
CONFERENCE ON PRODUCTION SYSTEMS AND LOGISTICS 
CPSL 2022 

__________________________________________________________________________________ 

DOI:�KWWSV���GRL�RUJ���������������

3rd Conference on Production Systems and Logistics 

Application Of Machine Learning On Transport Spot Rate Prediction 
In The Recycling Industry  

Thorben Green, Alexander Rokoss, Kathrin Kramer, Matthias Schmidt
Institute of Product and Process Innovation (PPI) / Leuphana University, Lueneburg, Germany 

Abstract 

The transport spot rate in trucking logistics is an important factor for market participants in the recycling 
industry. Knowledge about the current spot rate is essential for operational decision-making in price 
negotiations between brokers and shippers. Due to the characteristics and dynamics of the industry, this task 
is particularly challenging. So far, businesses mainly rely on traditional calculation methods combined with 
their own expertise in price negotiations. The growing amount of existing business and market data may 
enable companies to take advantage of data-driven decision processes. However, the resulting volume of 
data and required effort for analysis do not match the fast pace of daily business.  

To improve current forecasting practices, this paper conducts a comparative study of machine learning (ML) 
approaches for shipment-specific spot rate prediction. For this, the paper builds on the experience and 
database of a small broker in the recycling industry in Northern Germany and complements it with external 
market information. The study shows the ability of ML to internalize underlying patterns between spot rates 
and market data. During the use case the CRISP-DM framework is followed to select the most appropriate 
features and train multiple ML algorithms. Several metrics are applied to determine the most accurate model 
for spot rate prediction. Results indicate that especially the ML-algorithm Random Forest shows 
considerable potential to provide brokers in the recycling industry with more reliable spot rate assumptions. 
Therefore, future implementation of ML approaches in the industry may open up new and beneficial business 
opportunities. The study paths the way for further research on the predictive potential of ML for prices in 
transportation with extended and diversified data sets. 
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1. Introduction

The latest supply shortages in Germany and Europe disclosed the urgency to exploit the possibilities of the 
circular economy for resource recovery to reduce dependency on primary resources [1]. The closing of 
material cycles by returning waste and product residues to reuse or recycle them is, together with narrowing 
and slowing the use of materials, at the core of this strategy [2]. Hence, recycling is an essential industry for 
closed loop supply chains. Along with the collection and storage, the transport of waste products is among 
the basic processes of logistics in recycling [3]. Since the management of logistics is rarely the core business 
of the waste owners, specialized companies handle the process. In recycling, a broker arranges the disposal 
of waste on behalf of others with or without taking possession of it [4]. To their customers they act as a 
disposer, whereas to carriers and disposal facilities they act as the waste producer. Thereby, they connect 
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customers and disposal facilities providing efficient and economic transport of waste by contracting an 
appropriate carrier at the best costs [5]. For shipment, road transport via trucks is often the preferred solution 
due to their speed, flexibility and versatility [3,6]. Hence, brokers in recycling industry need to seek capacity 
on the trucking market. 

In road transportation, freight rates are distinguished in contract rates and spot rates. Spot rates are a lot more 
volatile and at times exceed long-term contract rates by more than 60% [7]. Smarter algorithms and sharing 
economy have led to the rise of digital freight exchange platforms, giving the spot market even more 
importance [8]. In, addition, the recycling industry is characterized through extensive legal requirements 
shaping the competition [9]. Further certification and know-how are required to successfully participate in 
the market, which reflects on less elasticity of the available capacity. Moreover, less-than-truckload 
shipments are unusual and, depending on the type of waste product, additional permissions and cleaning 
processes of trucks are mandatory. These aspects enhance the existing uncertainty in price negotiations, as 
the rates for recycling and transportation of waste products underly high volatility [9]. Therefore, especially 
for brokers, who qualify through exquisite market knowledge and network, support in price prediction in 
such a dynamic environment is vital [10].  

For spot rate predictions, experience and constant knowledge of market conditions are required. This is 
becoming a challenge for logisticians due to the ever-increasing amount of data in logistics and the special 
conditions of the recycling industry. Machine learning (ML) algorithms can be trained with large amounts 
of data and use this as input to determine a desired response value [11]. It has also been successfully applied 
to price prediction problems in various industries. The enhanced volatility of spot market prices in the 
recycling industry and specific infrastructural as well as geographical conditions in Germany amplify the 
demands on the forecasting model¶V capabilities. Thus, the study explores the ability of ML models to deal 
with these settings. The objective of this study is to provide a new prediction approach for market participants 
that comes with realistic rate suggestions on the spot. The subsequent section reviews the current state of 
research. Next, ML is applied in a use case based on business data. After identifying relevant features, several 
ML algorithms are applied to predict future spot rates. The last section summarizes the insights and 
conclusions for future research.  

2. Theoretical background 

ML has been applied to price prediction tasks in many research fields (e.g. housing [12], gas [13] and stock 
prices [14]). In the transport industry, the majority of studies focuses on sea transport (e.g. tanker [15], dry 
bulk [16] or container freight rates [17]). Studies on price prediction in road transport cover primarily 
estimation models for spot and contract rates using statistical approaches [18,19]. Some studies also use 
prediction approaches with ML. Xiao et al. [20] apply GARCH, NN-GARCH and ARIMA models to predict 
the volatility on the freight rate on the spot market. In another study, Xiao et al. [21] compare a lagged 
coefficient weighted matrix-based multiple linear regression model with ARIMA and light gradient boosting 
to predict short term spot rates in southwestern China. 

Many studies predict the general price level over time. The forecasts are sometimes further specified to lanes 
or freight types imparting more specific information. With respect to brokers, simply observing price trends 
through an estimated index is often insufficient in daily operations. Market players value each transaction 
based on their individual network and know-how [22]. As every transaction is negotiated individually, spot 
rates for transport need to be considered shipment-specific. )URP�WKH�EURNHU¶V�SHUVSHFWLYH��Whe acceptance 
of neither the offer to the customer nor the bid to a possible carrier is certain at the time the quote is made to 
the customer [23]. Therefore, brokers face the challenge of pricing every single transaction with its 
characteristics in a profitable way to prevent economic risks. 
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Few researchers have addressed the problem of shipment-specific spot rate prediction. Kay and Warsing 
[22] develop a non-linear regression model to estimate freight rates for less-than-truckload loads in the US. 
The model considers various shipment characteristics and public data to provide decision support through 
shipment price prediction. However, no evaluation of precision of the predicted freight rates is conducted. 
In a study by Lindsey et al. [24] a data set of a non-asset based broker in the US was used to predict arising 
carrier costs for the broker. Determinants for carrier costs on spot markets were identified on lane- and 
shipment-level. In a tactical planning scenario, a regression model was applied to predict carrier costs on 
unprofitable lanes. The results showed a mean absolute percentage error (MAPE) of 27% on the respective 
lanes. In another study, Lindsey et al. [10] built a decision making framework for freight brokers on the spot 
market. The statistical modeling framework consists of decision and profit maximization models. When 
applied to real-world data, the framework provides a profitable price suggestion for a transaction with 
potential carriers. Budak et al. [23] applied an artificial neural network and quantile regression to make 
predictions for spot rates in Turkey in both a route-based and a general model. Route-based predictions 
emerged more precise than predicting single transactions in the general model. The artificial neural network 
provides more precise predictions for spot rates in the route-based model (MAPE 0.8 %), while quantile 
regression performed better in the general model (MAPE 6.7 %).  

Few studies focus on analytical predictions on shipment-level and only one applies ML for this task. 
Therefore, this study aims to build on the shipment-specific studies by Lindsey et al. [24] and Budak et al. 
[23], by applying a set of ML algorithms for spot rate determination. In addition, the focus of this study on 
brokers in the recycling industry in Germany leads to special circumstances differing from the general 
approaches in the literature so far. No other studies covering this part of the circular economy were identified. 
Therefore, the present study demonstrates the applicability of ML for spot rate determination in the recycling 
industry by historical and current market data. It determines the best suited algorithms for the prediction task 
based on a set of evaluation metrics.  

3. Methodology 

This study follows the widely used Cross Industry Standard Process for Data Mining (CRISP-DM) 
developed by Chapman et al. [25]. 7KH� SURFHVV� FRQWDLQV� VL[� SKDVHV�� ³EXVLQHVV� XQGHUVWDQGLQJ´�� ³GDWD�
XQGHUVWDQGLQJ´�� ³GDWD� SUHSDUDWLRQ´� ³PRGHOLQJ´�� ³HYDOXDWLRQ´� DQG� ³GHSOR\PHQW´�� In the business 
understanding phase, the underlying business objectives, current situation and goals for the project are 
assessed. During the data preparation phase the final data set used for modeling is built from the initial data. 
For this, tables and features are selected and additional external data is added. The data is then transformed 
to be processed during modeling. In the subsequent phase, modeling techniques are determined and applied 
for the task at hand. This step includes the iterative optimization of the data and model parameters. To 
determine the quality of the model and to ensure that it meets the expectations of the business, a 
comprehensive assessment of performance is conducted during the evaluation phase. In the last phase, the 
final model is deployed. This includes the integration of a closed application supporting or taking over the 
underlying process in the existing IT-system. The deployment phase is out of scope of this study. Data 
analysis and modeling is conducted in Jupyter Notebooks operating Python 3.1.0 and using libraries such as 
Numpy [26], Scikit-learn [27] as well as Pandas [28]. In the subsequent section this methodology will be 
applied to the use case.  

4. Application on the use case 

4.1 Business and data understanding 
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The data for this study is provided by a broker in the recycling industry in Northern Germany. The firm 
sources transport and recycling capacity for its clients and their waste products. As this study focusses on 
the road transportation of materials, the price for disposal is out of scope. Since the company is extensively 
using online freight exchange platforms for sourcing transport capacity, it is exposed to the dynamic rates 
on the spot market. The business intends to use its data to predict spot rates for future orders. The forecast 
shall support the order disposition process, where an employee needs to determine the value of an order 
within a horizon of 1 to 4 weeks based on past data.  

The data set for this study consists of several tables containing order, customer, carrier, disposal facilities 
and product type information. These are merged to a main table consisting 14,244 transactions and 14 
variables or features. The target variable in the data set is ³freight rate´. It is either stored as the total price 
or as price per ton. However, the spot rates in the transport industry are mainly negotiated as freight rates 
per km, which are not stored in the initial data set. The transformation of the target variable as well as data 
inconsistency issues and integration of features are addressed during data preparation.  

4.2 Data preparation 

The distance and duration for each transaction are obtained through an automated Google Maps API by 
passing the respective ZIP-codes and locations from the data set. Missing and incorrect data for the target 
variable are imputed or dropped, resulting in the final, normalized WDUJHW� YDULDEOH� ³IUHLJKW� UDWH� SHU� NP´ 
(FR/km). The data set then contains categorical and numerical features reflecting temporal, geographical, 
cargo-specific information. Through an exploratory analysis the impact of features on FR/km is examined. 
Further data preprocessing steps such as cleaning, grouping, extracting or excluding features and transactions 
are performed [29]. For example, the lowest and highest 5% of FR/km are removed from the data set, as 
these rates do not represent the core business activities of the broker. 

The numerical features, distance and duration both show a strong inverse correlation (ȡ� �-0.95), with the 
target variable. Transactions over short distances are significantly more expensive than long distance trips. 
Moreover, the time per km �µWLPH�NP¶��can be inferred as an additional feature. Slower trips, for example 
with longer sections on country roads or through congestion prone areas, show an increase in µ)5�NP¶. The 
weight of cargo revealed no interpretable relation to FR/km and was excluded. For categorical features, 
geographical features are used to group customers and disposal facilities into regions (North, South, East, 
West or old/new federal state). For trips between the respective regions, differences in FR/km are observed. 
Product waste types are further summarized into waste classes. As another feature, the carrier of an order is 
unknown at the point of prediction, unless the order is executed by a EURNHU¶V� WUXFN�� +HQFH�� WKLV� KLJK�
cardinality feature is split into two groups (broker, other). Other categorical features are derived from time-
related features such as order and transaction date. Information such as day of week, month, quarter or 
seasons is extracted from them. FR/km shows variation over the course of the year due to differences in 
capacity availability. Concerning the weekdays, weekend transports are rare and expensive. On Thursdays, 
market players plan the trips for next week reducing the available capacity and pushing the freight rates. 
,QWHJUDWLQJ�µKROLGD\¶�DV�DQ�extra feature reveals an increase of FR/km in the days directly before the holiday, 
especially for short trips. 

Some additional, publicly available external features with influence on FR/km are found. The diesel price 
per liter is available as a time-series data set on the web [30]. Moreover, the truck toll mileage index logs the 
truck volume on German highways [31]. From this, the available capacity can be inferred. When compared 
over time, both features accompany the current price level of FR/km and are consequently included in the 
model. The data preparation procedures result in a final dataset of 11,472 transactions and 23 features. 
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4.3 Modeling 

The prediction task is a regression problem with a continuous target variable. After fitting the model to a 
training set, it will be tested against unseen data from the hold-out test set [29]. In the order disposition 
process a lot of past data is used to predict spot rates in a relatively short future horizon (1-4 weeks). 
However, for modeling, a test set with sufficient data and variety is required. Therefore, the training set is 
built with 90% or 10,324 transactions from the final data set (from 01.01.2015 to 22.04.2021). The test set 
consists of 10% or 1,148 transactions from 22.04.2021 to 24.08.2021. This procedure approximates the real 
application and is referred to as the 90/10 split. Results for the 90/10 split are not generalizable, however, as 
they could have occurred simply due to the selected composition of the training and test data sets [29]. For 
more reliable results, cross-validation is applied. In cross-validation the data set is divided into k-folds of 
alternating training and test subsets for each fold. The model is then evaluated by averaging the error of each 
fold to the overall prediction error [32]. Although the data set is not a time series in particular, the prediction 
task is time dependent since the goal is to predict exclusively future spot rates from the past. Consequently, 
conventional cross-validation cannot be used, since it would leak future information that will not be available 
in a real-world setting. Instead, time-based cross validation using 10 time-dependent folds is applied. By 
integrating a GridSearch algorithm the ideal parameters for each model are determined. 

Before running the model, further preprocessing of numerical and categorical features is required. Numerical 
features are scaled using the StandardScaler algorithm. Categorical features are encoded using One-Hot 
Encoding. To reduce loss of performance caused by high dimensionality after encoding, a feature selection 
process is applied on the data set. Only the most relevant of the encoded features are passed on to the model 
as boolean features. Several feature selection methods have been compared to determine the number of 
features leading to the best performance. Out of all compared methods, SelectKBest for regression problems 
yielded the best results. It was found that performance peaks, when the 11 best features are used for 
modeling. The final features for the model are listed in Table 1.  

Table 1: Final set of selected features for modeling 

 Variable  Type Importance Meaning 

1 curr_diesel_price  numeric 0.31 Current price for Diesel fuel at the time of order 

2 distance  numeric 2.10 Distance covered during trip 

 distance_cat: categorical   

3 � dist_medium  boolean 0.32 Category, TRUE for trips 60 km to 150 km 

4 � dist_long boolean 0.35 Category, TRUE for trips > 150 km 

5 truck_toll_index_adj numeric 0.20 Current Truck Toll Index seasonally adjusted at the time of order 

6 frforw_kat_1 boolean 0.18 Category, TRUE for transactions with freight forwarder 1  

 direction_transport_old_new_state: categorical   

7 � ³new_new³ boolean 0.25 Category, TRUE for trips within new federal states 

8 � ³new_old³ boolean 0.22 Category, TRUE for trips between new and old federal states 

 direction_transport_region: categorical   

9 � ÄQRUWKBQRUWK³ boolean 0.19 Category, TRUE for trips within regions in Northern Germany 

10 � ÄHDVWBHDVW boolean 0.16 Category, TRUE for trips within regions in East of Germany 

11 time_km_breaks numeric 2.00 Time per km including mandatory breaks [sec] 
 

After feature selection, the authors tested the predictive performance of several ML algorithms on the set of 
features. As a benchmark, a simple model (BM) is used. The BM reflects estimation principles applied in 
business so far. During training, the BM calculates individual average spot rates for short (<60km), regional 
(60-150km) and long (>150km) transports. Surcharges are added for trips directly before public holidays 
and orders closed on Thursdays, as the data shows significant increases in spot rates in both cases. Regarding 
the ML algorithm selection, the availability via open source libraries for easy adaptability on this and similar 
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future cases was essential. The study includes simple, more interpretable ML models as well as less intuitive, 
but possibly more performant, ensemble learning methods that are built from a set of simple base models. 
Since neural networks are also popular for ML based prediction tasks, a corresponding algorithm was 
included as well. The simple models Decision Tree (DT) and Lasso Regression (LR) are selected. The 
ensemble methods consist of the Random Forest algorithm (RF), Gradient Boosting (GB) and eXtreme 
Gradient Boosting (XGB) [33±35]. Multilayer Perceptron (MLP) is added as a neural-network based 
algorithm accessible in Scikit-learn. 

4.4 Evaluation phase 

Evaluation is done using several metrics measuring the prediction error for the target variable of the models 
for a given order. Performance metrics for regression models have been controversially discussed and 
employed in literature without finding a common agreement. 6WLOO��QR�FRQVHQVXV�RQ�WKH�³EHVW´�PHWULF�KDV�
been achieved [36,37]. To obtain a more reliable evaluation, a combination of metrics should be applied 
[38]. Therefore, the mean absolute error (MAE), mean absolute percentage error (MAPE), root mean squared 
error (RMSE) and the coefficient of determination (R²), are applied as performance metrics in this study. 
The MAE metric is easily interpretable for practitioners, since it provides a general and bounded 
performance measure for the model. The MAPE measures relative deviations and is applicable since the 
target variable contains positive values only. However, MAPE scores are biased towards favoring lower 
predictions [36]. Even though unrealistic outliers have been removed in the data preparation phase, FR/km 
shows distinct variance for short distance trips. To assess the ability of models to deal with this variance, 
RMSE is used as an additional metric. It is more sensitive to variance by giving higher weight to larger errors 
[38]. R² SURYLGHV�D�KLJK�VFRUH��LI�WKH�JUHDWHU�SDUW�RI�HOHPHQWV�LV�SUHGLFWHG�FRUUHFWO\��VKRZLQJ�WKH�PRGHO¶V�
ability to explain the target variable [39]. Additionally, the computation time for training and prediction is 
considered as a metric.  

5. Results  

The results of the modeling phase are evaluated in Table 2. The results of the 90/10 data split are compared 
to the performance in cross-validation to measure the generalizability of the ML models. The BM was also 
applied to predict spot rates in the different validation sets of each fold. In general, it can be stated that all 
ML algorithms outperform the BM in both 90/10 split and cross-validation. In most cases, cross-validation 
results show a larger MAE, MAPE and RMSE, while R² is decreasing. 

Table 2: Results of modeling in a 90/10 split and with cross-validation (best three values in bold) 

 

In the 

90/10 split, RF shows the best performance of all ML algorithms regarding the MAE, with GB and DT being 
almost equally predictive. However, comparing the RMSE, performance of DT is substantially lower than 
RF and GB. Moreover, the superiority of RF over GB becomes clearer, when the RMSE is considered. This 
indicates more stable predictions by RF with less larger errors. LR reveals its limited applicability to non-

 90/10 Split Cross-validation 

 MAE 

>¼@ 

RMSE 

>¼@ 

MAPE 

[%] 

R² - 

Test 

Time 

[sec] 

MAE 

>¼@ 

RMSE 

>¼@ 

MAPE 

[%] 

R² - 

Test 

Time 

[sec] 

DT 0.109 0.208 5.97 0.908 2.92 0.142 0.245 8.105 0.745 8.056 

LR 0.198 0.301 10.12 0.808 0.16 0.176 0.280 9.912 0.680 7.047 

RF 0.105 0.185 5.62 0.927 9.02 0.124 0.208 7.275 0.807 10.647 

GB 0.106 0.194 5.61 0.920 5.21 0.129 0.211 7.533 0.801 7.895 

XGB 0.115 0.198 6.07 0.917 0.57 0.130 0.222 7.570 0.787 7.234 

MLP 0.129 0.196 7.16 0.918 7.19 0.179 0.270 10.763 0.663 10.138 

BM 0.216 0.324 11.17 0.778 0.05 0.206 0.326 11.85 0.642 3.03 
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linear data structures scoring the highest MAE and RMSE and a R² which is only slightly better than the BM 
model. MLP does not achieve the best scores for the MAE, but presents the third best RMSE. Regarding the 
computation time, ML algorithms are slower than BM due to the fitting process. XGB and LR achieve the 
lowest computation time of all ML models.  

In cross-validation, the scores for all models worsen. Especially, the DT and MLP algorithms show 
substantial decrease in performance relatively to their score in the 90/10 split, indicating overfitting 
tendencies by both algorithms. Again, RF outperforms the other algorithms in most metrics. However, RF 
presents the worst computing time during cross-validation. XGB and GB show MAE and RMSE results 
within the range of RF and competitive computation times, making them suitable solutions, when 
computation time is of importance. Remarkably, LR is the only algorithms that performed better during 
cross-validation than in the 90/10 split. Yet, it is not competitive in terms of the MAE and RMSE.  

Figure 1 shows the distribution of prediction error of the best performing algorithm (RF) as a function of 
distance. RF predicts especially the dominating long distance trips with high precision. With shorter 
distances the amount of orders as well as the precision declines. To quantify the potential of using RF, an 
average transaction in the data set with a GLVWDQFH�RI�����NP�DQG�D�PHDQ�)5�NP�RI������¼�NP is considered. 
This accounts for average costs of around ���¼��&RQVLGHULQJ�WKH�FURVV-YDOLGDWHG�0$(�RI�������¼�NP, the 
average deviation is +/- ������¼�SHU�WUDQVSRUW. Using the BM approach, an average deviation of +/- ������¼�
was found. In daily operations, unexpected waiting times are another source for price deviations. For 
example, a minor delay of 30 min already may cause unplanned, additional charges of around 0.��¼�NP��
Hence, a one-hour delay on an average transaction due to congestion in traffic or at the point of disposal 
OHDGV�WR�GHYLDWLRQV�RI�DURXQG���������¼��7KHUHIRUH��WKH�DSSOLFDWLRQ�RI�0/, may reduce deviations caused by 
delays for future transactions. 

 
Figure 1: Distribution of prediction error of RF in the 90/10 split 

6. Conclusion 

The goal of this study was to demonstrate the applicability of ML algorithms for predicting spot rates for 
transports in the recycling industry. Data from a small broker in Northern Germany was used to train six ML 
algorithms. The predictive performance was benchmarked against a practical approach. In comparison, ML 
models outperformed the manually calculated benchmark method, proving the applicability of ML for spot 
rate prediction. From the set of ML algorithms, the Random Forest regressor minimized the prediction error 
the most.  
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The performance of ML on the prediction task in this study confirms promising application opportunities in 
real-world settings. In fact, performance is likely to improve during operation as more data is gradually fed 
into the model [32]. Moreover, the prediction horizon will be shorter (1-4 weeks) in comparison to the 
scenario in the study. More recent data is likely to prove beneficial for the predictive performance of all 
models. Future research can be dedicated various areas. For example, during modeling, effects of weighting 
more recent data or excluding older data on model performance can be investigated. Also, more advanced 
algorithms may yield improved results. Furthermore, the scope of application can be expanded. The effects 
of a geographical extension on the approach could be explored. Cooperation with other market participants 
offers opportunities to enlarge the database and improve the basis for modeling. The study not only built a 
foundation for ML application for spot rate prediction in the recycling industry. Rather, this study sets a 
VWDUWLQJ�SRLQW�IRU�IXUWKHU�H[SORUDWLRQ�RI�0/¶V�SUHGLFWLYH�SRWHQWLDO�IRU�SULFH�SUHGLFWLRQ� in the transportation 
industry in research and practice.  
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