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Abstract 

Due to the growing number of variants and smaller batch sizes manufacturing companies have to cope with 
increasing material flow complexity. Thus, increasing the difficulty for production planning and control 
(PPC) to create a feasible and economic production plan. Despite significant advances in PPC research, 
current PPC systems do not yet sufficiently meet the industry’s requirements (e.g., decision quality, reaction 
time, user trust). However, recent progress in the digitalization of production systems results in an increased 
amount of data being collected, thus enabling the use of data-intensive applications technologies, e.g., 
machine learning (ML). ML provides new possibilities for PPC to handle increasing complexity caused by 
rising numbers of product variants paired with smaller lot sizes. At the same time, ML can increase the 
decision quality and reduce the reaction time to disturbances in the production system, e.g., machine 
breakdowns. Partly, ML models, e.g., artificial neural networks (ANN), are perceived as black-box models, 
resulting in reduced user’s trust in the decision proposed by an ML-based PPC system. The approach 
presented in this publication aims at a more functional and user-friendly PPC system by leveraging multi-
agent reinforcement learning (MARL), an accomplished approach within the field of ML-based production 
control, and approaches for explaining decisions made by reinforcement learning (RL) algorithms. With the 
help of MARL, short reaction time and high decision quality can be realized. Subsequently, the developed 
MARL system is combined with methods from the field of explainable Artificial Intelligence (XAI) to 
increase the users’ trust. The use case results show that with the help of the developed system, rule-based 
controls, which are often used in industry, can be outperformed while providing explainable decisions. 
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1. Introduction

Manufacturing companies are facing an increasing material flow complexity because of a rising number of 
variants and a decrease in batch size [1]. More individualized production processes result in a rising 
production complexity and thus, in challenges (e.g., reaction to disturbances) for efficient production 
management [2–4]. For example, to determine a cost-optimal sequence, different set-up times, processing 
times, and necessary process steps for each variant have to be taken into account. With each newly introduced 
variant, the solution space increases.  

In this context, complexity can be differentiated into static and dynamic complexity. While static complexity 
focuses on the long-term design of production systems, dynamic complexity results from short-term changes 
in production structures as well as material and information flows triggered by unpredictable disruptions 
(e.g., machine breakdowns) [2,5].  
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The dynamic complexity results in decision-making situations in the context of production control, in which 
the employee’s experience is no longer sufficient to react optimally near real-time while considering the 
economic effects [6]. With the help of decision support systems, the user can be supported and thus be 
enabled to react appropriately and avoid adverse effects on the production system like downtime due to a 
material flow break [6]. 

Despite these potentials, the decision support of PPC systems is only partially accepted in practice. An 
indication of this can be seen in the frequency with which manual rescheduling is carried out. In the study 
conducted by LÖDDING ET AL., only 19 % of respondents stated that the planning of PPC systems is accepted 
and not overridden [7]. This can be caused by a lack of acceptance of the employees’ proposed decisions or 
a low quality of the systemic proposals due to the production system’s high complexity. The lack of trust is 
also shown in just under 35 % of respondents, who rated their confidence in the PPC system’s results [7]. 
However, KLETTI [6] identifies employee acceptance as crucial for decision support systems in 
manufacturing. In particular, the user-oriented presentation of information needs to be improved in 71 % of 
the companies surveyed [8]. 

In the context of ML, the already existing problem of lack of trust in decision proposals of systems is further 
aggravated. ML methods, enabled by the increase of data collected, provide new possibilities for PPC to 
handle the rising complexity. Especially with regard to the dynamic complexity, ML methods allow the 
increase of decision quality while reducing the reaction time [9]. An accomplished approach for ML-based 
PPC is using multi-agent systems (MAS) based on deep reinforcement learning (DRL) [10–12]. For this 
approach, ANNs are used for choosing actions [13]. On the downside, ML models like ANNs are perceived 
as black-box models [14]. Therefore, the user’s trust in decisions proposed by the system can be even further 
diminished [14]. 

Within the scope of this paper, an approach for a more functional and user-friendly PPC system is developed. 
Therefore, a MAS based on DRL is developed to realize short reaction time and high decision quality. For 
tackling low trust in the proposed decision, approaches from the field of explainable ML are used for 
realizing the explainability of the system’s decisions.  

2. State of research 

This section focuses on a brief introduction to different approaches leveraging deep reinforcement learning 
in production control (2.1) and methods for explainable decision finding (2.2). 

2.1 Deep reinforcement learning in production control 

PPC encompasses an organization’s entire materials, time, and production management, as a holistic concept 
[15]. The target of a PPC system is to increase the logistic performance while maintaining or reducing the 
logistic costs. High logistic performance is characterized by high delivery reliability and short delivery time. 
Low inventory and high utilization of machines are influencing the logistic costs beneficially. Due to the 
competing targets, these must be prioritized on a company-specific basis. PPC play a key role in achieving 
efficient and economical production [16]. In recent years, approaches leveraging RL have gained much 
attention within production control, due to the high potential of solving complex problems [10–12].  

In RL, an agent interacts with its environment and learns a strategy—also called policy, Ɏ(ܵ௧)—to maximize 
its reward (ܴ௧ାଵ). With the help of the policy, the agent performs an action (ܣ௧) depending on its state (ܵ௧). 
Based on ܵ௧ and ܣ௧ the agent receives ܴ௧ାଵ [13]. Within the field of RL, deep learning (DL), which uses 
ANNs, can be used to determine the policy for chosen agents. The combination of RL and DL is called DRL 
and is a subfield of ML [17]. DRL enables the agents to approximate a function to learn how to behave 
optimally in an environment and reach the given goals (e.g., high delivery reliability). The agent learns the 
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optimal strategy by choosing actions based on the current state of the environment, with the goal of 
maximizing a numerical reward [13]. DRL is a promising way to solve problems, which cannot or only with 
much effort be solved analytically [18].  

A MAS consists of a set of agents interacting with the environment to perform one or more tasks jointly. 
The agents need information about their respective environment to achieve this optimization goal. The agents 
must obtain information from the environment, evaluate it with respect to the goals, and then select suitable 
actions [19]. WASCHNECK ET AL. [12] combined a MAS with DRL, realizing a decentralized autonomous 
approach for a dispatching heuristic, which was successfully tested for a production system producing 
semiconductors. The agents choose the best possible actions by using a policy based on a Deep Q-Network 
(DQN) [12]. DQN is based on Q-learning, but an ANN approximates the Q-values instead of the Q-table 
[20]. The risk of local optimization of the MAS was reduced by using a global reward function [12]. RÖSCH 
ET AL. [21] implemented a MAS using proximal policy optimization (PPO), a DRL approach, for energy-
oriented production control. Agents who had the ability to control the electricity level had to cooperate with 
electricity-consuming agents to maximize a common reward. Therefore, jobs had to be scheduled to be 
completed within a given period of time while avoiding a violation of a given energy threshold.  

The approaches presented were able to increase decision quality—represented by the improvements of 
production control—while reducing the reaction time significantly. Neither of the approaches was focusing 
the explainability of the decisions made by the MAS.  

2.2 Explainable AI  

Different approaches can realize the explainability of decisions in the context of ML. On the one hand, 
transparent models can be used; e.g., the parameters used for classification can be read out directly in a 
decision tree. Thus, the entire decision process is comprehensible, and the model does not require further 
processing [22]. These models are also called ante-hoc models [23]. However, ante-hoc models are 
disadvantageous in terms of the model’s accuracy compared to opaque models (e.g., ANN) [22]. 

On the other hand, post-hoc methods can be used to subsequently explain decisions made by opaque 
models[22,23]. With the help of the post-hoc methods, the decisions of ML algorithms can be explained 
while levering the advantages concerning the model’s accuracy [24]. There are two categories of 
explainability. Firstly, global explainability describes relationships learned by the model and its general 
behavior. Secondly, local explainability determines the influences of specific features leading towards a 
specific prediction [22]. Frequently used post-hoc methods include Local Interpretable Model-agnostic 
Explanations (LIME) [25] and SHapley Additive exPlanations (SHAP). SHAP is an approach based on the 
Shapley Value [26] and decomposes a model’s prediction into each attribute’s contribution to that prediction 
[27]. 

REHSE ET AL. [28] use an approach of explainable ML in the context of a model fabric. For this approach, a 
recurrent neural network is used to make predictions about the further course of the production processes. 
These predictions are subsequently explained by using LIME. Here, both local (individual decisions) and 
global explainability (general model’s behavior) are realized and subsequently visualized to the user [28]. 
KUHNLE ET AL. [29] investigate the decision logic of a single agent with DRL using a decision tree. However, 
the comprehensive explainability of the agents’ decisions needs to be further analyzed to overcome the black-
box problem [29]. Local and global explainability was used by HUBER ET AL. [30] to explain the behavior 
of a DQN-agent in a single agent environment. It was investigated that the combination of a local and global 
explanation helped to achieve a higher performance in the tests conducted [30]. Thus, the combination of 
MAS with DRL and explainable Artificial Intelligence (XAI) within the production control field promises 
great potential for improved performance and user-oriented information visualization.  
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3. Approach 

The approach presented within this paper—based on a MAS with DRL— intends to realize short reaction 
time and high decision quality without neglecting the user’s trust in decisions proposed by an agent-based 
decision support system. Therefore, ANNs are being used to select the best possible action based on the 
system’s current status. Due to the black-box nature of ANNs, additional steps are needed to realize the 
explainability of decisions. The developed approach is subdivided into two phases. (1) A user-specific 
observation and action space is defined based on specific user roles within a production system. 
Subsequently, the multi-agent framework is developed, which enables choosing the best possible action 
based on the system’s current status. (2) Lastly, a method for the explainability of decisions made by the 
agent and the specific ANN is implemented. Thus, the developed system is enabled to propose explanations. 

3.1 Multi-agent system with DRL 

This section defines the observation space as well as the action space, which are indispensable for the use of 
a MAS. The observation space determines the data, which each agent receives for selecting an available 
action from the action space. For determining the action space for each agent, potential actions (e.g., selection 
of the following order, short-term capacity increase) are identified for individual user groups in PPC (e.g., 
production controllers, foremen). Thus, representing their ability to influence the material flow within their 
user-specific scope in the context of production control. To define these company-specific measures, expert 
interviews have to be conducted. By defining these possible actions, the decision support system can propose 
user role-specific measures to the users. Thus, users only receive suggestions for action and information 
within their scope. 

Based on the different types of agents, a multi-agent framework is deducted. Figure 1 depicts a general set-
up for a hierarchical MAS. The agents’ action space represents measures, which the corresponding user or 
user group for each production resource can initiate within the scope of production control. In the example 
given, a second agent (e.g., a foreman) supervises two agents (e.g., machine operator). Between those two 
types of agents, the available action space and the observation space and, therefore, the available actions 
might differ. Therefore, an agent can be given a different responsibility depending on their respective 
abilities. For example, the agent representing a foreman might be able to change the volume of an order if 
necessary. In contrast, the machine operators might only determine the following order to be produced from 
a small number of orders.  

 

 
Figure 1: System architecture of the developed system with different types of agents 
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With the help of DRL, complex environments can be abstracted to select a suitable action given the situation 
[18]. Thus, enabling the determination of a policy for each separate agent, with regard to an individual 
observation space and action space. The agents’ training occurs by interactions between the production 
system’s simulation model and the MAS. Based on the reward given at the end of every episode (e.g., one 
week), the agents learn to choose the best possible action based on the system’s current status. The trained 
agents can react near real-time on disruptions. Within the scope of this paper, PPO is used as a DRL 
algorithm because of its high robustness while exhibiting good learning behavior [31,32]. PPO uses the 
actor-critic approach, in which Ɏ is learned based on a value function [31]. This allows generalizing complex 
decision situations well [32]. Based on the multi-agent approach, it is possible to fulfill production control 
tasks while optimizing the logistic costs.  

3.2 Explainability 

The MAS with DRL presented in Section 3.1 focuses on improving decision-making concerning decision 
quality and reaction time. However, PPO is a black-box method using ANNs. In order to determine the 
influencing parameters on decisions, post-hoc methods are used in this paper. Thus, through DRL, a high 
decision quality can be maintained, and at the same time, the decision-making can be made explainable. To 
increase the users’ confidence in the system, global explainability and local explainability are used to avoid 
unnecessary overrides. Post-hoc analysis requires the evaluation of the model as a whole. Therefore, it is 
necessary to evaluate every agent’s ANN. For this purpose, all influencing factors are examined concerning 
their effects on selecting a particular action. Thus, an explainer can be generated, which shows the 
influencing factors for a given initial state and the resulting decision. Therefore, it is possible to equip a 
trained system with an explainer once, use them continuously and obtain a post-hoc explanation. In order to 
achieve this, the influence of the observations on the choice of action is calculated using SHAP values [27]. 

These SHAP values provide the results determined by the system. Starting from a base value (e.g., planned 
quantity), the influence of the individual input characteristics can be calculated to determine the resulting 
value [27]. SHAP enables both global and local explainability. With the help of global explainability, it is 
possible to present the decision-making process in a generally comprehensible way. Thus, relevant 
influencing parameters can be identified in general. On the one hand, this helps the user to understand the 
influences on the system’s decision process. On the other hand, by determining the influence of different 
parameters, the agents’ observation spaces can be adapted. This has a positive impact on the learning 
behavior of the agents and their ANN. The local explainability allows the determination of single influencing 
factors and their contribution to single decisions. Figure 2 schematically shows a so-called force plot. At the 
top, the specific action being explained can be seen. The features visualized in black led to a reduction from 
70 to 40. The features in gray color show the features that stopped the reduction at 40. Thus, showing the 
influencing parameters’ impact on the decision and to which extent a system built in a user-centric manner  
 

 
Figure 2: Decomposition of an individual action of one agents provides the  

influences for why this action was chosen in the given situation.  
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using MAS and leveraging advanced techniques such as DRL can use XAI to increase the users’ trust in the 
proposed decisions while maintaining high decision quality and short reaction time. 

4. Use Case 

For the experiments being conducted within the scope of this paper, a simulation model of a production 
system has been used. The simulation model was built using Python as a programming language. Thus, 
realizing the short running times of the simulation model is beneficial for the number of iterations needed 
for the agents’ learning process. 

4.1 Simulation model 

The simulation model is based on a real-life production system and consists of eight interlinked machines. 
Those eight machines represent a multi-stage production process. In total, the production process has four 
stages and parallel machines in two of them. Machines within the same stage have different (but sometimes 
overlapping) abilities regarding products, which can be processed as well as different processing times for 
specific products. Each product has to be processed once within each stage, and no skipping of process steps 
is allowed. Each machine can have four states (processing, waiting, set up, disturbed). Machine breakdowns 
are stochastically distributed and cannot be avoided. Orders for each episode (representing one week) are 
created based on a historic distribution at the start of each episode. Each order is characterized by product 
type and quantity. One episode contains, on average, 35 differing orders. All orders can be picked at the 
beginning of the episode. The set-up time needed for the production of an order is mainly based on the 
product type of the preceding order on the specific machine.  

4.2 Multi-agent system 

For the experiments conducted in the context of this paper, the focus has been on the improvement of order 
sequencing based on the system state. For this purpose, each production resource agent has up to five orders 
and the associated properties of the order (e.g., quantity, product type) in its observation space. Each unique 
order in the observation space is represented by an action in the agent’s action space. Additionally to these 
actions, the agent can choose not to pick an order and wait if it is beneficial. If the previous action has been 
completed, agents can select a new action. The selection of actions from the agent’s action space determines 
the sequence of production orders. During sequencing, further restrictions such as employee capacities, 
different processing times on different machines, and machine conditions (e.g., machine failures) have to be 
taken into account.  

All agents receive a global reward at the end of the episode, determining how successful the past episode 
was. This approach has proven to be beneficial for the agents’ learning behavior. Furthermore, local optima 
can be avoided while maximizing the reward [12]. Thus, resulting in better handling of the complexity of 
the simulation model. The reward consists of two parts; one part represents the logistical performance (e.g., 
lead time), and the other represents the logistical costs (e.g., inventory cost) that arise during production. If 
the lead time decreases, the logistical performance reward increases. If the inventory costs for an episode 
decrease, the logistical cost reward increases. A company-specific prioritization of the reward can be 
achieved by scaling the rewards. 

The agents were trained by using PPO. The resulting ANNs were passed to SHAP Deep Explainer. Hereby, 
an explainer model could be built, allowing the decisions’ explainability. This makes it possible to show 
both the individual decisions of the respective agents and the superordinate factors influencing the agent’s 
decisions (global explainability). Particularly, the findings of global explainability were used to adjust the 
observation space and thereby improve the reward iteratively.  
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4.3 Results  

In order to evaluate the performance of the developed MARL system, two conventional methods are used 
for comparison. In many companies, heuristics are common for sequencing orders within production control 
[33]. A widespread heuristic being used due to its simplicity is FIFO (First in - First out) [34]. The second 
heuristic used for the evaluation is “shortest set-up time next (SSTN)”.  

For comparing FIFO, SSTN, and MARL, 52 episodes were simulated. All three approaches used the same 
initial production program. Figure 3 compares the average total reward and the corresponding components, 
which consist in this use case of lead time reward and inventory reward. For all episodes, the average total 
reward of MARL compared to FIFO was 22 % higher. Hereby, improvements were achieved to the same 
extent through increased logistical performance, represented by the lead time reward (by 24 %) as well as 
logistical cost, represented by the inventory reward (by 37 %). The average total reward of MARL compared 
to SSTN was 15 % higher. Thereby, the improvements stem from an improvement of the logistical cost (by 
40 %), as well as improvements of the logistical performance (4 %). Local explainability is primarily 
intended for realizing user-centered information visualization within specific decision situations (e.g., 
selecting the following order). By identifying the importance of different features with the help of global 
explainability, the observation space can be adjusted. Thus, the MAS’s resulting reward can be increased. 

MARL was able to increase the reward gained for production time as well as capital commitment costs 
compared to FIFO and SSTN, resulting in a higher overall reward. One challenge in optimizing logistic 
targets is to improve several metrics simultaneously. This arises because different objectives (e.g., short lead 
times, low inventory costs) interfere with each other. Optimizing those multiple objectives is complex. 
However, the developed approach, based on MARL, showed promising results of achieving a multi-
objective optimization. 

 
Figure 3: Comparison of the resulting rewards 

5. Summary 

With the help of the proposed approach, a production control based on MARL with explainable decisions 
can be realized. Deducted from different user roles, a MAS has been set up. With this work, it could be 
shown that a MAS with DRL offers the possibility to improve production control with regard to the defined 
reward. Combining a MAS, DRL, and XAI can improve decision quality and reaction time while also 
explaining the decisions being made. The focus on user-centricity is an essential component for the 
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applicability. The current state of the XAI component indicates that it can enable increased trust in the AI 
system. Further investigations, especially concerning the use of local explainability, are necessary. 
Furthermore, the behavior of different DRL algorithms, besides PPO, will be tested. For further validation, 
the number of machines and products—and therefore the complexity of the production system— will be 
increased.  
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