜅𝐜2 + 𝜅3 12⁄

𝜅𝐜3 + 𝜅3𝐜 4⁄

𝜅𝐜4 + 𝜅3𝐜2 2⁄ + 𝜅5 80⁄ ]
 
 
 
 

, and 𝒃 =

[
 
 
 
 

1
𝜇

𝜇2 + 𝑚2

𝑚3 + 3𝜇𝑚2 + 𝜇3

𝑚4 + 4𝑚3𝜇 + 6𝑚2𝜇
2 + 𝜇4]

 
 
 
 

  

where 𝐜 denotes a column vector of the centre of the bin 𝑐𝑖 = (𝑥𝑖 + 𝑥𝑖+1) 2⁄ ; 𝐜𝑛 is the component wise 𝑛th power of 

𝐜; 𝐞 is a unit vector. 

Regarding with the cost function 𝐽, several optimality criteria, including the maximal entropy, minimal squared 

amplitude, and maximal log-likelihood can be employed. The cost function used in this study is expressed as: 

𝐽(𝒍) = 𝒍𝑇𝐈𝒍 (3.9) 

where 𝐈 denotes the identity matrix. Employing this cost function yields a staircase random variable that minimizes the 

squared sum of the likelihood at the bins. Note that, while we do not investigate other cost functions, the choice of the 

cost function may affect the quality of model updating and thus it should be further investigated in the future work. 

The convexity of the optimization problem in Equation (3.7) can very efficiently calculate the staircase densities 

and to solve for practically smooth probability densities. These features make the staircase random variables well suited 

for the stochastic model updating in which its repeated calculation is required. Moreover, the staircase random variables 

are independent of the distribution formats and can describe a broad range of density shapes, including very skewed 
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or/and multimodal distributions. This fulfills the expectation as a non-parameterized model for the proposed updating 

framework, where the epistemic uncertainty space is calibrated without prior knowledge about the distribution formats 

of the parameters.  

3.3    Nonparametric approximate Bayesian computation 

3.3.1 Bayesian model updating with staircase random variables 

In this study, the well-known Bayesian inference is employed as the stochastic model updating methodology. The 

Bayesian inference is based on the Bayes’ theorem (Beck and Katafygiotis, 1998): 

𝑃(𝛉|𝐘obs) =
𝑃𝐿(𝐘obs|𝛉)𝑃(𝛉)

𝑃(𝐘obs)
 (3.10) 

where 𝑃(𝛉) indicates the prior distribution of the adjustable parameters 𝛉, that is determined by prior information of 

the system and the expert knowledge; 𝑃(𝛉|𝐘obs) is the posterior distribution of 𝛉, representing the updated knowledge 

of 𝛉 based on the observations 𝐘obs; 𝑃(𝐘obs) means the normalized factor (also known as the evidence) ensuring that 

the posterior distribution integrates to one; 𝑃𝐿(𝐘obs|𝐱) is the likelihood function of 𝐘obs for an instance of 𝛉.  

For the case where the parameters with hybrid uncertainties are represented as the staircase random variables, the 

first four moments 𝛉𝑥 are considered as the adjustable parameters 𝛉. Given the support set [𝑥, 𝑥], feasible intervals of 

𝛉𝑥 can be defined based on the moment constraints 𝛉𝑥 ∈ 𝛩 as: 

𝜇 ∈ [𝑥, 𝑥],𝑚2 ∈ [0,
(𝑥 − 𝑥)

2

4
] ,𝑚3 ∈ [−

(𝑥 − 𝑥)
3

6√3
,
(𝑥 − 𝑥)

3

6√3
] ,𝑚4 ∈ [0,

(𝑥 − 𝑥)
4

12
] (3.11) 

The prior distribution of 𝛉𝑥 is then known point-wise for any generated samples of 𝛉𝑥 within the feasible intervals that 

satisfy the moment constraints. In this manner, only the support sets of the parameters are required as prior information 

of the system, however the feasible intervals in Equation (3.11) are possible to be narrower if more detailed information 

about the parameters is available. At the same time, the parameters with only epistemic uncertainty are also capable to 

be handled in Bayesian updating, where the parameters themselves are considered as the adjustable parameters. In this 

case, the prior distribution 𝑃(𝛉) = 𝑃(𝐱) is represented as an auxiliary uniform distribution on the given support set of 

the parameters. 

One non-trivial component in Equation (3.10) is the evidence 𝑃(𝐘obs), since the direct evaluation of the posterior 
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PDF over the whole parameter space is quite difficult or even intractable especially for very peaked or/and multimodal 

distributions (Beck and Au, 2002). Thus, a well-known Bayesian inference algorithm, called transitional Markov chain 

Monte Carlo (TMCMC) (Ching and Cheng, 2007), is employed as an effective updating tool. TMCMC is essentially 

interpreted as an iterative approach sampling from a series of intermediate PDFs which will progressively converge to 

the true posterior distribution. The 𝑗th intermediate PDF is expressed as: 

𝑃𝑗 ∝ 𝑃𝐿(𝐘obs|𝛉)𝛽𝑗𝑃(𝛉) (3.12) 

where 𝛽𝑗 means the so-called reduction coefficient. Its value starts from 𝛽0 = 0 in the first iteration and progressively 

increases until reaching 𝛽𝑚 = 1 in the last iteration. 𝛽𝑗 is adaptively computed using samples generated at the previous 

step. Markov chains with the Metropolis-Hasting algorithm (Hasting, 1970) propagate new samples starting from the 

ones with higher intermediate likelihood values, enabling to sample from the very complex posterior PDF. The readers 

can be referred to Ching and Cheng (2007) and Betz et al. (2016) for the details of TMCMC and to Rocchetta et al. 

(2018) for its application. 

3.3.2 Two-step ABC updating framework 

The likelihood function is one of the key components in Bayesian model updating, because it quantifies the degree 

of relevance of a model with a given instance of the adjustable parameters, by describing the possibility of the observed 

data. Under the assumption of independence between observations, the likelihood function in Equation (3.10) can be 

theoretically defined as: 

𝑃𝐿(𝐘obs|𝛉) = ∏ 𝑃(𝐘𝑘|𝛉)

𝑁obs

𝑘=1

 (3.13) 

where 𝑃(𝐘𝑘|𝛉) indicates the PDF value of the 𝑘th observed data 𝐘𝑘 conditional to the corresponding instance of the 

adjustable parameters 𝛉. Equation (3.13) requires to estimate the PDF for each of the 𝑁obs observations, that introduce 

considerable computation cost. Moreover, precise estimation of the PDFs is only achieved by a large number of model 

evaluations to generate a large number of simulated features. Therefore, the full likelihood evaluation could be almost 

infeasible for complex simulators. 

The ABC method (Turner and Van Zandt, 2012; Safta et al., 2015) is utilized to overcome the above obstacle by 

replacing the above full likelihood function with an approximate likelihood function that contains information of both 
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the observations and the adjustable parameters 𝛉. In the approximate likelihood, any types of statistics can be used to 

measure the discrepancy between the model predictions and observations, and hence, it is natural to define it employing 

the distance metrics. Various functional formulas have been investigated in the literature, such as the Gaussian (Patelli 

et al., 2015), the Epanechnikov (Safta et al., 2015), and the sharp (Rocchetta et al., 2018) functions. Regardless of the 

functional formula utilized, the basic principle of the approximate likelihood is that it should return a high value when 

the distance metric is small, while it penalizes the 𝛉 instance when its corresponding distance metric is large. In this 

study, the approximate likelihood based on the Gaussian function is proposed as: 

𝑃𝐿(𝐘obs|𝛉) ∝ 𝑒𝑥𝑝 {−
𝑑2

𝜀2
} (3.14) 

where 𝑑 is the distance metric; 𝜀 denotes the so-called width factor, which is a pre-defined coefficient controlling the 

centralization degree of the posterior distribution. A smaller 𝜀 corresponds to a more peaked posterior distribution, that 

is more likely to converge to the true value but requires more calculation for convergence. The choice of 𝜀 is thus based 

on specific applications and is usually between 10−3 and 10−1 (Patelli et al., 2017). The distance-based approximate 

likelihood in Equation (3.14) is a convenient connection between the distance metrics and Bayesian model updating 

with significantly reduced calculation cost. Moreover, it provides a uniform framework for either the deterministic and 

stochastic updating, simply driven by the employed metric is the Euclidian or Bhattacharyya distances. 

By employing the Bhattacharyya distance metric, the proposed approximate likelihood is capable of quantifying 

comprehensive uncertainty characteristics of both the model predictions and observations. Furthermore, thanks to the 

features of the staircase random variable, the stochastic updating procedure is theoretically applicable regardless of the 

distribution formats of the parameters, including the one cannot be defined analytically. However, the multimodality 

of the parameters, for instance, can lead to non-unique solutions (which will be further discussed in Section 3.4 through 

an illustrative example), and thus the direct application of the stochastic updating procedure cannot be utilized.  

To cope with this issue, a two-step ABC updating framework is proposed as shown in Figure 3.1. This framework 

starts from performing an outer Bayesian updating using the Euclidian distance. Step Ι is equivalent to a deterministic 

updating procedure with the target for identifying all the possible solutions. The support sets of the parameters are then 

divided into appropriate sub-intervals, so that each divided sub-interval contain one possible solution. This preliminary 

procedure is necessary for avoiding to end with a local solution in the main step. After that, comprehensive uncertainty 

characteristics of the parameters are further updated in step II via stochastic updating of the epistemic parameters, i.e., 

the first four moments of the staircase random variables, using the Bhattacharyya distance.  
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Figure 3.1 Schematic of the two-step ABC updating framework. 

3.4    Principle and illustrative application of the ABC updating framework 

3.4.1 Problem description 

The proposed two-step ABC updating framework with both the Euclidian and Bhattacharyya distance metrics is 

demonstrated upon a two degree of freedom (DOF) shear building model shown in Figure 3.2(a). This model was first 

introduced by Beck and Au (2002). The first and second story masses are considered as deterministic values with 𝑚1 =

16.531 × 103 kg and 𝑚2 = 16.131 × 103 kg. The first and second interstory stiffnesses are parameterized to be 𝑘1 =
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𝑘𝑥1 and 𝑘2 = 𝑘𝑥2, where 𝐱 = [𝑥1, 𝑥2] are the adjustable parameters to be identified, and 𝑘 = 29.7 × 106  N m⁄  is the 

nominal value of the stiffnesses. 

 

Figure 3.2 (a) Two degree of freedom shear building model; (b) Posterior distribution in Beck and Au (2002). 

In Beck and Au (2002), the prior PDF 𝑃(𝐱) is given by an uncorrelated lognormal distribution with most probable 

values 1.3 and 0.8 for 𝑥1 and 𝑥2, respectively, and unit standard deviations. Using the modal data, where the identified 

natural frequencies are 𝑓1 = 3.13 Hz and 𝑓2 = 9.83 Hz, the posterior PDF is formulated as: 

𝑃(𝐱|𝐘obs) = 𝑒𝑥𝑝 [−
𝐽(𝐱)

2𝜎2
] 𝑃(𝐱) (3.15) 

where 𝜎 = 1 16⁄  is the standard deviation of the prediction error and 𝐽(𝐱) is a modal measure-of-fit function given by: 

𝐽(𝐱) = ∑𝜆2

2

𝑗=1

[
𝑓𝑗

2(𝐱)

𝑓𝑗
2

− 1]

2

 (3.16) 

where 𝜆 = 1 is the weight and 𝑓𝑗(𝐱) is the 𝑗th natural frequency predicted by the model with the adjustable parameters 

𝐱. Figure 3.2(b) depicts the posterior PDF in Equation (3.15), showing the bimodality. It has been already demonstrated 

in the literature that this bimodal distribution can be achieved using several sampling methods, including the TMCMC 

method. 

This problem can be interpreted as a deterministic updating of the parameters themselves using the single set of 

observations. However, its uncertain characteristics and observation data are hereby altered to demonstrate capabilities 

of the proposed stochastic updating framework with the presence of hybrid uncertainties. Both aleatory and epistemic 
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uncertainties are involved in the model and are included by describing 𝑥1 and 𝑥2 as the staircase random variables with 

given support sets. The natural frequencies 𝑓1 and 𝑓2 are taken as investigated features whose uncertainty is driven by 

the uncertain parameters 𝑥1 and 𝑥2. Their target probability distribution is assumed to be the posterior PDF in Equation 

(3.15). In the altered problem setting, the identified natural frequencies 𝑓1 and 𝑓2 are not available, and hence the target 

probability distribution cannot be defined analytically. It is important to note that, in such case, the existing parametric 

stochastic updating procedures are not applicable. The support sets of  𝑥1 and 𝑥2 are detailed in Table 3.2. 

Table 3.2 Uncertain parameters of 2-DOF model. 

Parameter Uncertainty characteristic Target distribution 

𝑥1 𝑥1 ∈ [0, 3.0] The marginal distribution of Equation (3.15) for 𝑥1  

𝑥2 𝑥2 ∈ [0, 1.5] The marginal distribution of Equation (3.15) for 𝑥2 

The target of the updating procedure 𝐘obs is multiple sets of the features 𝑓1 and 𝑓2 obtained by assigning the target 

probability distribution to 𝑥1 and 𝑥2, as detailed in the last column of Table 3.2. The number of observations is 𝑁𝑜𝑏𝑠 =

100, generated by evaluating the model 100 times with the parameters sampled from their assigned target distribution 

using the TMCMC method. 

A single set of initial values of the first four moments 𝛉𝑥1
 and 𝛉𝑥2

 is set as their possible realizations within the 

feasible intervals in Equation (3.11), satisfying the moment constraints 𝛉𝑥 ∈ 𝛩. These values are selected as different 

from the target values, which result in the staircase random variables matching with the target distribution, in order to 

illustrate how the imprecise model could produce outputs very different from the observations. Note that, these initial 

values are presented herein only for demonstration purpose as illustrated in Figures 3.3 and 3.9. The two-step updating 

procedure is not really started from these initial values, but from the initial support sets of the parameters, as shown in 

the second column of Table 3.2.  

Suppose the sample size is 𝑁sim = 1000,  𝑁sim parameter samples are generated from the staircase densities with 

the initial values of the first four moments. The corresponding initial simulated output samples of 𝑓1 and 𝑓2 are obtained 

and illustrated in Figure 3.3, together with the observed output samples. As shown in this figure, the objective of model 

updating herein is no longer a single updated point with the maximum fidelity to a single observation point, but updated 

distributions of the parameters which can represent the output samples as similar as the observed ones. Such parameter 

distributions can be estimated as the staircase densities with the updated first four moments. To achieve this objective, 

both the Euclidian and Bhattacharyya distances are employed as the UQ metrics to define approximate likelihoods in 

the ABC updating procedure. 
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Figure 3.3 Observed and initial simulated output samples. 

3.4.2 Step I: deterministic updating with the Euclidian distance metric 

As shown in Figures 3.2(b) and 3.3, the target distribution of the parameters demonstrates the bimodality but the 

observed samples show the unimodality; thus, it leads to non-unique solutions. In such situation, the direct application 

of the stochastic updating procedure may end with a local solution. To avoid the local solution, a deterministic updating 

of the parameters themselves is herein performed with the Euclidian distance metric to identify the possible solutions. 

There are two parameters 𝑥1 and 𝑥2, whose prior distribution is set to be uniform within their support set in Table 3.2. 

When the Euclidian distance is taken as the metric, the geometric distance between a simulated sample and the centre 

of mass of the observed samples is measured, whereas the dispersion information of the observed samples cannot be 

considered.  

In this section, the width factor in the distance-based likelihood is assumed as 𝜀 = 0.1, and totally eight TMCMC 

iterations are executed to reach convergence. Posterior samples generated are presented in Figure 3.4, along with the 

target distribution. As shown in this figure, the posterior samples clearly capture the bimodality of the target distribution 

as same as the result in Beck and Au (2002). It fulfils that the deterministic updating focuses only on the means of the 

parameters and they are obviously much easier to be properly calibrated compared with the higher moments. However, 

the orientation and dispersion of the posterior samples remain difference from the target distribution. Hence, a more 

comprehensive metric is required in the second step to further reduce the discrepancy between the samples in Figure 

3.4 and the target distribution.  
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Figure 3.4 Updated samples of parameters with the Euclidian distance. 

Based on the posterior distribution of the parameters, their support set is divided into two sub-intervals, such that 

each sub-interval contains single possible solution. Table 3.3 presents the defined sub-intervals of the parameters. 

Table 3.3 Sub-intervals of parameters for stochastic updating. 

Sub-interval Uncertain characteristic Epistemic parameters 

I 𝑥1 ∈ [0, 1.0] 𝜇1 ∈ [0, 1.0],𝑚21 ∈ [0, 0.25],𝑚31 ∈ [−
1

6√3
,

1

6√3
] ,𝑚41 ∈ [0,

1

12
] 

 𝑥2 ∈ [0.5, 1.5] 𝜇2 ∈ [0.5, 1.5],𝑚22 ∈ [0, 0.25],𝑚32 ∈ [−
1

6√3
,

1

6√3
] ,𝑚42 ∈ [0,

1

12
] 

II 
𝑥1 ∈ [1.0, 3.0] 𝜇1 ∈ [1.0, 3.0],𝑚21 ∈ [0, 1.0],𝑚31 ∈ [−

4

3√3
,

4

3√3
] ,𝑚41 ∈ [0,

4

3
] 

 
𝑥2 ∈ [0, 0.5] 𝜇2 ∈ [0, 0.5],𝑚22 ∈ [0,

1

16
] ,𝑚32 ∈ [−

1

48√3
,

1

48√3
] ,𝑚42 ∈ [0,

1

192
] 

3.4.3 Step II: stochastic updating with the Bhattacharyya distance metric 

This section presents the stochastic updating procedure with the Bhattacharyya distance metric. There are in total 

eight epistemic parameters in the updating procedure, i.e., 𝛉𝑥𝑖
= {𝜇𝑖, 𝑚2𝑖 , 𝑚3𝑖, 𝑚4𝑖}, for 𝑖 = 1, 2, feasible intervals of 

which are computed by Equation (3.11) for each sub-interval, as summarized in the last column of Table 3.3. The prior 

distribution of 𝛉𝑥1
 and 𝛉𝑥2

 is discretely known by multiple sets of their realizations within the feasible intervals which 

satisfy the moment constraints 𝛉𝑥 ∈ 𝛩. 

The width factor in the likelihood is set as 𝜀 = 0.01 in this section. In addition, the numbers of bins in the binning 

algorithm and in staircase density estimation are set as 𝑛𝑏𝑖𝑛 = 10 and 𝑛𝑏 = 50, respectively. After totally 16 TMCMC 
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iterations, the finally updated posterior histograms of the epistemic parameters are estimated for each sub-interval of 

the parameters, as illustrated in Figures 3.5 and 3.6. In the figures, the third and fourth central moments are normalized 

as �̃�3 = 𝑚3 𝑚2
3 2⁄⁄  and �̃�4 = 𝑚4 𝑚2

2⁄  (also known as the skewness and kurtosis, respectively). In addition, the target 

and updated values of the epistemic parameters are given in these figures. The target values are computed by samples 

generated from the target distribution in Figure 3.2(b), and the updated values are obtained by estimating most probable 

values (MPVs) of the posterior distribution. As shown in these figures, the posterior histograms of all of the epistemic 

parameters are significantly updated compared with the prior feasible intervals. Furthermore, the updated values show 

almost good agreement with the target values, except for the kurtoses, implying that the Bhattacharyya distance metric 

is capable of capturing not only mean information but also dispersion and distribution information of both the model 

predictions and observations. 

Tables 3.4 and 3.5 summarize the target and updated values of the epistemic parameters. The updated values of 

the means and variances are quite close to their targets and those of the skewnesses are also almost close to their targets, 

even though those of the kurtoses still remain differences compared with the targets. This fulfils the general experience 

in the stochastic updating that the higher level of statistical information is much more difficult to be precisely updated 

compared with the means. However, the proposed procedure is capable to quantify even the higher level of statistical 

information, such as the variances and skewnesses. 

 

Figure 3.5 Posterior distributions of epistemic parameters for sub-interval I. 
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Figure 3.6 Posterior distributions of epistemic parameters for sub-interval II. 

Table 3.4 Updated epistemic parameters for sub-interval I. 

Parameter Mean 𝜇 Variance  𝑚2 Skewness �̃�3 Kurtosis �̃�4 

𝑥1     

Target value 0.4957 0.0019 -0.0086 2.7313 

Updated value 0.5006 0.0020 -1,2150 16,550 

𝑥2     

Target value 0.9080 0.0053 -0.0531 3.0972 

Updated value 0.9028 0.0041 -0,1150 8,9700 

Table 3.5 Updated epistemic parameters for sub-interval II. 

Parameter Mean 𝜇 Variance  𝑚2 Skewness �̃�3 Kurtosis �̃�4 

𝑥1     

Target value 1.8344 0.0162 0.0695 2.9410 

Updated value 1.8162 0.0164 -0.0900 11.450 

𝑥2     

Target value 0.2446 0.0005 -0.0984 3.8560 

Updated value 0.2450 0.0005 -0.6400 9,4200 

The updated samples of the parameters are generated from the staircase densities with the updated values of the 

first four moments and are illustrated in Figure 3.7. It can be seen that the updated epistemic parameters for each sub-

interval lead to the staircase densities providing accurate estimation of each mode of the parameters. More attention is 

paid to the orientation and dispersion of the updated samples, which show good agreement with the target distribution, 

although some higher moment values are not precisely updated, as shown in Tables 3.4 and 3.5. It implies that estimated 
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errors in the higher moment values do not significantly affect the sample distributions of each mode of the parameters 

obtained via the staircase densities, compared with the means and variances. For comparison purpose, the cumulative 

distribution functions (CDFs) of 𝑥1 and 𝑥2 are plotted in Figure 3.8 for both the updated and target distributions. The 

CDFs of the updated distributions are determined by combining the updated samples for both sub-intervals. The CDFs 

of the updated distributions exhibit a good match with those for the target distributions. 

 

Figure 3.7 Updated samples of parameters with the Bhattacharyya distance. 

 

Figure 3.8 Updated cumulative distribution functions of parameters. 

Finally, Figure 3.9 illustrates the final simulated output samples of 𝑓1 and 𝑓2, obtained by assigning the estimated 

staircase densities to 𝑥1 and 𝑥2, together with the initial simulated and observed output samples. The updated simulated 
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samples demonstrate a distribution identical to the target observed samples, implying that the Bhattacharyya distance 

has the capability to recreate wholly the distribution of the target observations. 

 

Figure 3.9 Updated simulated output samples. 

3.4.4 Summary 

This example presented the combined application of the Euclidian and Bhattacharyya distances as the metrics in 

the two-step ABC updating procedure. The staircase random variables are employed in stochastic updating to calibrate 

the epistemic uncertainty space without prior information about the distribution formats of parameters. The stochastic 

model updating procedure with the Bhattacharyya distance metric is demonstrated to be capable to estimate the detailed 

distributional properties of the parameters. However, a significant drawback of the updating procedure is revealed in 

situations, e.g., in Figures 3.2(b) and 3.3, where the target distribution denotes the bimodality but the observed features 

demonstrate the unimodality. In this situation, the direct application of the stochastic model updating procedure might 

end with a local solution. 

As a consequence, the two-step procedure is proposed to overcome this drawback by performing a deterministic 

updating with the Euclidian distance metric in the first step to identify every modes of the target distribution, and then 

to quantify their detailed distributional information in the second step. As a result, this example demonstrated that the 

deterministic updating should be performed as a precondition of any stochastic updating procedure to avoid non-unique 

solutions.  
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3.5    NASA UQ challenge problem 2014 

3.5.1 Problem description 

The NASA UQ challenge problem 2014 (Crespo et al., 2014) is investigated herein to demonstrate the capability 

of the proposed framework for complex applications. The schematic in Figure 3.10 illustrates the general structure of 

Sub-problem A, including the investigated parameters, outputs, and UQ metric. As shown in Figure 3.10, the simulator 

is provided in a black-box, which evaluates a scalar output 𝑦 using five parameters: 𝑝𝑖 , for  𝑖 = 1,⋯ ,5.  

 

Figure 3.10 Schematic of the NASA UQ challenge 2014 Sub-problem A. 

Table 3.6 summarizes the uncertainty characterizations of the parameters in the original problem setting.  𝑝1, 𝑝4, 

and 𝑝5 indicate parameters with hybrid uncertainties, 𝑝2 refers to a parameter with only epistemic uncertainty, and 𝑝3 

is a parameter with only aleatory uncertainty represented by a fully prescribed uniform distribution with explicit mean 

and variance. During model updating, only 𝑝1, 𝑝2, 𝑝4, and 𝑝5 are considered and 𝑝3 is omitted because it involves only 

irreducible aleatory uncertainty. More importantly, the distribution formats of 𝑝1, 𝑝4, and 𝑝5 are fully provided, such 

that 𝑝1 follows a unimodal beta distribution and 𝑝4 and 𝑝5 follow Gaussian distributions. Recently, true values of the 

epistemic parameters are released as shown in the last column of Table 3.6. 

Table 3.6 Uncertainty parameters of Sub-problem A in the NASA UQ challenge problem. 

Parameter Uncertainty characteristic True value 

𝑝1 Unimodal beta, 𝜇1 ∈ [0.6, 0.8], 𝑚21 ∈ [0.02, 0.04] 𝜇1 = 0.6364, 𝑚21 = 0.0356 

𝑝2 Constant, 𝑝2 ∈ [0, 1.0] 𝑝2 = 1 

𝑝3 Uniform, 𝜇3 = 0.5, 𝑚23 = 1 12⁄  – 

𝑝4, 𝑝5 Gaussian, 𝜇𝑖 ∈ [−5.0, 5.0], 𝑚2𝑖 ∈ [0.0025, 4.0], 𝜌 ∈
[−1.0, 1.0]a, 𝑖 = 4,5 

𝜇4 = 4, 𝜇5 = −1.5, 𝑚24 = 0.04, 

𝑚25 = 0.36, 𝜌 = 0.5 

  a 𝜌 is the correlation coefficient.   
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On the contrary, the uncertainty characterizations of 𝑝1, 𝑝4, and 𝑝5 are herein altered by ignoring their distribution 

formats to demonstrate the proposed nonparametric updating framework. Table 3.7 presents the redefined uncertainty 

characteristics of these parameters. The support set of 𝑝1 is determined based on the definition of the beta distribution. 

While only the support set is necessary for the proposed nonparametric updating framework, prior information on the 

mean 𝜇1 and variance 𝑚21 is remained as the original setting to make the feasible interval in Equation (3.11) narrower. 

The support sets of 𝑝4 and 𝑝5 are set to cover more than 99.99 % confidence intervals of the true Gaussian distributions, 

and the feasible intervals of the means and variances for these support sets are already narrower than the given intervals 

in Table 3.6. Note that, while the support sets can be also set to cover the p-boxes defined by the original uncertainty 

characteristics, this leads too wide support sets to be precisely updated. Moreover, the correlation between 𝑝4 and 𝑝5 

is ignored, since the staircase random variable is a univariate random variable and thus cannot consider the correlation. 

However, this assumption is still reasonable because the investigated output is insensitive to the correlation coefficient 

𝜌, that has been investigated by several previously published works (Patelli et al., 2015; Safta et al., 2015; Ghanem et 

al., 2015) in other sub-tasks of the NASA UQ challenge problem 2014.  

Table 3.7 Redefined uncertainty characteristics of 𝑝1, 𝑝4, and 𝑝5 

Parameter Uncertainty characteristic 

𝑝1 𝑝1 ∈ [0, 1], 𝜇1 ∈ [0.6, 0.8], 𝑚21 ∈ [0.02, 0.04] 

𝑝4, 𝑝5 𝑝4 ∈ [3, 5], 𝑝5 ∈ [−4, 1] 

There are two observation sets 𝐲1 and 𝐲2, both containing 25 values respectively. It is noted that, in the original 

NASA UQ challenge, there were different tasks in Sub-problem A, where the first observations (𝐲1) are supposed to 

be used for model updating in Task 1, and the remaining (𝐲2) for model validation in Task 2 and in Task 3, all the 50 

observations are used for model updating so as to improve the result. However, in this work, only Task 3 is addressed, 

since the comparison of the results using 25 or 50 observations is not our focus. As a consequence, in total 13 epistemic 

parameters, such as 𝛉𝑝𝑖
= {𝜇𝑖, 𝑚2𝑖 , 𝑚3𝑖, 𝑚4𝑖}, for 𝑖 = 1,4,5 and 𝑝2 are calibrated using the 50 observations.  

3.5.2 Results assessment 

The stochastic updating procedure with the Bhattacharyya distance metric is executed. It is important to note that, 

the true distributions of all the parameters are unimodal; thus, an outer Bayesian updating with the Euclidian distance 

metric is not performed. The width factor in the likelihood is set to be 𝜀 = 0.01 and the numbers of bins in the binning 

algorithm and in staircase density estimation are set to be 𝑛bin = 25 and 𝑛𝑏 = 50, respectively.  
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Figure 3.11 presents the posterior histograms of all the epistemic parameters. Those are converted to distributions 

with kernel density estimation (KDE) and all the estimated distributions are also illustrated in the figure. It can be seen 

that all the epistemic parameters are successfully updated compared with their initial intervals. The updated values and 

intervals of 𝛉𝑝1
, 𝛉𝑝4

, 𝛉𝑝5
, and 𝑝2 are obtained from the posterior distributions, and their accuracy is assessed according 

to their true values as shown in Table 3.8. The posterior distributions are normalized so that their maximums are equal 

to one, as shown in Figure 3.12. With this procedure, the posterior distributions are interpreted as Fuzzy sets (Beer et 

al., 2013), such that different levels of confidence will result to interval values of increased width. The crisp updated 

values of 𝛉𝑝1
, 𝛉𝑝4

, 𝛉𝑝5
, and 𝑝2 are computed as the MPVs, i.e., the values corresponding to the case where the alpha-

level is one.  

 

Figure 3.11 Posterior histograms and PDFs estimated via KDE. 
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Table 3.8 The updated results of the epistemic parameters. 

Epistemic parameter Initial interval True value MPVs 0.9-level intervals 

𝜇1 [0.6, 0.8] 0.6364 0.6824  [0.6793, 0.6933] 
𝑚21 [0.02, 0.04] 0.0356 0.0369  [0.0366, 0.0386] 
�̃�31 

[−
1

6√3
,

1

6√3
] -0.3840 -0.3560 [−0.3963, −0.2400] 

�̃�41 
[0,

1

12
] 2.4886 2.4360 [2.4007, 3.0787] 

𝜇4 [3, 5] 4 3.8780  [3.6517, 3.9517] 
𝑚24 [0.0025, 1] 0.04 0.0488 [0.0480, 0.1236] 
�̃�34 

[−
4

3√3
,

4

3√3
] 0.0068 -0.2620 [−0.5241, 0.0499] 

�̃�44 
[0,

1

12
] 2.9780 4.0560 [3.7298, 4.7558] 

𝜇5 [−4, 1] -1.5 -1.7000 [−1.7204, −1.4554] 
𝑚25 [0.0025, 4] 0.36 0.7920 [0.6070, 0.8940] 
�̃�35 

[−
4

3√3
,

4

3√3
] 0.0068 -0.0910 [−0.4172, 0.0208] 

�̃�45 
[0,

1

12
] 2.9780 3.6840 [3.6830, 3.9185] 

𝑝2 [0, 1] 1 0.9050 [0.8580, 0.9410] 

 

Figure 3.12 Three truncation levels of the normalized posterior distributions. 
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By employing the crisp updated values of 𝛉𝑝1
, 𝛉𝑝4

, and 𝛉𝑝5
, the corresponding crisp updated distributions of 𝑝1, 

𝑝4, and 𝑝5 are estimated as the staircase density functions. Figure 3.13 illustrates the CDFs of the updated distributions, 

together with those of their true distributions. It can be seen that the updated CDFs show almost good agreement with 

their true distributions, while some differences still remain for 𝑝4 and 𝑝5. These differences are mainly because of no 

consideration of the correlation between 𝑝4 and 𝑝5. Nevertheless, the proposed updating procedure is demonstrated to 

be capable to estimate the probabilistic distributions of unknown parameters regardless of their distribution formats. 

 

Figure 3.13 Updated cumulative distribution functions of 𝑝1, 𝑝4, and 𝑝5. 

A more comprehensive assessment of the result is performed by estimating the p-boxes of the output. The initial 

intervals of 𝛉𝑝1
, 𝛉𝑝4

, 𝛉𝑝5
, and 𝑝2 result in a large p-box of the output, representing a large epistemic uncertainty space. 

The objective of model updating in this problem is to reduce the epistemic uncertainty space, so that the p-box of the 

output is accordingly reduced. In the ideal case, when the true values of the epistemic parameters are achieved form a 

perfect updating process, the resulting p-box of the output would be reduced to a single CDF, which perfectly coincides 

with the CDF of the observations. Based on the above motivation, three alpha-levels, namely 0.5, 0.75, and 0.9, are set 

for the normalized PDFs as shown in Figure 3.12. The 0.9-level intervals are presented in the last column of Table 3.8, 

which are significantly reduced compared with the initial intervals. Together with the p-boxes, the updated crisp CDF 
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with 1-alpha level is also estimated by employing the updated distributions of 𝑝1, 𝑝4, and 𝑝5 as shown in Figure 3.13 

and the crisp updated value of 𝑝2.  

The p-boxes with the three alpha-levels and the updated CDF are illustrated in Figure 3.14. The initial p-box with 

the original epistemic uncertainty space is significantly reduced through the updating procedure with different alpha-

levels. An integrative comparison of Figures 3.12 and 3.14 shows that the higher the alpha-level, the smaller the input 

epistemic intervals, and furthermore, the narrower the resulting p-box of the output, even though the differences in the 

three p-boxes are relatively small. In addition, the narrowest p-box with 0.9-alpha level still envelops the target CDF 

of the observations. More importantly, the updated CDF shows good agreement with the CDF of the target observations. 

This outcome clearly demonstrates the feasibility of the combination of the Bhattacharyya distance metric and staircase 

random variables in the stochastic model updating and uncertainty characterization. 

 

Figure 3.14 Updated p-boxes with different alpha-levels. 

3.6    Conclusions 

The combined application of the Bhattacharyya distance metric and staircase random variable is demonstrated as 

key ingredients of the proposed ABC model updating framework. The application to the NASA UQ challenge problem 

reveals the feasibility of the combination of the Bhattacharyya distance and staircase random variable for the stochastic 

model updating and uncertainty characterization. The staircase densities can act as a nonparametric connection between 

the epistemic uncertainty space and investigated outputs. In addition, the distance-based approximate likelihood serves 
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as a convenient connection between the Bayesian updating procedure and UQ metrics. By utilizing the Bhattacharyya 

distance, the proposed approximate likelihood enables to capture the comprehensive uncertainty characteristics of both 

the model predictions and observations. As a consequence, the proposed nonparametric updating framework fulfils the 

challenging expectation in stochastic updating to calibrate the probabilistic distributions of parameters without prior 

knowledge about their distribution formats. 

In spite of the advantage on uncertainty characterization, the combined application of the Bhattacharyya distance 

and staircase random variable can be not appropriate in an exclusive manner as revealed in the shear building model 

example. It is required to be complemented by the Euclidian distance metric in a two-step scheme to avoid non-unique 

solutions in stochastic model updating. In other words, the Euclidian distance-based deterministic updating should be 

the precondition before performing the stochastic updating procedure. 

One of the perspectives of the proposed nonparametric model updating framework is that it can be combined with 

structural health monitoring (SHM). In SHM, uncertainties not only in the input parameters but also in measurements 

need to be considered, because the measurements are always driven under hard-to-control randomnesses, such as the 

environmental noises and measurement system errors. Another challenging perspective focuses on uncertainties in the 

modeling. The numerical model always contains unavoidable simplifications and approximations, e.g., the linearized 

representation of the nonlinear behaviors. These uncertainties make the updating procedure more difficult, and thus it 

should aim at the robust calibration to achieve the maximum allowable uncertainty, while providing acceptable fidelity 

to the measurements. This extension of the proposed updating framework to be implemented in SHM will be addressed 

in the future work. 
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Chapter 4                                                                                      

Research article 3: Robust optimization of a dynamic Black-box 

system under severe uncertainty: A distribution-free framework 

This article provides a solution to the NASA UQ challenge problem 2019. The challenge problem is proposed by 

researchers in the NASA Langley Research Center in 2019 to represent the difficulties which are often encountered in 

the design of critical safety systems under the availability of very limited data. In such circumstance, the system needs 

to be designed in order to cope with the unavoidable uncertainty. The design of systems under uncertainty requires the 

availability of robust and efficient tools for UQ, and the challenge problem 2019 is aimed at confirming the availability 

and applicability of discipline independent UQ tools. It follows from the success of the previous edition of the NASA 

Multidisciplinary Uncertainty Quantification (UQ) Challenge 2014. In the challenge problem 2019, a Black-box model 

of a physical system is used to evaluate and improve its operational reliability. Unlike the previous challenge, the prior 

knowledge of the UM for aleatory parameters is extremely limited and only a common boundary is given. In addition, 

the response of the system of interest is time-dependent. These specific properties of the challenge problem 2019 are 

closely related to the novel developments in the previous two articles, i.e., the extension of the Bhattacharyya distance-

based ABC updating framework for calibrating dynamic systems described by time-domain sequences and the novel 

distribution-free stochastic model updating framework for calibrating aleatory parameters whose distribution families 

are unknown a priori.  

Consequently, this article proposes four key techniques to address different tasks in the challenge problem. First, 

a distribution-free Bayesian model updating framework with three key components, i.e., the staircase density functions 

for characterizing aleatory parameters, the Bhattacharyya distance for quantifying the uncertainty characteristics of the 

observations, and a dimension-reduction procedure for evaluating the Bhattacharyya distance based on time-dependent 

data, is proposed. The advantages of the proposed distribution-free approach over the conventional distribution-based 

approach are discussed upon Sub-problem A (Model calibration and uncertainty quantification of the subsystem). The 

proposed approach is further employed as a robust tool for uncertainty characterization and quantification throughout 

the challenge problem (i.e., Tasks B3, E2, and E4). Second, an adaptive pinching approach is proposed to perform the 
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sensitivity analysis on epistemic parameters, providing an efficient way of identifying the largest possible reduction of 

the epistemic uncertainty space. This approach is demonstrated on Sub-problem B (Uncertainty reduction), and is also 

used for Tasks C3 and E3. Third, the probability bounds analysis by the double-loop Monte Carlo method is performed 

to obtain the bounds on the respective failure probabilities and the worst-case failure probabilities upon Sub-problem 

C (Reliability analysis of baseline design) and the following tasks, i.e., Tasks D2 and E5. Fourth, to identify an optimal 

design point of the system, a NISS approach is proposed providing a systematic way of exploring a hyper-rectangular 

space of the design point and identifying the local optimal values of each design point parameter minimizing the worst-

case failure probabilities. The approach is demonstrated on Sub-problem D (Reliability-based design) and is also used 

for Task E4. 

While the aforementioned four key techniques are successfully demonstrated as robust tools for UQ, the challenge 

problem 2019 also reveals some limitations of their applicability. For instance, the proposed distribution-free Bayesian 

model updating framework is only applicable for the case where aleatory parameters are independent with each other, 

since the staircase density functions are defined for univariate random variables and cannot account for the dependence 

structure among the parameters, though the results of Task E2 indicates the possibility of the presence of the correlation 

among some of the aleatory parameters and the link between ignoring the correlation and observed unstable behaviors 

of the system. In addition, the computational burden of the probability bounds analysis by the double-loop Monte Carlo 

method is relatively high and might not be acceptable for practical applications. These limitations will be addressed in 

the next two articles. 

Finally, it is necessary to note that, this article is a product of the joint work with the group of Institute for Risk 

and Uncertainty at University of Liverpool. The author of this thesis has jointly contributed towards the solution of the 

challenge problem with Mr. Lye Adolphus, where the author has mainly contributed to the development of the first and 

fourth techniques above. 
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Abstract: In the real word, a significant challenge faced in designing critical systems is the lack of available data. 

This results in a large degree of uncertainty and the necessity for uncertainty quantification tools in order to make risk-

informed decisions. The NASA-Langley UQ Challenge 2019 is proposed to provide such setting, requiring different 

discipline-independent approaches to address typical tasks for required for the design of critical systems. This paper 

addresses the NASA-Langley UQ Challenge by proposing four key techniques to provide the solution to the challenge: 

(1) a distribution-free Bayesian model updating framework for the calibration of the uncertainty model; (2) an adaptive 

pinching approach to analyze and rank the relative sensitivity of the epistemic parameters; (3) the probability bounds 

analysis to estimate failure probabilities; and (4) a non-intrusive stochastic simulation approach to identify an optimal 

design point. 

Keywords: Uncertainty quantification; Model class selection; Sensitivity analysis; Staircase density function; Robust 

optimization; Non-intrusive imprecise stochastic simulation. 

4.1    Introduction 

4.1.1 Research context 

The design of critical safety systems is frequently associated with the availability of limited data. Despite such 

challenge posed, the system needs to be designed in order to cope with the unavoidable uncertainty. Such uncertainty 

is generally classified as either aleatory or epistemic uncertainty (Oberkampf et al., 2004; Roy and Oberkampf, 2011). 

Aleatory uncertainty is often considered as the irreducible uncertainty that is caused by the inherent randomness of the 

system (Crespo and Kenny, 2021) and generally modelled as random variables according to some distribution function 



102         Chapter 4 Research article 3: Robust optimization of a dynamic Black-box system under severe uncertainty: 

A distribution-free framework 

 

(Der Kiureghian and Ditlevsen, 2009; Meng et al., 2020). On the other hand, epistemic uncertainty is caused by a lack 

of or limited knowledge which can be theoretically reduced or eliminated through, for instance, further data collection 

(Rocchetta et al., 2018). An epistemic parameter is generally represented by a fixed value within a bounded set whose 

intervals reflect the level of knowledge on the parameter (Crespo and Kenny, 2021). The lower the level of knowledge, 

the larger the interval of this bounded set. It is important to note that the aleatory and epistemic uncertainty can refer 

to the same physical quantity and, therefore, such classification becomes fuzzy. In fact, the aleatory uncertainty can be 

seen as the remaining uncertainty after a campaign of model updating, aimed at reducing the epistemic uncertainty, is 

performed. 

The design of systems under uncertainty requires the availability of robust and efficient tools for the uncertainty 

characterization and quantification. In order to check the availability of discipline independent tools and applicability 

of such UQ tools, NASA Langley proposed a new UQ Challenge problem in 2019 (Crespo and Kenny, 2021) with the 

purpose of modelling the dynamic behaviour of a system, analyzing its operational reliability, and further devising an 

improved design configuration for the system under uncertainty. This UQ Challenge problem follows from the success 

of the previous edition in 2013 (Crespo et al., 2014). 

In this challenge, a ‘‘Black-box" computational model of a physical system is used to evaluate and improve its 

reliability. Unlike the previous challenge (Crespo et al., 2014), the Uncertainty Model (UM) to the respective aleatory 

input parameters are completely unknown and they are to be derived by the participants. In addition, the response of 

the system is time-dependent providing a realistic setting under which different tasks will be addressed. This is because 

in the real-world, prior distributional knowledge to such models associated with the parameters of interest are usually 

unavailable. 

This paper is part of a Special Issue providing the solution for the NASA-Langley UQ Challenge problem 2019. 

Therefore, for the sake of the content length, a detailed explanation to the problem is not shown. Instead, a summary 

of the challenge and the description of the notations is provided. 

4.1.2 The NASA-Langley UQ challenge problem (2019) 

The system is characterized by a design point 𝜃 with nine real components (i.e. 𝜃 ∈ ℝ𝑛𝜃), and an uncertain model 

𝛿 comprising of elements 𝑎 and 𝑒 (Crespo and Kenny, 2021). 𝑎 denotes the vector of five aleatory parameters real 

components while 𝑒 denotes the vector of four epistemic parameters. 

The aleatory space 𝐴 is represented as 𝑎 ∽ 𝑓𝑎 whereby 𝑓𝑎 is the joint density function. The initial aleatory space 
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is 𝐴0 = [0, 2]5. The epistemic space 𝐸 is represented as 𝑒 ∽ 𝐸. The initial epistemic space is 𝐸0 = [0, 2]4. Hence, the 

UM for 𝛿 is fully characterized by: 〈𝑓𝑎, 𝐸〉. 

The system of interest consists of a set of interconnected subsystems for which 𝛿 is concentrated in one of these 

subsystems. This subsystem is modeled by a Black-box model function �̂� = 𝑦(𝑎, 𝑒, 𝑡) where 𝑡 ∈ [0, 5] s indicates the 

time parameter. The output of this subsystem is given as a discrete time history: 𝑦𝑙(𝑡) = [𝑦𝑙(0), 𝑦𝑙(𝑑𝑡), ⋯ , 𝑦𝑙(5000 ∙

𝑑𝑡)], where 𝑙 = 1, ⋯ , 100, and 𝑑𝑡 = 0.001 𝑠. This yields a total of 5001 data of 𝑦𝑙(𝑡) per given 𝑙 and the entire time 

history data is denoted as 𝐷1 = [𝑦𝑙(𝑡)]𝑙=1,⋯,100. 

The goal of this challenge can be summarized as follows (Crespo and Kenny, 2021): 

A. To create an UM for 𝛿; 

B. To decide a limited number of refinements (up to four) on the epistemic variables; 

C. To perform a reliability analysis on a given design point 𝜃; 

D. To identify a new 𝜃 with improved reliability; 

E. To improve the UM for 𝛿 and 𝜃 given observations of the integrated system. 

It needs to be highlighted that Task F of the challenge is not addressed in this paper. 

4.2    Task A: Model calibration and uncertainty quantification of the subsystem 

4.2.1 Modelling strategy and hypothesis 

The Bayesian model updating technique is adopted to calibrate the UM using the available data 𝐷1. This provides 

a probabilistic approach through which the joint distribution function 𝑓𝑎 can be identified. Generally, Bayesian model 

updating is not adopted to reduce epistemic uncertainty when represented by intervals. However, the uncertainty of 𝑒 

can be quantified by modelling the intervals as uniform distributions and then computing the posterior distribution. At 

this point, it is important to note that the posterior distributions are used to define new intervals as already successfully 

proposed in Patelli et al. (2015). Hence, the epistemic parameters 𝑒𝑖𝑒
, for 𝑖𝑒 = 1, ⋯ , 4, are assumed to be independent 

between one another and their respective priors characterized by a non-informative uniform distribution with bounds 

defined by the epistemic space 𝐸0 (i.e., see Section 4.1.2). 

In this section, different strategies are adopted to represent the aleatory uncertainty and different metrics are 

employed to compare between distributions. As a result, we have obtained a conservative (i.e., low-risk) approach; and 
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a more aggressive (i.e., high-risk) approach aimed at reducing the uncertainty of the UM. 

4.2.2 Bayesian model updating 

Bayesian model updating is a probabilistic model updating approach whose mathematical formulation follows 

the Bayes’ rule introduced by (Beck and Katafygiotis, 1998; Katafygiotis and Beck, 1998): 

𝑃(𝜣|𝑫, 𝑴) =
𝑃(𝑫|𝜣, 𝑴)𝑃(𝜣|𝑴)

𝑃(𝑫|𝑴)
 (4.1) 

where 𝜣 is the vector of inferred parameters, 𝑫 denotes the vector of observed data used for model updating, and 𝑴 =

{�̂�, 𝑓𝑎} is the model class which best represents the observed data 𝑫. The different components in Equation (4.1) are 

the prior distribution (i.e., 𝑃(𝜣|𝑴)), the likelihood function (i.e., 𝑃(𝑫|𝜣, 𝑴)), the evidence (i.e., 𝑃(𝑫|𝑴)), and finally 

the posterior distribution (i.e., 𝑃(𝜣|𝑫, 𝑴)). The term of interest is 𝑃(𝜣|𝑫, 𝑴) which describes our update knowledge 

of 𝜣 after observing the data 𝑫 and it is usually expressed as a non-normalized distribution by neglecting the evidence, 

which serves as the normalization constant). 

Advanced sampling techniques are used to sample from such non-normalized distributions (Lye et al., 2021). In 

this work, the transitional Markov chain Monte Carlo (TMCMC) sampler is implemented whose algorithm is based on 

the adaptive Metropolis-Hastings technique (Beck and Au, 2002) and uses “transitional” distributions 𝑃𝑗  from which 

samples are obtained sequentially. Details to the TMCMC algorithm can be found in Lye et al. (2021) and Ching and 

Cheng (2007). The motivations behind the use of TMCMC in this problem are attributed to the following: (1) it is able 

to sample from complex-shaped posteriors via “transitional” distributions 𝑃𝑗; (2) it can sample from high-dimensional 

posteriors (i.e., up to 24 dimensions) (Gray et al., 2020); and (3) it computes the evidence 𝑃(𝑫|𝑴) which makes the 

algorithm useful in model selection problems (Ching and Cheng, 2007). 

Due to the large data set provided (i.e., 𝐷1), it becomes computationally expensive to use a full likelihood function 

to perform an actual Bayesian computation (Bi et al., 2019). For this reason, approximate Bayesian computation (ABC) 

(Abdessalem et al., 2018; Turner and Van Zandt, 2012) is adopted and defined as (Bi et al., 2019): 

𝑃(𝑫|𝜣, 𝑴) ∝ 𝑒𝑥𝑝 (−
𝑑

𝜖
)

2

 (4.2) 

where 𝑑 is the stochastic distance metric which quantifies the difference between the distribution of the observed data 

𝑫 and the model output of �̂�, while 𝜖 is the width factor of the approximate Gaussian function. 
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4.2.3 Proposed approach 

To determine the UM for 𝑎, five possible distribution types for 𝑓𝑎 are identified and listed in Table 4.1. It needs 

to be highlighted that the choice of the staircase density function (SDF) presents a distribution-free approach contrary 

to the other choice of distributions presented in the table. A key strength of SDFs lies in its flexibility in describing a 

wide range of density shapes, including highly-skewed and/or multi-modal distributions. This makes them particularly 

applicable in modeling the marginal distributions of the aleatory variables whose density shapes are unknown a prior. 

In this analysis, it has been assumed that: (1) the marginal distribution of all the aleatory uncertainties belong to the 

same distribution class; (2) no dependency exists between all 𝑎𝑖𝑎
 (i.e., no correlation matrix used). 

Table 4.1 Distribution type with the non-informative uniform prior bounds of its corresponding parameters for each 

aleatory model 𝑓𝑎. 

Aleatory model Distribution type Prior distribution parameters 

𝑓𝑎
1 Beta(𝛼𝑖𝑎

, 𝛽𝑖𝑎
) 𝛼𝑖𝑎

 (Shape parameter 1): 𝑈[0, 100] 

𝛽𝑖𝑎
 (Shape parameter 2): 𝑈[0, 100] 

𝑓𝑎
2 Truncated normal(𝜇𝑖𝑎

, 𝜎𝑖𝑎
) 

[𝑇𝑁(𝑎𝑖𝑎
: 𝜇𝑖𝑎

, 𝜎𝑖𝑎
)] 

𝜇𝑖𝑎
 (Mean of 𝑎𝑖𝑎

): 𝑈[0, 2] 

𝜎𝑖𝑎
 (Standard deviation of 𝑎𝑖𝑎

): 𝑈[0.01, 2] 

𝑓𝑎
3 Truncated lognormal 

[𝑇𝐿𝑁(𝑎𝑖𝑎
: 𝜇𝑖𝑎

, 𝜎𝑖𝑎
)] 

𝜇𝑖𝑎
 (Mean of log(𝑎𝑖𝑎

)): 𝑈[−10, 10] 

𝜎𝑖𝑎
 (Standard deviation of log(𝑎𝑖𝑎

)): 𝑈[0.01, 5] 

𝑓𝑎
4 Truncated Gamma 

[𝑇𝐺(𝑎𝑖𝑎
: 𝛼𝑖𝑎

, 𝛽𝑖𝑎
)] 

𝛼𝑖𝑎
 (Shape parameter 1): 𝑈[0, 10] 

𝛽𝑖𝑎
 (Shape parameter 2): 𝑈[0, 10] 

𝑓𝑎
5 Staircase density function 

[𝑆𝐷𝐹(𝑎𝑖𝑎
: 𝜇𝑖𝑎

, (𝑚2)𝑖𝑎
, (𝑚3)𝑖𝑎

, (𝑚4)𝑖𝑎
)] 

𝜇𝑖𝑎
 (Mean of 𝑎𝑖𝑎

): 𝑈[0, 2] 

(𝑚2)𝑖𝑎
 (2nd central moment of 𝑎𝑖𝑎

): 𝑈[0, 1] 

(𝑚3)𝑖𝑎
 (3rd central moment of 𝑎𝑖𝑎

): 𝑈 [−
4

3√3
,

4

3√3
] 

(𝑚4)𝑖𝑎
 (4th central moment of 𝑎𝑖𝑎

): 𝑈 [0,
4

3
] 

For the case of 𝑓𝑎
1 to 𝑓𝑎

4, the distribution parameters add an additional 10 inferred parameters, while 𝑓𝑎
5 adds an 

additional 20 inferred parameters. Each of these parameters are assigned a non-informative uniform prior with bounds, 

stated in Table 4.1, chosen to ensure sufficient degrees of freedom in the model calibration procedure. It is also assumed 

that these parameters are independent from one another. This brings the total number of inferred parameters to 24 for 

the case of the SDF, and 14 for the rest of the distributions. 

4.2.3.1   Distribution-based approach 

For the case of 𝑓𝑎
1 to 𝑓𝑎

4, there is a need to reduce the size of the data to reduce the computational cost in evaluating 

𝑃(𝑫|𝜣, 𝑴). To achieve this, the fast Fourier transformation (FFT) procedure is performed on 𝐷1 for each 𝑙 according 
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to Gray et al. (2020), Heideman et al. (1984), and Bai et al. (2020): 

𝑦𝑙(𝑡) = ∑ 𝐶𝑞
𝑙

5000

𝑞=0

∙ 𝑒𝑥𝑝[−𝑖 ∙ 𝑞 ∙ 𝜔0 ∙ 𝑡] (4.3) 

where 𝜔0 =
2𝜋

5001
, and 𝐶𝑞

𝑙  mean the numerical coefficient with real and imaginary components denoted as 𝑅𝑒(𝐶𝑞
𝑙 ) and 

𝐼𝑚(𝐶𝑞
𝑙 ) respectively. From which, the amplitude 𝐴𝑞

𝑙  and phase angles 𝜙𝑞
𝑙  are obtained as follows: 

𝐴𝑞
𝑙 = √𝑅𝑒(𝐶𝑞

𝑙 )
2

+ 𝐼𝑚(𝐶𝑞
𝑙 )

2
 

(4.4) 

𝜙𝑞
𝑙 = 𝑎𝑡𝑎𝑛2 [

𝐼𝑚(𝐶𝑞
𝑙 )

𝑅𝑒(𝐶𝑞
𝑙 )

] (4.5) 

To remove the periodicity associated with the values of 𝜙𝑞
𝑙 , we introduced a phase shift such that a factor of 2𝜋 rad is 

added or subtracted whenever the jump between consecutive phase angles is greater than 𝜋 rad. This is achieved using 

𝑢𝑛𝑤𝑟𝑎𝑝 function in MATLAB to ensure the jump between any consecutive phase angles is always less than 𝜋 rad. In 

doing so, it can ensure the monotonic behavior of 𝜙𝑞
𝑙  and simplifies its subsequent computation for 𝑃(𝑫|𝜣, 𝑴). When 

this is done, we obtain the frequency spectra of 𝐴𝑞
𝑙  and 𝜙𝑞

𝑙  as shown in Figure 4.1 where it can be observed that beyond 

frequencies ω > 5.80 Hz, the values of 𝐴𝑞
𝑙  do not show any additional perturbations for all 𝑙, thereby allowing those 

data to be discarded. Thus, only 30 values of ω between 0 Hz and 5.80 Hz are considered for both 𝐴𝑞
𝑙  and 𝜙𝑞

𝑙 . Let this 

set of values of ω be denoted as 𝜔𝑛, for 𝑛 = 1, ⋯ , 30. This effectively reduces the total number of data used for model 

calibration from 500100 to 6000 (i.e., 3000 for 𝐴𝑞
𝑙  and 3000 for 𝜙𝑞

𝑙 ). 

 

Figure 4.1 Illustration of the frequency spectra obtained from 𝐷1 via FFT. 



4.2 Task A: Model calibration and uncertainty quantification of the subsystem                                                                              107 

 

In order to account for the variability of 𝐴𝑞
𝑙  and 𝜙𝑞

𝑙  at each 𝜔𝑛, the stochastic distance metric 𝑑 for 𝑃(𝑫|𝜣, 𝑴) is 

the Wasserstein distance defined as (Panaretos and Zemel, 2019): 

𝑑𝑊 = ∫ |𝐹𝑫(𝑥) − 𝐹�̂�(𝑥)|
∞

−∞

𝑑𝑥 (4.6) 

whereby 𝐹𝑫(𝑥) and 𝐹�̂�(𝑥) are the respective empirical cumulative distribution functions (ECDFs) of the data (i.e., 𝐴𝑞
𝑙  

and 𝜙𝑞
𝑙 ) and the stochastic model output of �̂� at a given 𝜔𝑛, while 𝑥 is the variable denoting either 𝐴𝑞

𝑙  or 𝜙𝑞
𝑙 . In essence, 

𝑑𝑊 quantifies the enclosed area between both ECDFs. The smaller 𝑑𝑊 is, the higher the degree of similarity between 

the ECDFs of the data and the stochastic prediction by �̂� (Ferson et al., 2008). Utilizing Equation (4.2), 𝑃(𝑫|𝜣, 𝑴) is 

defined as: 

𝑃(𝑫|𝜣, 𝑴) = ∏ 𝑒𝑥𝑝 [− (
𝑑𝑊,𝑛

𝐴

𝜖𝑛
𝐴

)

2

− (
𝑑𝑊,𝑛

𝜙

𝜖𝑛
𝜙

)

2

]

30

𝑛=1

 (4.7) 

where the values of 𝜖𝑛
𝐴 and 𝜖𝑛

𝜙
 are approximated by the standard deviations of 𝐴𝑞

𝑙  or 𝜙𝑞
𝑙  respectively at 𝜔𝑛. In addition, 

independence is assumed between data sets to reduce computational costs in computing 𝑃(𝑫|𝜣, 𝑴). However, it needs 

to be highlighted that in reality, there exists dependencies between the identified 𝜔𝑛 for each 𝑙th sequence. To compute 

𝑃(𝑫|𝜣, 𝑴), 100 model evaluations by �̂� per given set of model inputs comprising of {𝑎, 𝑒}, are necessary to construct 

𝐹�̂�(𝑥). 

4.2.3.2   Distribution-free approach 

For the case of 𝑓𝑎
5, the distribution is defined by the SDF as (Crespo et al., 2018): 

𝑓𝑎  = {
ℎ𝑖𝑏

   ∀𝑎 ∈ ((𝑖𝑏 − 1) ∙ 𝜅, 𝑖𝑏 ∙ 𝜅]5, for 1 ≤ 𝑖𝑏 ≤ 𝑁𝑏

0                                                      , otherwise          
 (4.8) 

where 𝑁𝑏 = 50 indicates the number of bins, ℎ𝑖𝑏
 is the height of the SDF in the 𝑖𝑏th bin, and 𝜅 =

2

𝑁𝑏
 is the length of 

each sub-interval. It needs to be noted that ℎ𝑖𝑏
> 0 for all 𝑁𝑏 bins and that their values are determined by solving the 

following convex optimization problem: 

ℎ̂𝑖𝑏
= argmin

ℎ𝑖𝑏
≥0

{𝐽(𝒉): ∑ ∫ 𝑧 ∙ ℎ𝑖𝑏
𝑑𝑧

𝑖𝑏∙𝜅

(𝑖𝑏−1)∙𝜅

= 𝜇𝑖𝑎

𝑁𝑏

𝑖𝑏=1

, ∑ ∫ (𝑧 − 𝜇𝑖𝑎
)

𝑟
∙ ℎ𝑖𝑏

𝑑𝑧
𝑖𝑏∙𝜅

(𝑖𝑏−1)∙𝜅

= (𝑚𝑟)𝑖𝑎

𝑁𝑏

𝑖𝑏=1

, 𝑟 = 2, 3, 4} (4.9) 
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where 𝐽(𝒉) denotes the arbitrary cost-function. Details to 𝐽(𝒉) and Equation (4.9) can be found in Crespo et al. (2018) 

and Kitahara et al. (2022). 

To avoid a potential error in the employment of the likelihood function for the distribution-based approach being 

brought forward, a different set-up for 𝑃(𝑫|𝜣, 𝑴) is used in this analysis, where a different stochastic distance is used 

and the data is analyzed in the time domain. Unlike in the distribution-based approach, the Bhattacharyya distance (Bi 

et al., 2019) is employed as the stochastic distance metric 𝑑: 

𝑑𝐵 = − log { ∑ ⋯ ∑ √𝑝𝑫 (𝑏𝑖1,,⋯,𝑖𝑁𝑡
) 𝑝�̂� (𝑏𝑖1,,⋯,𝑖𝑁𝑡

)

𝑛𝑏

𝑖1=1

𝑛𝑏

𝑖𝑁𝑡
=1

} (4.10) 

where 𝑝𝑫 (𝑏𝑖1,,⋯,𝑖𝑁𝑡
) and 𝑝�̂� (𝑏𝑖1,,⋯,𝑖𝑁𝑡

) denote the probability mass function (PMF) values of the data from 𝐷1 and the 

stochastic model output from �̂� respectively within the bin 𝑏𝑖1,,⋯,𝑖𝑁𝑡
, and 𝑛𝑏 = 20 denotes the number of bins used to 

compute the Bhattacharyya distance. It is important to be highlighted that each bin has 𝑁𝑡 = 5001 coordinates as it is 

generated within a 𝑁𝑡-dimensional joint PMF space. Because of this, the resulting joint PMF space has an excessive 

number of dimensions for a direct evaluation of 𝑃(𝑫|𝜣, 𝑴). This brings the need for a dimension-reduction procedure 

which is employed through the following steps (Kitahara et al., 2021): 

1) Define the window length 𝐿𝑊 and divide the data set [𝑦𝑙(𝑡)]𝑙=1,⋯,100 into ⌈
𝑁𝑡

𝐿𝑊
⌉ distinct intervals, where ⌈∙⌉ is the 

ceil operator; 

2) Compute the root mean square (RMS) values of each interval 𝐑 = [𝑅1, ⋯ , 𝑅
⌈

𝑁𝑡
𝐿𝑊

⌉
] and generate the sample set of 

the RMS values 𝐑𝑫 ∈ ℝ
100×⌈

𝑁𝑡
𝐿𝑊

⌉ 
 where: 

𝐑𝑫 = [𝐑𝑫
1 , ⋯ , 𝐑𝑫

⌈
𝑁𝑡
𝐿𝑊

⌉

] , with 𝐑𝑫
𝑣 = [𝑅1,𝑣 , ⋯ , 𝑅100,𝑣]

𝑇
  

For 𝑣 = 1, ⋯ , ⌈
𝑁𝑡

𝐿𝑊
⌉  while 𝐑�̂� ∈ ℝ

𝑁sim×⌈
𝑁𝑡
𝐿𝑊

⌉
 where 𝑁sim = 1000 denotes the number of model evaluations by �̂� 

per given set of model inputs {𝑎, 𝑒}. It needs to be highlighted that the matrix structure of  𝐑�̂� is similar to that of 

𝐑𝑫 with the exception of the number of row elements; 

3) Evaluate 𝑑𝐵 between two sample sets 𝐑𝑫
𝑣  and 𝐑�̂�

𝑣  for all 𝑣; 

4) Obtain the corresponding RMS value 𝑅𝑑𝐵
 and use it as the distance metric. 
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Consequently, 𝑃(𝑫|𝜣, 𝑴) is re-expressed as: 

𝑃(𝑫|𝜣, 𝑴) = 𝑒𝑥𝑝 (−
𝑅𝑑𝐵

𝜖𝐵

)
2

 (4.11) 

where 𝜖𝐵 = 0.01. 

4.2.4 Results 

For all set-ups, 𝑁𝑠 = 500 samples are obtained from the resulting 𝑃(𝜣|𝑫, 𝑴). Based on the analysis done for all 

aleatory models 𝑓𝑎, two models are chosen on the basis of their quality of the results and for the subsequent purpose 

of comparison: 𝑓𝑎
1 and 𝑓𝑎

5. It needs to be highlighted, that 𝑓𝑎
1 is chosen given its relatively higher value of the evidence 

𝑃(𝑫|𝑴) compared to the other aleatory models employed in the distribution-based approach as summarized in Table 

4.2. 

Table 4.2 Results of the evidence computed via TMCMC for each choice of model for 𝑓𝑎. 

Aleatory model 𝑓𝑎
1 𝑓𝑎

1 𝑓𝑎
1 𝑓𝑎

1 

𝑃(𝑫|𝑴)  3.2229 × 10−7 2.1952 × 10−7 5.0815 × 10−10 1.0180 × 10−9 

To create the UM based on the information from the Bayesian model updating results, the following procedure is 

undertaken: For the aleatory space, the histograms of the distribution parameters of the given 𝑓𝑎 are obtained based on 

𝑃(𝜣|𝑫, 𝑴). These histograms are converted into probability distribution functions by Kernel density estimation with 

a Gaussian kernel (Bowman an Azzalini, 1997) and are normalized such that the distribution peak equals to one. An 

illustration is presented using the distribution parameters for 𝑓𝑎
1 as an example in Figure 4.2. From these results, the 

posterior distributions are interpreted as fuzzy sets where different levels of confidence 𝐿𝑐 ∈ [0, 1] will yield intervals 

of varying width (Beer et al., 2013). Here, intervals at 𝐿𝑐 = 0.5 level of confidence are considered for both the 𝑓𝑎
1 and 

𝑓𝑎
5 distribution parameters. The resulting intervals obtained would serve as the shape parameter inputs of the respective 

aleatory model 𝑓𝑎. This yields the probability-boxes (i.e., p-boxes) (Ferson et al., 2002; Beer et al., 2014) of 𝑓𝑎
1 and 𝑓𝑎

5 

which are illustrated in Figure 4.3. 

To define the epistemic space, the same procedure is done on the resulting histograms of 𝑒1 to 𝑒4 obtained through 

𝑃(𝜣|𝑫, 𝑴) given the respective 𝑓𝑎. These histograms are shown in Figure 4.4 for the respective set-up. 𝐿𝑐 = 0.5 level 

of confidence is considered in the case of 𝑓𝑎
1 while 𝐿𝑐 = 0.025 level of confidence is considered in the case of 𝑓𝑎

5. The 

resulting intervals constitute the updated hyper-rectangular set 𝐸 defined by each of the resulting UM to which results 
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are presented in Table 4.6. Let the UM determined from 𝑃(𝜣|𝑫, 𝑴) given 𝑓𝑎
1 be denoted as 𝑈𝑀𝑦0

1 , while that given 

𝑓𝑎
5 be denoted as 𝑈𝑀𝑦0

2 . 

 

Figure 4.2 Illustration of the resulting distribution functions to the respective shape parameters of the joint beta 

distribution (i.e., 𝑓𝑎
1) obtained via Kernel density estimates. 

 

Figure 4.3 P-box for 𝑎1 to 𝑎5 obtained from the respective UMs. 
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Figure 4.4 Histograms for 𝑒1 to 𝑒4 obtained from 𝑃(𝜣|𝑫, 𝑴) given 𝑓𝑎
1 (in blue) and 𝑓𝑎

5 (in green). 

To verify the calibration results, the 𝑁𝑠 samples are generated from the hyper-rectangle defined by the bounds of 

the respective distribution parameters of 𝑓𝑎 and 𝑒𝑖𝑒
 according to the respective UMs. For each sample realization from 

this hyper-rectangle, 100 model outputs of �̂� is obtained for 𝑡 ∈ [0, 5] s. This is done by generating 100 realizations of 

𝑎 from 𝑓𝑎, given the distribution parameters from the hyper-rectangle sample, whereas keeping 𝑒 fixed. This yields a 

𝑁𝑡 × 100 × 𝑁𝑠 array of data output of �̂� for each UM whose results are plotted in Figure 4.5. From the figure, it can 

be seen that the model output bands of 𝑈𝑀𝑦0
1  (in blue) and 𝑈𝑀𝑦0

2  (in green) generally encompasses 𝐷1 (in red) which 

indicates that the model calibration procedure, via Bayesian model updating, was done satisfactorily. 

 

Figure 4.5 Output band from �̂� according to 𝑈𝑀𝑦0
1  (in blue) and 𝑈𝑀𝑦0

2  (in green) along with the data sequence 𝐷1 (in 

red) after calibration. 
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To further substantiate this, p-boxes of the calibrated model output of each UM are constructed at six points 𝑡 =

{0.5, 1.0, 2.0, 3.0, 4.0, 5.0} 𝑠. Each p-box describes the extreme bounds of the distribution of the 𝑁𝑠 ECDFs whereby 

each ECDF comprises of the 100 model output values at 𝑡. Figure 4.6 shows the resulting p-boxes from 𝑈𝑀𝑦0
1  (in blue) 

and 𝑈𝑀𝑦0
2  (in green) at each chosen 𝑡. From the plots, it can be seen that the ECDF of 𝐷1 (in red) at any given 𝑡 is in 

general enclosed within the p-boxes. Furthermore, it can be observed that the shape of both p-boxes generally follows 

the shape profile of the ECDF of 𝐷1 which indicates a good degree of fit by both UMs. 

 

Figure 4.6 P-boxes of the model output from �̂� according to 𝑈𝑀𝑦0
1  (in blue) and 𝑈𝑀𝑦0

2  (in green) at various time 

slices 𝑡 = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} 𝑠. The red ECDF denotes the distribution of the data 𝐷1. 

4.2.5 Discussion 

Figure 4.3 observes that the p-boxes obtained for 𝑎1 to 𝑎5 according to 𝑈𝑀𝑦0
1  is generally wider than those using 

the second approach 𝑈𝑀𝑦0
2 . This implies a higher degree of uncertainty on the true distribution of all 𝑎𝑖𝑎

 by 𝑈𝑀𝑦0
1  that 

makes it less informative in identifying the true 𝑓𝑎 compared to 𝑈𝑀𝑦0
2 . In addition, the p-boxes for 𝑎1 to 𝑎5 obtained 

by 𝑈𝑀𝑦0
2  are generally enclosed within those of 𝑈𝑀𝑦0

1  which suggests that the true CDF defined by 𝑓𝑎 could lie within 

the p-box defined by 𝑈𝑀𝑦0
2 . 

The intervals obtained from the posterior distributions for 𝑒1 to 𝑒4 through the model based on beta distribution 

is much wider compared to the UQ model obtained through the SDF based approach as presented in Figure 4.4. This 

further highlights the non-informative nature of 𝑈𝑀𝑦0
1 , especially for the case of 𝑒4. In addition, the posteriors obtained 

through the SDF based approach show a much greater degree of update from the uniform prior and that it can identify 
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the epistemic parameters much more effectively as the peaks are more pronounced. This leads to the uncertainty bounds 

of 𝑒 according to 𝑈𝑀𝑦0
2  being significantly narrower so that they are generally enclosed within that according to 𝑈𝑀𝑦0

1  

as seen from Table 4.6. 

Figure 4.5 shows that the output bands of �̂� obtained from both UMS follow the trend defined by 𝐷1. However, 

from Figure 4.6, it is observed that the p-boxes obtained by 𝑈𝑀𝑦0
2  have much tighter bounds compared to 𝑈𝑀𝑦0

1  whilst 

still enclosing the ECDF of 𝐷1. This is attributed to the p-box of the 𝑎, and the bounds on 𝑒 being narrower for 𝑈𝑀𝑦0
2  

than 𝑈𝑀𝑦0
1  which resulted in the former yielding a significantly better degree of fit over 𝐷1 than the latter. From the 

results, it can be concluded that 𝑈𝑀𝑦0
1  is much more conservative compared to 𝑈𝑀𝑦0

2  in modelling 𝑓𝑎 and 𝑒. 

4.3    Task B: Uncertainty reduction 

The objective of this task is to identify the epistemic parameters that have more predictive capability and improve 

the UM. This is achieved by performing a sensitivity analysis for the epistemic model parameters and the subsequent 

refinement of the epistemic space. 

4.3.1 Sensitivity analysis 

In this analysis, the epistemic parameters are ranked according to their ability to improve the predictive ability of 

the computational model of the subsystem. This predictive ability is quantified by the volume metric 𝛺 defined as: 

𝛺 = ∑ 𝜌𝑖𝑡
∙ ∆𝑖𝑡

𝑛𝑡

𝑖𝑡=1

 (4.12) 

where 𝜌𝑖𝑡
 is the area of the p-box at time-slice 𝑖𝑡, ∆𝑖𝑡

 denotes that time-step between time-slice 𝑖𝑡 − 1 and 𝑖𝑡, and 𝑛𝑡 is 

the total of time-slices used for the computation. For the computation, we consider the six time-slices which were used 

for the illustration of the p-boxes in Figure 4.6. 

To rank the epistemic parameters according to their respective sensitivity, an adaptive pinching method (Tucker 

and Ferson, 2006) is proposed for providing a non-empirical approach to determine the pinched bounds of a chosen 

epistemic parameter which yields that greatest reduction in the value of 𝛺. The procedure is as follows: For a given 𝑖𝑒, 

the uncertainty space of 𝑒𝑖𝑒
 is reduced by 90 %. This is performed whilst keeping the uncertainty space of the remaining 

three epistemic model parameters untouched. For a given 𝑒𝑖𝑒
, its bounds would first be divided into 10 equally-spaced 
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units. Next, at iteration 𝑗 = 1, a segment of bin length of one unit will be employed to isolate the region of the epistemic 

space defined by the lower and upper bounds of the first bin. This isolated region serves as the reduced (or “pinched”) 

space. From there, the corresponding realizations of {𝑎, 𝑒} from the UM, whose 𝑒𝑖𝑒
 value falls outside the bounds of 

the reduced epistemic space, is discarded. When this is done, the reduced volume 𝛺𝑝 is computed again via Equation 

(4.12). After this is done, the segment shifts by one unit to the right as illustrated in Figure 4.7 and this initiates iteration 

𝑗 = 2 where the above procedure is repeated all the way to iteration 𝑗 = 10. This approach is done for 𝑒1 to 𝑒4. As an 

illustrative example, the results of the reduced volume 𝛺𝑝 for the respective iteration 𝑗 for each 𝑒𝑖𝑒
 according to 𝑈𝑀𝑦0

1  

are shown in Figure 4.8. From this figure, the minimum value of 𝛺𝑝 for each 𝑒𝑖𝑒
 is obtained and the sensitivity index 

is computed: 

𝑆 = 1 −
𝛺𝑝

𝛺0

 (4.13) 

where 𝛺0 denotes the initial volume before pinching. This sensitivity metric would then be utilized to rank 𝑒1 to 𝑒4 to 

which the results according to the respective UMs are shown in Table 4.3. 

 

Figure 4.7 Illustration of the approach in identifying the maximum reduction of 𝛺 from the pinching of 𝑒𝑖𝑒
. 

 

Figure 4.8 Results of 𝛺𝑝 for different pinched intervals for 𝑒1 to 𝑒4 according to 𝑈𝑀𝑦0
1 . The red line denotes the 

initial volume 𝛺 = 0.2521, while the green bars represent the resulting 𝛺𝑝. 
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Table 4.3 The ranking order of the epistemic model parameters based on their respective sensitivity index for the 

respective UMs. 

Rank Uncertainty model 𝑈𝑀𝑦0
1   Uncertainty model 𝑈𝑀𝑦0

2  

Parameter Pinched bounds  𝑆  Parameter Pinched bounds  𝑆 

1 𝑒2 [1.1729, 1.2748] 0.3300  𝑒2 [0.8677, 0.9117] 0.4542 

2 𝑒3 [1.0449, 1.1647] 0.2972  𝑒3 [0.3595, 0.4072] 0.3240 

3 𝑒1 [1.1619, 1.2670] 0.2882  𝑒1 [0.5715, 0.5987] 0.2654 

4 𝑒4 [0.8425, 1.0148] 0.2272  𝑒4 [0.8242, 0.9320] 0.2556 

Based on the results provided in Table 4.3, it is observed that 𝑒4 is ranked the lowest in sensitivity according to 

both UMs. This implies that it is impossible to improve the knowledge on 𝑒4 with the available model and data, making 

it impossible to extract or infer information on its true value, therefore contributing the highest degree of non-reducible 

epistemic uncertainty in the calibration of the UM. For this reason, the first refinement request to the challenge host 

was made for the lower bound of 𝑒4, given the heavier left tail as seen from its histogram obtained via the distribution-

free approach (in green) in Figure 4.4. Following this, a second round of sensitivity analysis was performed following 

the approach outlined above and accounting for the given refined bounds of 𝑒4 and the results are detailed in Table 4.4. 

From the results, 𝑒3 is consistently ranked within the bottom two according to both UMs which suggests that 𝑒3 is the 

least informative parameter after 𝑒4. Hence, the second refinement request was made for the lower bound of 𝑒3 given 

the lack of such information according to both UMs as depicted in Figure 4.4. The resulting epistemic space, with the 

refined 𝑒3 and 𝑒4 bounds, constitutes the hyper-rectangle epistemic space denoted as 𝐸1. 

Table 4.4 The ranking order of the epistemic model parameters based on their respective sensitivity index for the 

respective UMs according for the refined bounds for 𝑒4. 

Rank Uncertainty model 𝑈𝑀𝑦0
1   Uncertainty model 𝑈𝑀𝑦0

2  

Parameter Pinched bounds  𝑆  Parameter Pinched bounds  𝑆 

1 𝑒4 [1.0224, 1.0575] 0.5200  𝑒2 [0.6036, 0.6476] 0.5999 

2 𝑒2 [0.4652, 0.5625] 0.5114  𝑒4 [1.1276, 1.1632] 0.4128 

3 𝑒1 [0.6333, 0.7367] 0.5056  𝑒3 [0.2166, 0.2642] 0.4024 

4 𝑒3 [0.9227, 1.0393] 0.4282  𝑒1 [0.5715, 0.5988] 0.3821 

4.3.2 Updated uncertainty models 

A second round of Bayesian model updating is performed with the bounds of the uniform priors for the respective 

epistemic model parameters defined by the hyper-rectangle 𝐸1. The approach follows that outlines in Sections 4.2.3.1 

and 4.2.3.2 from which 𝑈𝑀𝑦1
1  and 𝑈𝑀𝑦1

2  are obtained respectively. The corresponding numerical results of the updated 

bounds for each 𝑒𝑖𝑒
 according to 𝑈𝑀𝑦1

1  and 𝑈𝑀𝑦1
2  are presented in Table 4.6. 

A sensitivity analysis was done again following the methodology that is presented in Section 4.3.1 and the results 
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are given in Table 4.5. where the sensitivity ranking of each 𝑒𝑖𝑒
 is the same as that in Table 4.3 for the respective UMs. 

Table 4.5 The ranking order of the epistemic model parameters based on their respective sensitivity index for the 

respective UMs according for the refined space 𝐸1. 

Rank Uncertainty model 𝑈𝑀𝑦0
1   Uncertainty model 𝑈𝑀𝑦0

2  

Parameter Pinched bounds  𝑆  Parameter Pinched bounds  𝑆 

1 𝑒2 [0.4447, 0.5340] 0.4095  𝑒2 [0.9514, 0.9726] 0.3610 

2 𝑒1 [0.9500, 1.0413] 0.2960  𝑒3 [0.5675, 0.6173] 0.3245 

3 𝑒4 [0.9274, 0.9585] 0.2385  𝑒1 [0.5550, 0.5725] 0.2981 

4 𝑒3 [0.3333, 0.3590] 0.2379  𝑒4 [1.0225, 1.0584] 0.2782 

4.3.3 Results and discussion 

The resulting model output of the response plot according to 𝑈𝑀𝑦1
1  and 𝑈𝑀𝑦1

2  are illustrated in Figure 4.9. From 

the figure, it can be observed that the response plots according to both UMs are well-fitted against 𝐷1. However, such 

fitting is significantly tighter for the case of 𝑈𝑀𝑦1
2  as seen in Figure 4.9 and this is supported by Figure 4.10 where it 

can also be seen that the resulting p-boxes of the response plot across all chosen time-slices are significantly narrower 

compared to 𝑈𝑀𝑦1
1  whilst enclosing the ECDF for 𝐷1. This observation is consistent to that discussed in Section 4.2.5 

and concludes that the response plot according to 𝑈𝑀𝑦1
2  is more representative of 𝐷1. 

Figure 4.11 illustrates the resulting p-boxes quantifying the uncertainty over the marginal distributions of 𝑓𝑎 by 

the respective UMs. From the figure, it can be seen that the p-boxes according to 𝑈𝑀𝑦1
2  is significantly narrower and 

enclosed within that according to 𝑈𝑀𝑦1
1  which verifies that the true marginal distributions of 𝑓𝑎 could lie within the p-

boxes defined by 𝑈𝑀𝑦1
2 . The results by 𝑈𝑀𝑦1

1  once again highlights its conservative nature in its uncertainty over 𝑓𝑎. 

 

Figure 4.9 Output band from �̂� according to 𝑈𝑀𝑦1
1  (in blue) and 𝑈𝑀𝑦1

2  (in green) along with the data sequence 𝐷1 (in 

red) after calibration. 
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Figure 4.10 P-boxes of the model output from �̂� according to 𝑈𝑀𝑦1
1  (in blue) and 𝑈𝑀𝑦1

2  (in green) at various time 

slices 𝑡 = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} 𝑠. The red ECDF denotes the distribution of the data 𝐷1. 

 

Figure 4.11 P-box for 𝑎1 to 𝑎5 obtained from the respective UMs. 

Finally, results detailed in Table 4.6 shows that the uncertainty bounds over 𝑒 according to 𝑈𝑀𝑦1
2  is significantly 

narrower and generally enclosed within that according to 𝑈𝑀𝑦1
1 . This result is supported by Figure 4.12 where it can 

be seen that the resulting histograms of the epistemic parameters obtained from 𝑃(𝜣|𝑫, 𝑴) given 𝑓𝑎
5 are consistently 



118         Chapter 4 Research article 3: Robust optimization of a dynamic Black-box system under severe uncertainty: 

A distribution-free framework 

 

narrower than that obtained from 𝑃(𝜣|𝑫, 𝑴) given 𝑓𝑎
1. This verifies the results obtained by 𝑈𝑀𝑦1

2  further highlighting 

its informative nature over 𝑈𝑀𝑦1
1 . For this reason, 𝑈𝑀𝑦1

2  is finally chosen to address the subsequent tasks presented in 

this challenge. 

 

Figure 4.12 Histograms for 𝑒1 to 𝑒4 obtained from 𝑃(𝜣|𝑫, 𝑴) given 𝑓𝑎
1 (in blue) and 𝑓𝑎

5 (in green). 

Table 4.6 Updated epistemic space 𝐸 for 𝑒1 to 𝑒4 according to the respective UMs. 

Uncertainty model 𝑒1 𝑒2 𝑒3 𝑒4 

𝑈𝑀𝑦0
1   [0.3182, 1.3787] [0.3574, 1.3771] [0.0827, 1.2870] [0.1486, 1.8828] 

𝑈𝑀𝑦0
2  [0.4351, 0.7082] [0.5583, 1.0000] [0.0721, 0.5511] [0.6066, 1.6893] 

𝑈𝑀𝑦1
1   [0.3097, 1.2306] [0.3522, 1.2487] [0.2819, 0.5400] [0.8337, 1.1461] 

𝑈𝑀𝑦1
2  [0.4674, 0.6433] [0.7607, 0.9736] [0.2865, 0.4583] [0.9627, 1.1664] 

4.4    Task C: Reliability analysis of baseline design 

The objective of this task is to perform a reliability analysis on the baseline design 𝜃𝑏𝑎𝑠𝑒 according to 𝑈𝑀𝑦1
2  with 

respect to the individual requirements 𝑔𝑖𝑔
, for 𝑖𝑔 = 1, 2, 3. The requirements 𝑔2 and 𝑔3 are represented respectively as 

(Crespo and Kenny, 2021): 

𝑔2(𝑎, 𝑒, 𝜃) = max
𝑡∈[2.5,5] s

|𝑧1(𝑎, 𝑒, 𝜃, 𝑡)| − 0.02 (4.14) 

𝑔3(𝑎, 𝑒, 𝜃) = max
𝑡∈[0,5] s

|𝑧2(𝑎, 𝑒, 𝜃, 𝑡)| − 4 (4.15) 

whose 𝑧1 and 𝑧2 denote the time-dependent response output of the integrated system associated with the given 𝜃. From 
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there, the worst-case performance function 𝑤 is defined: 

𝑤(𝑎, 𝑒, 𝜃) = max
 𝑖𝑔=1,2,3

𝑔𝑖𝑔
(𝑎, 𝑒, 𝜃) (4.16) 

The system is defined to be system compliant for requirement 𝑖𝑔 when 𝑔𝑖𝑔
< 0 whereby 𝑔1 < 0 for the system 

to be stable; 𝑔2 < 0 for the settling time of 𝑧1 to be sufficiently fast; and 𝑔3 < 0 finally for the energy consumption to 

be acceptable (Crespo and Kenny, 2021). Conversely, requirement 𝑖𝑔 is not satisfied when 𝑔𝑖𝑔
≥ 0. Thus, for a fixed 

set of values of 𝜃 and 𝑒, the set of 𝑎 points where 𝑔𝑖𝑔
< 0 is regarded as the “safe” domain, while the complement set 

is the “failure” domain. From this, the imprecise failure probability 𝑅𝑖𝑔
 given requirement 𝑔𝑖𝑔

 can then be defined as 

follows: 

𝑅𝑖𝑔
(𝜃) = [min

 𝑒∈𝐸
ℙ (𝑔𝑖𝑔

≥ 0) , max
 𝑒∈𝐸

ℙ (𝑔𝑖𝑔
≥ 0)] (4.17) 

through which the imprecise worst-case failure probability 𝑅 is defined: 

𝑅(𝜃) = [min
 𝑒∈𝐸

ℙ(𝑤 ≥ 0) , max
 𝑒∈𝐸

ℙ(𝑤 ≥ 0)] (4.18) 

and finally, the severity of each requirement violation 𝑠𝑖𝑔
 is defined: 

𝑠𝑖𝑔
(𝜃) = max

𝑒∈𝐸
𝔼 [𝑔𝑖𝑔

|𝑔𝑖𝑔
≥ 0] ∙ ℙ (𝑔𝑖𝑔

≥ 0) (4.19) 

where ℙ(∙) indicates the probability operator, and 𝔼[∙ |∙] denotes the conditional expectation. 

4.4.1 Failure probability and severity computation 

In this work, the computation and analysis of reliability metrics 𝑅𝑖𝑔
, 𝑅, and 𝑠𝑖𝑔

 are carried out through probability 

bounds analysis (PBA) with p-boxes (Ferson and Tucker, 2005). 

To set up the p-box for each 𝑔𝑖𝑔
, a double-loop Monte Carlo (Ali, 2012; Rocchetta et al., 2018) approach is used 

to generate 𝑁𝑎 × 𝑁𝑒 realizations of 𝑔𝑖𝑔
 from inputs {𝑎, 𝑒} defined by 𝑈𝑀𝑦1

2 . In this approach, the outer-loop considers 

each of the 𝑁𝑒 realizations of 𝑒 obtained from the hyper-rectangle defined by 𝐸 according to the UM, while the inner-

loop accounts for the 𝑁𝑎 realizations of 𝑎 from 𝑓𝑎. So as to ensure that the different failure domains are well-explored, 

in particular small failure regions, and that the epistemic uncertainties well represented, we set 𝑁𝑎 = 10000 and 𝑁𝑒 =

500. From there, the p-box is then constructed from the bounds of the distribution of 𝑁𝑒 ECDFs, in which each ECDF 
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comprising of 𝑁𝑎 values of 𝑔𝑖𝑔
. As an illustration, the resulting p-boxes for 𝑔1 to 𝑔3 are illustrated in Figure 4.39. 

From the p-box of a given 𝑔𝑖𝑔
, its values computed at 𝑔𝑖𝑔

= 0 has a lower and upper bound value denoted as 𝑃𝑖𝑔
 

and 𝑃𝑖𝑔
 respectively. Following which, 𝑅𝑖𝑔

(𝜃𝑏𝑎𝑠𝑒) can be approximated according to: 

𝑅𝑖𝑔
(𝜃𝑏𝑎𝑠𝑒) = [1 − 𝑃𝑖𝑔

, 1 − 𝑃𝑖𝑔
] (4.20) 

To approximate 𝑅(𝜃𝑏𝑎𝑠𝑒), the 𝑁𝑎 × 𝑁𝑒 matrix of 𝑤 is constructed by taking the element-wise maximum value between 

𝑔1, 𝑔2, and 𝑔3 as suggested in Equation (4.16). A p-box is then constructed for 𝑤 in similar fashion as 𝑔𝑖𝑔
 from which 

the resulting lower and upper bound values, denoted as 𝑊 and 𝑊 respectively, are obtained at 𝑤 = 0. 𝑅(𝜃𝑏𝑎𝑠𝑒) can 

then be approximated according to: 

𝑅(𝜃𝑏𝑎𝑠𝑒) = [1 − 𝑊, 1 − 𝑊] (4.21) 

To approximate 𝑠𝑖𝑔
, the numerical value of 𝔼 [𝑔𝑖𝑔

|𝑔𝑖𝑔
≥ 0] is necessary to be approximated first. This can be done as 

follows: Considering a realization of the ECDF for 𝑔𝑖𝑔
 for a given 𝑒, a numerical integration is performed for obtaining 

the area of the region above the ECDF plot between 𝑔𝑖𝑔
= 0 to its maximum value, denoted as 𝑔𝑖𝑔

𝑚𝑎𝑥 , for which the 

ECDF is defined. This is done according to: 

𝔼 [𝑔𝑖𝑔
|𝑔𝑖𝑔

≥ 0] ≈ ∑ 𝟏
(𝑔𝑖𝑔)

𝑘
≥0

∙ (𝑔𝑖𝑔
)

𝑘
∙ ℙ (𝑔𝑖𝑔

≥ (𝑔𝑖𝑔
)

𝑘
)

𝑁𝑎

𝑘=1

 (4.22) 

where 𝟏
(𝑔𝑖𝑔)

𝑘
≥0

 denotes the indicator function which gives the value 1 when (𝑔𝑖𝑔
)

𝑘
≥ 0 and 0 otherwise. This value 

of 𝔼 [𝑔𝑖𝑔
|𝑔𝑖𝑔

≥ 0] is then multiplied by ℙ (𝑔𝑖𝑔
≥ 0) determined from its ECDF that gives the nominal severity index 

associated with the given 𝑒. From which, the actual severity index 𝑠𝑖𝑔
 can be finally computed according to Equation 

(4.19). 

The numerical results to the aforementioned reliability metrics are presented in Table 4.14 where it is observed 

that the failure probability with the highest upper-bound value is 𝑅2 and, thus, contributes the most of the worst-case 

failure probability 𝑅. In addition, it is noted that the severity 𝑠2 is the highest among all 𝑠𝑖𝑔
 which indicates that the 

failure 𝑔2 ≥ 0 is classified as a high-probability event with a large impact on the system relative to the failures 𝑔1 ≥ 0 

and 𝑔3 ≥ 0. Further investigations to this are done in Section 4.4.3. 
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4.4.2 Sensitivity analysis 

In this analysis, the epistemic uncertainties are ranked according to the construction of 𝑅(𝜃𝑏𝑎𝑠𝑒) resulting from 

their reduction. This will be done via the adaptive pinching (Tucker and Ferson, 2006) approach shown in Section 4.3. 

The results of the reduced interval 𝑅(𝜃𝑏𝑎𝑠𝑒) for the respective iteration 𝑗 for each 𝑒𝑖𝑒
 are depicted in Figure 4.13. From 

the figure, the maximum reduction of 𝑅(𝜃𝑏𝑎𝑠𝑒) for each 𝑒𝑖𝑒
 is determined. Such information would then be utilized to 

rank 𝑒1 to 𝑒4 as shown in Table 4.7. 

 

Figure 4.13 Results of the reduced 𝑅(𝜃𝑏𝑎𝑠𝑒) bounds for different pinched intervals for 𝑒1 to 𝑒4. The red lines 

represent the initial bounds of [0.0294, 0.2721], while the green bars represent the reduced bounds. 

Table 4.7 The ranking order of the epistemic model parameters based on the maximum possible reduction in 

𝑅(𝜃𝑏𝑎𝑠𝑒) interval according to 𝑈𝑀𝑦1
2 . 

Rank Parameter Pinched bounds  𝑅(𝜃𝑏𝑎𝑠𝑒) 

 Before pinching After pinching  

1 𝑒2 [0.8458, 0.8690]  [0.0294, 0.2721] [0.0812, 0.1851] 
2 𝑒1 [0.5555, 0.5731]  [0.0294, 0.2721] [0.0588, 0.1717] 
3 𝑒3 [0.4411, 0.4582]  [0.0294, 0.2721] [0.0533, 0.1888] 
4 𝑒4 [0.9639, 0.9836]  [0.0294, 0.2721] [0.0588, 0.2067] 

4.4.3 Identifying different transitions to failure 

From the 𝑁𝑎 × 𝑁𝑒 matrix of all 𝑔𝑖𝑔
, the realizations of {𝑎, 𝑒} are grouped into seven distinct categories of failure: 

(1) 𝑔1 ≥ 0; (2) 𝑔2 ≥ 0; (3) 𝑔3 ≥ 0; (4) 𝑔1, 𝑔2 ≥ 0; (5) 𝑔1, 𝑔3 ≥ 0; (6) 𝑔2, 𝑔3 ≥ 0; and (7) 𝑔1, 𝑔2, 𝑔3 ≥ 0. The statistics 

summarizing the number of  {𝑎, 𝑒} realizations in each failure category is presented in Table 4.12. 

From the table, it can be seen that the most common failure type for 𝜃𝑏𝑎𝑠𝑒 according to 𝑈𝑀𝑦1
2  is 𝑔2 ≥ 0 while 
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the least likely failure type would be 𝑔1, 𝑔2, 𝑔3 ≥ 0. No failure of type 𝑔1, 𝑔3 ≥ 0 has occurred. In order to provide a 

quantitative understanding of the characteristic of each failure and its severity, the response curves 𝑧1(𝑡) and 𝑧2(𝑡) are 

plotted for 25 representative sample sets of {𝑎, 𝑒} in each failure category in Figures 4.14 and 4.15. 

 

Figure 4.14 Response plot of 𝑧1(𝑡) corresponding to 25 representative realizations of {𝑎, 𝑒} for each failure type. The 

red lines denote the safety limits. 

 

Figure 4.15 Response plot of 𝑧2(𝑡) corresponding to 25 representative realizations of {𝑎, 𝑒} for each failure type. The 

red lines denote the safety limits. 

From the figures, it can be seen that the failure type of the worst severity is that of 𝑔1, 𝑔2, 𝑔3 ≥ 0 where it can be 
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seen that the plots for 𝑧1(𝑡) and 𝑧2(𝑡) present an unstable behavior with an increasing amplitude as time 𝑡 increases. 

This results in the largest degree of deviation from the safety limits which causes the aforementioned failure type to 

contribute the most towards the severity values of 𝑠1, 𝑠2, and 𝑠3. In addition, it can also be observed that the 𝑧2(𝑡) plot 

for failure type 𝑔1, 𝑔2 ≥ 0 also exhibit an increasing amplitude with time, although still within the safety limits and 

not as pronounced as that for 𝑔1, 𝑔2, 𝑔3 ≥ 0. Such unstable behavior is due to the common failure of 𝑔1 which concerns 

the stability of the system’s behavior. Hence, it is important to identify a new design point 𝜃𝑛𝑒𝑤 in Section 4.5 so that 

the likelihood of occurrence of failure types 𝑔1, 𝑔2 ≥ 0 and 𝑔1, 𝑔2, 𝑔3 ≥ 0 is as close to zero as possible. 

To identify the representative realizations of 𝛿 ∈ 𝐴 × 𝐸 having a comparatively large likelihood near the failure 

domain, the methodology is as follows: For each 𝑖𝑔, realizations of {𝑎, 𝑒} from 𝑈𝑀𝑦1
2  which correspond to the top 500 

numerically least negative matrix elements of 𝑔𝑖𝑔
 are identified. These realizations will be classified as those “near” 

the failure domain. Following this, the likelihood values of the identified {𝑎, 𝑒} are computed by calculating the PDF 

value of the SDF for the corresponding realization of 𝑎. This generates 500 values of likelihood from which the sample 

set {𝑎, 𝑒} having the top five-percentile likelihood values are identified. Let these sample sets be denoted as {𝑎, 𝑒}
𝑛𝑓

𝑔𝑖𝑔
. 

This yields 25 sets of {𝑎, 𝑒}
𝑛𝑓

𝑔𝑖𝑔
 remaining that will constitute the realizations with comparatively large likelihood near 

the failure domain of 𝑔𝑖𝑔
. This procedure is implemented for 𝑔1 to 𝑔3 and the resulting 25 sets of  {𝑎, 𝑒}

𝑛𝑓

𝑔𝑖𝑔
 identified 

for each 𝑔𝑖𝑔
 are presented as parallel plots in Figure 4.16 and whose corresponding response plots of 𝑧1(𝑡) and 𝑧2(𝑡) 

are illustrated in Figure 4.17. 

 

Figure 4.16 Parallel plots of {𝑎, 𝑒}𝑛𝑓
𝑔1 , {𝑎, 𝑒}𝑛𝑓

𝑔2 , and {𝑎, 𝑒}𝑛𝑓
𝑔3  from 𝑈𝑀𝑦1

2 . 
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Figure 4.17 Response plot of 𝑧1(𝑡) and 𝑧2(𝑡) of {𝑎, 𝑒}𝑛𝑓
𝑔1 , {𝑎, 𝑒}𝑛𝑓

𝑔2 , and {𝑎, 𝑒}𝑛𝑓
𝑔3  from 𝑈𝑀𝑦1

2  near the respective 

failure domains. The red lines denote the safety limits. 

From Figure 4.17, the following observations are made: Near the failure domain of 𝑔1, the response plots 𝑧1(𝑡) 

and 𝑧2(𝑡) are all well-within the safe limits which indicates that the sample sets {𝑎, 𝑒}𝑛𝑓
𝑔1  all lie within the safe domain 

near the boundary of 𝑔1 ≥ 0 domain. Near the failure domain of 𝑔2, the response plots 𝑧1(𝑡) and 𝑧2(𝑡) are all within 

safe limits as well. Based on the fast-decaying characteristics of the response plot for 𝑧2(𝑡) and the stable behavior of 

the plot for 𝑧1(𝑡), it can be inferred that the requirement of 𝑔1 is at the same time satisfied. However, it is noted that at 

approximately 𝑡 ∈ [2.7, 2.9] s, the plots are extremely close to the lower and upper boundaries respectively, verifying 

that the realizations of {𝑎, 𝑒}𝑛𝑓
𝑔2  are in the safe domain near the boundary of 𝑔2 ≥ 0. Finally, near the failure domain of 

𝑔3, it can be seen from the plot of 𝑧1(𝑡) that the curves exceeded the safety limits at approximately 𝑡 = {2.6, 2.9, 3.0} s 

which indicates the failure of 𝑔2. On the other hand, the plot of 𝑧2(𝑡) are all within the safety limits although it can be 

observed that the plots at approximately 𝑡 = 6 s are extremely close to the upper boundary. Due to the stable behavior 

of the plots of 𝑧1(𝑡) and 𝑧2(𝑡), it can be inferred that the requirement of 𝑔1 is satisfied. Hence, it can be concluded that 

the realizations of {𝑎, 𝑒}𝑛𝑓
𝑔3  lie within the domain of 𝑔2 ≥ 0 near the boundary of 𝑔2, 𝑔3 ≥ 0. 

4.5    Task D: Reliability-based design identification 

The objective of this task is to identify a new design point 𝜃𝑛𝑒𝑤 such that the likelihood of failure types 𝑔2, 𝑔3 ≥

0 and 𝑔1, 𝑔2, 𝑔3 ≥ 0 occurring is reduced to as close to zero as possible given that such failures are responsible for the 
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unstable behavior of the system. To achieve this, 𝜃𝑛𝑒𝑤 has to be optimized so that it satisfies the following conditions: 

(1) Minimize the upper-bound of 𝑅; 

(2) Reduce the worst-case severity metric 𝑠 defined as (Gray et al, 2020): 

𝑠(𝜃) = max
𝑒∈𝐸

𝔼[𝑤|𝑤 ≥ 0] ∙ ℙ(𝑤 ≥ 0) (4.23) 

To perform the optimization procedure, the generalized non-intrusive imprecise stochastic simulation (NISS) method 

is employed to approximate a solution to 𝜃𝑛𝑒𝑤 (Song et al., 2019). For the benefit of the readers, a description to the 

generalized NISS is provided in Section 4.5.1. 

4.5.1 Generalized non-intrusive imprecise stochastic simulation 

The generalized NISS approach provides a surrogate model for computing 𝑅 through the random sampling high-

dimensional model representation (RS-HDMR) decomposition defined as: 

𝑅(𝑒, 𝜃) = 𝑅0 + ∑ 𝑅𝐸𝑖𝑒
(𝑒𝑖𝑒

)

4

𝑖𝑒

+ ∑ 𝑅𝐸𝑖𝑒𝑗𝑒
(𝑒𝑖𝑒𝑗𝑒

)

1≤𝑖𝑒<𝑗𝑒≤4

+ ∑ 𝑅�̃�𝑖𝜃
(𝜃𝑖𝜃

)

9

𝑖𝜃

+ ∑ 𝑅�̃�𝑖𝜃𝑗𝜃
(𝜃𝑖𝜃𝑗𝜃

)

1≤𝑖𝜃<𝑗𝜃≤9

+ ∑ 𝑅𝐸𝑖𝑒�̃�𝑗𝜃
(𝑒𝑖𝑒

𝜃𝑗𝜃
)

1≤𝑖𝑒≤4,1≤𝑖𝜃≤9

+ ⋯ + 𝑅𝐸�̃�(𝑒, 𝜃) 

(4.24) 

where the constant terms and the first two order component functions are defined respectively as: 

𝑅0 = 𝔼𝐸�̃�[𝑅(𝑒, 𝜃)]  

𝑅𝐸𝑖𝑒
(𝑒𝑖𝑒

) = 𝔼𝐸−𝑖𝑒�̃�[𝑅(𝑒, 𝜃)] − 𝑅0  

𝑅𝐸𝑖𝑒𝑗𝑒
(𝑒𝑖𝑒𝑗𝑒

) = 𝔼𝐸−𝑖𝑒𝑗𝑒�̃�[𝑅(𝑒, 𝜃)] − 𝑅𝐸𝑖𝑒
− 𝑅𝐸𝑗𝑒

− 𝑅0  

𝑅�̃�𝑖𝜃
(𝜃𝑖𝜃

) = 𝔼𝐸�̃�−𝑖𝜃
[𝑅(𝑒, 𝜃)] − 𝑅0  

𝑅�̃�𝑖𝜃𝑗𝜃
(𝜃𝑖𝜃𝑗𝜃

) = 𝔼𝐸�̃�−𝑖𝜃𝑗𝜃
[𝑅(𝑒, 𝜃)] − 𝑅�̃�𝑖𝜃

− 𝑅�̃�𝑗𝜃
− 𝑅0  

𝑅𝐸𝑖𝑒�̃�𝑗𝜃
(𝑒𝑖𝑒

𝜃𝑗𝜃
) = 𝔼𝐸−𝑖𝑒�̃�−𝑖𝜃

[𝑅(𝑒, 𝜃)] − 𝑅𝐸𝑖𝑒
− 𝑅�̃�𝑗𝜃

− 𝑅0  

Here, 𝔼𝐸�̃�[∙] denotes the expectation operator as a function of 𝑒 and 𝜃, 𝔼𝐸−𝑖𝑒�̃�[∙] denotes the expectation operator as a 
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function of 𝜃 and the three-dimensional vector 𝑒−𝑖𝑒
 which contains all elements of 𝑒 except those of component 𝑒𝑖𝑒

, 

𝔼𝐸�̃�−𝑖𝜃
[∙] denotes the expectation operator as a function of 𝑒 and the (𝑛𝜃 − 1)-dimensional vector 𝜃−𝑖𝜃

 which contains 

all elements of 𝜃 except those of component 𝜃𝑖𝜃
, 𝔼𝐸−𝑖𝑒𝑗𝑒�̃�[∙] means the expectation operator as a function of 𝜃 and all 

elements of 𝑒 except 𝑒𝑖𝑒𝑗𝑒
, 𝔼𝐸�̃�−𝑖𝜃𝑗𝜃

[∙] indicates the expectation operator as a function of 𝜃 and all elements of 𝑒 except 

𝜃𝑖𝜃𝑗𝜃
, and 𝔼𝐸−𝑖𝑒�̃�−𝑖𝜃

[∙] denotes the expectation operator as a function of 𝑒−𝑖𝑒
 and 𝜃−𝑖𝜃

. 

The above component functions are approximated numerically via the extended Monte Carlo simulation (EMCS) 

(Wei et al., 2014; Rezaie et al., 2007) of 𝑁𝐸𝑀𝐶𝑆 = 50000 realizations of the joint sample sets of {𝑎𝑖 , 𝑒𝑖, 𝜃𝑖}𝑖=1,⋯,𝑁𝐸𝑀𝐶𝑆
. 

Realizations of 𝑎𝑖 and 𝑒𝑖 can be generated from 𝑈𝑀𝑦1
2  while those of 𝜃𝑖 are generated from its hyper-rectangular space 

�̃� which will be discussed later in this section. From these realizations, a bootstrap scheme is implemented to compute 

the variance of each estimator, with the number of bootstrap replications set to be 20 in this work. This allows for the 

computation of the Sobol’ sensitivity index (Sobol’, 2001; Saltelli et al., 2008) for each of these component function 

as a by-product of the generalized NISS technique (Song et al., 2019). Given that the Sobol’ sensitivity indices measure 

the relative importance of each component function, the component functions with relatively small Sobol’ index can 

be neglected (Sobol’, 2001). As such, based on initial analysis, it was found that we can just consider the first-order 

component functions in the optimization procedure. The readers can refer to Song et al. (2019) for more details to the 

generalized NISS technique. 

It should be noted that the generalized NISS has been originally introduced for the efficient propagation of hybrid 

uncertainties avoiding double-loop Monte Carlo method. A key aspect of the generalized NISS is that it allows for an 

explicit formulation of the functional dependence of the probability of failure with respect to the epistemic parameters, 

one parameter at a time. In this work, the design variables are treated like epistemic parameters in the NISS framework, 

simplifying the optimization problem to a set of one-dimensional searches. However, no bounds are given to the design 

parameters limiting the optimization, thus the optimization procedure is carried out for 𝜃𝑛𝑒𝑤 in an iterative approach 

such that the first-order component function 𝑅�̃�𝑖𝜃
 is minimized which is assumed to also minimize the upper bound of 

𝑅 within the target design space. Based on this assumption, the procedure is undertaken as follows: 

(1) At iteration 𝑗 = 1, the initial nine-dimensional hyper-rectangle of the design space �̃�𝑗  is given so that component 

𝑖𝜃  has bounds ±𝑁𝑏
𝑗

= 5 % of its nominal value: [0.95, 1.05] × (𝜃𝑏𝑎𝑠𝑒)𝑖𝜃
; 

(2) Identify the candidate optimal design point 𝜃𝑐
𝑗
 such that 𝜃𝑐

𝑗
∈ �̃�𝑗; 
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(3) If a unique local minimum value of 𝑅�̃�𝑖𝜃
 exists for a particular design parameter (𝜃𝑐

𝑗
)

𝑖𝜃
, the parameter will then 

be assigned that fixed value and will not be updated in subsequent iterations. Let the total number of such optimized 

design parameters up to iteration 𝑗 be denoted by 𝑁𝑜𝑝
𝑗

, for 𝑁𝑏
𝑗

= 0, ⋯ , 9; 

(4) Define the new design space �̃�𝑗+1 whose (9 − 𝑁𝑜𝑝
𝑗

)-dimensional hyper-rectangle is defined such that component 

𝑖𝜃 , which is not optimized, has increased bounds of ±𝑁𝑏
𝑗+1

= (𝑗 + 1) × 𝑁𝑏
𝑗=1

 % of its nominal value; 

(5) Set 𝑗 = 𝑗 + 1 and repeat steps 2 to 4 until the local minimum of 𝑅�̃�𝑖𝜃
 is identified for all possible 𝜃𝑖𝜃

 for which an 

optimal point exists. 

The entire recursive optimization procedure involved six iterations and as a representative graphical illustration, 

Figure 4.18 presents the optimization result obtained at iteration 𝑗 = 3. From the figure, it is observed that the local 

optimal points corresponding to the local minimum of 𝑅�̃�𝑖𝜃
 are identified for 𝜃3 and 𝜃7. In addition, it can also be seen 

that the remaining components of 𝜃 tend to be increasing or decreasing monotonically in general. For these components, 

their bounds will be increased according to step 4 of the NIIS optimization procedure, and subsequently step 5, until 

the local optimal points are identified for all nice components of 𝜃. 

 

Figure 4.18 Results of the optimization of each design parameter for 𝜃𝑛𝑒𝑤 from the generalized NISS method at 

iteration 𝑗 = 3. The red dotted lines denote the 95 % confidence interval bounds. 
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4.5.2 Reliability analysis of new design 

The failure probability and severity computation on 𝜃𝑛𝑒𝑤 is done according to 𝑈𝑀𝑦1
2  following the approach that 

is outlined in Section 4.4.1. The numerical results to the reliability metrics 𝑅𝑖𝑔
,  𝑅, and 𝑠𝑖𝑔

 are presented in Table 4.14. 

From the table, it can be seen that the upper-bounds of the failure probabilities 𝑅1 to 𝑅3 as well as the severities 𝑠1 to 

𝑠3 have been reduced tremendously which validates the improvement of the design 𝜃𝑛𝑒𝑤 over 𝜃𝑏𝑎𝑠𝑒. This can be seen 

from the three-fold reduction in the upper-bound of 𝑅1, two-fold reduction in 𝑅2 and 𝑅, and a ten-fold reduction in 𝑠 

between 𝜃𝑏𝑎𝑠𝑒 and 𝜃𝑛𝑒𝑤. Such results highlight the effectiveness of the optimization procedure and the identified 𝜃𝑛𝑒𝑤. 

Next, the sensitivity analysis is performed on the epistemic parameters 𝑒1 to 𝑒4 where they are ranked according 

to the maximum possible reduction on 𝑅(𝜃𝑛𝑒𝑤) bounds. The methodology follows that outlined in Section 4.4.2 and 

the resulting illustrative plots from the analysis is shown in Figure 4.19. From which, the sensitivity ranking of 𝑒1 to 

𝑒4, together with the corresponding reduced bounds of 𝑅(𝜃𝑛𝑒𝑤), are presented in Table 4.8. From the results, it can be 

observed that the ranking order is consistent with the results obtained in Section 4.4.2 (i.e., see Table 4.7). 

 

Figure 4.19 Results of the reduced 𝑅(𝜃𝑛𝑒𝑤) bounds for different pinched intervals for 𝑒1 to 𝑒4. The red lines 

represent the initial bounds of [0.0058, 0.1418], while the green bars represent the reduced bounds. 

Table 4.8 The ranking order of the epistemic model parameters based on the maximum possible reduction in 

𝑅(𝜃𝑛𝑒𝑤) interval according to 𝑈𝑀𝑦1
2 . 

Rank Parameter Pinched bounds  𝑅(𝜃𝑏𝑎𝑠𝑒) 

 Before pinching After pinching  

1 𝑒2 [0.7613, 0.7825]  [0.0058, 0.1418] [0.0183, 0.0798] 
2 𝑒1 [0.6257, 0.6433]  [0.0058, 0.1418] [0.0153, 0.0850] 
3 𝑒3 [0.4404, 0.4575]  [0.0058, 0.1418] [0.0189, 0.0960] 
4 𝑒4 [0.9826, 1.0025]  [0.0058, 0.1418] [0.0216, 0.1049] 
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Finally, the failure analysis is performed on 𝜃𝑛𝑒𝑤 following the methodology that is outlined in Section 4.4.3. The 

resulting statistics summarizing the number of realizations of {𝑎, 𝑒} in each failure category in presented in Table 4.12 

where it can be seen that likelihood of occurrences for all failure types have been reduced significantly, most notably 

for failure types 𝑔3 ≥ 0, 𝑔1, 𝑔3 ≥ 0, and 𝑔1, 𝑔2, 𝑔3 ≥ 0 which have been reduced to zero. Failure type 𝑔2 ≥ 0 still has 

the highest likelihood because it has the highest number of realizations among the different failure types as per 𝜃𝑏𝑎𝑠𝑒. 

Following which, the sample sets {𝑎, 𝑒}
𝑛𝑓
𝑔1 , {𝑎, 𝑒}

𝑛𝑓
𝑔2 , and {𝑎, 𝑒}

𝑛𝑓
𝑔3  are identified and the resulting parallel plots are given 

in Figure 4.20 while the response plots of 𝑧1(𝑡) and 𝑧2(𝑡) are presented in Figure 4.21. 

 

Figure 4.20 Parallel plots of {𝑎, 𝑒}𝑛𝑓
𝑔1 , {𝑎, 𝑒}𝑛𝑓

𝑔2 , and {𝑎, 𝑒}𝑛𝑓
𝑔3  from 𝑈𝑀𝑦1

2 . 

As shown in Figure 4.21, the response plots of 𝑧1(𝑡) for {𝑎, 𝑒}𝑛𝑓
𝑔1  exceeds the upper-bound of the safe boundary 

at approximately 𝑡 = 2.6 s which indicates the presence of failure 𝑔2 ≥ 0. The plots for 𝑧2(𝑡), on the other hand, are 

well-within the safety limits. This means that the sample set {𝑎, 𝑒}𝑛𝑓
𝑔1  lie within the domain of 𝑔2 ≥ 0 near the boundary 

of 𝑔1 ≥ 0. For {𝑎, 𝑒}𝑛𝑓
𝑔2 , the response plots of 𝑧1(𝑡) and 𝑧2(𝑡) are within the safety limits although it can also be seen 

that the 𝑧1(𝑡) plots are extremely close to both the upper- and lower-bounds of the safe boundary which verifies that 

the identified {𝑎, 𝑒}𝑛𝑓
𝑔2  are near 𝑔2 ≥ 0. As seen from their stable behavior, it can be inferred that the requirement 𝑔1 is 

satisfied. This indicates that the sample set {𝑎, 𝑒}
𝑛𝑓
𝑔2  lie within the safe domain near the boundary of 𝑔2 ≥ 0. Moreover, 

for {𝑎, 𝑒}𝑛𝑓
𝑔3 , the response plots of 𝑧1(𝑡) exceeds the upper- and lower-bounds of the safe boundary at approximately 

𝑡 = {2.5, 2.7, 2.8, 3.1, 3.4} s which indicates the response of failure 𝑔2 ≥ 0. The plots for 𝑧2(𝑡), on the other hand, are 
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well-within the safety limits. Given the stable behavior of the plots, it can be inferred that the requirement of 𝑔1 is at 

the same time satisfied. This implies that the sample set {𝑎, 𝑒}𝑛𝑓
𝑔3  lie within the domain of 𝑔2 ≥ 0 near the boundary of 

𝑔2, 𝑔3 ≥ 0. 

 

Figure 4.21 Response plot of 𝑧1(𝑡) and 𝑧2(𝑡) of {𝑎, 𝑒}𝑛𝑓
𝑔1 , {𝑎, 𝑒}𝑛𝑓

𝑔2 , and {𝑎, 𝑒}𝑛𝑓
𝑔3  from 𝑈𝑀𝑦1

2  near the respective 

failure domains. The red lines denote the safety limits. 

A quantitative study is also done for the different failure types with non-zero likelihood. As per what was done in 

Section 4.4.3, the response plots of 𝑧1(𝑡) and 𝑧2(𝑡) for the 25 representative sample sets of {𝑎, 𝑒} for each failure type 

(five for failure type 𝑔2, 𝑔3 ≥ 0) are presented in Figures 4.22 and 4.23 respectively. From Figure 4.23, it can be seen 

that the unstable behavior in 𝑧2(𝑡) for failure type 𝑔1, 𝑔3 ≥ 0 is still present along with those showing a stable behavior. 

In addition, Figure 4.22 shows that the 𝑧1(𝑡) response plots for failure type 𝑔1, 𝑔3 ≥ 0 exceeds the safety limits to the 

largest extent relative to the other failure types which indicates that the failure type contributes the most to the severity 

𝑠1, 𝑠2, and 𝑠. This motivates the further necessity for identifying 𝜃𝑓𝑖𝑛𝑎𝑙  such that the number of realizations of {𝑎, 𝑒} 

corresponding to such unstable behavior is minimized as much as possible. The identification of 𝜃𝑓𝑖𝑛𝑎𝑙  will be done in 

Section 4.6.3. 

4.6    Task E: Model update and design tuning 

The objective of this task is to improve the current UM and identify an improved design point 𝜃𝑓𝑖𝑛𝑎𝑙  based on the 

observations of 𝑧1(𝑡) and 𝑧2(𝑡) from the integrated system corresponding to 𝜃𝑛𝑒𝑤. 
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Figure 4.22 Response plot of 𝑧1(𝑡) corresponding to 25 representative realizations of {𝑎, 𝑒} for each failure type (five 

for failure type 𝑔2, 𝑔3 ≥ 0). The red lines denote the safety limits. 

 

Figure 4.23 Response plot of 𝑧2(𝑡) corresponding to 25 representative realizations of {𝑎, 𝑒} for each failure type (five 

for failure type 𝑔2, 𝑔3 ≥ 0). The red lines denote the safety limits. 

4.6.1 Model calibration 

The model calibration is performed with the Black-box model function �̂� = 𝑧(𝑎, 𝑒, 𝜃𝑛𝑒𝑤 , 𝑡) using the new data 

sequence 𝐷2 = {𝑧𝑙(𝑡)}𝑙=1,⋯,100. This is done following the approach that is outlined in Section 4.2.3.2, but with bounds 
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of the uniform priors for the respective epistemic parameters defined by the hyper-rectangle 𝐸1 and 𝑃(𝑫|𝜣, 𝑴) having 

configurations 𝑛𝑏 = 5 and 𝑁sim = 500 to reduce the computational burdens. Let the calibrated UM be denoted 𝑈𝑀𝑧0 

whose resulting p-box representation of the marginal distributions of 𝑓𝑎 is shown in Figure 4.32 and whose uncertainty 

bounds over 𝑒 are presented in Table 4.10. To validate the model calibration results, the resulting model output bands 

of �̂� from 𝑈𝑀𝑧0 (in blue) are illustrated in Figures 4.28 and 4.30. 

4.6.1.1   Results and discussion 

In both figures, it is observed that the model output bands of 𝑈𝑀𝑧0 (in blue) generally encloses the data 𝐷2 (in 

red) which indicates that the model calibration procedure, via Bayesian model updating, was done satisfactorily. From 

Figure 4.30, however, some unstable behavior is observed in the response of 𝑧2(𝑡). For investigating this, a scatterplot 

matrix of the aleatory samples is shown in Figure 4.24 where it is seen that the samples responsible for such unstable 

behavior are predominantly located into the corners of the aleatory space as seen from the following two-dimensional 

space: (1) 𝑎1 vs 𝑎2; (2) 𝑎1 vs 𝑎3; (3) 𝑎2 vs 𝑎2. There is a total of 165 of such aleatory samples and in order to reduce 

the number of samples from those regions, correlations need to be introduced such that a negative correlation exists 

between 𝑎1 and 𝑎2 (i.e., 𝐶1,2), while a positive correlation exists between 𝑎1 and 𝑎3 (i.e., 𝐶1,3) as well as between 𝑎2 

and 𝑎3 (i.e., 𝐶2,3). These correlations will be modelled using a Gaussian copula function (Nelsen, 2006). 

 

Figure 4.24 Scatterplot matrix of the aleatory samples from 𝑈𝑀𝑧0 without considering correlations. The plots in blue 

contribute to the stable realizations while those in red contribute to the unstable realizations of 𝑧2(𝑡). 



4.6 Task E: Model update and design tuning                                                                              133 

 

To identify the correlation parameters 𝐶1,2, 𝐶1,3, and 𝐶2,3, a second round of Bayesian model updating is carried 

out on 𝑈𝑀𝑧0 with the inferred parameters being the aforementioned correlation parameters. The prior distributions and 

bounds for 𝐶1,2, 𝐶1,3, and 𝐶2,3 are given in Table 4.9. This procedure is done keeping the p-box of 𝑓𝑎 and the uncertainty 

bounds of 𝑒 determined in the previous round of Bayesian model updating as fixed models for 𝑎 and 𝑒. The set-up of 

𝑃(𝑫|𝜣, 𝑴) follows that used to calibrate 𝑈𝑀𝑧0 initially. The resulting histograms for 𝐶1,2, 𝐶1,3, and 𝐶2,3 are illustrated 

in Figure 4.25 from which the most probable value (MPV) for the respective correlation parameters are obtained and 

presented in Table 4.9. 

Table 4.9 Summary of the prior distributions and the resulting MPVs for the respective correlation parameters. 

Parameter 𝐶1,2 𝐶1,3 𝐶2,3 

Prior distribution parameters 𝑈[−1, 0] 𝑈[0, 1] 𝑈[0, 1] 
MPV -0.0427 0.2064 0.0316 

 

Figure 4.25 Histograms for 𝐶1,2, 𝐶1,3, and 𝐶2,3 obtained from 𝑃(𝜣|𝑫, 𝑴). 

To illustrate the effectiveness of introducing correlations, 𝑈𝑀𝑧0 is updated to consider 𝐶1,2, 𝐶1,3, and 𝐶2,3 whose 

values correspond to the MPVs as shown in Table 4.9. This is done following the set-up which was utilized to calibrate 

𝑈𝑀𝑧0 prior to the introduction of correlations. The resulting scatterplot matrix is presented in Figure 4.26 which shows 

that the number of aleatory samples corresponding to the unstable realizations of 𝑧2(𝑡) has been reduced substantially 

from 165 to 39. 



134         Chapter 4 Research article 3: Robust optimization of a dynamic Black-box system under severe uncertainty: 

A distribution-free framework 

 

 

Figure 4.26 Scatterplot matrix of the aleatory samples from 𝑈𝑀𝑧0 after considering correlations. The plots in blue 

contribute to the stable realizations while those in red contribute to the unstable realizations of 𝑧2(𝑡). 

4.6.2 Uncertainty reduction 

From the resulting bounds of the epistemic space according to 𝑈𝑀𝑧0 as shown in Table 4.10, it is observed that 

the uncertainty bounds of 𝑒4 is the largest among the epistemic parameters. This is attributed to the lack of information 

provided by 𝑒4 to which evidence is given by the sensitivity analysis done in Section 4.3.3 (i.e., see Table 4.5) which 

shows that 𝑒4 is still the least sensitive parameter even after refinement. Because of substantial knowledge of its upper-

bound, as indicated by the histograms of 𝑒4 in Figures 4.12 and 4.33 which are truncated at the upper-bound, a request 

is made for the refinement of the lower-bound of 𝑒4. 

Table 4.10 Updated epistemic space 𝐸 for 𝑒1 to 𝑒4 according to the respective UMs. 

Updated model 𝑒1 𝑒2 𝑒3 𝑒4 

𝑈𝑀𝑧0 [0.5961, 0.7319] [0.7790, 0.9337] [0.4777, 0.5670] [0.8521, 1.1664] 
𝑈𝑀𝑧1 [0.4384, 0.5795] [0.5350, 0.5704] [0.3353, 0.5670] [0.9027, 0.9497] 

Based on the sensitivity analysis done in Section 4.3.3, 4.4.2, and 4.5.2, the results show that 𝑒2 has consistently 

been ranked the most sensitive epistemic parameter. In addition to this, Figure 4.27 illustrates the parallel plots of the 

samples according to 𝑈𝑀𝑧0 from which it can be observed that the lower-bound of the interval for 𝑒2 is increased after 

introducing correlation with the identified values of 𝐶1,2, 𝐶1,3, and 𝐶2,3 (in blue) compared to the absence of correlation 

(in red). In fact, the change in interval of 𝑒2 is the most substantial compared to the other epistemic parameters after 
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correlation is introduced to the 𝑈𝑀𝑧0. This can further substantiate the evidence that 𝑒2 is the most sensitive epistemic 

parameter whose refinement could furthermore reduce the unstable realizations of 𝑧2(𝑡). For these reasons, the final 

refinement request is made for the upper-bound of 𝑒2 given that there is substantial knowledge in its lower-bound as 

observed from Figure 4.27. The resulting epistemic space, with the refined 𝑒2 and 𝑒4 bounds, constitutes the hyper-

rectangle epistemic space denoted as 𝐸2. 

 

Figure 4.27 Parallel plots of the samples from 𝑈𝑀𝑧0 corresponding to the unstable realizations before considering 

correlations (in red) and after considering correlations (in blue). 

Following this, a third round of Bayesian model updating is performed with bounds of the uniform priors for the 

respective epistemic parameters defined by the hyper-rectangle 𝐸2 and the correlation parameters taking fixed values 

as defined in Table 4.9. The approach follows that outlined in Section 4.6.1 from which 𝑈𝑀𝑧0 was obtained, however, 

this time, accounting for the identified correlation parameters in the aleatory space. Let the refined UM be denoted as 

𝑈𝑀𝑧1 whose uncertainty bounds over 𝑒 are presented in Table 4.10. In addition, due to substantial information on the 

parameters of the SDF, their respective MPV values are utilized to define the final CDF representation of the marginal 

distributions of 𝑓𝑎 which are illustrated in Figure 4.32. Finally, to validate the model calibration results, the resulting 

model output bands of �̂� from 𝑈𝑀𝑧1 (in green) are illustrated in Figures. 4.28 and 4.30. 

4.6.2.1   Results and discussion 

In both figures, it is observed that the model output bands of 𝑈𝑀𝑧1 (in green) generally encloses the data 𝐷2 (in 

red) which indicates that the model calibration procedure was dene satisfactorily. From Figure 4.30, it can also be seen 
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that there is no unstable response behavior of 𝑧2(𝑡) which indicates that the refinement procedure has removed all the 

remaining unstable realizations. Figures 4.29 and 4.31 illustrate the p-boxes of the model output of 𝑈𝑀𝑧0 (i.e., before 

accounting for correlations) and 𝑈𝑀𝑧1 at time-slices 𝑡 = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} 𝑠 for 𝑧1(𝑡) and 𝑧2(𝑡) respectively. 

From the figures, it can be seen that the p-boxes obtained from the respective UMs generally enclose and follow the 

trend of the ECDF defined by 𝐷2 in general. This further highlights the effectiveness of the refinement procedure that 

is undertaken in this task and validates the results obtained by 𝑈𝑀𝑧1. 

 

Figure 4.28 Output band from �̂� according to 𝑈𝑀𝑧0 without correlations (in blue) and 𝑈𝑀𝑧1 (in green) along with the 

data sequence 𝐷2 (in red) after calibration. The black lines denote the safety limits. 

 

Figure 4.29 P-boxes of the model output from �̂� obtained from 𝑈𝑀𝑧0 without correlations (in blue) and 𝑈𝑀𝑧1 (in 

green) at various time slices 𝑡 = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} 𝑠. The red ECDF denotes the distribution of the data 𝐷2. 
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Figure 4.30 Output band from �̂� according to 𝑈𝑀𝑧0 without correlations (in blue) and 𝑈𝑀𝑧1 (in green) along with the 

data sequence 𝐷2 (in red) after calibration. The black lines denote the safety limits. 

 

Figure 4.31 P-boxes of the model output from �̂� obtained from 𝑈𝑀𝑧0 without correlations (in blue) and 𝑈𝑀𝑧1 (in 

green) at various time slices 𝑡 = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} 𝑠. The red ECDF denotes the distribution of the data 𝐷2. 

Figure 4.32 shows the resulting p-box quantifying the uncertainty over the marginal distributions of 𝑓𝑎 by 𝑈𝑀𝑧0 

as well as the final CDF for 𝑓𝑎 by 𝑈𝑀𝑧1. From the figure, the p-boxes (in blue) generally encloses and reveal a good 

degree of agreement with the final CDF (in green) which verifies the results of 𝑈𝑀𝑧1. Such observation also provides 

good evidence that the final CDF illustrated in Figure 4.32 is a good representation of the true CDF of 𝑓𝑎. 

Finally results from Table 4.10 presents that the uncertainty bounds over 𝑒 according to 𝑈𝑀𝑧1, with the exception 

of 𝑒3, is greatly narrower than those according to 𝑈𝑀𝑧0. For the case of 𝑒1 and 𝑒2, their bounds according to 𝑈𝑀𝑧1 are 
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not enclosed within that defined by 𝑈𝑀𝑧0. Such observation is supported by Figure 4.33 where it can be seen that there 

is little to no overlap between the histograms for 𝑒1 and 𝑒2 obtained before and after refinement. This is due to the fact 

that the initial bounds of 𝑒2 defined by 𝑈𝑀𝑧0 lie entirely outside the refined bounds provided by the challenge hosts. 

As such, when the calibration was performed once again with such new information, the effect of such refinement is 

significant on 𝑒1 which results in the epistemic parameter also having reduced bounds which largely outside the initial 

bounds defined by 𝑈𝑀𝑧0. This observation also suggests a significant correlation between 𝑒1 and 𝑒2. 

 

Figure 4.32 P-box for 𝑎1 to 𝑎5 obtained from the respective UMs. 

 

Figure 4.33 Histograms for 𝑒1 to 𝑒4 obtained before refinement (in blue) and after refinement (in green). 
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4.6.3 Identification and reliability analysis of final design 

The objectives of this task are: (1) to identify the final design point 𝜃𝑓𝑖𝑛𝑎𝑙; and (2) perform the reliability analysis 

on 𝜃𝑓𝑖𝑛𝑎𝑙  according to 𝑈𝑀𝑧1. 

The optimization procedure to identify 𝜃𝑓𝑖𝑛𝑎𝑙  follows the methodology shown in Section 4.5.1 with 𝑁𝑏
𝑗=1

= 3 %. 

The reliability analysis was performed following the methodology outlined in Section 4.4.1. The results for 𝑅𝑖𝑔
,  

𝑅, and 𝑠𝑖𝑔
 are presented in Table 4.14. From the table, it can be seen that the upper-bounds of the failure probabilities 

𝑅1 and 𝑅3 have been reduced compared to 𝜃𝑛𝑒𝑤 according to 𝑈𝑀𝑦1
2 , and that also the severities 𝑠1 to 𝑠3 have all been 

reduced to almost zero. Although the upper-bound of 𝑅2 shows a small increase from 𝜃𝑛𝑒𝑤 according to 𝑈𝑀𝑧1. Such 

results and observations highlight the effectiveness of the optimization procedure and the identified 𝜃𝑓𝑖𝑛𝑎𝑙 . 

Next, the sensitivity analysis is performed on the epistemic parameters 𝑒1 to 𝑒4 where they are ranked according 

to the maximum possible reduction on 𝑅(𝜃𝑓𝑖𝑛𝑎𝑙) bounds. The methodology follows that outlined in Section 4.4.2 and 

the resulting illustrative plots from the analysis is depicted in Figure 4.34. From which, the sensitivity ranking of 𝑒1 to 

𝑒4, along with the corresponding reduced bounds of 𝑅(𝜃𝑓𝑖𝑛𝑎𝑙), are presented in Table 4.11. From the results, it can be 

seen that 𝑒1 and 𝑒2 have two of the lowest sensitivities which implies that the bounds obtained for these two parameters 

are already sufficiently narrow such that no further information can be obtained on them by reducing their bounds any 

further. 

 

 Figure 4.34 Results of the reduced 𝑅(𝜃𝑓𝑖𝑛𝑎𝑙) bounds for different pinched intervals for 𝑒1 to 𝑒4. The red lines 

represent the initial bounds of [0.0028, 0.0144], while the green bars represent the reduced bounds. 
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Table 4.11 The ranking order of the epistemic model parameters based on the maximum possible reduction in 

𝑅(𝜃𝑓𝑖𝑛𝑎𝑙) interval according to 𝑈𝑀𝑧1. 

Rank Parameter Pinched bounds  𝑅(𝜃𝑏𝑎𝑠𝑒) 

 Before pinching After pinching  

1 𝑒3 [0.5274, 0.5487]  [0.0028, 0.0144] [0.0029, 0.0061] 
2 𝑒4 [0.9269, 0.9309]  [0.0028, 0.0144] [0.0040, 0.0111] 
3 𝑒2 [0.5419, 0.5454]  [0.0028, 0.0144] [0.0036, 0.0108] 
4 𝑒1 [0.5372, 0.5512]  [0.0028, 0.0144] [0.0036, 0.0109] 

Finally, the failure analysis is done on 𝜃𝑓𝑖𝑛𝑎𝑙  following the methodology outlined in Section 4.4.3. The resulting 

statistics summarizing the number of realizations of {𝑎, 𝑒} in each failure category in presented in Table 4.12 where it 

can be seen that likelihood of occurrences for all failure types have been reduced significantly from 𝜃𝑛𝑒𝑤 according to 

𝑈𝑀𝑦1
2 , except for failure types 𝑔3 ≥ 0 and 𝑔2, 𝑔3 ≥ 0 where there is an increase in the number of sample realizations 

in these failure domains. Failure type 𝑔2 ≥ 0 still has the highest likelihood as it has the highest number of realizations 

among the different failure types as per 𝜃𝑏𝑎𝑠𝑒 and 𝜃𝑛𝑒𝑤. The sample sets {𝑎, 𝑒}𝑛𝑓
𝑔1 , {𝑎, 𝑒}𝑛𝑓

𝑔2 , and {𝑎, 𝑒}𝑛𝑓
𝑔3  are identified, 

and the parallel plots are shown in Figure 4.35 while the response plots of 𝑧1(𝑡) and 𝑧2(𝑡) are shown in Figure 4.36. 

Table 4.12 Statistics of the different failures based on analysis for different design points and UMs. 

Failure type 𝜃𝑏𝑎𝑠𝑒  𝜃𝑛𝑒𝑤  𝜃𝑓𝑖𝑛𝑎𝑙  

𝑈𝑀𝑦1
2  𝑈𝑀𝑧1  𝑈𝑀𝑦1

2  𝑈𝑀𝑧1  𝑈𝑀𝑦1
2  𝑈𝑀𝑧1 

No failure 4357960 4735066  4696943 4955517  4713788 4963836 

𝑔1 ≥ 0 54827 4002  3529 22  2485 36 

𝑔2 ≥ 0 490718 75237  290863 30231  275785 34004 

𝑔3 ≥ 0 16239 126310  0 7391  0 657 

𝑔1, 𝑔2 ≥ 0 45802 1888  8660 187  7940 81 

𝑔1, 𝑔3 ≥ 0 0 0  0 0  0 0 

𝑔2, 𝑔3 ≥ 0 34256 57471  5 6652  0 1386 

𝑔1, 𝑔2, 𝑔3 ≥ 0 198 26  0 0  2 0 

Total samples 5 × 106 

From Figure 4.36, the response plots of 𝑧1(𝑡) and 𝑧2(𝑡) corresponding to {𝑎, 𝑒}𝑛𝑓
𝑔1  are all within the safety limits. 

This indicates that the sample set {𝑎, 𝑒}
𝑛𝑓
𝑔1  lie within the safe domain near the boundary of 𝑔1 ≥ 0. For {𝑎, 𝑒}

𝑛𝑓
𝑔2 , the 

response plots of 𝑧1(𝑡) and 𝑧2(𝑡) are all within the safety limits as well which indicates that the sample set {𝑎, 𝑒}𝑛𝑓
𝑔2  lie 

within the safe domain near the boundary of 𝑔2 ≥ 0. For {𝑎, 𝑒}𝑛𝑓
𝑔3 , the response plots of 𝑧1(𝑡) exceeds the upper-bounds 

of the safe boundary at approximately 𝑡 = {2.5, 2.6, 2.9, 3.0, 3.2, 3.3, 3.4} s which indicates the presence of failure of 

𝑔2 ≥ 0. The plots for 𝑧2(𝑡), on the other hand, are well-within the safety limits. Given the stable behavior of the plots, 

it can be inferred that the requirement of 𝑔1 is satisfied that indicates that the sample set {𝑎, 𝑒}𝑛𝑓
𝑔3  lie within the domain 

of  𝑔2 ≥ 0 near the boundary of 𝑔2, 𝑔3 ≥ 0. 
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Figure 4.35 Parallel plots of {𝑎, 𝑒}𝑛𝑓
𝑔1 , {𝑎, 𝑒}𝑛𝑓

𝑔2 , and {𝑎, 𝑒}𝑛𝑓
𝑔3  from 𝑈𝑀𝑧1 

 

Figure 4.36 Response plot of 𝑧1(𝑡) and 𝑧2(𝑡) of {𝑎, 𝑒}𝑛𝑓
𝑔1 , {𝑎, 𝑒}𝑛𝑓

𝑔2 , and {𝑎, 𝑒}𝑛𝑓
𝑔3  from 𝑈𝑀𝑧1 near the respective failure 

domains. The red lines denote the safety limits 

Figures 4.37 and 4.38 present the response plots of 𝑧1(𝑡) and 𝑧2(𝑡) respectively for the 25 representative sample 

sets of {𝑎, 𝑒} for each failure type with non-zero likelihood. From Figure 4.38, it can be seen that the unstable behavior 

in 𝑧2(𝑡) that was previously presented for failure type 𝑔2, 𝑔3 ≥ 0 are no longer presented as a result of the refinement 

procedure that was done in Section 4.6.2. In addition, Figure 4.37 shows that the 𝑧1(𝑡) response plots for failure type 

𝑔2, 𝑔3 ≥ 0 still exceeds the safety limits to the largest extent compared to the other failure types. 
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Figure 4.37 Response plot of 𝑧1(𝑡) corresponding to 25 representative realizations of {𝑎, 𝑒} for each failure type. The 

red lines denote the safety limits 

 

Figure 4.38 Response plot of 𝑧2(𝑡) corresponding to 25 representative realizations of {𝑎, 𝑒} for each failure type. The 

red lines denote the safety limits 

4.6.4 Comparison of design points 

The objective of this task is to present a quantitative comparison between the three design points 𝜃𝑏𝑎𝑠𝑒, 𝜃𝑛𝑒𝑤, and 

𝜃𝑓𝑖𝑛𝑎𝑙  on the basis of the reliability metrics 𝑅𝑖𝑔
,  𝑅, and 𝑠𝑖𝑔

. 

In Table 4.14, it can be observed that the reliability analysis results for the different 𝜃 suggests 𝜃𝑓𝑖𝑛𝑎𝑙  is the most 
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optimal design point. This is due to 𝜃𝑓𝑖𝑛𝑎𝑙  having the lowest upper-bound failure probabilities and severities in general 

compared to 𝜃𝑏𝑎𝑠𝑒 and 𝜃𝑛𝑒𝑤 based on the reliability results according to 𝑈𝑀𝑦1
2  and 𝑈𝑀𝑧1. Such results are supported 

by Figures. 4.39 and 4.40 which illustrate the resulting p-boxes for 𝑔1 to 𝑔3 according to the analysis for the different 

𝜃 by 𝑈𝑀𝑦1
2  and 𝑈𝑀𝑧1 respectively. In both figures, it can be seen that the p-boxes for 𝜃𝑓𝑖𝑛𝑎𝑙  are so that they are mainly 

lie within the safe domain of the respective requirement and that the tails of the p-boxes do not extend as far into the 

failure regions compared to 𝜃𝑏𝑎𝑠𝑒 and 𝜃𝑛𝑒𝑤. 

 

Figure 4.39 P-boxes obtained for 𝑔1, 𝑔2, and 𝑔3 for different 𝜃 according to 𝑈𝑀𝑦1
2  

 

Figure 4.40 P-boxes obtained for 𝑔1, 𝑔2, and 𝑔3 for different 𝜃 according to 𝑈𝑀𝑧1 

A further analysis was also done in order to compare the number of realizations of  {𝑎, 𝑒} for the different failure 
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types according to 𝑈𝑀𝑦1
2  and 𝑈𝑀𝑧1 and the resulting statistics are provided in Table 4.12. For both 𝑈𝑀𝑦1

2  and 𝑈𝑀𝑧1, 

the number of safe (i.e., no failure) realizations is the highest for 𝜃𝑓𝑖𝑛𝑎𝑙  which further substantiates it being the most 

optimal design point for the system. While this is achieved, a drawback of 𝜃𝑓𝑖𝑛𝑎𝑙  is the increase in realizations of failure 

types 𝑔1 ≥ 0 and 𝑔2 ≥ 0 from 𝜃𝑛𝑒𝑤 according to 𝑈𝑀𝑧1 while for the case of 𝑈𝑀𝑦1
2 , such drawback comes in the form 

of a slight increase in realizations of failure type 𝑔1, 𝑔2, 𝑔3 ≥ 0 from 𝜃𝑛𝑒𝑤. 

4.6.5 Numerical implementation and computational time 

In addressing the tasks presented in this challenge, the adopted algorithms are mainly based on random sampling 

and stochastic algorithms. Thus, the execution time fluctuates significantly due to the inherent randomness depending 

on the uncontrolled conditions such as starting samples, the evolution of the sample, etc. However, it needs to be noted 

that the random seed has not been fixed to allow for generality of the implementation and solution. Therefore, we only 

provide the approximate timing as the performance indicator: (1) the TMCMC which takes between five to eight hours 

of sampling time; (2) the adaptive pinching approach which involves less than a minute of computation time; (3) the 

double-loop Monte Carlo simulation which involves between 1.5 to 2 hours of simulation time; and (4) the NISS which 

takes only three minutes of simulation time. 

It needs to be highlighted that the above computational times are also dependent on the computational efficiency 

of the high-performance CPUs. These estimated timings may differ between different CPUs of different specifications. 

4.7    Conclusions 

Different techniques have been presented for solving the NASA UQ challenge problem. Bayesian model updating 

technique has been used to calibrate the uncertainty model by performing a stochastic update on both the distribution 

parameters as well as the epistemic parameters. Two different uncertainty models have been analyzed, each adopting 

a different selection of joint distribution function for the aleatory space: (1) beta distribution; and (2) staircase density 

functions. The use of the staircase density function provided more informative results of the distribution parameters 

and the epistemic parameters from their respective posteriors and used in the subsequent problems.  

An adaptive pinching analysis based on Tucker and Ferson (2006) was utilized to perform the sensitivity analysis 

on the epistemic parameters, providing an efficient way of identifying the largest possible reduction of the proposed 

metric by the single pinched component of the epistemic space. In doing so, it allows for a systematic, non-empirical 
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way to justify the pinched bounds and ensure that all regions of the individual components of the epistemic space are 

taken into account in the investigation of the respective effect of each epistemic parameter on the two aforementioned 

quantities. 

To perform the reliability analysis and compute the reliability metrics, probability-boxes are constructed through 

the double-loop Monte Carlo approach. From which, the probability bounds analysis was performed on the resulting 

probability-boxes to evaluate necessary bounds on the respective failure probabilities as well as the worst-case failure 

probabilities. The approach does not assume a fixed distribution on each performance and considers only the extreme 

bounds on the probability values obtained. 

Finally, to identify an optimal design point of the system, the non-intrusive imprecise stochastic simulation (Song 

et al, 2019) was utilized. The approach provides a systematic way to explore a defined hyper-rectangular space of the 

design point and identify the values of each design point parameter corresponding to the local minimum of the first-

order component function. This can allow for the optimized design point to be identified in accordance to the defined 

criteria. A summary of key results is provided in Tables 4.13-4.15. 

Table 4.13 Results to the epistemic spaces defined by the respective UMs 

Updated model 𝑒1 𝑒2 𝑒3 𝑒4 

𝑈𝑀𝑦0
1  [0.4149, 1.5271] [0.2407, 1.5673] [0.1506, 1.8001] [0.1601, 1.9236] 

𝑈𝑀𝑦0
2  [0.4351, 0.7082] [0.5583, 1.0000] [0.0721, 0.5511] [0.6066, 1.6893] 

𝑈𝑀𝑦1
1  [0.3730, 1.3457] [0.1869, 1.1529] [0.2997, 0.5570] [0.8295, 1.1664] 

𝑈𝑀𝑦1
2  [0.4674, 0.6433] [0.7607, 0.9736] [0.2865, 0.4583] [0.9627, 1.1664] 

𝑈𝑀𝑧0 [0.5961, 0.7319] [0.7790, 0.9337] [0.4777, 0.5670] [0.8521, 1.1664] 
𝑈𝑀𝑧1 [0.4384, 0.5795] [0.5350, 0.5704] [0.3353, 0.5670] [0.9027, 0.9497] 

Table 4.14 Reliability analysis results for the different design points 𝜃 with 𝑈𝑀𝑦1
2  and 𝑈𝑀𝑧1 

Design point 𝑅1(𝜃) 𝑅2(𝜃) 𝑅3(𝜃) 𝑅(𝜃) 

𝜃𝑏𝑎𝑠𝑒 (with 𝑈𝑀𝑦1
1 ) [0.0028, 0.0580] [0.0190, 0.2644] [0.0000, 0.0343] [0.0270, 0.2746] 

𝜃𝑏𝑎𝑠𝑒 (with 𝑈𝑀𝑧1) [0.0003, 0.0023] [0.0137, 0.0445] [0.0291, 0.0436] [0.0386, 0.0699] 

𝜃𝑛𝑒𝑤 (with 𝑈𝑀𝑦1
1 ) [0.0000, 0.0176] [0.0150, 0.1378] [0.0000, 0.0001] [0.0153, 0.1379] 

𝜃𝑛𝑒𝑤 (with 𝑈𝑀𝑧1) [0.0000, 0.0004] [0.0025, 0.0141] [0.0011, 0.0059] [0.0040, 0.0154] 

𝜃𝑓𝑖𝑛𝑎𝑙  (with 𝑈𝑀𝑦1
1 ) [0.0000, 0.0171] [0.0137, 0.1305] [0.0000, 0.0001] [0.0142, 0.1306] 

𝜃𝑓𝑖𝑛𝑎𝑙  (with 𝑈𝑀𝑧1) [0.0000, 0.0002] [0.0024, 0.0143] [0.0000, 0.0013] [0.0028, 0.0144] 

Design point 𝑠1(𝜃) 𝑠2(𝜃) 𝑠3(𝜃) 𝑠(𝜃) 

𝜃𝑏𝑎𝑠𝑒  (with 𝑈𝑀𝑦1
1 ) 0.0413 0.1981 0.0411 0.3779 

𝜃𝑏𝑎𝑠𝑒  (with 𝑈𝑀𝑧1) 2 × 10−6 0.0007 0.1082 0.1669 

𝜃𝑛𝑒𝑤  (with 𝑈𝑀𝑦1
1 ) 0.0009 0.0253 1 × 10−9 0.0277 

𝜃𝑛𝑒𝑤  (with 𝑈𝑀𝑧1) 3 × 10−9 2 × 10−5 0.0001 0.0001 

𝜃𝑓𝑖𝑛𝑎𝑙  (with 𝑈𝑀𝑦1
1 ) 0.0010 0.0202 1 × 10−9 0.0220 

𝜃𝑓𝑖𝑛𝑎𝑙  (with 𝑈𝑀𝑧1) 2 × 10−9 1 × 10−5 4 × 10−7 2 × 10−5 
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Table 4.15 Summary of the type of refinements requested for the respective refinement round. The superscripts “+” 

and “−” denote the refinement of the upper- and lower-bound of the epistemic parameter respectively 

Refinement round 1 2 3 4 

Refinement type {𝑒4
−} {𝑒3

−} {𝑒4
−} {𝑒2

+} 

CRediT authorship contribution statement 

Adolphus Lye: Methodology, Investigation, Software, Writing – original draft. Masaru Kitahara: Methodology, 

Investigation, Software, Writing – original draft. Matteo Broggi: Supervision, Conceptualization, Writing – review & 

editing. Edoardo Patelli: Supervision, Conceptualization, Writing – review & editing.   

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could 

have appeared to influence the work reported in this paper. 

Acknowledgments 

This work has been partially funded by the Deutsche Forschungsgemensschaft (DFG, German Research 

Foundation) – SFB1463-434502799. 

References 

Abdessalem, A. B., Dervilis, N., Wagg, D., and Worden, K. (2018). Model selection and parameter estimation in 

structural dynamics usiing approximate Bayesian computation. Mechanical System and Signal Processing, 99, 306-

325. 

Ali, T. (2012). Modeling uncertainty in risk assessment using double Monte Carlo method. International Journal of 

Engineering and Innovative Technology, 1, 114-118. 

Bai, Y., Huang, Z., and Lam, H. (2020). A distributionally robust optimization approach to the NASA Langley 

uncertainty quantification challenge. In: 30th European Safety and Reliability Conference and the 15th 

Probabilistic Safety Assessment and Management Conference.Venice, Italy. 

Beck, J. L., and Au, S. K. (2002). Bayesian updating of structural models and reliability using Markov chain Monte 

Carlo simulation. Journal of  Engineering Mechanics, 128(4), 380-391. 



References                                                                                                                                                                    147 

 

Beck, J. L., and Katafygiotis, L. S. (1998). Updating models and their uncertainties. I: Bayesian statistical framework. 

Journal of  Engineering Mechnics, 124, 455-461.  

Beer, M., Ferson, S., and Kreinovich, V. (2013). Imprecise probabilities in engineering analysis. Mechanical System 

and Signal Processing, 37, 4-29. 

Beer, M., Kougioumtzoglou, I. A., and Patelli, E. (2014). Emerging concepts and approaches for efficient and realistic 

uncertainty quantification. Maintenance and Safety of Aging Infrastructure, 121-162. 

Bi, S., Broggi, M., and Beer, M. (2019). The role of the Bhattacharyya distance in stochastic model updating. 

Mechanical System and Signal Processing, 117, 437-452.  

Bowman, A. W., and Azzalini, A. (1997). Applied smoothing techniques for data analysis, OUP Oxford. 

Ching, J., and Chen, Y. C. (2007). Transitional Markov chain Monte Carlo method for Bayesian updating, model class 

selection, and model averaging. Journal of Engineering and Mechanics, 133(7), 816-832.  

Crespo, L. G., Kenny, S. P., and Giesy, D. P. (2014). The NASA Langley multidisciplinary uncertainty quantification 

challenge. In: 16th AIAA Non-Deterministic Approaches Conference, National Harbor, Maryland. 

Crespo, L. G., Kenny, S. P., Giesy, D. P., and Stanford, B. K. (2018). Random variables with moment-matching 

staircase density function. Applied Mathematical Modelling, 64, 196-213. 

Crespo, L. G., and Kenny, S. P. (2021). The NASA Langley Challenge on Optimization Under Uncertainty. 

Mechanical System and Signal Processing, 152, 107405. 

Der Kiureghian, A., and Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter? Structural Safety, 31, 105-112. 

Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D. S., and Sentz, K. (2003). Constructing probability boxes and 

Dempster-Shafer structures. Technical Report SAND2002-4015, Sandia National Laboratories, California. 

Ferson, S., and Tucker, W. T. (2008). Sensitivity analysis using probability bounding. Reliability Engineering & System 

Safety, 91, 10-11. 

Ferson, S., Oberkampf, W., and Ginzburg, L. (2008). Model validation and preictive capability for the thermal 

challenge problem. Computer Methods in Applied Mechanics and Engineering, 197, 2408-2430. 

Gray A., Wimbush, A., de Angelis, M., Hristov, P. O., Miralles-Dolz, E., Calleja, D., and Rocchetta, R. (2020). 

Bayesian calibration and probability bounds analysis solution to the NASA 2020 UQ challenge on optimization 

under uncertainty. In: 30th European Safety and Reliability Conference and the 15th Probabilistic Safety 

Assessment and Management Conference.Venice, Italy. 

Heideman, M., Johnson, D., and Burrus, C. (1984). Gauss and the history of the fast fourier transform. IEEE ASSP 



148         Chapter 4 Research article 3: Robust optimization of a dynamic Black-box system under severe uncertainty: 

A distribution-free framework 

 

Magazine, 1, 14-21. 

Katafygiotis, L. S., and Beck, J. L. (1998). Updating models and their uncertainties. II: Model identifiability. Journal 

of  Engineering Mechnics, 124, 463-467.  

Kitahara, M., Bi, S., Broggi, M., and Beer, M. (2021). Bayesian model updating in time domain with metamodel-based 

reliability method. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil 

Engineering, 7, 04021030. 

Kitahara, M., Bi, S., Broggi, M., and Beer, M. (2022). Nonparametric Bayesian stochastic model updating with hybrid 

uncertainties. Mechanical System and Signal Processing, 163, 108165. 

Lye, A., Cicirello, A., and Patelli, E. (2021). Sampling methods for solving Bayesian model updating 

problems: A tutorial. Mechanical System and Signal Processing, 159, 107760. 

Meng, Z., Pang, Y., Pu, Y., and Wang. X. (2020). New hybrid reliability-based topology optimization method 

combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties. Computer Methods in 

Applied Mechanics and Engineering, 363, 112886. 

Nelsen, R. B. (2006). An introduction to copulas, Second edition, Springer-Verlag, New York. 

Oberkampf, W., Helton, J. C., Joslyn, C. A., Wojtkiewicz, S. F., and Ferson, S. (2004). Challenge problems: uncertainty 

in system response given unertain parameters. Reliability Engineering & System Safety, 85, 11-19. 

Panaretos, V. M., and Zemel, Y. (2019). Statistical aspects of Wasserstein distances. Annual Review of Statistic and its 

Application, 6, 405-431. 

Patelli, E., Alvarez, D. A., Broggi, M., and de Angelis, M. (2015). Uncertanty management in multidisciplinary design 

of critical safety systems. Journal of Aerospace Information Systems, 12, 140-169. 

Rezaie, K., Amalnik, M., Gereie, A., Ostadi, B., and Shakhseniaee, M. (2007). Using extended Monte Carlo simulation 

method for the improvement of risk management: Consideration of relationships between uncertainties. Applied 

Mathematics and Computation, 190, 1492-1501. 

Rocchetta, R., Broggi, M., and Patelli, E. (2018). Do we have enough data? Robust reliability via uncertainty 

quantification. Applied Mathematical Modelling, 54, 710-721. 

Roy, C., and Oberkampf, W. (2011). A comprehensive framework for verification, validation, and uncertainty 

quantification. Computer Methods in Applied Mechanics and Engineering, 200, 2131-2144. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S. (2008). 



References                                                                                                                                                                    149 

 

Global sensitivity analysis, The Primer, Wiley. 

Sobol’ I. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. 

Mathematics and Computers in Simulation, 55, 271-280. 

Song, J., Wei, P., Valdebenito, M., Bi, S., Broggi, M., Beer, M., and Lei, Z. (2019). Generalization of non-intrusive 

imprecise stochastic simulation for mixed uncertain variables. Mechanical System and Signal Processing, 134, 

106316. 

Tucker, W. T., and Ferson, S. (2006). Sensitivity in risk analysis with uncertain numbers. Technical Report SAND2006-

2801, Sandia National Laboratories, California. 

Turner, B. M., and Van Zandt, T. (2012). A tutorial on approximate Bayesian computation. Journal of Mathematical 

Psychology, 56(2), 69-85.  

Wei, P., Lu, Z., and Song, J. (2014). Extended Monte Carlo simulation for parametric global sensitivity analysis and 

optimization. AIAA Journal, 52, 867-878. 

 

 

  





                                                                                                                                                                      151 

 

Chapter 5                                                                                      

Research article 4: Distribution-free stochastic model updating of 

dynamic systems with parameter dependencies 

As has been shown in the last chapter, the distribution-free Bayesian model updating framework combining the 

staircase density functions for characterizing aleatory parameters with the Bhattacharyya distance for quantifying the 

uncertainty characteristics of the observations is a robust tool for uncertainty calibration which is effective even on the 

very challenging condition where the prior knowledge about aleatory parameters is extremely limited. Nevertheless, it 

is, in its current form, only applicable to the case where aleatory parameters are independent with each other, since the 

staircase density functions are defined for univariate random variables and cannot account for the dependence structure 

among the parameters. 

To overcome this limitation, the present article strengthens the above distribution-free stochastic model updating 

framework for the calibration of the joint probabilistic distribution of multivariate parameters by representing it as a 

Gaussian copula function. The Gaussian copula is well-known to be capable of providing an effective way to describe 

the dependence structure among multivariate parameters using the correlation matrix, and this property is in particular 

attractive for the stochastic updating problem where very large number of parameters needs to be considered as random 

variables. Moreover, for maintaining the flexibility in the description of aleatory parameters, the marginal distributions 

of the Gaussian copula function are modeled by the staircase density functions. To this end, both the hyper-parameters 

of the staircase density functions and the correlation coefficients of the correlation matrix are taken into account as the 

parameters to be inferred, and their prior distribution is defined by the moment constraints and correlation coefficient 

constraint. These parameters are then updated to the posterior by the ABC updating procedure with the Bhattacharyya 

distance. 

The proposed procedure is first demonstrated on the well-known simple engineering example utilized in the third 

chapter, where another pair of the natural frequencies are employed as the observed features to result in the correlated 

target joint distribution of the model parameters. This example clearly demonstrates how the stochastic model updating 

fails by ignoring the parameter dependency while the proposed procedure is capable of calibrating the correlated joint
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distribution precisely. The proposed procedure is also demonstrated upon another simple engineering example with the 

purpose of calibrating the multi-variate model parameters that show all of the no, negative, and positive correlations. 

Finally, it is applied to the seismic-isolated bridge pier model updating problem using simulated seismic response data 

to demonstrate its capability to recreate very complicated nonlinear structure of the observed time signals. 
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Abstract: This work proposes a distribution-free stochastic model updating framework for the calibration of the joint 

probabilistic distribution of the multivariate correlated parameters. In this framework, the marginal distributions are 

defined as the staircase density functions and the correlation structure is represented by the Gaussian copula function. 

The first four moments of the staircase density functions and the correlation coefficients of the correlation matrix are 

calibrated by an approximate Bayesian computation, in which the Bhattacharyya distance-based metric is proposed to 

define an approximate likelihood that is capable of quantifying the stochastic discrepancy between model outputs and 

observations. The feasibility of the framework is demonstrated on two illustrative examples and a followed engineering 

application to the updating of a nonlinear dynamic system using observed time histories. The results demonstrate the 

capability of the proposed updating procedure in the very challenging condition where the prior knowledge about the 

distribution of the parameters is extremely limited (i.e., no information on the marginal distribution families as well as 

the correlation structure is available). 

Keywords: Uncertainty quantification; Bayesian model updating; Staircase density function; Gaussian copula 

function; Bhattacharyya distance. 

5.1    Introduction 

The model updating has been developed as a fascinating technique to mitigate the discrepancy between model 

outputs and experimental measurements (Mottershead et al., 2011; Patelli et al., 2017). The causes of the discrepancy 

during the model updating can be generally classified into following three categories: 

 Parameter uncertainty. Model parameters, such as the geometry dimensions, boundary conditions, and material 
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properties, often cannot be exactly determined; 

 Modelling uncertainty. Simplifications or approximations, such as the linearization and frictionless mechanical 

joints, have to be made to numerically represent the physical system; 

 Measurement uncertainty. Measured quantities are always contaminated by the hard-to-control randomnesses, 

e.g., environmental noises and measurement system errors. 

The deterministic model updating, especially for the sensitivity method (Mottershead et al., 2011), might be one 

of the most successfully applied model updating techniques. It aims at calibrating the model parameters to obtain their 

optimal values from a single set of measurements. It has been employed in a wide range of practical applications e.g., 

the calibration of large-scale finite element (FE) models (Mottershead and Friswell, 1993; Shan et al., 2015). However, 

it considers measurement data as an exactly determined values/signals, ignoring the measurement uncertainty. 

Comparatively, the stochastic model updating, e.g., the perturbation method (Mares et al., 2006; Khodaparast et 

al., 2008), Monte Carlo method (Sairajan and Aglietti, 2012; Bi et al., 2017), and Bayesian method (Goller et al., 2011; 

Patelli et al., 2017), can be interpreted as the techniques to calibrate not the parameters themselves but the uncertainty 

characteristics, i.e., probabilistic distributions, so that the model outputs are committed not to the maximum fidelity to 

a single set of the measurements but to the uncertainty characteristics of the multiple sets of the measurements. In the 

stochastic model updating, uncertainty quantification (UQ) metrics are important to quantify the statistical discrepancy 

between the model outputs and measurements because of the above three sources of uncertainty. A series of distances, 

such as the Euclidian distance, Mahalanobis distance, and Bhattacharyya distance has been successfully proposed to 

define the UQ metrics in the stochastic model updating (Bi et al., 2017). In addition, the Frobenius norm has been also 

utilized to define the UQ metric to quantify the difference between the covariance matrices of the model outputs and 

measurements (Govers and Link, 2010). Bi et al. (2019) has recently developed a Bayesian updating framework which 

employs the approximate Bayesian computation (ABC) technique (Beaumont et al., 2002; Turner and Van Zandt, 2012), 

where the Bhattacharyya distance-based approximate likelihood is used. This framework has been demonstrated to be 

capable of calibrating numerical models such that the model outputs recreate wholly the uncertainty characteristics of 

target measurements. The framework has been furthermore extended to the calibration of dynamic systems, so that the 

procedure enables to quantify wholly the uncertainty characteristics of the measured time signals (Kitahara et al., 2021). 

In the stochastic model updating, distribution families of the parameters commonly need to be assigned a priori, 

then the prior distribution of the hyper-parameters such as means and variances is updated to the posterior distribution 

using the measurement data. The distribution families, however, are often unknown beforehand due to the scarce and/or 
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incomplete available data for the parameters. The recently released NASA UQ challenge problem 2019 (Crespo and 

Kenny, 2021), for instance, requires a model calibration task in an extremely challenging condition that no distribution 

information of the aleatory parameters is provided other than a common bounded support domain. In such situation, 

the assumption on the distribution formats might significantly affect the model updating results. Therefore, Kitahara 

et al. (2022) has recently developed a distribution-free Bayesian updating framework, where staircase density functions 

(Crespo et al., 2018) are assigned to the underlying distribution families of the parameters. Staircase density functions 

enable to flexibly approximate a broad range of distributions arbitrary close, such as highly skewed and/or multi-modal 

distributions, hence in particular appropriate to characterize the parameters whose density formats cannot be specified. 

The framework has been demonstrated to be capable to calibrate the probabilistic distribution of the parameters without 

limiting hypotheses on the distribution families. 

Nevertheless, the aforementioned distribution-free model updating framework still has open questions. First, the 

framework has been currently only demonstrated on the updating using scalar-valued modal responses. Hence, in this 

study, it is extended to the updating of dynamic systems by measured time signals. Second, staircase density functions 

are provided for univariate random variables, and thus cannot consider the parameter dependencies, which might lead 

to inaccurate updating results in the presence of strong correlation among parameters. Copula functions are well-known 

to be capable of providing an effective way to characterize the dependence structure among parameters, and have been 

broadly utilized for reliability problems (Tang et al., 2013; Li et al., 2015; Tang et al., 2015). Among various types of 

copula functions, the Gaussian copula function is most widely used since it can be easily generalized to the multivariate 

case, and this property is particularly attractive for the stochastic model updating problem, in which very large number 

of parameters is considered as random variables. 

The objective of this work is consequently to develop a stochastic model updating framework for calibrating the 

joint probabilistic distribution of the correlated parameters without prior knowledge on the distribution families of the 

marginal distributions. In order to achieve this task, it is assumed that the joint probability distribution of the parameters 

is characterized by a combination of the Gaussian copula function and staircase density functions. Moment constraints 

for the existence of the staircase density functions and a correlation coefficient constraint for the existence of the copula 

function are then derived. Furthermore, the Bhattacharyya distance is used to define an approximate likelihood function 

quantifying the stochastic discrepancy between the model outputs and measurements, such that the hyper-parameters 

of the staircase density functions as well as the correlation coefficients of the correlation matrix are calibrated through 

an ABC updating approach. The proposed framework is first demonstrated on both bi-variate and multi-variate cases 
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using two simple illustrative examples, and then applied to a model updating problem of a seismic-isolated bridge pier 

model using the simulated seismic response data, so as to demonstrate the feasibility of the framework in the updating 

of nonlinear dynamic systems. 

The structure of this paper is as follows. Section 5.2 first describes theoretical and methodological bases of the 

three key ingredients of the proposed framework, i.e., the Bhattacharyya distance-based UQ metrics, staircase density 

functions, and Gaussian copula function. In Section 5.3, we then outline the formulation of the Bayesian updating for 

the combination of the Gaussian copula function with the staircase density functions, and the proposed ABC updating 

framework. Illustrative applications are provided in Section 5.4, employing a simple shear building model and a spring-

mass system, and the feasibility of the proposed framework in the updating of nonlinear dynamic systems based on the 

measured time signals is further demonstrated in Section 5.5. Finally, Section 5.6 gives conclusions to this paper. 

5.2    Theories and methodologies 

5.2.1 Bhattacharyya distance-based UQ metrics 

The system under investigation in the stochastic model updating is described as: 

𝒚 = ℎ(𝒙) (5.1) 

where 𝒙 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] indicates a row vector of 𝑛 input parameters; 𝒚 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑚] indicates a row vector of 

𝑚 output features; ℎ(∙) is the simulator. The output features herein can be either scalar-valued modal responses or time 

signals. In the latter case, 𝒚 is replaced to be 𝐲 = [𝒚1, 𝒚2, ⋯ , 𝒚𝑚], with 𝒚𝑖 = [𝑦𝑖(0), 𝑦𝑖(1),⋯ , 𝑦𝑖(𝑡)]
𝑇, ∀𝑖 = 1, 2,⋯ ,𝑚, 

where 𝑡 is the time parameter. The simulator ℎ(∙) can be either high-fidelity models, e.g., FE models, or surrogates. 

Uncertainties involved in the system are first described by representing the input parameters as random variables, 

and are then propagated through the simulator to the output features. This can be achieved by randomly generating the 

multiple sets of the parameters and corresponding output features. Suppose the sample size be 𝑁sim, the simulator ℎ is 

evaluated 𝑁sim times for obtaining the sample set of the simulated features 𝐘sim ∈ ℝ𝑁sim×𝑚: 

𝐘sim = [𝐲(1), 𝐲(2), ⋯ , 𝐲(𝑁sim)]
𝑇
, with 𝐲(𝑘) = [𝑦1

(𝑘)
, 𝑦2

(𝑘)
, ⋯ , 𝑦𝑚

(𝑘)
], ∀𝑘 = 1, 2,⋯ ,𝑁sim (5.2) 

in the case where the output features are represented as the modal responses. 𝐘sim can be simply extended to be 𝐘sim ∈

ℝ𝑁sim×𝑚×(𝑡+1) for the time signals case. 
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In addition to the simulated features, corresponding observed features are also necessary in the model updating. 

Suppose the number of observations be 𝑁obs, the sample set of the observed features 𝐘obs possesses a same structure 

as Equation (5.2), but only the number of rows is changed from 𝑁sim to 𝑁obs. The stochastic model updating is aimed 

at minimizing the stochastic discrepancy between 𝐘sim and 𝐘obs by calibrating the joint distribution of the parameters. 

To quantify the discrepancy between 𝐘sim and 𝐘obs, the Bhattacharyya distance-based UQ metric is employed in 

this study. The original definition of the Bhattacharyya distance is given as (Bhattacharyya, 1964): 

𝑑𝐵(𝐘sim, 𝐘obs) = − log [∫ √𝑓𝐘sim
(𝒚)𝑓𝐘obs

(𝒚)
𝕪

d𝒚] (5.3) 

where 𝑓(∙)(𝒚) indicates the probability density function (PDF) of the output features 𝒚; 𝕪 is the support domain of the 

output features that comprises 𝑚-dimensional space for the modal responses but the {𝑚 × (𝑡 + 1)}-dimensional space 

for the time signals. Equation (5.3) indicates that the Bhattacharyya distance is a measure of the overlap between the 

two probability distributions. Thus, it is capable to consider not only mean information but whole statistical information 

of two different sample sets. However, the direct evaluation of Equation (5.3) is usually impractical because precisely 

estimating the joint PDF of the output features is non-trivial due to the necessity of time-consuming repeated model 

evaluations or the very limited number of available measurement data. To overcome this issue, Bi et al. (2019) proposed 

the so-called binning algorithm to evaluate the probability mass function (PMF) of the given sample sets, such that the 

discrete Bhattacharyya distance is utilized instead (Patra et al., 2015): 

𝑑𝐵(𝐘sim, 𝐘obs) = − log {∑ √𝑃𝐘sim

(𝑗)
𝑃𝐘obs

(𝑗)

𝑁bin

𝑗=1

} (5.4) 

where 𝑁bin denotes the total number of bins; 𝑃(∙)
(𝑗)

 indicates the PMF value of the output features at the 𝑗th bin. In the 

binning algorithm, a grid is created in the whole support domain of the output features, and hence the total number of 

bins would be 𝑁bin = 𝑛bin
𝑚  for the modal responses and 𝑁bin = 𝑛bin

𝑚×(𝑡+1)
 for the time signals, where 𝑛bin indicates the 

number of bins for each output feature. The readers can refer to Bi et al. (2019) for the detailed procedure of the binning 

algorithm. The discrete Bhattacharyya distance-based UQ metric has been demonstrated to be effective in the relatively 

low-dimensional problems (e.g., the dimension is less than six). 

Contrary to that, even the evaluation of Equation (5.4) is still impractical for the very high-dimensional problems 

where the output features comprise time signals, since the number of bins is exponentially increasing with the number 
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of dimensions because of the so-called curse of dimensionality. To tackle this issue, Kitahara et al. (2021) has proposed 

a dimension reduction procedure to utilize the Bhattacharyya distance for the comparison of two different time signals, 

consisting of the following steps: 

1) Define a common window length L for both 𝐘sim and 𝐘obs. Divide them into three-dimensional sub-arrays 𝐘sim
𝑠 ∈

ℝ𝑁sim×𝑚× L and 𝐘obs
𝑠 ∈ ℝ𝑁obs×𝑚× L, ∀𝑠 = 1,⋯ , ⌊(𝑡 + 1) L⁄ ⌋, where ⌊∙⌋ means the lower integer of the investigated 

values; 

2) Compute the root mean square (RMS) matrices 𝐑𝐘sim

𝑠 ∈ ℝ𝑁sim×𝑚 of each sub-array 𝐘sim
𝑠  along its third dimension 

and obtain the sample set of the RMS values 𝐑𝐘sim
∈ ℝ𝑁sim×𝑚×⌊(𝑡+1) L⁄ ⌋. Do similar procedure for the observed 

features and obtain 𝐑𝐘obs
∈ ℝ𝑁obs×𝑚×⌊(𝑡+1) L⁄ ⌋; 

3) Evaluate in total ⌊(𝑡 + 1) L⁄ ⌋ Bhattacharyya distances 𝑑𝐵
𝑠  between two sample sets 𝐑𝐘sim

𝑠  and 𝐑𝐘obs

𝑠  using Eq. (4); 

4) Employ the RMS value of the set of the Bhattacharyya distances, 𝑅𝑑𝐵
, as the UQ metric. 

The authors’ experience shows that L = (0.02~0.03) ∙ 𝑡 is the reasonable choice for the window length L, and such 

choice indicates that each window contains 2~3 % of the time signals. As such, the time signals are degraded to a 

series of RMS values. The above defined Bhattacharyya distance-based UQ metric has been demonstrated to be able 

to quantify the uncertainty characteristics of the entire time signals (Kitahara et al., 2021). 

5.2.2 Staircase density functions 

Let the input parameter 𝑥𝑖, ∀𝑖 = 1,⋯ , 𝑛, be a random variable having the support domain [𝑥𝑖 , 𝑥𝑖] and a quadruple 

of the hyper-parameters 𝜽𝑥𝑖
= [𝜇𝑖 ,𝑚2𝑖 , �̃�3𝑖 , �̃�4𝑖] consisting of the mean 𝜇𝑖, variance 𝑚2𝑖, skewness �̃�3𝑖, and kurtosis 

�̃�4𝑖. The skewness �̃�3𝑖 and kurtosis �̃�4𝑖 are defined as ratios of the variance to the third and fourth central moments 

by �̃�3𝑖 = 𝑚3𝑖 𝑚2𝑖
3 2⁄⁄  and �̃�4𝑖 = 𝑚4𝑖 𝑚2𝑖

2⁄ , respectively. The feasibility condition for the existence of 𝑥𝑖 can be defined 

as moment constraints given by a series of inequalities Θ𝑖 = {𝜽𝑥𝑖
: 𝑔(𝜽𝑥𝑖

) ≤ 0}, and their components are summarized 

in Table 5.1 (Sharma et al., 2009; Kumar, 2002). 

Let the support domain [𝑥𝑖 , 𝑥𝑖] equally partitioned into 𝑛𝑏 subintervals with the length 𝜅 = (𝑥𝑖 − 𝑥𝑖) 𝑛𝑏⁄ , 𝑥𝑖 can 

be considered as a staircase random variable, and then its PDF 𝑓𝑥𝑖
(𝑥) can be expressed as (Crespo et al., 2018):  

𝑓𝑥𝑖
(𝑥)  = {𝑙

𝑗   ∀𝑥 ∈ (𝑥𝑖
𝑗
, 𝑥𝑖

𝑗+1
], ∀𝑗 = 1, 2,⋯ , 𝑛𝑏

0    otherwise                                          
 (5.5) 
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where 𝑙𝑗 is the PDF value of the 𝑗th bin; 𝑥𝑖
𝑗
= 𝑥𝑖 + (𝑗 − 1)𝜅 is the left partitioning point of the 𝑗th bin. It is noted that 

𝑙𝑗 holds that 𝑙𝑗 ≥ 0 for all the bins and 𝜅 ∑ 𝑙𝑗
𝑛𝑏
𝑗=1 = 1. 

Table 5.1 Moment constraints for the existence of staircase density functions. 

Hyper-parameters Moment constraints 

Mean 𝜇𝑖 𝑔1 = 𝑥𝑖 − 𝜇𝑖 

𝑔2 = 𝜇𝑖 − 𝑥𝑖 

Variance  𝑚2𝑖 𝑔3 = −𝑚2𝑖 

𝑔4 = 𝑚2𝑖 − 𝑣𝑖 

Skewness  �̃�3𝑖 𝑔5 = 𝑚2𝑖
2 − 𝑚2𝑖(𝜇𝑖 − 𝑥𝑖)

2
− �̃�3𝑖𝑚2𝑖

3 2⁄
(𝜇𝑖 − 𝑥𝑖) 

𝑔6 = �̃�3𝑖𝑚2𝑖
3 2⁄ (𝑥𝑖 − 𝜇𝑖) − 𝑚2𝑖(𝑥𝑖 − 𝜇𝑖)

2 + 𝑚2𝑖
2   

𝑔7 = 4𝑚2𝑖
2 + �̃�3𝑖

2 𝑚2𝑖
3 − 𝑚2𝑖

2 (𝑥𝑖 − 𝑥𝑖)
2
 

𝑔8 = 6√3�̃�3𝑖𝑚2𝑖
3 2⁄

− (𝑥𝑖 − 𝑥𝑖)
3
 

𝑔9 = −6√3�̃�3𝑖𝑚2𝑖
3 2⁄

− (𝑥𝑖 − 𝑥𝑖)
3
 

Kurtosis  �̃�4𝑖 𝑔10 = −�̃�4𝑖𝑚2𝑖
2  

𝑔11 = 12�̃�4𝑖𝑚2𝑖
2 − (𝑥𝑖 − 𝑥𝑖)

4
 

𝑔12 = (�̃�4𝑖𝑚2𝑖
2 − 𝑣𝑖𝑚2𝑖 − 𝑢𝑖�̃�3𝑖𝑚2𝑖

3 2⁄
)(𝑣𝑖 − 𝑚2𝑖) + (�̃�3𝑖𝑚2𝑖

3 2⁄
− 𝜇𝑖𝑚2𝑖)

2
 

𝑔13 = �̃�3𝑖
2 𝑚2𝑖

3 + 𝑚2𝑖
3 − �̃�4𝑖𝑚2𝑖

3  

  a 𝑢𝑖 = 𝑥𝑖 + 𝑥𝑖 − 2𝜇𝑖 and 𝑣𝑖 = (𝜇𝑖 − 𝑥𝑖)(𝑥𝑖 − 𝜇𝑖). 

The PDF values 𝒍𝑖 are derived by solving the following optimization problem (Crespo et al., 2018): 

�̂�𝑖 = argmin
𝒍≥0

{𝐽(𝒍): ∑∫ 𝑥𝑙𝑗𝑑𝑥
𝑥𝑖

𝑗+1

𝑥
𝑖
𝑗

= 𝜇𝑖

𝑛𝑏

𝑗=1

,∑ ∫ (𝑥 − 𝜇𝑖)
𝑟𝑙𝑗𝑑𝑥

𝑥𝑖
𝑗+1

𝑥
𝑖
𝑗

= 𝑚𝑟𝑖

𝑛𝑏

𝑗=1

, 𝑟 = 2, 3, 4} (5.6) 

where 𝐽(∙) is an arbitrary selected cost function expressed as:  

𝐽(𝒍) = 𝒍𝑇𝐈𝒍 (5.7) 

where 𝐈 denotes the identity matrix. This cost function leads to the resultant staircase random variables minimizing the 

squared sum of the likelihood at each bin. Based on the moment matching constraints, Equation (5.6) can be rewritten 

as (Crespo et al., 2018): 

�̂�𝑖 = argmin
𝒍≥0

{𝐽(𝒍): 𝐀(𝜽𝑥𝑖
, 𝑛𝑏)𝒍 = 𝒃(𝜽𝑥𝑖

), 𝜽𝑥𝑖
∈ Θ𝑖} (5.8) 

where 

𝐀 =

[
 
 
 
 

𝜅𝒆
𝜅𝒄

𝜅𝒄2 + 𝜅3 12⁄

𝜅𝒄3 + 𝜅3𝒄 4⁄

𝜅𝒄4 + 𝜅3𝒄2 2⁄ + 𝜅5 80⁄ ]
 
 
 
 

, and 𝒃 =

[
 
 
 
 
 

1
𝜇𝑖

𝜇𝑖
2 + 𝑚2𝑖

�̃�3𝑖𝑚2𝑖
3 2⁄

+ 3𝜇𝑖𝑚2𝑖 + 𝜇𝑖
3

𝑚4𝑖𝑚2𝑖
2 + 4�̃�3𝑖𝑚2𝑖

3 2⁄
𝜇𝑖 + 6𝑚2𝑖𝜇𝑖

2 + 𝜇𝑖
4]
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where 𝒄 indicates a column vector of the centre of the bin 𝑐𝑗 = (𝑥𝑖
𝑗
+ 𝑥𝑖

𝑗+1
) 2⁄ ; 𝒄𝑛 indicates the component wise 𝑛th 

power of 𝒄; 𝒆 refers to a vector of ones. 

The convexity of the optimization problem in Equation (5.8) enables the fast computation of the staircase density 

heights. In addition, a relatively small value of 𝑛𝑏 (e.g., 𝑛𝑏 = 25~50) is enough for representing practically smooth 

distribution shapes for the PMF evaluation, which makes the computation further faster. These features are particularly 

appropriate for the stochastic updating, where the tremendous number of computations of the probability distributions 

is necessary. Furthermore, the staircase density functions enable to flexibly approximate a broad range of distributions 

arbitrary close, such as highly skewed and/or multi-modal distributions. Therefore, they can serve as a distribution-

free uncertainty characterization model of the parameters whose distribution families cannot be determined. 

5.2.3 Gaussian copula function 

Copula functions couple the multivariate joint cumulative distribution function (CDF) with its one-dimensional 

marginal CDFs. Conversely, copula functions can be also seen as the multivariate joint CDFs whose one-dimensional 

marginal CDFs follow a uniform distribution on the interval of [0, 1]. According to Sklar’s theorem (Nelsen, 2006), 

the bivariate joint CDF of two random variables 𝑥1 and 𝑥2 can be expressed as: 

𝐹𝐱(𝑥1, 𝑥2) = 𝐶 (𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2)) (5.9) 

where 𝐹𝑥1
(𝑥1) and 𝐹𝑥2

(𝑥2) indicate the marginal CDFs of 𝑥1 and 𝑥2, respectively; 𝐶 (𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2)) is the copula 

function. From Equation (5.9), the bivariate joint PDF of 𝑥1 and 𝑥2 is then written as: 

𝑓𝐱(𝑥1, 𝑥2) = 𝑐 (𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2)) 𝑓𝑥1
(𝑥1)𝑓𝑥2

(𝑥2) (5.10) 

where 𝑐 (𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2)) denotes the copula density function given as: 

𝑐 (𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2)) = 𝑐(𝑢1, 𝑢2) =
𝜕2𝑐(𝑢1, 𝑢2)

𝜕𝑢1𝜕𝑢2

 (5.11) 

Theoretically, the joint distribution of 𝑥1 and 𝑥2 can be fully and uniquely represented by Equations (5.9) and (5.10) if 

the marginal distributions of 𝑥1 and 𝑥2, and the copula function are given. 

There are a lot of copula function types in the literature, including the Gaussian, t, Frank, Gumbel, and Clayton 

copula functions. They are characterized by their own dependence structures. The latter three types of copula function 
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can be referred to as Archimedean copulas. The Archimedean copulas have only a single parameter, and hence cannot 

provide the general dependence structure among multivariate random variables. Alternatively, the general dependence 

structure is often modeled using the pair-copula decomposition introduced as a canonical vine copula (Haff, 2013). 

Conversely, the Gaussian and t copulas, which belong to elliptical copulas, can be straightforwardly generalized to the 

multivariate case. Particularly, the Gaussian copula function is most widely used because it only needs the correlation 

matrix to determine the dependence structure. 

In this study, the joint probability distribution of the input parameters 𝒙 is finally characterized by the combination 

of the Gaussian copula function and staircase density functions as: 

𝐹𝐱(𝒙) = 𝐶𝐺(𝐹𝑥1
(𝑥1), 𝐹𝑥2

(𝑥2),⋯ , 𝐹𝑥𝑛
(𝑥𝑛);  𝝆)

= Φ𝜌 (Φ−1 (𝐹𝑥1
(𝑥1)) , Φ−1 (𝐹𝑥2

(𝑥2)) ,⋯ ,Φ−1 (𝐹𝑥𝑛
(𝑥𝑛))) 

(5.12) 

where 𝐶𝐺 indicates the Gaussian copula function; 𝝆 denotes the correlation matrix; Φ𝜌 means the multivariate standard 

normal CDF with 𝝆; Φ−1 denotes the inverse function of the standard normal CDF. It is noted that each marginal CDF 

𝐹𝑥𝑖
(𝑥𝑖) can be described by the empirical CDF of the staircase density function 𝑓𝑥𝑖

(∙), for 𝑖 = 1,2,⋯ , 𝑛. The correlation 

matrix 𝝆 can be expressed as: 

𝝆 =

[
 
 
 
 

1 𝜌12 𝜌13 ⋯ 𝜌1𝑛

𝜌12 1 𝜌23 ⋯ 𝜌2𝑛

𝜌13 𝜌23 ⋱ ⋯ ⋮
⋮ ⋮ ⋮ 1 𝜌𝑛−1𝑛

𝜌1𝑛 𝜌2𝑛 ⋯ 𝜌𝑛−1𝑛 1 ]
 
 
 
 

 (5.13) 

where 𝜌𝑖𝑗 , for 𝑖 = 1,2,⋯ , 𝑛 − 1 and 𝑗 = 𝑖 + 1,⋯ , 𝑛, means the correlation coefficient. The range of each correlation 

coefficient can reach [-1, 1]. The correlation matrix 𝝆 should be the symmetric and positive semi-definite matrix. Thus, 

the feasibility condition for the existence of the Gaussian copula function can be defined by the correlation coefficient 

constraint 𝒫 = {𝝆: chol(𝝆) ≠ ∅}, where chol(∙) means the Cholesky factorization. 

5.3    Distribution-free stochastic model updating 

5.3.1 Bayesian model updating of the joint probabilistic distribution 

In the proposed stochastic updating framework, the well-known Bayesian inference is utilized. It is based on the 

Bayes’ theorem (Beck and Katafygiotis, 1998):  



162         Chapter 5 Research article 4: Distribution-free stochastic model updating of dynamic systems with parameter 

dependencies 

 

𝑃(𝝑|𝐘obs) =
𝑃𝐿(𝐘obs|𝝑)𝑃(𝝑)

𝑃(𝐘obs)
 (5.14) 

where 𝑃(𝝑) denotes the prior PDF of the parameters to be inferred 𝝑 that is determined by the initial knowledge of the 

system and expert judgement; 𝑃(𝝑|𝐘obs) means the posterior PDF of 𝝑 conditional to the measurements, representing 

the updated knowledge of 𝝑; 𝑃(𝐘obs) denotes the normalization factor (evidence) ensuring the integral of the posterior 

distribution equal to one; 𝑃𝐿(𝐘obs|𝛉) indicates the likelihood function of 𝐘obs that is defined as the PDF values of the 

measurements conditional to each instance of 𝝑. 

To calibrate the joint probabilistic distribution of the parameters 𝒙 given by Equation (5.13), the hyper-parameters 

of the staircase density functions 𝜽𝑥𝑖
, for 𝑖 = 1,⋯ , 𝑛, and the correlation coefficients of the Gaussian copula function 

𝜌𝑖𝑗 , for 𝑖 = 1,⋯ , 𝑛 − 1 and 𝑗 = 𝑖 + 1,⋯ , 𝑛, are accounted for as the parameters to be inferred 𝝑. Based on the moment 

constraints Θ𝑖, the support domains of 𝜽𝑥𝑖
 can be determined as: 

𝜇𝑖 ∈ [𝑥𝑖 , 𝑥𝑖],𝑚2𝑖 ∈ [0,
(𝑥𝑖 − 𝑥𝑖)

2

4
] ,𝑚3𝑖 ∈ [−

(𝑥𝑖 − 𝑥𝑖)
3

6√3
,
(𝑥𝑖 − 𝑥𝑖)

3

6√3
] ,𝑚4𝑖 ∈ [0,

(𝑥𝑖 − 𝑥𝑖)
4

12
] (5.15) 

Note that the support domains are defined not for the skewness and kurtosis but the third and fourth central moments, 

since the skewness and kurtosis are conditional on the variance. On the other hand, the support domain of 𝜌𝑖𝑗  is simply 

defined as [-1, 1]. In this study, it is assumed that all parameters to be inferred are independent. Based on these support 

domains with the moment constraints Θ𝑖 and correlation coefficient constraint Ρ, the prior PDF 𝑃(𝝑) is expressed as: 

𝑃(𝝑) = ∏ 𝑃(𝜽𝑥𝑖
)𝐼Θ𝑖

(𝜽𝑥𝑖
)

𝑛

𝑖=1

∙ ∏ ∏ 𝑃(𝜌𝑖𝑗)𝐼𝒫(𝜌𝑖𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (5.16) 

where 𝑃(𝜽𝑥𝑖
) and 𝑃(𝜌𝑖𝑗) indicate the prior PDFs of the hyper-parameters and correlation coefficients that are chosen 

as the uniform distributions on their respective support domains; 𝐼Θ𝑖
(𝜽𝑥𝑖

) denotes the indicator function of 𝜽𝑥𝑖
, which 

equals to one if Θ𝑖 is satisfied and otherwise equals to zero; 𝐼𝒫(𝜌𝑖𝑗) is similarly the indicator function of 𝜌𝑖𝑗 . As such, 

the proposed updating framework requires only assumptions on the support domains of the input parameters 𝒙. 

This brings totally 4𝑛 + 𝑛(𝑛 − 1) 2⁄  parameters to be inferred. However, it is widely recognized that the direct 

evaluation of the posterior PDF over such a high-dimensional parameter space is not trivial (Beck and Au, 2002). Thus, 

the well-known advanced sampling technique, termed transitional Markov chain Monte Carlo (TMCMC) (Ching and 

Cheng, 2007), is employed in this study. TMCMC is a sequential procedure sampling from a series of transitional PDFs 
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that will gradually converge to the actual posterior PDF, thus it enables to generate samples from the very complex 

posterior PDF. The readers can refer to Ching and Cheng (2007) and Betz et al. (2016) for more details of the TMCMC 

algorithm. 

5.3.2 Approximate Bayesian computation 

The likelihood function plays a key role in the Bayesian model updating. Utilizing the Bayesian inference in the 

stochastic updating results in the following theoretical likelihood function: 

𝑃𝐿(𝐘obs|𝝑) = ∏ 𝑃(𝐘obs
(𝑘)

|𝝑)

𝑁obs

𝑘=1

 (5.17) 

where 𝑃(𝐘obs
(𝑘)

|𝝑) is the PDF value of the 𝑘th observations 𝐘obs
(𝑘)

 conditional to each instance of the inferred parameters 

𝝑. The direct evaluation of Equation (5.17), however, is often impractical since it requires the significant number of 

model evaluations so as to precisely estimate the PDFs of the corresponding model outputs. 

The ABC method (Beaumont et al., 2002; Turner and Van Zandt, 2012) has been successfully used to overcome 

this obstacle by replacing the above full likelihood function with an approximate but efficient likelihood function that 

contains information of both the measurements and inferred parameters 𝝑. Various forms of the approximate likelihood 

functions have been investigated in the literature, such as the Gaussian (Patelli et al., 2015), Epanechnikov (Safta et 

al., 2015), and inverse squared error (Rocchetta et al., 2018) functions. Regardless of the function form, it is essential 

to utilize the comprehensive UQ metric which can serve as an effective connection between the measurements and 

inferred parameters. In this study, an approximate likelihood function by the Gaussian function is defined by utilizing 

the Bhattacharyya distance-based UQ metric as: 

𝑃𝐿(𝐘obs|𝝑) ∝ 𝑒𝑥𝑝 {−
𝑑𝐵

2

𝜀2
} (5.18) 

where 𝜀 means the pre-defined width factor, which controls the centralization degree of the posterior PDF. A smaller 

𝜀 provides a more peaked posterior PDF, which is more likely to converge to its true value but needs more computation 

cost for convergence. Hence, its choice is based on specific applications, whereas it is recommended to be within the 

interval of [10−3, 10−1] (Patelli et al., 2015). By utilizing the Bhattacharyya distance (or the RMS value 𝑅𝑑𝐵
 for the 

time signals case), the proposed likelihood enables to quantify the comprehensive uncertainty characteristics of the 

model outputs and measurements.  
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The schematic in Figure 5.1 illustrates overall framework of the proposed distribution-free stochastic updating 

procedure. As already mentioned, only the support domains of the parameters are required to perform this framework. 

Sampling from the prior PDF in Equation (5.16) can be achieved by the rejection sampling. TMCMC is then utilized 

to update the inferred parameters to the posterior PDF using the Bhattacharyya distance-based approximate likelihood. 

By assigning most probable values (MPVs) of the posterior PDF, the joint distribution of the input parameters is finally 

calibrated such that the stochastic model outputs generated from the joint distribution is capable to recreate wholly the 

uncertainty characteristics of the target measurements. Note that, the calibrated distribution of the parameters is not 

necessarily applicable to the reliability analysis in order to estimate the probabilities of rare events, since the parameters 

are finitely bounded due to the definition of the staircase density functions and a domain where the rare event happens 

might be excluded.    

 

Figure 5.1 Schematic of the proposed stochastic model updating framework. 
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5.4    Principle and illustrative applications 

5.4.1 Case study I: The two degree of freedom shear building model 

The first case study is performed on a two degree of freedom (DOF) shear building model given in Figure 5.2(a). 

This case study aims at demonstrating the feasibility of the proposed updating procedure for illustrative bivariate case, 

and how the stochastic model updating fails when ignoring the parameter dependency. This model has been initially 

introduced by Beck and Au (2002), where the first and second story masses are considered to be the fixed values with 

𝑚1 = 16.531 × 103 kg and 𝑚2 = 16.131 × 103 kg. On the other hand, the first and second interstory stiffnesses are 

characterized as 𝑘1 = 𝑘𝑥1 and 𝑘2 = 𝑘𝑥2, where 𝒙 = [𝑥1, 𝑥2] is the inferred parameters, and 𝑘 = 29.7 × 106  N m⁄  is 

the nominal value. 

 

Figure 5.2 (a) 2-DOF shear building model; (b) Posterior distribution in Equation (5.19). 

In Beck and Au (2002), the prior PDF 𝑃(𝒙) is presented by the pair of uncorrelated lognormal distributions with 

the MPVs 1.3 and 0.8 for 𝑥1 and 𝑥2, respectively, and the unit standard deviations. By employing the first two natural 

frequencies 𝑓1 = 4.31 Hz and 𝑓2 = 9.83 Hz as the observed features, the posterior PDF 𝑃(𝒙|𝐘obs) is expressed as: 

𝑃(𝒙|[𝑓1, 𝑓2]) ∝ 𝑒𝑥𝑝 [−
𝑀(𝒙)

2𝜎2
] 𝑃(𝒙) (5.19) 

where 𝜎 = 1 16⁄  denotes the standard deviation of the prediction error; 𝑀(∙) means the modal measure-of-fit function 

expressed as: 
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𝑀(𝒙) = ∑𝜆2

2

𝑗=1

[
𝑓𝑗

2(𝒙)

𝑓𝑗
2

− 1]

2

 (5.20) 

where 𝜆 = 1 is the weight; 𝑓𝑗(𝒙) means the 𝑗th natural frequency obtained as the model output. Figure 5.2(b) illustrates 

the posterior distribution in Equation (5.19). It can be seen that the posterior distribution demonstrates a clear negative 

correlation. 

The aforementioned original problem can be interpreted to aim at finding the set of plausible values of the input 

parameters 𝒙 using the single set of observed features [𝑓1, 𝑓2] by the Bayesian scheme. Comparatively, the uncertainty 

characteristics of the input parameters and observed features are altered hereafter so as to perform the stochastic model 

updating where the joint probability distribution of the input parameters, 𝐹𝐱(𝒙), is calibrated using the multiple sets of 

the observed features. The target joint distribution is defined to be identical to the posterior PDF in Equation (5.19). 

The number of observed features is set to be 𝑁obs = 100; thus, 𝑁obs sample sets of the input parameters are generated 

from the target distribution 𝑃(𝒙|[𝑓1, 𝑓2]) using TMCMC, and the corresponding observed features 𝐘obs are collected 

by evaluating the model with these sample sets. Note that the target distribution of the input parameters is unknown 

beforehand in actual. As such, the altered problem is aimed at calibrating the joint distribution of the input parameters 

to recreate wholly the uncertainty characteristics of 𝐘obs by the model outputs generated based on the joint probability 

distribution. 

The bounded support domains of 𝑥1 and 𝑥2 are determined as presented in Table 5.2.  The support domain of the 

hyper-parameters 𝜽𝑥1
 and 𝜽𝑥2

 can be computed using Equation (5.15). Let the sample size be 𝑁MC = 1000, 𝑁MC sets 

of the initial values of 𝜽𝑥1
 and 𝜽𝑥2

, maintaining the moment constraints Θ1 and Θ2, are generated using the rejection 

sampling while 𝑁MC initial values of the correlation coefficient 𝜌12 are arbitrary generated from its support of [-1, 1]. 

For each set of [𝜽𝑥1
, 𝜽𝑥2

, 𝜌12], the joint probability distribution of the input parameters 𝒙 described by the Gaussian 

copula function with the marginal staircase density functions is determined. The number of bins in staircase density 

estimation is chosen as 𝑛𝑏 = 25. At the same time, the number of simulated features is set to be 𝑁sim = 1000; hence, 

in total 𝑁sim sample sets of the input parameters 𝒙 are generated from each joint distribution {𝐹𝐱
(𝑘)

: 𝑘 = 1,⋯ ,𝑁MC}. 

The corresponding initial simulated features 𝐘sim
(𝑘)

 are then collected by evaluating the model for each sample sets of 

the input parameters. Arbitrary selected initial simulated features are illustrated in Figure 5.3, together with the target 

observed features. The figure clearly demonstrates the presence of significant discrepancy between the simulated and 
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observed features, implying the necessity of the stochastic model updating for better representation of the uncertainty 

characteristics of the observed features by means of the model outputs. 

Table 5.2 Uncertainty characteristics of the 2-DOF model. 

Parameter Support domain Target distribution 

𝑥1 𝑥1 ∈ [0, 3.0] The marginal distribution of Equation (5.19) 

𝑥2 𝑥2 ∈ [0, 1.5] The marginal distribution of Equation (5.19) 

 

Figure 5.3 Observed and initial simulated features. 

The Bhattacharyya distance is estimated for each set of the simulated features 𝐘sim
(𝑘)

. The number of bins in the 

binning algorithm is chosen to be 𝑛bin = 5. Then, the Bayesian model updating of totally nine inferred parameters (i.e., 

the hyper-parameters 𝜽𝑥𝑖
= {𝜇𝑖, 𝑚2𝑖 , �̃�3𝑖, �̃�4𝑖}, for 𝑖 = 1, 2, as well as the correlation coefficient 𝜌12) is performed 

using the Bhattacharyya distance-based likelihood function. The width factor in the likelihood function is set to be 𝜀 =

0.02. 

Figure 5.4 shows the posterior PDFs of all the inferred parameters obtained after totally ten TMCMC iterations, 

together with their target and calibrated values. The target values are estimated based on samples generated from the 

target joint distribution, while the calibrated values are estimated as the MPVs of the posterior PDFs. These values are 

summarized in Table 5.3. It can be seen that the posterior PDFs of all the inferred parameters are significantly updated 

compared with their uniform priors that are identical to ranges of the horizontal axes of Figure 5.4. Compared with the 
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means and variances, the posterior supports of the skewnesses and kurtoses are, however, not reduced much from their 

prior supports, fulfilling the general experience that the higher order moments are difficult to be precisely updated 

compared with the means (Li et al., 2021; Liao et al., 2022). Nevertheless, the calibrated values including the kurtoses 

and the correlation coefficient are in good agreement with their target values with the largest relative error less than 

6 %, except for the variance 𝑚21 and two skewnesses �̃�31 and �̃�32. The relative errors are provided as percentages in 

the parentheses after the calibrated values in Table 5.3. It is noted that, the large relative error in 𝑚21 can be explained 

to be caused by its quite small target value, and it is within an allowable limit to evaluate the staircase density function 

approximating the target distribution as in Figure 5.5. On the other hand, the large errors in �̃�31 and �̃�32 are apparently 

caused by the wrongly identified signs, while their absolute values are close to those of the targets. It should be noted 

that, the signs of the skewnesses do not strongly affect the uncertainty characteristics of the output features as long as 

their absolute values are small such that the resultant distributions are almost symmetric. To this end, it is demonstrated 

that the Bhattacharyya distance can quantify not only mean information but also higher statistical information, i.e., the 

variances, skewnesses, and kurtoses as well as correlation coefficient.  

 

Figure 5.4 Posterior PDFs of the inferred parameters. 
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Table 5.3 Calibrated parameters of the 2-DOF model. 

Parameter Target value Calibrated value Calibrated value without correlation 

𝜇1 1.3007 1.3000 (-0.05 %) 1.1214 (-13.78 %) 

𝑚21 0.0348 0.0550 (48.85 %) 0.0157 (-54.89 %) 

�̃�31 0.3102 -0.3200 (-203.16 %) 0.0022 (-99.29 %) 

�̃�41 2.7503 2.8300 (2.90 %) 2.2912 (-16.69 %) 

𝜇2 0.6568 0.6540 (-0.43 %) 0.7474 (13.79 %) 

𝑚22 0.0085 0.0090 (5.88 %) 0.0031 (63.53 %) 

�̃�32 0.1866 -0.1780 (-195.39 %) -0.0849 (-145.50 %) 

�̃�42 2.6679 2.7000 (1.20 %) 2.4355 (-8.71 %) 

𝜌12 -0.7858 -0.8172 (-4.00 %) – 

For further demonstrating the results, the sample sets of the input parameters 𝒙 are generated from the calibrated 

joint distribution (i.e., the Gaussian copula function with the marginal staircase density functions) and are illustrated 

in Figure 5.5. It can be seen that the samples generated from the calibrated distribution show good agreement with the 

target distribution. Meanwhile, the Bayesian updating of only the marginal staircase density functions is also performed 

to demonstrate how the stochastic model updating fails by ignoring the parameter dependency. The calibrated values 

of all the hyper-parameters are listed in the last column of Table 5.3. Most of the parameters denote quite large relative 

errors when compared to those estimated by taking int account the parameter dependency. The sample sets of the input 

parameters 𝒙 generated from the calibrated uncorrelated staircase density functions are also plotted in the figure, which 

are only distributed in a part of the target probability distribution, implying the importance of considering the parameter 

dependency in stochastic model updating.  

Finally, Figure 5.6 illustrates the updated simulated features of 𝑓1 and 𝑓2 obtained by assigning the calibrated joint 

distribution to 𝒙, together with the initial simulated and target observed features. Moreover, the simulated features are 

also computed for the case ignoring the parameter dependency, and are provided in the figure. It can be seen that the 

updated simulated features show a distribution equivalent to the observed features for both cases with and without the 

parameter dependency, while the former provides better results. It implies that the Bhattacharyya distance metric has 

a potential to recreate wholly the probability distribution of the target observed features regardless of the consideration 

of the parameter dependency. Nonetheless, these results emphasize the importance of consideration of the parameter 

dependency in the stochastic model updating, because even though the observed features can be ideally quantified, the 

incompletely calibrated joint distribution of the input parameters can result in an inaccurate prediction of other quantity 

of interests, which might be important for other UQ tasks such as the risk assessment and design optimization of the 

target structure.  
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Figure 5.5 Updated samples of the input parameters. 

 

Figure 5.6 Updated simulated features. 

5.4.2 Case study II: The three degree of freedom spring-mass system 

The next case study is performed on a 3-DOF spring-mass system illustrated in Figure 5.7. This case study aims 

at demonstrating the capability of the proposed updating procedure for multivariate case. This numerical system has 
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been employed for demonstrating various stochastic updating techniques (Mares et al., 2006; Bi et al., 2019), however, 

the uncertainty characteristics of the system are altered in this study to demonstrate the proposed method. The stiffness 

coefficients 𝑘1, 𝑘2, and 𝑘3 are considered to be the uncertain input parameters to be calibrated, whereas the remaining 

parameters (i.e. 𝑘4 to 𝑘6 and the three masses 𝑚1 to 𝑚3) are treated to be the deterministic values: 𝑘4−6 = 5.0 N m⁄ , 

𝑚1 = 0.7 kg, 𝑚2 = 0.5 kg, and 𝑚3 = 0.3 kg. The first three natural frequencies 𝑓1, 𝑓2, and 𝑓3 are accounted for as the 

target output features the uncertainty characteristics of which are driven by the joint probabilistic distribution of 𝑘1, 

𝑘2, and 𝑘3 that is assumed to be a correlated tri-variate Gaussian distribution. The given support domains of 𝑘1, 𝑘2, 

and 𝑘3 and the target values of both the hyper-parameters and correlation coefficients are provided in Table 5.4. Note 

that the support domains are set to cover more than 99.99 % confidence intervals of the target marginal distributions. 

Such notification is important because the support domain of the target joint distribution is not bounded, differently 

from the initial case study. 

 

Figure 5.7 3-DOF spring-mass system. 

Table 5.4 Uncertainty characteristics of the 3-DOF system. 

Parameter Support domain Target distribution 

𝑘1, 𝑘2, 𝑘3 𝑘1 ∈ [2.5, 5.5], 𝑘2 ∈
[4.5, 5.5],  
𝑘3 ∈ [5, 7] 

Gaussian, 𝜇1 = 4.0, 𝜇2 = 5.0, 𝜇3 = 6.0, 𝑚21 = 0.09,  
𝑚22 = 0.01, 𝑚23 = 0.04, 𝜌12 = 0, 𝜌13 =
−0.6, 𝜌23 = 0.6 

𝑘4–𝑘6, 𝑚1–𝑚3 Deterministic – 

Consider the number of observed features be 𝑁obs = 500, 𝑁obs sample sets of 𝑘1, 𝑘2, and 𝑘3 are generated from 

the target joint distribution and then the corresponding observed features 𝐘obs, comprising 𝑓1, 𝑓2, and 𝑓3, are collected 

by evaluating the model with these sample sets.  

On the other hand, let the sample size be 𝑁MC = 1000, 𝑁MC sets of the initial values of the hyper-parameters 𝜽𝑘1
, 

𝜽𝑘2
, and 𝜽𝑘3

 and the correlation coefficients 𝜌12, 𝜌13, and 𝜌23, satisfying the moment constraints Θ1, Θ2, and Θ3 and 

the correlation coefficient constraint 𝒫, are generated by the rejection sampling in the support domains. For each set 
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of the hyper-parameters and correlation coefficients, the joint distribution of the three stiffness parameters described 

by the Gaussian copula function with the marginal staircase density functions is determined. The number of bins 𝑛𝑏 is 

set as the same value as that in the first case study. The number of simulated features is set to be 𝑁sim = 1000, so that 

totally 𝑁sim sample sets of 𝑘1, 𝑘2, and 𝑘3 are generated from each joint distribution. Then, the corresponding initial 

simulated features are collected by evaluating the model for each sample sets. Figure 5.8 compares the histograms and 

scatters between the observed features and arbitrary chosen simulated features.  

 

Figure 5.8 Observed features in blue and initial simulated features in green, with the unit in Hz. 

The Bhattacharyya distance is estimated for each set of the initial simulated features. The number of bins 𝑛bin is 

chosen as the same value as that in the first case study. Then, the Bayesian updating of in total 15 inferred parameters, 

i.e., 𝜽𝑘𝑖
= {𝜇𝑖 , 𝑚2𝑖, �̃�3𝑖, �̃�4𝑖}, for 𝑖 = 1, 2, 3, and 𝜌𝑖𝑗 , for 𝑖 = 1, 2 and 𝑗 = 𝑖 + 1, 3, is done utilizing the Bhattacharyya 

distance-based likelihood function. The width factor 𝜀 is set to be 𝜀 = 0.01. 

By employing in total 17 TMCMC iterations, all the inferred parameters are well updated to the posterior PDFs. 

The calibrated values (i.e., the MPVs of the posterior PDFs) of all inferred parameters are shown in Table 5.5, together 

with the corresponding target values. The relative estimation errors are also given in the parentheses after the calibrated 

values. Note that the errors are not provided for the skewnesses and the correlation coefficient 𝜌12 because their true 

values are zero. It can be seen that the calibrated values of the mean and variance parameters are in good agreement 

with the target values with the largest relative error less than 5 %. On the contrary, the skewness parameters exhibit 
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differences compared with the target values, especially for �̃�31. However, these calibrated values are small enough for 

resulting in almost symmetric distributions as similar as the target distributions as depicted in Figure 5.9. The kurtosis 

parameters also exhibit large errors when compared to their target values, whereas these errors are also permissible to 

obtain reasonable distributions when compared to the target distributions as shown in Figure 5.9. It implies that both 

the skewness and kurtosis parameters are relatively insensitive to the uncertainty characteristics of the target output 

features when compared to the means and variances. It is noted that, it does not mean that such higher order moment 

parameters are always insensitive to the target output features. In fact, in the previous example, the kurtosis parameters 

are precisely updated, implying that they are sensitive to the target output features in that example. More importantly, 

all correlation coefficients are in good agreement with their target values with the largest relative error around 10 %, 

implying that the proposed procedure is capable to properly capture the correlation structure regardless of no, negative, 

and positive correlations.  

Table 5.5 Calibrated parameters of the 3-DOF system. 

Parameter Target value Calibrated value 

𝜇1 4.0 4.0286 (0.72 %) 

𝑚21 0.09 0.0890 (-1.11 %)  

�̃�31 0 0.2220 

�̃�41 3.0 4.4400 (48.00 %) 

𝜇2 5.0 5.0035 (0.07 %) 

𝑚22 0.01 0.0104 (4.00 %) 

�̃�32 0 -0.0500  

�̃�42 3.0 3.8100 (27.00 %) 

𝜇3 6.0 6.0030 (0.05 %) 

𝑚23 0.04 0.0410 (2.50 %) 

�̃�33 0 -0.0214 

�̃�43 3.0 3.9400 (31.33 %) 

𝜌12 0 -0.0058 

𝜌13 -0.6 -0.5728 (4.53 %) 

𝜌23 0.6 0.5398 (10.03 %) 

The joint distribution of 𝑘1, 𝑘2, and 𝑘3 is then derived as the Gaussian copula function with the marginal staircase 

density functions, assigned the calibrated values of the hyper-parameters and correlation coefficients. Figure 5.9 shows 

the marginal CDF of each stiffness, together with the corresponding target marginal distribution. It is noted that, since 

the marginal distributions are obtained as staircase (i.e., discrete) density functions, the CDFs are estimated from the 

samples generated according to the staircase density functions, via the kernel density estimation. As can be seen, the 

estimated staircase density functions are in good agreement with their target marginal distribution, which supports that 

the above estimate errors in the skewness and kurtosis parameters are still permissible for the purpose of calibrating 

the joint distribution of the parameters. Nevertheless, it is noted that, in the tail regions, the calibrated distributions, in 



174         Chapter 5 Research article 4: Distribution-free stochastic model updating of dynamic systems with parameter 

dependencies 

 

particular for 𝑘1, remain discrepancy from the target distributions due to the estimate errors in the kurtosis parameters, 

while the discrepancy in the tail regions do not affect greatly the model outputs as depicted in Figure 5.10. Furthermore, 

the obtained distributions have bounded support domains which are identical to ranges of the horizontal axes of Figure 

5.9 because of the definition of the staircase density functions, while the target Gaussian distributions do not have the 

bounded supports. It implies that the proposed updating procedure does not limit its applicability to the case where the 

investigated parameters have bounded supports. However, at the same time, it also indicates that the calibrated joint 

distribution cannot be employed for reliability analysis, where the target is to estimate the probabilities of rare events 

that can be occurred out of the support domains. It is noted that, this limitation does not prevent the use of the proposed 

procedure in the stochastic model updating, since the main motivation of the stochastic model updating is to obtain the 

model that is capable to describe the system of interest conditioned on the observed data whereas reliability analysis 

is only one of the potential usages of the calibrated model. 

 

Figure 5.9 Calibrated marginal distributions of the input parameters. 

Finally, Figure 5.10 compares both the histograms and scatters between the target and updated simulated features. 

Compared with the initial simulated features in Figure 5.8, It can be seen that the uncertainties in the three stiffness 

parameters are correctly calibrated by the proposed procedure and the calibrated model is capable to recreate wholly 
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the uncertainty characteristics of the observed features. As such, the relatively large errors in the higher order moment 

parameters can be considered to be permissible, because the proposed procedure aims at not estimating the individual 

moment parameters precisely but rather obtaining model outputs which are identical to the observations to which some 

higher moment parameters might be relatively insensitive. 

 

Figure 5.10 Observed features in blue and updated simulated features in green, with the unit in Hz. 

5.5    Nonlinear dynamic system updating 

5.5.1 Problem description 

The proposed approach is further demonstrated on the updating of nonlinear dynamic systems using the measured 

time signals. For this purpose, a model updating problem of a reinforced concrete (RC) bridge pier using simulated 

seismic response data is investigated. The target bridge is a seismic-isolated bridge with lead rubber bearings, designed 

based on the specifications for highway bridges in Japan (Japan Road Association (JRA), 2016). Its descriptions are 

detailed in Table 5.6. Figure 5.11 shows the 2-DOF lumped mass model as the numerical model of the target structure, 

in which the two lumped masses represent the superstructure and RC pier, and the two horizontal springs represent the 

rubber bearings and RC pier. The boundary condition at the surface is assumed as fixed. The nonlinearity of the rubber 

bearings is characterized by a bilinear model with the ratio of the yield stiffness 𝐾𝐵1 to the post-yield stiffness 𝐾𝐵2 of 

6.5:1 based on the manual on bearings for highway bridges in Japan (JRA, 2004). Meanwhile, that of the RC pier is 
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represented by a bilinear model with the elastoplastic characteristic and the stiffness degradation model, termed Takeda 

model (Takeda et al., 1970). The well-known Rayleigh damping model is utilized as the damping model in which the 

damping ratios of the rubber bearings and RC pier are set to be 0 % and 2 %, respectively. 

Table 5.6 Descriptions of the target bridge pier. 

 Structural parameter Nominal value 

Superstructure Mass 𝑀𝑆 (ton) 604.0 

Rubber bearings Yield strength (kN) 1118 

Yield stiffness 𝐾𝐵1 (kN/m) 40000 

Post-yield stiffness 𝐾𝐵2 (kN/m) 6000 

RC pier Mass 𝑀𝑃 (ton) 346.2 

Yield strength (kN) 3374 

Yield stiffness 𝐾𝑃 (kN/m) 110100 

Yield displacement (m) 0.0306 

 

Figure 5.11 Numerical modeling of the target bridge pier. 

The aim of this updating problem is quantifying the uncertainty characteristics of the post-yield stiffness of the 

rubber bearings, 𝐾𝐵2, which governs the nonlinear behaviour of the target bridge pier under strong earthquakes, as well 

as the remaining stiffnesses 𝐾𝐵1 and 𝐾𝑃. These three stiffnesses are parameterized as 𝐾𝐵1 = 𝐾𝐵1𝑥1, 𝐾𝐵2 = 𝐾𝐵2𝑥2, and 

𝐾𝑃 = 𝐾𝑃𝑥3, where 𝒙 = [𝑥1, 𝑥2, 𝑥3] are uncertain input parameters, and 𝐾𝐵1, 𝐾𝐵2, and 𝐾𝑃 are the nominal values shown 

in Table 5.6. The other parameters are assumed to be fixed constants with the nominal values. The time-history of the 

acceleration response at the superstructure subjected to the level-2 type-II-II-1 earthquake introduced in JRA (2016) is 

used as the target output features. The duration time of the input ground motion is 40 s. Time history analysis of the 2- 

DOF model is performed by the Newmark 𝛽 method (𝛽 = 1 4⁄  and 𝛾 = 1 2⁄ ) with the time step ∆𝑡 = 0.001 s.  Figure 

5.12 illustrates the time-history of the acceleration response at the superstructure and the force-displacement responses 

of the rubber bearings and pier for the case when all parameters are fixed to the nominal values shown in Table 5.6. 
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Figure 5.12 (a) Time-history of the acceleration response at superstructure; (b) Force-displacement response of 

rubber bearings; (c) Force-displacement response of RC pier. 

The target joint probability distribution of the input parameters 𝒙 is considered as a correlated tri-variate Gaussian 

distribution, where a positive correlation between 𝑥1 and 𝑥2 (i.e., between the initial and post stiffnesses of the rubber 

bearings) is induced. The pre-defined support domains of 𝑥1, 𝑥2, and 𝑥3 and the target values of the hyper-parameters 

and correlation coefficients are summarized in Table 5.7. Similar to the previous case study, the support domains are 

determined to cover more than 99.99 % confidence intervals of their target marginal distributions. Suppose the number 

of observed features be 𝑁obs = 100, 𝑁obs sample sets of the input parameters 𝒙 are generated according to the target 

joint distribution and then the corresponding observed features 𝐘obs of the time-history of the acceleration response at 

the superstructure, are collected by evaluating the model with these sample sets.  

Table 5.7 Uncertainty characteristics of the target bridge pier. 

Parameter Support set Target distribution 

𝑥1, 𝑥2, 𝑥3  𝑥1 ∈ [0.7, 1.3], 𝑥2 ∈ [0.7, 1.3], 
𝑥3 ∈ [0.7, 1.3] 

Gaussian, 𝜇1 = 1.0, 𝜇2 = 1.0, 𝜇3 = 1.0, 𝑚21 = 0.0049,  
𝑚22 = 0.0049, 𝑚23 = 0.0049, 𝜌12 = 0.8, 𝜌13 = 0, 𝜌23 = 0 

𝑀𝑆, 𝑀𝑃 Deterministic – 
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In this example, totally 13 inferred parameters, i.e., the hyper-parameters 𝜽𝑥𝑖
= {𝜇𝑖 , 𝑚2𝑖, 𝑚3𝑖 , 𝑚4𝑖}, for 𝑖 = 1, 2, 3, 

and correlation coefficient 𝜌12 is considered. It is noted that the remaining correlation coefficients are assumed as zero 

in advance and ignored in the updating procedure. Let the sample size be 𝑁MC = 100, 𝑁MC sets of the hyper-parameters 

maintaining the moment constraints Θ1 Θ2, and Θ3, are generated by the rejection sampling whereas 𝑁MC sets of the 

correlation coefficient are arbitrary generated from the support of [-1, 1]. For each set of [𝜽𝑥1
, 𝜽𝑥2

, 𝜽𝑥3
, 𝜌12], the joint 

probability distribution of the input parameters 𝒙 is defined as the Gaussian copula function with the marginal staircase 

density functions. The number of bins 𝑛𝑏 is chosen as 𝑛𝑏 = 50. The number of simulated features, on the other hand, 

is set as 𝑁sim = 500; hence, 𝑁sim sample sets of 𝒙 are generated from each joint distribution {𝐹𝐱
(𝑘)

: 𝑘 = 1,⋯ ,𝑁MC}, 

and then the corresponding initial simulated features 𝐘sim
(𝑘)

 are obtained by evaluating the model with these samples. 

The window length in the dimension reduction procedure introduced in Section 5.2.1 is set to be L = 0.025(𝑡 + 1), 

with 𝑡 = 40 0.001⁄ = 40000. Hence, the RMS matrices of both the simulated and observed features, 𝐑
𝐘sim

(𝑘)
𝑠  and 𝐑𝐘sim

𝑠 , 

for ∀𝑠 = 1,⋯ , 40, are defined. Figure 5.13 compares the histograms and scatters between the observed and simulated 

features by utilizing five arbitrary selected RMS matrices at the time 𝑠 = 30, 7, 6, 9, 37. The figure demonstrates that 

the target features show strong nonlinearity, making the updating problem significantly challenging. The Bhattacharyya 

distance is obtained for each pair of the simulated and observed RMS matrices, and the RMS value of the Bhattacharyya 

distances, 𝑅𝑑𝐵
, is used as the UQ metric in the approximate likelihood. The number of bins 𝑛bin is chosen as 𝑛bin =

10 while the width factor 𝜀 is set as 𝜀 = 0.01. 

5.5.2 Results assessment 

By employing totally 13 TMCMC iterations, all the inferred parameters are well updated to the posterior PDFs. 

The calibrated values of the inferred parameters are detailed in Table 5.8, together with the corresponding target values. 

The relative estimation errors are also shown in the parentheses after the calibrated values. The calibrated values of all 

mean parameters and the variance parameter 𝑚21 are in good agreement with the target values, whereas the remaining 

variance parameters exhibit large estimate errors because of their quite small target values. In spite of the large relative 

errors, the calibrated values of the variance parameters are close to the target values compared with the prior supports 

and these errors are permissible to result in the model outputs close to the observations. Moreover, the skewnesses and 

kurtoses exhibit differences compared with their target values, whereas these errors are also within allowable limits to 

achieve the model outputs close to the target observations, as similar as the previous example. Furthermore, the positive 
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correlation induced is also captured by the proposed procedure though a certain error is still remained when compared 

to the target value. By assigning these calibrated values, the joint probability distribution of 𝒙 is tuned identical to the 

target distribution. 

 

Figure 5.13 Observed features in blue and initial simulated features in green, with the unit in m s2⁄ . 

Table 5.8 Calibrated parameters of the target bridge pier model. 

Parameter Target value Calibrated value 

𝜇1 1.0 0.9958 (-0.42 %) 

𝑚21 0.0049 0.0045 (-4.44 %) 

�̃�31 0 -0.1688 

�̃�41 3.0 4.3450 (44.83 %) 

𝜇2 1.0 0.9992 (-0.08 %) 

𝑚22 0.0049 0.0065 (32.65 %) 

�̃�32 0 0.4050  

�̃�42 3.0 3.9500 (31.67 %) 

𝜇3 1.0 0.9996 (-0.04 %) 

𝑚23 0.0049 0.0068 (38.78 %) 

�̃�33 0 -0.3025 

�̃�43 3.0 4.3960 (46.53 %) 

𝜌12 0.8 0.6736 (-15.80 %) 

Finally, Figure 5.14 compares the histograms and scatters between the target and simulated features for the five 

arbitrary selected RMS matrices of 𝑠 = 30, 7, 6, 9, 37. Compared with the initial simulated features in Figure 5.13, It 
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can be seen the updated simulated features are identical to the observed features capturing the complicated nonlinear 

structure. This indicates the feasibility of the proposed approach in the stochastic model updating of nonlinear dynamic 

systems for recreating wholly the uncertainty characteristics of the target measured time signals, even though the prior 

knowledge about the joint distribution of the parameters is extremely limited. 

 

Figure 5.14 Observed features in blue and updated simulated features in green, with the unit in m s2⁄ . 

5.6    Conclusions 

This paper presents three contributions for the calibration of the joint probabilistic distribution of the correlated 

parameters through the stochastic model updating based on a limited number of measurement data. First, each marginal 

distribution is characterized by staircase density functions and their hyper-parameters are subjected to be updated. The 

staircase density functions can flexibly describe a broad range of distributions; thus, no limiting hypotheses about the 

distribution families is required differently from the most of the available stochastic model updating frameworks. Next, 

the dependence structure among the parameters are described by the Gaussian copula. The correlation coefficients are 

also subjected to be updated; thus, even the prior knowledge on the presence of parameter dependencies is not required. 

Finally, the Bhattacharyya distance-based UQ metric is proposed to define an approximate likelihood which is capable
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of quantifying the stochastic discrepancy between the model outputs and measurements. As such, the parameters to be 

inferred, i.e., the hyper-parameters and correlation coefficients are successfully updated through the Bayesian model 

updating. Two exemplary applications and the followed nonlinear dynamic system updating problem demonstrate the 

feasibility of the proposed model updating procedure and the importance of considering the parameter dependency in 

the stochastic model updating. 

However, open problems still exist. First, the cost function in the optimization problem solved for estimating the 

staircase density function is solely chosen in this study. The staircase density that attains other optimality criteria, such 

as the maximal entropy, can be similarly formulated, but further studies are necessary to investigate the most suitable 

choice of the cost function for model updating. Second, the Gaussian copula might not be suitable if the parameters 

demonstrate a strong nonlinear dependency. The assumption on the copula function type introduces another source of 

uncertainty, i.e., the model bias, and such uncertainty should be quantified by, for instance, the Bayesian model class 

selection. These two challenges will be addressed in the future work. 
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Chapter 6                                                                                      

Research article 5: A distributionally robust approach for mixed 

aleatory and epistemic uncertainties propagation 

This is the last phase of the main part of this thesis, that aims at extending the generalized NISS framework so as 

to propagate the category IV parameters whose distribution families are unknown a priori, by representing them as the 

distributional p-boxes based on the staircase density functions. This is motivated by the NASA UQ challenge problem 

2019 addressed in Chapter 4, where it is revealed that the computational burden of the probability bounds analysis for 

the p-boxes constructed based on the staircase density functions by the double-loop Monte Carlo method might not be 

permissible for practical applications. As such, a more efficient method to propagate the p-boxes based on the staircase 

density functions is required as a robust tool for uncertainty propagation that is effective even on the very challenging 

condition where the prior knowledge on aleatory parameters is extremely limited. 

As has been mentioned in the introduction chapter of this thesis, the generalized NISS framework is designed to 

propagate the category IV parameters described as the parameterized p-boxes and category III parameters represented 

as the interval models simultaneously. Thus, it is theoretically applicable to the propagation of the p-boxes constructed 

based on the staircase density functions. However, it requires, in its current form based on the global NISS method, to 

parameterize the distribution function for a significant number of the hyper-parameters sets to derive NISS estimators. 

The staircase density functions are parameterized by solving optimization problems; hence, their excessively repeated 

parameterizations can be computationally prohibitive. 

To overcome this limitation, the present article develops a novel hybrid NISS method. In this method, the p-boxes 

based on the staircase density functions are propagated using the local NISS method in order to significantly suppress 

the computational cost to derive the NISS estimators over their hyper-parameters by performing the parameterizations 

of the staircase density functions only at a single well-chosen point (e.g., the mid-point of the support domain in this 

study) of the hyper-parameters. On the contrary, this method maintains to utilize the global NISS method to propagate 

the interval models in order to ensure the global accuracy of the estimators of the corresponding component functions. 

As such, the proposed method can achieve a good balance between the efficiency in deriving the NISS estimators for
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the hyper-parameters of the p-boxes and the global accuracy of those for the interval parameters. The proposed method 

is applied for solving the reliability analysis subproblem (Sub-problem C) in the NASA UQ challenge 2019. The results 

demonstrate that the proposed method is capable to estimate the failure probability bounds accurately when compared 

to the results in Chapter 4 based on the probability bounds analysis by the double-loop Monte Carlo method, and the 

computational burden is reduced ten times. 
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6.1    Introduction 

Uncertainties are typically grouped into aleatory and epistemic uncertainty (Der Kiureghian and Ditlevsen, 2009), 

and uncertainty characterization models can be then categorized into the following three groups: 

 Probability model is the most classical one, and is usually used to represent aleatory uncertainty; 

 Non-probabilistic models (Faes and Moens, 2020) are set-theoretical models, and are usually used to characterize 

epistemic uncertainty; 

 Imprecise probability models (Beer et al., 2013) are accounted for as a combination of the former two models, and 

can separately characterize aleatory and epistemic uncertainties. 

Among the above three models, the effective propagation of the imprecise probability models has been intensively 

investigated in the past decades. The extended Monte Carlo simulation (EMCS) (Wei et al., 2014) is an importance 

sampling-based method relying on a single stochastic simulation. Therefore, its computational cost is the same as that 

for the conventional reliability analysis. Moreover, the method has been integrated with the high-dimensional model 

representation (HDMR) decomposition as the metamodel strategy and sensitivity analysis to measure the importance 

of the epistemic parameters, to establish a general methodology framework, called non-intrusive imprecise stochastic 

simulation (NISS) (Wei et al., 2019a; Wei et al., 2019b), and it has been also generalized to propagate the imprecise 
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probability models and non-probabilistic models simultaneously (Song et al., 2019). 

However, the main drawback of the NISS method is that it is restricted to the parameterized imprecise probability 

models, e.g., distributional p-boxes (Faes et al., 2021), that impose constraints on admissible distribution functions by 

assuming a specific distribution family. Comparatively, if the distribution families of the aleatory parameters cannot 

be determined a priori, it becomes necessary to propagate all the possible distributions of arbitral distribution families 

enclosed within a concerned p-box, so as to accurately estimate the failure probability bounds. Crespo et al. (2018) has 

recently developed a novel distribution family, called staircase distribution, that enables to approximate a broad range 

of distributions arbitrary close. Whereas its applications in imprecise stochastic simulation are quite limited in current 

literatures, it has a potential to define a parametric p-box approximately containing any distributions within its bounds. 

The aim of this work is consequently to generalize the staircase distribution-based p-boxes and integrate them with the 

NISS method to develop a novel framework to propagate the imprecise probability models without limiting hypotheses 

on the distribution family. 

The present work particularly focuses on the generalized global NISS method (Song et al., 2019), because it can 

propagate the imprecise probability models and non-probabilistic models at the same time. The staircase distributions 

are theoretically ready to be utilized in this method by constructing parametric p-boxes defining their hyper-parameters 

as interval values. However, it requires to parameterize the distribution function for a significant number of the hyper-

parameters sets to derive NISS estimators. This can be computationally prohibitive for the staircase distributions whose 

density functions are parameterized by solving optimization problems. To overcome this obstacle, a novel hybrid NISS 

method is proposed, where the staircase distribution-based p-boxes are propagated by the local NISS method (Wei et 

al., 2019a) while the non-probabilistic models, i.e., interval models, are propagated using the global NISS method (Wei 

et al., 2019b). The feasibility of the proposed hybrid NISS method is demonstrated by solving the reliability analysis 

subproblem of the NASA UQ challenge problem 2019 (Crespo and Kenny, 2021). 

6.2    Parametric p-boxes bases on staircase distributions 

Staircase distributions (Crespo et al., 2018) are functions of their hyper-parameters 𝜽 = [𝜇,𝑚2, �̃�3, �̃�4] which 

consists of the mean 𝜇, variance 𝑚2, skewness �̃�3, and kurtosis �̃�4. The PDF of a staircase random variable 𝑥 on its 

support domain [𝑥, 𝑥] can be expressed as: 

𝑓x(𝑥) = {
𝑙𝑖      ∀𝑥 ∈ (𝑥

𝑖 , 𝑥𝑖+1], for 1 ≤ 𝑖 ≤ 𝑛𝑏
0      otherwise                                      

 (6.1) 
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where 𝑙𝑖(≥ 0) indicates the PDF value of the 𝑖th bin; 𝑥𝑖 = 𝑥 + (𝑖 − 1)𝜅, with the length 𝜅 = (𝑥 − 𝑥) 𝑛𝑏⁄ , denotes the 

𝑖th left partitioning point; 𝑛𝑏 is the number of bins. The PDF values 𝑙𝑖 , for 1 ≤ 𝑖 ≤ 𝑛𝑏, can be obtained by solving an 

optimization problem based on the moment matching constraints, and the readers can refer to Crespo et al. (2018) for 

their detailed derivation. The staircase distribution can define a parametric p-box by CDF families the hyper-parameters 

of which are known in intervals: 

𝐹x(𝑥) = 𝐹x(𝑥|𝜽), for 𝜽 ∈ {𝐷𝜽 ∩ Θ} (6.2) 

where 𝐷𝜽 is the interval domain of 𝜽; Θ denotes the feasible domain of 𝜽 as moment constraints for the existence of 𝑥 

[9]. Without loss of generality, we assume that each interval is independent and 𝐷𝜽 = [𝜇, 𝜇] × [𝑚2, 𝑚2] × [�̃�3, �̃�3] ×

[�̃�4, �̃�4] denotes a hyper-rectangular domain. 

Figure 6.1 illustrates an example of a parametric p-box consisting of a staircase distribution family with a support 

set 𝑥 ∈ [−5, 5], mean 𝜇 ∈ [−1, 1], variance 𝑚2 ∈ [0.8, 1.2], skewness �̃�3 ∈ [−0.75, 0.75], and kurtosis �̃�4 ∈ [2, 4], 

as well as a parametric p-box that consists of a Gaussian distribution family with the same intervals for the mean and 

variance as above. Moreover, four possible CDF realizations for each type of the p-box are shown in the figure. The 

Gaussian distribution-based p-box naturally only contains Gaussian distributions, while the staircase distribution-based 

p-box contains a broad range of distributions, including skewed and bi-modal distributions. 

 

Figure 6.1 Illustration of Gaussian distribution-based and staircase distribution-based p-boxes. 

The staircase distribution-based p-box is capable of realizing arbitral distribution functions the hyper-parameters 

of which are in {𝐷𝜽 ∩ Θ}, while it allows a clear separation of aleatory uncertainty, represented by distribution families, 

and epistemic uncertainty, described by given intervals of the hyper-parameters. These properties fulfill the expectation 
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as a parameterized imprecise probability model with no limiting hypothesis about the distributions of the investigated 

aleatory parameters.  

6.3    Hybrid NISS method 

Suppose 𝑔(𝒙, 𝒚) be the limit state function, where 𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛)
𝑇 is the 𝑛-dimensional staircase random 

variables and 𝒚 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑚)
𝑇 ∈ 𝐷𝒚 indicates the 𝑚-dimensional independent interval parameters with the hyper-

rectangular domain 𝐷𝒚. Without loss of generality, we assume that 𝒙 are independent to each other, so that the joint 

PDF is expressed as 𝑓𝐱(𝒙) = ∏ 𝑓x𝑖(𝑥𝑖|𝜇𝑖, 𝑚2𝑖 , �̃�3𝑖, �̃�4𝑖)
𝑛
𝑖=1 , for 𝝁 ∈ 𝐷𝝁, 𝒎2 ∈ 𝐷𝒎2

, �̃�3 ∈ 𝐷�̃�3
, and �̃�4 ∈ 𝐷�̃�4

, where 

𝝁, 𝒎2, �̃�3 and �̃�4 are columns of the means, variances, skewnesses and kurtoses, respectively; 𝐷𝝁, 𝐷𝒎2
, 𝐷�̃�3

 and 

𝐷�̃�4
 mean the hyper-rectangular domains of 𝝁, 𝒎2, �̃�3 and �̃�4. Noted that, the independence assumption on 𝒙 is not 

crucial for the proposed method. In fact, the dependence structure among the staircase random variables enables to be 

uniquely defined by a copula function (Nelsen, 2006)), thus the following steps to derive the NISS estimators do almost 

not affected by the presence of dependent inputs. Such definition further brings 4𝑛-dimensional epistemic parameters 

𝝑 = (𝜇1, ⋯ , 𝜇𝑛, 𝑚21, ⋯ ,𝑚2𝑛, �̃�31, ⋯ , �̃�3𝑛, �̃�41, ⋯ , �̃�4𝑛)
𝑇, and their support set is defined as the hyper-rectangular 

𝐷𝝑 = 𝐷𝝁 × 𝐷𝒎2
× 𝐷�̃�3

× 𝐷�̃�4
. For convenience in notation, let 𝝑 = (𝜗1, ⋯ , 𝜗4𝑛)

𝑇, where 𝜗𝑖 = 𝜇𝑖, 𝜗2𝑖 = 𝑚2𝑖, 𝜗3𝑖 =

�̃�3𝑖, and , 𝜗4𝑖 = �̃�4𝑖, for 𝑖 = 1,⋯ , 𝑛. 

We assume that the failure event happens when 𝑔(𝒙, 𝒚) < 0 and the failure domain can be represented as 𝐹 =

{𝒙, 𝒚: 𝑔(𝒙, 𝒚) < 0}. The indicator function of 𝐹 is then formulated by 𝐼𝐹(𝒙, 𝒚) = 1 if {𝒙, 𝒚} ∈ 𝐹, and else 𝐼𝐹(𝒙, 𝒚) =

0. The failure probability function can be then expressed as:  

𝑃𝑓(𝝑, 𝒚) = ∫ 𝐼𝐹(𝒙, 𝒚)𝑓𝐱(𝒙|𝝑)𝑑𝒙
ℝ𝑛

 (6.3) 

The HDMR decomposition of the failure probability function expresses 𝑃𝑓(𝝑, 𝒚) as the sum of a series of component 

functions: 

𝑃𝑓(𝝑, 𝒚) ≈ 𝑃𝑓0 +∑𝑃𝑓𝜗𝑖(𝜗𝑖)

4𝑛

𝑖=1

+∑𝑃𝑓𝑦𝑖(𝑦𝑖)

𝑚

𝑖=1

+ ∑ ∑ 𝑃𝑓𝝑𝑖𝑗(𝝑𝑖𝑗)

4𝑛

𝑗=𝑖+1

4𝑛−1

𝑖=1

+ ∑ ∑ 𝑃𝑓𝒚𝑖𝑗(𝒚𝑖𝑗)

𝑚

𝑗=𝑖+1

𝑚−1

𝑖=1

+∑∑𝑃𝑓𝜗𝑖𝑦𝑗(𝜗𝑖 , 𝑦𝑗)

𝑚

𝑗=1

4𝑛

𝑖=1

+⋯+ 𝑃𝑓𝝑𝒚(𝝑, 𝒚) 

(6.4) 
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where 𝑃𝑓0 denotes the constant component; 𝑃𝑓𝜗𝑖 and 𝑃𝑓𝑦𝑖 refer to the first-order component functions; 𝑃𝑓𝝑𝑖𝑗 , 𝑃𝑓𝒚𝑖𝑗, and 

𝑃𝑓𝜗𝑖𝑦𝑗 mean the second-order component functions; 𝝑𝑖𝑗  is the two-dimensional vector consisting of 𝜗𝑖 and 𝜗𝑗, and 𝒚𝑖𝑗 

possesses a similar structure for 𝒚. It has been demonstrated the HDMR decomposition with second-order truncation 

commonly results in a satisfactory approximation of the failure probability function (Wei et al., 2019b; Song et al., 

2019). Thus, we only consider up to second-order component functions and do not go for the higher-order component 

functions in the rest part of this paper. 

A hybrid NISS method is herein developed, where the staircase distribution-based p-boxes are propagated by the 

local NISS method (Wei et al., 2019b) to significantly suppress the computational burden for estimating the component 

functions over the hyper-parameters, by performing the parameterizations of the joint PDFs at a single well-chosen 

point of 𝝑. On the other hand, the interval models are propagated using the global NISS method (Song et al., 2019) for 

ensuring the global accuracy of the estimators of the corresponding component functions. In this context, the HDMR 

component functions can be defined as: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑃𝑓0 = ∫𝑃𝑓(𝝑

∗, 𝒚)𝑓𝐲(𝒚)𝑑𝒚                                                                                            

𝑃𝑓𝜗𝑖(𝜗𝑖) = ∫𝑃𝑓(𝜗𝑖 , 𝝑−𝑖
∗ , 𝒚)𝑓𝐲(𝒚)𝑑𝒚 − 𝑃𝑓0                                                               

𝑃𝑓𝑦𝑖(𝑦𝑖) = ∫𝑃𝑓(𝝑
∗, 𝒚)𝑓𝐲−𝑖(𝒚−𝑖)𝑑𝒚−𝑖  − 𝑃𝑓0                                                            

𝑃𝑓𝝑𝑖𝑗(𝝑𝑖𝑗) = ∫𝑃𝑓(𝝑𝑖𝑗 , 𝝑−𝑖𝑗
∗ , 𝒚)𝑓𝐲(𝒚)𝑑𝛝−𝑖𝑗𝑑𝒚 − 𝑃𝑓𝜗𝑖(𝜗𝑖) − 𝑃𝑓𝜗𝑗(𝜗𝑗) − 𝑃𝑓0    

𝑃𝑓𝒚𝑖𝑗(𝒚𝑖𝑗) = ∫𝑃𝑓(𝝑
∗, 𝒚)𝑓𝐲−𝑖𝑗(𝒚−𝑖𝑗)𝑑𝒚−𝑖𝑗 − 𝑃𝑓𝑦𝑖(𝑦𝑖) − 𝑃𝑓𝑦𝑗(𝑦𝑗) − 𝑃𝑓0           

𝑃𝑓𝜗𝑖𝑦𝑗(𝜗𝑖 , 𝑦𝑗) = ∫𝑃𝑓(𝜗𝑖 , 𝝑−𝑖
∗ , 𝒚)𝑓𝐲−𝑗(𝒚−𝑗)𝑑𝒚−𝑗 − 𝑃𝑓𝜗𝑖(𝜗𝑖) − 𝑃𝑓𝑦𝑗(𝑦𝑗) − 𝑃𝑓0

 (6.5) 

where 𝝑∗ indicates the well-chosen fixed point of 𝝑 chosen as the mid-point of 𝐷𝝑 in this study. Unbiased estimators 

of each component function in Equation (6.5) are then derived using the joint sample set 𝑊 = {𝒙(𝑘), 𝒚(𝑘)}, for 𝑘 =

1,2,⋯ ,𝑁, as: 

{
 
 
 
 

 
 
 
 �̂�𝑓0 =

1

𝑁
∑ 𝐼𝐹(𝒙

(𝑘), 𝒚(𝑘))
𝑁

𝑘=1
                                                    

�̂�𝑓𝜗𝑖(𝜗𝑖) = �̂�𝑓0𝑟𝜗𝑖(𝒙
(𝑘)|𝜗𝑖 , 𝝑−𝑖

∗ )                                                

�̂�𝑓𝑦𝑖(𝑦𝑖) = �̂�𝑓0𝑟𝑦𝑖(𝑦𝑖|𝐹,𝑊)                                                       

�̂�𝑓𝝑𝑖𝑗(𝝑𝑖𝑗) = �̂�𝑓0𝑟𝝑𝑖𝑗(𝒙
(𝑘)|𝝑𝑖𝑗 , 𝝑−𝑖𝑗

∗ )                                       

�̂�𝑓𝒚𝑖𝑗(𝒚𝑖𝑗) = �̂�𝑓0𝑟𝒚𝑖𝑗(𝒚𝑖𝑗|𝐹,𝑊)                                                 

�̂�𝑓𝜗𝑖𝑦𝑗(𝜗𝑖 , 𝑦𝑗) = [�̂�𝑓𝜗𝑖(𝜗𝑖) + �̂�𝑓0]𝑟𝑦𝑗(𝑦𝑗|𝐹,𝑊) − �̂�𝑓𝒚𝑗(𝑦𝑗)

 (6.6) 
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with 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑟𝜗𝑖 (𝒙

(𝑘)
|𝜗𝑖,𝝑−𝑖

∗
)=

𝑓𝐱 (𝒙
(𝑘)
|𝜗𝑖,𝝑−𝑖

∗
)

𝑓𝐱 (𝒙
(𝑘)
|𝝑
∗
)

−1                                                                     

𝑟𝑦𝑖 (𝑦𝑖|𝐹,𝑊
′
)=

𝑓̂ y𝑖
(𝑦𝑖|𝐹,𝑊)

𝑓y𝑖
(𝑦𝑖)

−1                                                                              

𝑟𝝑𝑖𝑗 (𝒙
(𝑘)
|𝝑𝑖𝑗,𝝑−𝑖𝑗

∗
)=

𝑓𝐱 (𝒙
(𝑘)
|𝝑𝑖𝑗,𝝑−𝑖𝑗

∗
)

𝑓𝐱 (𝒙
(𝑘)
|𝝑
∗
)

−
𝑓𝐱 (𝒙

(𝑘)
|𝜗𝑖,𝝑−𝑖

∗
)

𝑓𝐱 (𝒙
(𝑘)
|𝝑
∗
)

−
𝑓𝐱 (𝒙

(𝑘)
|𝜗𝑗,𝝑−𝑗

∗
)

𝑓𝐱 (𝒙
(𝑘)
|𝝑
∗
)

+1 

𝑟𝒚𝑖𝑗 (𝒚𝑖𝑗|𝐹,𝑊
′
)=

𝑓̂𝐲𝑖𝑗
(𝒚𝑖𝑗|𝐹,𝑊)

𝑓𝐲𝑖𝑗
(𝒚𝑖𝑗)

−
𝑓̂ y𝑖

(𝑦𝑖|𝐹,𝑊)

𝑓y𝑖
(𝑦𝑖)

−
𝑓̂ y𝑗

(𝑦𝑗|𝐹,𝑊)

𝑓y𝑗
(𝑦𝑗)

+1                     

 (6.7) 

are regarded as weight coefficients, where 𝑓y𝑖(𝑦𝑖|𝐹,𝑊) and 𝑓𝐲𝑖𝑗(𝒚𝑖𝑗|𝐹,𝑊) denote the conditional PDFs of 𝑦𝑖  and 𝒚𝑖𝑗, 

respectively, on the failure domain 𝐹 estimated based on the sample set 𝑊. One can refer to Song et al. (2019) for the 

detailed derivations of these conditional PDFs. It is noted that, to generate the joint sample set 𝑊, an auxiliary PDF of 

𝒚, 𝑓𝐲(𝒚) = ∏ 𝑓y𝑖(𝑦𝑖)
𝑚
𝑖=1 , is necessary. Without loss of generality, we assume that each 𝑦𝑖 follows a uniform distribution 

on its relaxed interval domain [𝑦𝑖 − 𝛿∆𝑦𝑖 , 𝑦𝑖 + 𝛿∆𝑦𝑖], where ∆𝑦𝑖  denotes the difference of the original interval and 𝛿 

is a given value (e.g., 𝛿 = 0.2), to improve the estimation performance around the original bounds (Song et al., 2019). 

Finally, sensitivity indices are proposed as follows for measuring the relative importance of the component functions: 

𝑆(∙) =
V[𝑃𝑓(∙)(∙)]

V[𝑃𝑓(𝝑, 𝒚)]
 (6.8) 

with 

V[𝑃𝑓(𝝑, 𝒚)] = ∑V[𝑃𝑓𝜗𝑖(𝜗𝑖)]

4𝑛

𝑖=1

+∑V[𝑃𝑓𝑦𝑖(𝑦𝑖)]

𝑚

𝑖=1

+ ∑ ∑ V[𝑃𝑓𝝑𝑖𝑗(𝝑𝑖𝑗)]

2𝑛

𝑗=𝑖+1

4𝑛−1

𝑖=1

+ ∑ ∑ V[𝑃𝑓𝒚𝑖𝑗(𝒚𝑖𝑗)]

𝑚

𝑗=𝑖+1

𝑚−1

𝑖=1

+∑∑V[𝑃𝑓𝜗𝑖𝑦𝑗(𝜗𝑖 , 𝑦𝑗)]

𝑚

𝑗=1

4𝑛

𝑖=1

+⋯+ V[𝑃𝑓𝝑𝒚(𝝑, 𝒚)] 

where V indicates the variance operator. The sensitivity indices measure the average L2 distance of the components to 

the fixed point 𝝑∗. The smaller the distance is, the less influential the component is. 

The detailed procedure of the proposed method is shown in Figure 6.2. The statistical error of the NISS estimators 

is assessed by the bootstrap scheme. Let 𝑛𝑏𝑜𝑜𝑡 indicate the number of total bootstrap replications, we can obtain 𝑛𝑏𝑜𝑜𝑡 

estimates of each component function and sensitivity index, and can calculate the confidence intervals [�̂�𝑓(∙),  �̂�𝑓(∙)], 

e.g., [E[�̂�𝑓(∙)] − 2(V[�̂�𝑓(∙)])
1 2⁄
, E[�̂�𝑓(∙)] + 2(V[�̂�𝑓(∙)])

1 2⁄
], where E is the mean operator, since the NISS estimators 
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follow Gaussian distributions. We propose to estimate two coefficients of variations (CV), i.e., CVs at the points where 

�̂�𝑓(∙) returns the minimum and maximum values, CV
min(�̂�𝑓(∙))

 and CV
max(�̂�𝑓(∙))

. If their larger value is less than a given 

tolerance 휀, the statistical error is acceptable, and if not, one should enrich the size of the joint sample set 𝑁. The 

truncation error on the other hand is quantified by the sensitivity indices. The components sensitivity indices of which 

are less than a threshold 𝑆thr are ignored, and the resultant truncation error can be accepted if the summation of the 

sensitivity indices for all the components used is larger than a given threshold 𝜖. Otherwise, one should decrease 𝑆thr. 

Finally, the failure probability function 𝑃𝑓(𝝑, 𝒚) is approximated as synthetic of all the influential component functions. 

One can also estimate the failure probability bounds by sampling methods, where not only the mean estimators but 

also the variance estimators can be evaluated within the bootstrap scheme.  

 

Figure 6.2 Flowchart of the hybrid NISS method. 
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6.4    NASA UQ challenge problem 2019 

The NASA UQ challenge problem 2019 (Crespo and Kenny, 2021) is investigated to demonstrate the capabilities 

of the proposed hybrid NISS method. Figure 6.3 shows the overall structure of Sub-problem C (Reliability analysis of 

baseline design). The model inputs consist of five aleatory parameters 𝒂 = (𝑎1, 𝑎2, ⋯ , 𝑎5)
𝑇, four epistemic parameters 

𝒆 = (𝑒1, 𝑒2, ⋯ , 𝑒4)
𝑇, and pre-specified design variable 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 with nine components. The aleatory parameters 𝒂 are 

modeled by p-boxes while the epistemic parameters 𝒆 are modeled by intervals, based on the results of the first two 

subtasks, i.e., Sub-problem A (Model calibration & UQ of the subsystem) and Sub-problem B (Uncertainty reduction). 

It is important to note that, the distribution families of each aleatory parameter are completely unknown a priori. The 

reliability requirements of interest are represented by following three limit state functions, i.e., a black-box function 

𝑔1(𝒂, 𝒆, 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) < 0,  

𝑔2 = max
𝑡∈[𝑇 2⁄ , 𝑇]

|𝑧1(𝒂, 𝒆, 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , 𝑡)| − 0.02 < 0 (6.9) 

with a black-box time-independent output 𝑧1, and 

𝑔3 = max
𝑡∈[0, 𝑇]

|𝑧2(𝒂, 𝒆, 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , 𝑡)| − 4 < 0 (6.10) 

with a black-box time-independent output 𝑧2. The worst-case limit state function is then defined as:  

𝜔(𝒂, 𝒆, 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) = max
𝑖=1,2,3

𝑔𝑖(𝒂, 𝒆, 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) (6.11) 

The safe domain of the system is determined by the 𝒂 points where 𝜔(𝒂, 𝒆, 𝜃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) < 0, while its complement set 

is accounted for as the failure domain. 

Some of the authors have addressed the first two subproblems and have represented the aleatory parameters by 

the staircase distribution-based p-boxes (Lye et al., 2022). We herein use the results in Lye et al. (2022) for uncertainty 

characterization of 𝒂 and 𝒆, as summarized in Table 5.1. Under this assumption, 20 hyper-parameters of the staircase 

distributions are additionally taken into account as epistemic parameters, and thus totally 24 epistemic parameters (i.e., 

𝜗𝑖 = {𝜇𝑖, 𝑚2𝑖 , �̃�3𝑖, �̃�4𝑖}, for 𝑖 = 1,⋯ ,5, and 𝒆) are considered in the reliability analysis. Each auxiliary PDF 𝑓𝑒𝑖(𝑒𝑖) is 

assumed as a uniform distribution on its relaxed intervals as shown in parentheses after the true intervals in Table 5.1. 

The parameters of the proposed hybrid NISS method are set as 𝑁 = 5 × 105 and 𝑛𝑏𝑜𝑜𝑡 = 20, 휀 = 0.15 and, 𝜖 = 0.9, 

respectively.  



6.4 NASA UQ challenge problem 2019                                                                              195 

 

 

Figure 6.3 Schematic of the NASA UQ challenge 2019 Sub-problem C. 

Table 6.1 Model parameters of the NASA UQ challenge problem. 

Parameter Uncertainty characteristic 

𝑎1 Staircase distribution, 𝜇1 ∈ [0.5050, 0.5980], 𝑚21 ∈ [0.0200, 0.0750], �̃�31 ∈
[0.9800, 1.4550], �̃�41 ∈ [4.0790, 6.3690] 

𝑎2 Staircase distribution, 𝜇1 ∈ [1.1110, 1.2290], 𝑚21 ∈ [0.0660, 0.0670], �̃�31 ∈
[−0.6640, −0.2440], �̃�41 ∈ [3.7760, 4.9680] 

𝑎3 Staircase distribution, 𝜇1 ∈ [0.8040, 0.8720], 𝑚21 ∈ [0.0300, 0.0440], �̃�31 ∈
[−0.9620, −0.6080], �̃�41 ∈ [3.7140, 3.7150] 

𝑎4 Staircase distribution, 𝜇1 ∈ [0.7870, 1.2050], 𝑚21 ∈ [0.3520, 0.3530], �̃�31 ∈
[−0.7430, 0.2340], �̃�41 ∈ [1.4030, 2.5000] 

𝑎5 Staircase distribution, 𝜇1 ∈ [0.8510, 1.2240], 𝑚21 ∈ [0.2390, 0.3690], �̃�31 ∈
[−0.5430, 0.4370], �̃�41 ∈ [1.3040, 3.0480] 

𝑒1 Interval, 𝑒1 ∈ [0.4674, 0.6433] (Relaxed interval [0.2674, 0.8433]) 
𝑒2 Interval, 𝑒2 ∈ [0.7607, 0.9736] (Relaxed interval [0.5607, 1.1736]) 
𝑒3 Interval, 𝑒3 ∈ [0.2865, 0.4583] (Relaxed interval [0.0865, 0.6583])  
𝑒4 Interval, 𝑒4 ∈ [0.9627, 1.1664] (Relaxed interval [0.7627, 1.3664])  

The mean value and standard deviation of the constant component estimator �̂�𝑓0 are evaluated as 0.1646 and 

4.4 × 10−4, respectively. The mean estimates of the first-order components and their 95.45 % confidence intervals are 

shown in Figure 6.4 for the hyper-parameters of the aleatory parameters 𝒂 and in Figure 6.5 for the interval parameters 

𝒆. It can be seen that the confidence intervals of each component function are narrow enough, indicating all the 24 

component functions are accurately estimated by the proposed method. Similarly, among the second-order component 

functions, the mean estimators of the three most influential component functions are shown in Figure 6.6, along with 

their 95.45 % confidence intervals. As can be seen, these three second-order component functions are also effectively 

estimated with narrow confidence intervals.  
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Figure 6.4 First-order component functions of the hyper-parameters of 𝒂. 

Table 6.2 Sensitivity indices of the NASA UQ challenge problem. 

 Mean estimate Standard deviation  Mean estimate Standard deviation 

𝑆𝜇1  0.0107  2.3 × 10−4 𝑆�̃�34
 0.0018  3.0 × 10−4 

𝑆𝑚21
 0.0121  3.2 × 10−4 𝑆�̃�44

 0.0331  1.2 × 10−3 

𝑆�̃�31
 0.0006  4.9 × 10−5 𝑆𝜇5  0.0062  1.9 × 10−4 

𝑆�̃�41
 0.0027 1.6 × 10−4 𝑆𝑚25

 0.0087 2.3 × 10−4 

𝑆𝜇2  0.0017 7.3 × 10−5 𝑆�̃�35
 0.0000 1.8 × 10−6 

𝑆𝑚22
 0.0000  9.3 × 10−9 𝑆�̃�45

 0.0273  1.0 × 10−3 

𝑆�̃�32
 0.0000  2.2 × 10−6 𝑆𝑒1  0.2202  3.8 × 10−3 

𝑆�̃�42
 0.0001 6.1 × 10−6 𝑆𝑒2  0.4112 4.8 × 10−3 

𝑆𝜇3  0.0047 5.0 × 10−4 𝑆𝑒3  0.1044 2.0 × 10−3 

𝑆𝑚23
 0.0019  2.0 × 10−4 𝑆𝑒4  0.0213  5.7 × 10−4 

𝑆�̃�33
 0.0010 1.9 × 10−4 𝑆𝑒1𝑒2  0.0415 5.9 × 10−4 

𝑆�̃�43
 0.0000 2.1 × 10−10 𝑆𝑒1𝑒3  0.0105 2.9 × 10−4 

𝑆𝜇4  0.0093  2.9 × 10−4 𝑆𝑒2𝑒3  0.0197  5.4 × 10−4 

𝑆𝑚24
 0.0000  6.7 × 10−9    
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Figure 6.5 First-order component functions of the hyper-parameters of 𝒂. 

 

Figure 6.6 The three most influential second-order component functions, where the in-between surfaces indicate the 

mean estimators and the other two surfaces indicate the 95.45 % confidence intervals. 
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We compute the sensitivity indices for all the first- and second-order component functions. The mean estimates 

as well as standard deviations are presented in Table 5.2, for all the first-order and three most influential second-order 

component functions. It can be seen that all the sensitivity indices are accurately derived with small standard deviations. 

We assume that the component functions with the sensitivity indices larger than 0.01 are influential. Among the total 

24 first-order component functions, the eight components �̂�𝑓𝜇1, �̂�𝑓𝑚21
, �̂�𝑓�̃�44

, �̂�𝑓�̃�45
, �̂�𝑓𝑒1 , �̂�𝑓𝑒2 , �̂�𝑓𝑒3 , and �̂�𝑓𝑒4 , and the 

three most influential second-order component functions �̂�𝑓𝑒1𝑒2 , �̂�𝑓𝑒1𝑒3 , and �̂�𝑓𝑒2𝑒3  are thus employed. The summation 

of the sensitivity indices of all these 11 components is larger than the threshold 𝜖, implying the truncation error due to 

the truncation of the remaining components is acceptable. Finally, the failure probability function can be approximated 

using the 11 influential components, and the failure probability bounds are estimated. The mean estimates and standard 

deviations are listed in Table 5.3. The results are compared with the reference bounds in Lye et al. (2022) by the double-

loop MCS (Rocchetta et al., 2018) based on the same parameter settings. It can be seen that both the upper and lower 

bounds show good agreement with the reference bounds. In addition, the total number of model evaluations of the 

hybrid NISS method is 𝑁 = 5 × 105, whereas that of the double-loop MCS is 5 × 106 (Lye et al., 2022). Hence, the 

hybrid NISS method is ten times more efficient than the double-loop MCS. These outcomes demonstrate the feasibility 

of the proposed method in the propagation of mixed aleatory and epistemic uncertainties for the case where distribution 

families of the aleatory parameters are unknown. 

Table 6.3 Failure probability bounds of the NASA UQ challenge problem. 

Parameter 
Double-loop MC  

in Lye et al. (2022) 

Hybrid NISS method 

Mean estimate Standard deviation 

Lower bound of 𝑃𝑓 0.0270 0.0299 0.0024 

Upper bound of 𝑃𝑓 0.2746 0.2564 0.0030 

6.5    Conclusions  

This paper presents two contributions to effectively propagate the imprecise probability models without limiting 

hypotheses on the distribution family. First, the staircase distribution-based p-boxes are defined as a novel class of the 

parametric p-box. They are capable to explicitly account for the imprecision not only in the hyper-parameters but also 

in the distribution families. Thus, they are especially suitable to characterize the true-but-unknown CDFs of the random 

variables whose distribution families are unknown. Second, the novel hybrid NISS method is developed, in which the 

staircase distribution-based p-boxes are propagated by the locally expanded HDMR decomposition while the interval 

models are propagated based on the globally expanded HDMR decomposition. This method can achieve a good balance
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between the efficiency in deriving the NISS estimators for the hyper-parameters of the p-boxes and the global accuracy 

of those for the interval parameters. The NASA UQ challenge 2019 has demonstrated the effectiveness of the proposed 

method. 
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Chapter 7                                                                                  

Conclusions and Prospects 

7.1   Conclusions 

The robust and efficient tools for uncertainty quantification (UQ) have been nowadays widely recognized as the 

necessary developments for quantitative characterization and/or reduction of non-determinism in both simulations and 

measurements, so as to derive the most realistic estimates of the behavior of structures. The probabilistic approach has 

been conventionally used for this purpose by considering non-determinism as the likelihood that a quantity of interest 

(e.g., inputs of the numerical model and responses of the actual structure) assumes a certain value within a given range. 

Nevertheless, this approach often involves a large number of subjective assumptions due to the scarcity, incompleteness, 

imprecision, vagueness, etc., of available information or data on the quantity of interest. To avoid including subjectivity, 

the concepts of imprecise probabilities have recently gain attentions, which combine the probabilistic and possibilistic 

approaches providing the bounds on the probabilities that model the epistemic uncertainty involved. The state-of-the-

art developments in this field, including the Bhattacharyya distance-based ABC model updating framework to calibrate 

the parameters with mixed aleatory and epistemic uncertainties and the NISS framework to very efficiently propagate 

such parameters, have strengthened the subjective assumption-free UQ approach. Nevertheless, these frameworks rely 

on the proper hypotheses about the distribution families of the parameters; thus, their scope of application is still limited 

and further developments are necessary to enhance their robustness such that they are even applicable into cases where 

prior information on the parameters is extremely limited. 

Within this context, this thesis has further strengthened the subjective assumption-free UQ approach by improving 

the Bhattacharyya distance-based ABC model updating framework and the NISS framework, and promoted the real-

world engineering applications of those frameworks. Five main contributions have been made in the following journal 

articles respectively. The first article concerns the extension of the Bhattacharyya distance-based ABC model updating 

framework to update dynamic systems using observed time signals. Two key components, i.e., the dimension reduction 

procedure to define the novel Bhattacharyya distance-based UQ metric for discrete time signals and the novel efficient 

Bayesian inference algorithm for the combination of BUS with AK-MCMC to address the high computational burden 
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in each nonlinear dynamic analysis, have been developed. As has been shown, the novel Bhattacharyya distance-based 

metric is capable of quantifying the uncertainty characteristics of the overall observed time signals, whereby the high-

dimensional time signals are degraded to a relatively low-dimensional series of scalar values. The proposed approach 

has been demonstrated on the updating of a seismic-isolated bridge pier model using observed seismic response data, 

where the results with the newly developed Bayesian inference algorithm for the combination of BUS with AK-MCMC 

are compared with those by TMCMC, showing that the proposed algorithm enables satisfactory updating results with 

much-reduced computational demand to be delivered. 

The second article involves the development of a distribution-free stochastic model updating framework to update 

the parameters with mixed aleatory and epistemic uncertainties without limiting hypotheses on the distribution families 

of the parameters. The probability distributions of the parameters to be inferred are represented as the staircase density 

functions, which are capable of describing a broad range of distributions arbitrary close. Their hyper-parameters (i.e., 

the means, variances, skewnesses, and kurtoses) are considered as the inferred parameters, whose prior is defined based 

on the moment constraints, and are updated using the Bhattacharyya distance-based approximate likelihood. Moreover, 

an outer Bayesian updating by the Euclidian distance-based approximate likelihood is maintained as the preconditioner 

of the proposed updating procedure to avoid non-unique solutions. The proposed distribution-free stochastic updating 

framework has been first implemented into the well-known updating problem of the shear building model. The results 

demonstrate the capability of the proposed framework to calibrate the distributions of the parameters which cannot be 

defined analytically and to identify all the modes of the target distributions thanks to the outer Bayesian updating. Then, 

the model updating subproblem of the NASA UQ challenge problem 2014 has been correctly solved by the proposed 

updating procedure, wherein its problem setting is altered by ignoring information on the distribution families of the 

parameters, and the results demonstrate that the proposed procedure works well for this real-world engineering problem 

even under more challenging conditions than that of the original problem setting. 

The developments in the above two articles have been then employed in the third article to provide a solution to 

the NASA UQ challenge problem 2019 that is designed to represent the difficulties which are often encountered in the 

design of critical safety systems under the availability of very limited data. Differently from the previous challenge in 

2014, the system of interest is described by time-domain sequences and the prior knowledge on the aleatory parameters 

is extremely limited other than a common boundary. This challenge starts from the model updating subproblem and is 

solved with the distribution-free stochastic model updating framework developed in the second article by introducing 

the dimension reduction procedure in the first article into the framework. The updating results are compared with those 
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that use the distribution-based approach, wherein a specific distribution family is assumed for the aleatory parameters, 

showing that the subjective assumption-free approach is crucial in achieving more informative updating results. The 

followed subproblems of sensitivity analysis, reliability analysis, and reliability-based design optimization have been 

addressed based on the updating results by the proposed procedure. In particular, to solve the reliability-based design 

optimization subproblem with mixed aleatory and epistemic uncertainties, a NISS approach is proposed, that simplifies 

the high-dimensional optimization to a set of one-dimensional searches using a first-order HDMR decomposition with 

respect to each design parameter. This type of reliability-based optimization generally requires triple-loop approach to 

explore all the aleatory, epistemic, and design parameter spaces, whereas the proposed NISS approach only requires a 

few iterations of the single stochastic simulation and is thus significantly efficient. 

The results of the third article have, at the same time, revealed room for further improvements with regards to the 

Bhattacharyya distance-based ABC model updating framework and the NISS framework, as has been addressed in the 

fourth and fifth articles. The fourth article concerns the improvement of the distribution-free stochastic model updating 

framework for updating the parameters with mixed aleatory and epistemic uncertainties whilst taking into account their 

correlation structure. The joint probability distribution of the parameters to be inferred are represented as the Gaussian 

copula function the marginal distributions of which being described by the staircase density functions. The correlation 

coefficients of the correlation matrix that defines the correlation structure of the Gaussian copula function, as well as 

the hyper-parameters of the staircase density functions are accounted for as the parameters to be inferred, whose prior 

distributions are defined based on the correlation coefficient constraint and moment constraints, and these parameters 

are updated using the Bhattacharya distance-based approximate likelihood. The proposed updating procedure has been 

first demonstrated upon the updating problem of the shear building model used in the second article by utilizing another 

pair of the natural frequencies as the observed features for yielding the correlated target distribution of the inputs. This 

example clearly exhibits the capability of the proposed procedure to update the joint distribution among the parameters, 

which cannot be obtained analytically, with unknown correlation structure. Another simple engineering problem with 

multi-variate inputs has been also analyzed to indicate that the proposed procedure is capable of calibrating the general 

correlation structure regardless of the presence of no, negative, and positive correlations. Then, the proposed procedure 

has been applied to the updating problem of the seismic-isolated bridge pier model, showing its capability of recreating 

very complicated nonlinear uncertainty structure of the observed seismic response data. 

The fifth article addresses the improvement of the generalized NISS framework to propagate the parameters with 

mixed aleatory and epistemic uncertainties without limiting hypotheses on the distribution families of the parameters. 
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The novel hybrid NISS method has been developed, in which the p-boxes based on the staircase density functions that 

represent the parameters with mixed aleatory and epistemic uncertainties are propagated using the local NISS method 

while the interval models that represent the parameters with only epistemic uncertainty are propagated using the global 

NISS method. The reliability analysis subproblem of the NASA UQ challenge problem 2019 has been correctly solved 

using the proposed hybrid NISS method, and the results demonstrate that the proposed method works well for this real-

world engineering problem whereas the computational burden is eased a lot when compared to the results in the third 

article, which uses the probability bounds analysis by the double-loop Monte Carlo method.  

In summary, the five developments in this thesis have made contributions to strengthen the subjective assumption-

free UQ approach, in terms of suitability and efficiency, whereby dealing with both aleatory and epistemic uncertainties. 

All the developments, except for the first one, are based on the staircase density functions, that are capable of discretely 

approximating a broad range of distributions arbitrary close, to model the aleatory parameters the distribution families 

of which are not known. These developments provide their application in the field of both uncertainty calibration and 

propagation in which they play a role as key components in the developed distribution-free UQ approach.  

7.2   Open problems and prospects 

Concerning the realistic consideration and numerically efficient quantitative evaluation of aleatory and epistemic 

uncertainty for real-world applications, several open problems on uncertainty calibration and propagation have yet to 

be addressed.  

Regarding the field of uncertainty calibration, this thesis has developed an efficient Bayesian inference algorithm 

for the combination of BUS with AK-MCMC and it has been successfully used to perform the Bhattacharyya distance-

based ABC updating procedure. The algorithm is capable of drastically reducing the number of model evaluations for 

inferring the posterior by substituting the model evaluations in most of the samples for evaluating the adaptively trained 

Kriging surrogate. However, in this algorithm, the learning function employed to adaptively train the Kriging surrogate 

can only identify the single best point to be added in DOE at each iteration, hinding the use of ever-increasing parallel-

computing facilities. To overcome this obstacle, paralell active learning strategies mainly based on applying clustering 

algorithm such as the 𝑘-means clustering have been investigated in the field of reliability problems, and such strategies 

can also be combined with each other within the BUS framework to provide a furthermore efficient Bayesian inference 

algorithm. 

Furthermore, in this thesis, the application of the Gaussian copula function to the stochastic model updating has 
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been presented to calibrate the joint distribution of aleatory parameters that are correlated with each other. While this 

development has strengthened the subjective assumption-free stochastic model upating framework, it still relies on the 

assumption that the correlation structure to be calibrated can be uniquely described by means of the correlation matrix. 

Nevertheless, parameter dependencies found in practice can be very complex, e.g., nonlinear and asymmetric; hence, 

a more flexible strategy that is capable of describing a broad range of correlation structures is required to further extend 

the suitability of the current developments in the field of the stochastic model updating. The multi-variate copulas such 

as hierarchical copulas and pair-copulas have been studied in the field of reliablity problems to characterize the general 

dependence structure among multi-variate parameters, however the acceptability of such multi-variate copulas strongly 

depends on the selection of an appropriate family of copulas. Alternatively, the sliced-normal class of distributions has 

been recently proposed to characterize complex parameter dependencies and this is suggested to be more versatile than 

most copula families. Still, it has been only demonstrated to model multi-variate data and further studies are necessary 

about its applicability to the calibraiton of the dependence structure through model updating procedure. 

Meanwhile, regarding the field of uncertainty propagation, this thesis has strengthened the subjective assumption-

free approach by developing the hybrid NISS method to efficiently propagate the p-boxes based on the staircase density 

functions. However, one of the main issues of the NISS class of imprecise uncertainty propagation methods is that, the 

variations of NISS estimators can be very large due to the large variations of the weight coefficients of the estimators 

in the case where epistemic uncertainty is substantial due to the extreme lack of knowledge. This phenomena could be 

remarkable in the propagation of the p-boxes based on the staircase density functions, because they potentially consist 

of a wide range of distributions while the standard class of distributional p-boxes consists of a single distribution family. 

Recently, a novel class of method for the propagation of the distributional p-boxes has been proposed, where the failure 

probability function is inferred by means of the Bayesian quadrature, and shown to be effective for the problems with 

large epistemic uncertainty. Implementing this method for efficiently propagating p-boxes which are constructed based 

on the staircase density functions is one of author’s themes  in my future work. 

Finally, most of the developments in this thesis are relevant to the applications of the staircase density functions. 

The staircase density functions are capable of providing the approximation of a broad range of distributions by solving 

an optimization problem based on the moment matching constraints. By their nature, the resultant approximations can 

differ for different cost functions employed in the optimization problem, and several cost functions can be considered, 

including the maximal-entropy and minimum-likelihood. Nonetheless the minimum-likelihood cost function has been 

employed in this thesis, further studies are necessary to identify the most appropriate choice of the cost function. In 
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particular, its most appropriate choice may vary for each task in the UQ process, because each task has its own aim; 

the model updating problem aims at calibrating the distributions of the parameters to quantify the general uncertainty 

characteristics of the target output features, whereas the reliability problems aim at estimating the failure probabilities 

that are relevant to the tail regions of the distributions of the parameters. 
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