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Abstract: A novel high-resolution method for forecasting cloud motion from all-sky images using
deep learning is presented. A convolutional neural network (CNN) was created and trained with
more than two years of all-sky images, recorded by a hemispheric sky imager (HSI) at the Institute of
Meteorology and Climatology (IMUK) of the Leibniz Universität Hannover, Hannover, Germany.
Using the haze indexpostprocessing algorithm, cloud characteristics were found, and the deformation
vector of each cloud was performed and used as ground truth. The CNN training process was built to
predict cloud motion up to 10 min ahead, in a sequence of HSI images, tracking clouds frame by frame.
The first two simulated minutes show a strong similarity between simulated and measured cloud
motion, which allows photovoltaic (PV) companies to make accurate horizon time predictions and
better marketing decisions for primary and secondary control reserves. This cloud motion algorithm
principally targets global irradiance predictions as an application for electrical engineering and in PV
output predictions. Comparisons between the results of the predicted region of interest of a cloud
by the proposed method and real cloud position show a mean Sørensen–Dice similarity coefficient
(SD) of 94 ± 2.6% (mean ± standard deviation) for the first minute, outperforming the persistence
model (89 ± 3.8%). As the forecast time window increased the index decreased to 44.4 ± 12.3% for
the CNN and 37.8 ± 16.4% for the persistence model for 10 min ahead forecast. In addition, up to
10 min global horizontal irradiance was also derived using a feed-forward artificial neural network
technique for each CNN forecasted image. Therefore, the new algorithm presented here increases the
SD approximately 15% compared to the reference persistence model.

Keywords: all-sky image; cloud motion prediction; convolutional neural network

1. Introduction

Short-time cloud motion prediction has a huge impact on the future behavior of the
power generation output of solar photovoltaic (PV) power plants [1]. Clouds are a major
modulator of the global horizontal irradiance (GHI) and a source of severe fluctuation when,
for example, passing in front of the sun. Clouds can even increase the solar radiation at the
surface by reflection and/or forward scattering [2–4]. To compensate for these ramp events,
very short-term forecasting/forecasts can help power plant operators to accurately manage
PV power plants. The analyses of clouds play an important role in both scientific and
business enterprises, where these severe fluctuations in the energy output are incompatible
with the established safety standards for the electricity distribution systems [5].

In this context, the introduction of hemispheric sky imager (HSI) systems as efficient
ground surface equipment for cloud data assessment have already been proven by various
authors [6]. However, even with good high-resolution cloud detections, cloud movement
forecast is still a topic of research due to its high degree of complexity [7–9]. Figure 1 shows
how quickly cloud changes can occur within three minutes.
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Figure 1. From(a) to (c); hemispheric sky imager (HSI) images showing examples of cloud shape changes within a 3-min 
interval. The gray area corresponds to sky pixels and white area corresponds to clouds. All cloud identification was de-
rived from the original HSI pictures. 

Looking at cloud detection methods, we can mention threshold-based algorithm [10] 
and machine learning methods [11–15]. Threshold-based algorithms normally use a 
red/blue ratio of the three RGB (red, blue, and green) channels from the image pixels for 
cloud classification [16–19]. Cloud pixels are identified as high R and B values, while sky 
pixels have low R and high B values. However, this method has some weaknesses, pri-
marily distinguishing or detecting clouds near the horizon and close to the sun [20]. In 
addition, different pattern recognition algorithms have been developed. Ren and Malek 
[21] proposed a cloud segmentation algorithm utilizing superpixel. This algorithm di-
vides the image into blocks (or clusters) and the division is based mainly in the continuity 
of cloud contours, the texture and brightness of each pixel. A hybrid framework has been 
proposed to forecast hourly global solar radiation [22]. This approach includes two differ-
ent methods: support vector machine and machine learning techniques. The results 
showed that it is possible to predict next-day hourly values of solar radiation by reducing 
the root mean absolute error (𝑟𝑀𝐴𝐸) by 15.2% compared to the reference persistence 
model. 

Machine learning methods have been used successfully for cloud detection [23] and 
cloud coverage estimations [24]. Crisosto [25] developed a method using HSI images to 
predict cloud concentrations one minute in advance using artificial neural networks 
(ANNs). The results showed a 30% reduction of errors when compared to the persistence 
model under diverse cloud conditions. In addition, a similar method has been used as an 
important step for predicting GHI one hour in advance with one-minute intervals [26]. 
Other advanced and sophisticated techniques, like convolutional neural networks 
(CNNs), have been developed and applied in recent years to forecast solar irradiance [27] 
by offering significant advantages for large image datasets [28], evaluating the non-line-
arity and other more complex relationships [29]. 

The main objective of this work is to propose a preliminary pre-processing method 
required to target solar irradiance predictions that allows companies to make more accu-
rate horizon time predictions. The CNN algorithm can be important for very short-term 
GHI forecasts, and subsequently better marketing decisions for primary and secondary 
control reserve (cloud position and the GHI up to 5 min in advance). In this paper, defor-
mation cloud vectors 10 min ahead were determined under different cloud and all-
weather conditions. We applied an ANN technique to estimate the respective GHI of the 
forecasted cloud clusters, for methodology validation. Section 2 briefly describes the data 
acquisition methods. The methodologies of this study are described in Section 3. The re-
sults are given in Section 4. The conclusions and future work are discussed in Section 5. 

  

Figure 1. From (a–c); hemispheric sky imager (HSI) images showing examples of cloud shape changes within a 3-min
interval. The gray area corresponds to sky pixels and white area corresponds to clouds. All cloud identification was derived
from the original HSI pictures.

Looking at cloud detection methods, we can mention threshold-based algorithm [10]
and machine learning methods [11–15]. Threshold-based algorithms normally use a
red/blue ratio of the three RGB (red, blue, and green) channels from the image pixels
for cloud classification [16–19]. Cloud pixels are identified as high R and B values, while
sky pixels have low R and high B values. However, this method has some weaknesses,
primarily distinguishing or detecting clouds near the horizon and close to the sun [20]. In
addition, different pattern recognition algorithms have been developed. Ren and Malek [21]
proposed a cloud segmentation algorithm utilizing superpixel. This algorithm divides the
image into blocks (or clusters) and the division is based mainly in the continuity of cloud
contours, the texture and brightness of each pixel. A hybrid framework has been proposed
to forecast hourly global solar radiation [22]. This approach includes two different methods:
support vector machine and machine learning techniques. The results showed that it is
possible to predict next-day hourly values of solar radiation by reducing the root mean
absolute error (rMAE) by 15.2% compared to the reference persistence model.

Machine learning methods have been used successfully for cloud detection [23] and
cloud coverage estimations [24]. Crisosto [25] developed a method using HSI images
to predict cloud concentrations one minute in advance using artificial neural networks
(ANNs). The results showed a 30% reduction of errors when compared to the persistence
model under diverse cloud conditions. In addition, a similar method has been used as
an important step for predicting GHI one hour in advance with one-minute intervals [26].
Other advanced and sophisticated techniques, like convolutional neural networks (CNNs),
have been developed and applied in recent years to forecast solar irradiance [27] by offering
significant advantages for large image datasets [28], evaluating the non-linearity and other
more complex relationships [29].

The main objective of this work is to propose a preliminary pre-processing method
required to target solar irradiance predictions that allows companies to make more accurate
horizon time predictions. The CNN algorithm can be important for very short-term
GHI forecasts, and subsequently better marketing decisions for primary and secondary
control reserve (cloud position and the GHI up to 5 min in advance). In this paper,
deformation cloud vectors 10 min ahead were determined under different cloud and all-
weather conditions. We applied an ANN technique to estimate the respective GHI of the
forecasted cloud clusters, for methodology validation. Section 2 briefly describes the data
acquisition methods. The methodologies of this study are described in Section 3. The
results are given in Section 4. The conclusions and future work are discussed in Section 5.
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2. Data

The HSI equipment used was a digital compact charge-coupled device camera and a
fish-eye objective with a field of view of 183◦ inside a weatherproof box, which provided
hemispherical images of the entire sky [30]. Exposure time was 1000/s, and there was an
acquisition time of 1 min between each image. In total, 150,000 pictures were produced
between 2014 and 2016. From these 150,000 manually segmented images, 5000 were
selected for testing (i.e., these pictures were independent of the training data). The system
is installed on the roof of the Institute of Meteorology and Climatology (IMUK) of the
Leibniz University Hannover in Germany (52.4◦ N, 9.7◦ E). Completely overcast images
were not used in this analysis, since GHI values under 100 W/m2 are usually not relevant
for the production of solar energy and we were more interested in larger GHI ramp effects.
In addition, the GHI data was obtained using a CMP11 pyranometer (Kipp & Zonen,
Delft, The Netherlands) [31].

3. Methodology
3.1. Cloud Identification

The method used to identify and separate clouds and sky pixels is an improved sky
index image-processing algorithm [32]. The haze index consists of identifying cloud pixels
combining the red, blue, and green channels, as detailed by Schrempf [33], and serves as
an improvement for hazed areas. Every pixel is then classified as cloudy or clear sky based
on a threshold (see Figure 3). Equation (1) presents the haze index, which is applied only
to hazed areas, based on thresholds of the sky index.

Haze Index =
countred+countblue

2 − countgreen
countred+countblue

2 + countgreen
(1)

3.2. Semantic Segmentation (Acquiring Labelled Data)

Deep learning and specifically CNNs have drastically improved the way in which
intelligent algorithms learn. With convolutional layers, pooling layers, and fully connected
layers, CNNs allow computational models to represent data with multiple levels of abstrac-
tion [34]. With the automatic cloud–sky separation derived by the haze index algorithm,
the automatic cloud segmentation is realized. Therefore, cloud clusters are labelled as
ground truth for the automatic segmentation, and thus, for further cloud motion forecasts.
Sky clusters were not taken into consideration. Figure 2 shows the process of acquiring the
ground truth for the input parameters of the CNN. The first column shows the original
image. The results of the haze index algorithm can be seen in the second column. The
third column shows the two classes: cloud clusters in white and sky clusters in gray. We
can see how the CNN learns to recognize different regions of interest (ROIs) for further
simulations. The training process consists of learning how clouds can change frame by
frame consecutively.
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Figure 2. Automatic segmentation of a picture taken on 22 June 2014 at 12:53. The first column shows the original image. 
The results of the haze index algorithm can be seen in the second column. The third column shows the two classes: cloud 
clusters in white and sky clusters in gray. 

3.3. CNN Development and Training 
Once the ROIs were identified by the haze index, they were used as ground truth 

parameters for training the CNN. The input parameters were the original HIS images and 
their corresponding cloud clusters (see Figure 2). The network accepts one HIS image 
(.jpg) and one cloud cluster image (.jpg) and learns exactly, frame by frame, where the 
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The input layers were resized to 256 × 256, max pooling of 2 × 2 resulting in an output 
layer of 256 × 256. In the training phase, a pre-trained CNN for classification and detection 
(VGG-16) [34] was selected and extended to automatically learn the ROI changes in whole 
pictures frame by frame. The training process finished when the network learned as accu-
rately as possible the ROI changes in that time. The binary cross entropy function was 
minimized during the training process, and the activation layers were very simple recti-
fied linear units, or ReLUs, defined as ReLU(z) = max(0, 𝑧) or variants of this function 
proposed by He et al. [35]. Adaptative moment estimation (Adam) [36] was chosen as a 
stochastic optimization method and the batch size was 16. We trained the model using 
100 epochs 

Once the trained network was ready (the network learned the cloud movements 
frame by frame in more than 145,000 images), the simulation phase began. The program 
first identified the location of the current ROI at 𝑡, and after saving this information, went 
back 5 min (𝑡 − 5𝑡). Then the program went forward, frame by frame, to forecast the new 
ROI at 𝑡 + 𝑡 by applying probabilistic accuracies learned in the training phase. In other 
words, the trained network delivers frame by frame the best matching cloud location, and 
the output is the new (estimated) ROI (cloud location) for the next minute. Furthermore, 
the ROI estimated for 𝑡 + 𝑡 will be the base ROI for 𝑡 +  2𝑡, and so on. 

3.4. An Artificial Neural Network Used for Validating Our Model 
To validate the results of our algorithm, we applied an extra artificial neural network 

(ANN), as explained by Crisosto et al. [26]. This ANN only needs an HSI image to predict 
GHI one hour ahead in one-minute resolution. This input image is the output of our CNN 
method. Therefore, the new predicted ROIs of our algorithm were fed into the ANN as 
input parameters to derive their correspondent GHI values 10 min ahead. 

3.5. Statistical Metrics 
The Sørensen–Dice (SD) similarity coefficient [37] and overlap (𝑉𝑂) [38] were used 

for the method evaluation. SD is defined as the division between twice the number of 

Figure 2. Automatic segmentation of a picture taken on 22 June 2014 at 12:53. The first column shows the original image.
The results of the haze index algorithm can be seen in the second column. The third column shows the two classes: cloud
clusters in white and sky clusters in gray.

3.3. CNN Development and Training

Once the ROIs were identified by the haze index, they were used as ground truth
parameters for training the CNN. The input parameters were the original HIS images and
their corresponding cloud clusters (see Figure 2). The network accepts one HIS image (.jpg)
and one cloud cluster image (.jpg) and learns exactly, frame by frame, where the clouds are.

The input layers were resized to 256 × 256, max pooling of 2 × 2 resulting in an
output layer of 256 × 256. In the training phase, a pre-trained CNN for classification and
detection (VGG-16) [34] was selected and extended to automatically learn the ROI changes
in whole pictures frame by frame. The training process finished when the network learned
as accurately as possible the ROI changes in that time. The binary cross entropy function
was minimized during the training process, and the activation layers were very simple
rectified linear units, or ReLUs, defined as ReLU(z) = max(0, z) or variants of this function
proposed by He et al. [35]. Adaptative moment estimation (Adam) [36] was chosen as a
stochastic optimization method and the batch size was 16. We trained the model using
100 epochs.

Once the trained network was ready (the network learned the cloud movements frame
by frame in more than 145,000 images), the simulation phase began. The program first
identified the location of the current ROI at t, and after saving this information, went back
5 min (t− 5∆t). Then the program went forward, frame by frame, to forecast the new ROI
at t + ∆t by applying probabilistic accuracies learned in the training phase. In other words,
the trained network delivers frame by frame the best matching cloud location, and the
output is the new (estimated) ROI (cloud location) for the next minute. Furthermore, the
ROI estimated for t + ∆t will be the base ROI for t + 2∆t, and so on.

3.4. An Artificial Neural Network Used for Validating Our Model

To validate the results of our algorithm, we applied an extra artificial neural network
(ANN), as explained by Crisosto et al. [26]. This ANN only needs an HSI image to predict
GHI one hour ahead in one-minute resolution. This input image is the output of our CNN
method. Therefore, the new predicted ROIs of our algorithm were fed into the ANN as
input parameters to derive their correspondent GHI values 10 min ahead.

3.5. Statistical Metrics

The Sørensen–Dice (SD) similarity coefficient [37] and overlap (VO) [38] were used for
the method evaluation. SD is defined as the division between twice the number of elements
common to both sets and the sum of the number of elements in each set (Equation (2)). VO
is defined as a quotient of the intersection of both X and Y segmentations (Equation (3))

SD(X, Y) =
2|X ∩Y|
|X| + |Y| (2)
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VO(X, Y) =
|X ∩Y|
|X ∪Y| (3)

where |X| and |Y| is the cardinality of two sets. The mathematical definition of the
root mean square error (RMSE) and the coefficient of determination (R2) are expressed
as follows:

RMSE =

√
1
N

n

∑
i=1

(yi − xi)2 (4)

R2 =
(
∑N

i=1(yi − y)(xi − x)
)
/
[(

∑N
i=1(yi − y)2

)(
∑N

i=1(xi − x)2
)] 1/2

(5)

where yi is the forecast value, xi is the measured value, and N is the total number of
samples. Additionally, x = ∑N

i=1 xi and y = ∑N
i=1 yi.

The new algorithm was compared with the scaled persistence model [39] defined as
the ROI configuration vector (ROI_CV) where the next minute would be identical to the
current minute (ROI_CVt+1 = ROI_CVt). This model is the reference model for short-term
solar forecasting [40]. For the irradiance evaluation, only the movement of the sun was
taken into consideration.

4. Results

For a better visual representation of the results, the following example cases were
selected to show the effectiveness and efficiency of the algorithm: 15 April 2014 at 15:54,
11 July 2014 at 13:09, and 1 June 2014 at 17:42. After that, 5000 cloud images with different
cloud positions were simulated and the results are presented.

4.1. Analysis of the Example Cases

Figure 3 shows the one-minute ahead simulation for the three days, including the
observed (target) ROI to be simulated (column 1), the simulated ROI by our model (column
2), and the simulated ROI using the persistence model (column 3). In all cases, we can
see that our CNN model performs better than the persistence for the first minute. The
SD values were 92.4 ± 2.9% (mean ± standard deviation), 92.7 ± 2.6%, and 88 ± 3.4%,
respective to each case, while the SD for the persistence was 85.8 ± 4.9%, 85.8 ± 5.6%, and
84 ± 7.1%, respectively.

The statistical comparison with forecasts up to 10 min ahead can be seen in Table 1.
As expected, the performance of the algorithm decreases substantially as the simulated
time progresses. In addition, our model outperforms the persistence model for the full
10-min period. For larger timescale forecasts (for example, 5 and 10 min), these results
were already expected; however, for very short forecasts (for example, 1 and 2 min), our
CNN shows improvements in forecasting cloud movement.

4.2. Analysis of the Simulation for All Simulated Datasets

Table 2 presents the statistical indicators of the cloud ROI changes in the 5000 tested
images. Tables 1 and 2 show the quality of the results decreasing in forecasts for longer
time scales, with SD values up to 44.4± 12.3% and VO of 37.7± 15.3% obtained for 10-min
ahead forecasts.

4.3. Application of the Presented CNN Algorithm

To validate our algorithm, we applied an ANN as described in Section 3.4. For each
predicted image from our CNN, the GHI value was predicted at the same time. Figure 4
shows a comparison between the target images and simulated images one-minute ahead
generated as output by the CNN and their correspondent measured and simulated GHI.

Figure 5 shows the results for two examples of 10-min ahead simulations utilizing
our method as an irradiance simulations tool. Table 3 shows a comparison between
100 observed images with their corresponding simulated values. Figure 6 shows the
distribution of the relative deviations as a boxplot for different time horizons.
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Figure 3. Cloud region of interest (ROI) changes forecasting results. Column 1 represents the target images in gray. Col-
umn 2 shows segmentation ROIs for the new model. The segmentation ROIs of the persistence model are presented in 
Column 3. (a) Images for 15 April 2014 at 15:54. (b) Images for 11 July 2014 at 13:09. (c) Images for 1 June 2014 at 17:42. 

The statistical comparison with forecasts up to 10 min ahead can be seen in Table 1. 
As expected, the performance of the algorithm decreases substantially as the simulated 
time progresses. In addition, our model outperforms the persistence model for the full 10-
min period. For larger timescale forecasts (for example, 5 and 10 min), these results were 
already expected; however, for very short forecasts (for example, 1 and 2 min), our CNN 
shows improvements in forecasting cloud movement. 

Table 1. Statistical indicators of the artificial neural network (ANN) model for four different time periods: the mean Søren-
sen–Dice similarity (SD) coefficient and the overlap (VO) for for 1-, 2-, 5-, and 10-min forecasts. CNN: convolutional neural 
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Figure 3. Cloud region of interest (ROI) changes forecasting results. Column 1 represents the target
images in gray. Column 2 shows segmentation ROIs for the new model. The segmentation ROIs of
the persistence model are presented in Column 3. (a) Images for 15 April 2014 at 15:54. (b) Images
for 11 July 2014 at 13:09. (c) Images for 1 June 2014 at 17:42.

Table 1. Statistical indicators of the artificial neural network (ANN) model for four different time periods: the mean
Sørensen–Dice similarity (SD) coefficient and the overlap (VO) for for 1-, 2-, 5-, and 10-min forecasts. CNN: convolutional
neural network.

Day Model Statistical Parameters

SD (%) VO(%)

1-min 2-min 5-min 10-min 1-min 2-min 5-min 10-min

24 March 2014 at 09:48 CNN
Persistence

93
89

83
79

71
68

51
49

91
86

80
79

69
60

47
42

1 June 2014 at 17:37 CNN
Persistence

92
88

82
78

69
64

57
52

90
84

81
75

62
57

49
43

24 May 2014 at 14:02 CNN
Persistence

94
87

87
82

73
62

62
48

92
87

84
79

69
59

51
48

9 May 2015 at 15:26 CNN
Persistence

87
83

79
71

62
58

51
49

85
80

78
70

57
55

46
40
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Table 2. Comparison between the statistical indicators of the proposed CNN model and the per-
sistence model: the mean Sørensen–Dice similarity coefficient (SD) and overlap (VO) of the 5000
simulated cases for 1-, 2-, 5-, and 10-min forecasts.

Model Mean Statistical Parameters

SD (%) VO (%)

1-min 2-min 5-min 10-
min 1-min 2-min 5-min 10-min

CNN 94 83 60 49 92 80 58 43
Persistence 89 78 55 44 86 69 45 37
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Figure 5. Comparison results of the simulation performed by the new and persistence model and the measured dataset at
one-minute intervals; (a,b) show a good performance; R2 = 0.82 and R2 = 0.74, respectively, for the first two minutes. For
the persistence model, R2 = 0.75 and R2 = 0.67, respectively, for the first two minutes.

Table 3. Presentation of the statistical indicator for the comparison between our model and the
persistence model. RMSE and the R2 of all 100 compared cases.

Model Statistical Parameters

RMSE (W/m2)(%) R2

1-min 2-min 5-min 10-min 1-min 2-min 5-min 10-min

CNN 32 54 101 148 0.81 0.65 0.53 0.42
Persistence 45 72 125 187 0.76 0.61 0.48 0.39
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there are narrower interquartile ranges for higher sample sizes; symmetry in 50% of the data decreases
as soon as the program receives more information, but the numbers of outliers (+) are lower.
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5. Conclusions

In this study, a novel method to forecast cloud motion up to 10 min ahead was
presented. A convolutional neural network (CNN) was trained using hemispherical
sky images as inputs, and a statistical approach for forecasting future cloud motion
was performed.

According to the simulation results, the method presented here is capable of predicting
cloud changes for the first minute with very high confidence using CNN, with a coefficient
of determination (R2) of 0.97 and a Sørensen–Dice similarity coefficient (SD) of 94 ± 2.6%.
For the same simulated datasets, the persistence model reached an R2 of 0.92 and a SD
of 89 ± 3.8%. The method was also tested for different forecast time scales, however,
unsatisfactory results (an R2 of 0.40 and a SD of 49 ± 11.8%) were obtained for 10-min
simulations by our model, although they were better than the results of the persistence
model. In addition, the global horizontal irradiance (GHI) output results predicted by
the CNN showed a forecast accuracy for the decreased amount of energy one-minute
ahead, achieving a RMSE of 32 (W/m2) and a R2 of 0.81. The persistence model achieved a
RMSE of 45 (W/m2) and a R2 of 0.76. However, for the GHI prediction for the next 10-min
ahead, the RMSE was 148 (W/m2) and the R2 was 0.42 for our model and the RMSE was
187 (W/m2) and the R2 was 0.39 for the persistence model.

The research presented here can be used as a first step for PV companies to understand
cloud movement and to implement an end-to-end forecasting system (as a pipeline) within
a fully automated server with the goal of forecasting global horizontal irradiance minutes
ahead. This fully automated pipeline implementation will help to allow PV companies to
make accurate horizon time predictions and better marketing decisions for primary and
secondary control reserves (i.e., up to 5 min in advance).

Future research is needed to better understand cloud movement through wind speed
and wind direction, and also to understand how to improve forecast results for periods
longer than 1 min or when the sky is totally covered. Different methodologies and maybe
different analyses of data should be considered.

Despite the good results, the existence of other models offers new ways to process big
data. For example, long short-term memory networks (LSTMs) appear to be an alternative.
Since the architecture of these networks is more complex, LSTMs are suitable for processing
long data sequences while avoiding vanishing or exploding gradients, currently problems
that CNNs still have. As an outlook for further projects, the utilization of LSTM and hybrid
models should be taken into consideration.
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