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Abstract 

Methods of machine learning (ML) are notoriously difficult for enterprises to employ productively. Data 
science is not a core skill of most companies, and acquiring external talent is expensive. Automated machine 
learning (Auto-ML) aims to alleviate this, democratising machine learning by introducing elements such as 
low-code / no-code functionalities into its model creation process. Multiple applications are possible for 
Auto-ML, such as Natural Language Processing (NLP), predictive modelling and optimization. However, 
employing Auto-ML still proves difficult for companies due to the dynamic vendor market: The solutions 
vary in scope and functionality while providers do little to delineate their offerings from related solutions 
like industrial IoT-Platforms. Additionally, the current research on Auto-ML focuses on mathematical 
optimization of the underlying algorithms, with diminishing returns for end users. The aim of this paper is 
to provide an overview over available, user-friendly ML technology through a descriptive model of the 
functions of current Auto-ML solutions. The model was created based on case studies of available solutions 
and an analysis of relevant literature. This method yielded a comprehensive function tree for Auto-ML 
solutions along with a methodology to update the descriptive model in case the dynamic provider market 
changes. Thus, the paper catalyses the use of ML in companies by providing companies and stakeholders 
with a framework to assess the functional scope of Auto-ML solutions.  
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1. Introduction

Production and logistics continue to be one of the most promising fields for the application of machine 
learning; however, as data science is not one of the core skills of manufacturing companies, they are severely 
affected by the scarcity of experts in this field [1]. Automated machine learning (Auto-ML) addresses this 
problem by democratizing and simplifying the value creation process of machine learning, from data 
collection to model validation [2]. In recent years, software providers have created a plethora of user friendly 
software solutions that aim to support companies without expertise in this field to create value from data [3]. 
This potentially helps companies creating their own machine learning models for production, logistics and 
supporting processes, for example with Natural Language Processing (NLP). However, the multitude of 
solutions and use cases gives rise to another problem: the challenge of selecting the correct software for the 
specific needs of a company.  
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This paper presents the first in a series of models that aim to ultimately yield a structured selection process 
for manufacturing companies. To design a process that integrates both the most recent trends in Auto-ML 
and the individual requirements of the company using it, the provider perspective as well as the user 
perspective need to be integrated (see Figure 1). This paper touches upon the provider perspective (Model I) 
and thus lays the groundwork for said selection process by describing the functions (or features, 
synonymously used in this paper) currently offered by Auto-ML-solutions. The overall research goal is to 
provide businesses with a practicable approach to unlock this key technology. 

 
Figure 1: Context of this paper in the overall research goal 

The interim results of Model I provide an up-to-date overview of the dynamic vendor market for auto ML 
solutions. The complexity of this market is increasing as the range of functions offered by solutions is 
growing rapidly. [4]. Although surveys on Auto-ML solutions are available (see chapter 2.1), companies are 
overburdened with building up know-how about AI and ML. Their current average level of knowledge is 
still lacking [5]. Especially in the case of emerging technologies, companies find it difficult to free up the 
resources to conduct targeted technology research [6,7]. The model developed here addresses this challenge 
by aggregating multiple current sources and structuring the information hierarchically.  

The state of the art of Auto-ML literature focuses mainly on performance benchmarking and applying Auto-
ML to existing prediction problems, as will be shown in Section 2.1. While these efforts help advance the 
maturity of the technology and aid scientific progress, they are of little concern for end users looking for a 
business solution. However, some sources focusing on the functions provided to potential users can be found 
[8±10]. Still, the resources found only mention parts of the functionality range that modern Auto-ML 
solutions provide. Their goal is to inform executive stakeholders on a surface level. Thus, the goal of this 
paper is to analyse and aggregate existing literature to build an extensive descriptive model. The paper 
proposes a hierarchical structure of the model, so that even laypersons can quickly draw information from 
the results without losing any of the information depth. 

2. Methods 

The descriptive model was built using a two-step-approach: First, an integrative literature review was 
conducted to source information in a structured manner. Then, the ARIS-toolset (Architecture of integrated 
information systems) was used to build a hierarchical model of the functions offered by Auto-ML solutions. 

2.1 Literature review 

The literature was sourced and selected using the integrative literature review technique by TORRACO [11], 
specifically the approach of synthesizing new knowledge about an emerging topic. Currently, literature about 
the user-facing functions of Auto-ML solutions is sparse. Presently, research mostly focuses on optimizing 
the performance of underlying algorithms or applying Auto-ML in a novel way. 

Literature was collected from five scientific publication portals: arXiv [12], SpringerLink [13], 
ScienceDirect [14], Packtpub [15] and ETH Research Collection [16]. The search terms used were ³DXWRPO�
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IHDWXUHV´�DQG�³DXWRPO�VXUYH\´�(H[FHSW�RQ�WKH�3DFNWSXE�VLWH��ZKHUH�WKH�PRUH�JHQHUDO�³DXWRPDWHG�PDFKLQH�
OHDUQLQJ´�ZDV�XVHG due to smaller total publication volume). The collection was conducted from 20th of 
December 2021 till 3rd of March 2022. A funnel-type approach was used, narrowing down the results from 
the initial results list to a short list of relevant sources that were then used in the second phase of the research, 
building the model. The selection process is presented in Figure 2. 

 
Figure 2: Literature sourcing and selection 

The selection on title level was conducted by discarding all results that just presented or assessed the 
performance of underlying algorithms (e.g., ³3HUIRUPDQFH�UHYLHZ«´��³$�QHZ�DOJRULWKP«´), which was 
most of the initial results. The remaining potential sources were screened on an abstract level to ensure that 
they were directly or indirectly describing features or functions of Auto-ML solutions. In this step, a lot of 
VRXUFHV�ZHUH�GLVFDUGHG�WKDW�XVHG�WKH�WHUP�³IHDWXUH´�RU�³IXQFWLRQ´�LQ�D�PDWKHPDWLFDO�sense (H��J��³)HDWXUH�
VSDFH´�RU�VLPLODU�H[SUHVVLRQV�� In total, eleven publications were selected to build the hierarchical function 
model. They are listed in Table 1. After deciding on the final selection, all mentions of functions or features 
of Auto-ML tools were extracted from the items in the table. The total number of mentions found in the 
respective publications DUH�OLVWHG�LQ�WKH�WDEOH�DV�ZHOO��FROXPQ�³1XPEHU�RI�IXQFWLRQV´). All sources together 
yielded 275 functions and features (at this point including duplicates). 

Table 1: Final selection of sources for the descriptive model 

Source  Type Sourced from platform Number of functions 
Truong et al. [10] Journal paper arXiv 31 
Li et al. [17] Journal paper ETHZ 16 
Humm, Zender [18] Journal paper Springerlink 5 
Lee et al. [19] Journal paper Sciencedirect 8 
Das [20] Monograph (book) Packtpub 42 
He et al. [21] Journal paper arXiv 24 
Hutter et al. [22] Compilation (book) Springerlink 22 
Masood, Sherif [23] Monograph (book) Packtpub 42 
Elshawi et al. [24] Journal paper arXiv 32 
Zöller, Huber [25] Journal paper arXiv 41 
Yao et al. [26] Journal paper arXiv 12 

2.2 Building the hierarchical model 

The model was built using the ARIS-toolkit by SCHEER [27], specifically LWV�³IXQFWLRQ�SHUVSHFWLYH´��Zhich 
provides an interdisciplinary framework for modelling the functions of information systems and business 
processes for decision makers in IT as well as in management. To achieve the hierarchical structure of the 
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model, which will help satisfy the individual information depth requested by stakeholders in potential 
integration projects, the functions are classified into four levels: function bundles, functions, partial functions 
and at the most granular level, elementary functions [28]. The syntax used in modeling the functions was 
³YHUE´���³QRXQ´�[28]. The first step of model building was removing all duplicate mentions of functions 
between the sources. Then, a preliminary classification of the functions was conducted, dividing them across 
the four levels according to SCHEER. Thirdly, the root node of the hierarchy was defined (the ³IXQFWLRQ�
EXQGOH´�DW�WKH�topmost level) and divided into functions, following the top-down approach recommended by 
SCHEER [27]. The structuring criterion used was the value creation process [27]. Following this, a bottom-
up approach was used to connect the more granular functions to the above, aggregated layers. This combined 
approach has the benefit of a validation of the PRGHO¶V�internal consistency. The final model comprises 149 
functions divided across four levels. 

3. Results 

The 149 functions will be presented in nine parts, following the structure of the second level (the 
³IXQFWLRQV´). The root node of the hierarchical model (the first level��FDOOHG�WKH�³IXQFWLRQ�EXQGOH´) is not 
visualized in the following figures, as it would simply repeat. This root node includes all subordinate 
functions and was named ³$XWRPDWH�PDFKLQH�OHDUQLQJ�SURFHVV´ to provide a high amount of generality for 
the subordinate functions.  

The first cluster starts at the data collection step. The main differentiating partial and elementary functions 
of Auto-ML solutions appear to be the different data types they can handle. Some are even fit to process 
unstructured data like images and videos (see Figure 3). 

 
Figure 3: Handle input data 

The second group comprises the functions concerned with the pipeline structure (see Figure 4). Three 
different approaches were found. The first (and most complex) function is only offered by a few tools. These 
tools can automatically create an entire machine learning pipeline and are not bound by a rigid or even 
sequential structure. The more common approach is to specify a fixed pipeline structure, in which the 
solution searches for the optimal pre-processing / model combination for the given problem. Lastly, some 
tools do not automate any tasks on the pipeline level but guide the user through the respective steps and 
recommend options that can be chosen.  
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Figure 4: Create pipeline structure 

The third cluster consists of partial functions that help prepare the stored data for further processing by 
cleaning unwanted anomalies, transforming and substituting data types and imputing missing values. This 
task is optionally simplified by some systems by visualizing the data in terms of different properties (see 
Figure 5). 

 
Figure 5: Pre-process data 

The fourth cluster is occupied with feature engineering, a task that is particularly important for machine 
learning and normally requires experience in the field of data science. Well-selected features make the 
VXEVHTXHQW�PDFKLQH�OHDUQLQJ�SURFHVV�PRUH�SUHFLVH�DQG�LPSURYH�WKH�PRGHO¶V�SHUIRUPDQFH��+HUH��WKH�$XWR-
ML solutions support users by providing functions for rescaling and grouping and aiding in a pre-selection 
of possible features. Some also feature more advanced techniques like feature extraction, generation, or 
dimensionality reduction, which could help unexperienced users in training valid models on sparse, noisy, 
or highly dimensional datasets (see Figure 6). 
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Figure 6: Support feature engineering 

Approaching the actual modelling step, the research showed that different tools offer support for different 
kinds of machine learning problems. While the most popular problem type for Auto-ML appears to be 
supervised problems, some solutions offer a wider range of learning and modelling types (see Figure 7).  

 
Figure 7: Support problem types 

The sixth cluster is the biggest, as it represents the core back-end function of Auto-ML-Software. Here, the 
models are selected and their hyperparameters (i.e., the structural characteristics) are calculated based on the 
dataset (see Figure 8). A variety of techniques is employed by the different solution providers. Next to the 
variety of different model types, solutions also differ in their automation approach: Some choose combined 
algorithm selection and hyperparameter optimization (CASH) while others opt for letting the user choose a 
model and then optimizing the hyperparameters separately (conventional hyperparameter optimization or 
HPO). The generation of neural networks (NAS, short for neural architecture search) is closely related to 
HPO but can employ different search algorithms and thus is listed separately. Furthermore, some solutions 
provide quality-of-life-features (such as early stopping) to improve usability of the solution. 
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Figure 8: Generate models 

The seventh cluster lists functions with which the user can review the results and choose a model to go 
forward with. The functions of Auto-ML software in this step revolve around helping the user make an 
informed decision about what is the optimal model for their use case. This can be done by ranking the models 
according to different criteria and visualizing their differences (see Figure 9). 

 
Figure 9: Evaluate models 

After a model has been chosen and validated, some solutions provide support for end user in employing the 
models productively. Normally, this would demand some expertise in software engineering. However, some 
solutions even include their own cloud-based service that lets users host models online, significantly 
reducing the effort of providing the model as a service (see Figure 10). 
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Figure 10: Deploy models 

To offer support for users in the entire lifecycle of a machine learning model, some solutions even provide 
features for machine learning operations (ML-Ops), ensuring the correct and safe use of the model 
predictions in the field. Features include guardrails to minimize unexpected behaviour and providing model 
alerts to boost safety when using the model to steer sensitive processes. Lastly, meta-learning functionalities 
help to create new models more efficiently by learning best-practices from previous modelling efforts (see 
Figure 11). 

 
Figure 11: Optimize model operations 

4. Discussion 

The provision of automated machine learning software is an emerging, highly competitive market and thus 
the above results are subject to change. New functions may be implemented into established solutions, or a 
new competitor could enter the market and provide a disruptive set of features that changes the playing field. 
Thus, the descriptive model provided represents a snapshot of the feature sets available for a limited amount 
of time. However, care was taken to implement a modular model structure as well as a reproducible approach. 
This means that the model can easily be augmented and adapted in case of changes.  

5. Summary and Outlook 

The aim of the paper was to develop a new descriptive model of the functions of Auto-ML software solutions. 
A hierarchically structured model was chosen to give a dynamic depth of information. The information for 
building the model was sourced using the integrative literature review technique by TORRACO, while the 
model itself was built with the ARIS methodology described by SCHEER. Like mentioned in the introduction 
of the paper, the descriptive model of Auto-ML functions is only the first step to create a structured process, 
with which companies can select a fitting Auto-ML solution for their needs. To enhance practical usability, 
the user perspective must be considered as well. Companies have differing requirements and needs regarding 
machine learning, from performance to transparency and security. These research questions will be tackled 
in future publications. 
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