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Abstract 

Prediction of human activity and detection of subsequent actions is crucial for improving the interaction 
between humans and robots during collaborative operations. Deep-learning techniques are being applied to 
recognize human activities, including industrial applications. However, the lack of sufficient dataset in the 
industrial domain and complexities of some industrial activities such as screw driving, assembling small 
parts, and others affect the model development and testing of human activities. The InHard dataset (Industrial 
Human Activity Recognition Dataset) was recently published to facilitate industrial human activity 
recognition for better human-robot collaboration, which still lacks extended evaluation. We propose an 
activity recognition method using a combined convolutional neural network (CNN) and long short-term 
memory (LSTM) techniques to evaluate the InHard dataset and compare it with a new dataset captured in a 
lab environment. This method improves the success rate of activity recognition by processing temporal and 
spatial information. Accordingly, the accuracy of the dataset is tested using labeled lists of activities from 
IMU and video data. A model is trained and tested for nine low-level activity classes with approximately 
400 samples per class. The test result shows 88% accuracy for IMU-based skeleton data, 77% for RGB 
spatial video, and 63% for RGB video-based skeleton. The result has been verified using a previously 
published region-based activity recognition. The proposed approach can be extended to push the cognition 
capability of robots in human-centric workplaces.  
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1. Introduction

7RGD\�KXPDQ�URERW�FROODERUDWLRQ��+5&��LV�EHFRPLQJ�DQ�HVVHQWLDO�SDUW�RI�WKH�LQGXVWU\�IRU�DFKLHYLQJ�EHWWHU�
TXDOLW\�SURGXFWV�LQ�OHVV�WLPH��,Q�WKLV�UHJDUG��URERWV
�FRJQLWLRQ�FDSDELOLWLHV�DUH�H[SHFWHG�WR�EH�HQULFKHG�ZLWK�
WKH�SUHGLFWLRQ�DQG�GHWHFWLRQ�RI�KXPDQ�DFWLYLWLHV�>�@��6XFK�DQ�DSSURDFK�WKDW�KHOSV�UHFRJQL]H�KXPDQ�DFWLRQV�
DQG�DFWLYLWLHV�PD\�HQDEOH�URERWV�WR�FRPSOHPHQW�KXPDQ�PRWLRQV�DQG�DFWLYLWLHV�LQ�VKDUHG�VPDUW�ZRUNSODFHV�
>���@��/LVWV�RI�KXPDQ�DFWLYLWLHV�LQ�+5&�PD\�UHTXLUH�VHPDQWLFDO�GHVFULSWLRQV�DQG�GHILQLWLRQV��ZKLFK�FDQ�EH�
GHVFULEHG�HLWKHU�DW�D�KLJKHU� OHYHO�ZLWK�JHQHUDOL]HG�DFWLRQV�RU� DW�D� ORZHU� OHYHO�ZLWK�GHWDLOHG�GHVFULSWLRQV��
*HQHUDOL]HG�DFWLRQV�UHIHU�WR��H�J���UHDFK��SLFN��SXW��WXUQ��DQG�DVVHPEOH��,Q�FRQWUDVW��ORZ�OHYHO�DFWLRQV�GHVFULEH�
GHWDLOV�VXFK�DV�UHDFKLQJ�ZLWK�WKH�OHIW�KDQG�WR�REMHFW�$��WDNLQJ�D�W\SH�%�VFUHZGULYHU��DQG�WLJKWHQLQJ�WKH�VFUHZ��
3UHGLFWLRQ�DQG�GHWHFWLRQ�RI�KXPDQ�DFWLRQ�DQG�VHTXHQFH�RI�DFWLYLWLHV��HLWKHU� KLJKHU�RU� ORZHU�� LV�VWLOO�EDVLF�
UHVHDUFK�UHTXLULQJ�IXUWKHU�LQYHVWLJDWLRQ� 
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7KH�FODVVLFDO�DSSURDFK�LQ�+5&�WDVN�SODQQLQJ�PRVW�RIWHQ�FRQVLVWV�RI�SUH�SURJUDPPHG�ORJLF�WKDW�UHPDLQV�IL[HG�
IRU�WKH�JLYHQ�F\FOH�RSHUDWLRQV��,Q�D�W\SLFDO�DVVHPEO\��WKH�URERW�H[HFXWHV�WKH�GHVLUHG�WDVN�LQ�FROODERUDWLRQ�ZLWK�
WKH�KXPDQ�RSHUDWRU�LQ�D�SURJUDPPHG�VHTXHQFH��,W�KDUGO\�UHVSRQGV�WR�FKDQJHV�LQ�KXPDQ�SHUIRUPDQFH�ZKLFK�
LV�RQH�RI�WKH�PDLQ�EDUULHUV�WR�+5&��0RVW�UHFHQWO\��LQGXVWULHV�KDYH�EHHQ�IRFXVLQJ�RQ�LPSURYLQJ�KXPDQ�DQG�
URERW�LQWHUDFWLRQ�LQ�D�VKDUHG�ZRUNSODFH�WR�FRPSOHWH�D�WDVN�HIILFLHQWO\�DQG�VDIHO\�ZLWK�IOH[LELOLW\�LQ�SURGXFWLRQ�
SURFHVVHV��+RZHYHU��VXFK�D�OHYHO�RI�+5&�LV�FKDOOHQJLQJ�DV�LW�LQYROYHV�PDQ\�XQSUHGLFWDEOH�HYHQWV�DQG�DFWLRQV��
ZKLFK�DUH�GLIILFXOW� IRU�URERWV� WR�XQGHUVWDQG�DQG�DFW�DFFRUGLQJO\�� ,Q� WKLV�DVSHFW�� WKH� URERW�PXVW�SRVVHVV�D�
FRJQLWLYH�FDSDELOLW\�DQG�DELOLW\�WR�XQGHUVWDQG�YDULRXV�DFWLRQV�SHUIRUPHG�E\�WKH�KXPDQ�RSHUDWRU�WR�SUHGLFW�
WKH�VXEVHTXHQW�SRVVLEOH�DFWLRQ�LQ�RUGHU�WR�FDUU\�RXW�WKH�WDVN� 

7KLV�ZRUN�DLPV�WR�SUHVHQW� WKH�DFWLYLW\�UHFRJQLWLRQ�PHWKRG�XVLQJ�FRPELQHG�FRQYROXWLRQDO�QHXUDO�QHWZRUN�
�&11��DQG�ORQJ�VKRUW�WHUP�PHPRU\��/670��WHFKQLTXHV�WR�HYDOXDWH WKH�,Q+DUG GDWDVHW�FRPSDUHG�WR�D�QHZO\�
FDSWXUHG�GDWDVHW�LQ�D�ODE�HQYLURQPHQW�� 

2. Related Works 

The current research that focuses on human activity recognition for HRC can be discussed from the aspects 
of types of human activities in industrial environments, methods employed for recognizing human actions, 
and generated datasets for human activity recognition (HAR).  

2.1 Human activity types for HRC.  

In today's industry 4.0 era, many researchers have brought humans and robots closer to the industrial 
environment. In [4], a detailed overview of HRC in industry 4.0 regarding various levels of humans and 
robots working together is given by solving safety issues using a particular collaborative robot (cobots). 
Furthermore, how the HRC can improve the efficiency of the industrial process by eliminating the 
uncomfortable, repetitive work of human operators is discussed. Similarly, [5] has conducted a survey to test 
the HRC process by measuring trust between humans and robots in an open workspace executing pick and 
place tasks. Work has to detail discussion about various safety factors and trust factors of HRC that can 
affect the productivity and efficiency of the process. Further, [6] has presented an HRC from a technical 
point of view. Various methods for human intention estimation through machine learning algorithms, robot 
action planning, and human-robot joint action planning are discussed and compared. A more detailed 
scenario of the industry is presented by [7], and it gives detailed information about the various industrial 
activities such as assembly activities, tool handling activities, and non-deterministic activities which are non-
reparative, such as repairing activity or inspection, and also demonstrate that fusion of inertial measuring 
unit (IMU) sensors and video-based tracking system can be used to capture these activities with high 
precision. Similarly, [8] has also presented a work which includes modeling of industrial activities using a 
fusion of various motion capture sensors. It provides the detailed information of small industrial activities 
such as handling of nuts and bolts for assembly of the product and also to model various hand gestures 
movements to control the robot action. A visual sensor-based approach e.g., red-green-blue-depth (RGB+D) 
cameras have been also employed to capture various human activities in the industrial environments. Some 
of these activities include entering, leaving a work cell (movement), pointing to an object, waving (gesture), 
picking, and moving parts (object handling), applying pressure, reach to an object [8±10].  

2.2 Methods for human activity recognition  

Methods that have been employed for HAR can be considered into two big categories. The first is a statistical 
model, and the second is a deep learning-based model for activity prediction and detection. 
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Statistical models are known for their data-intensive requirement in order to generate high-quality motions 
[8]. Common approaches utilizing statistical models include Gaussian Mixture Models (GMM) or space 
partitioning (e.g., using k-means or principal component analysis (PCA) based linear mapping). GMM is a 
probabilistic model that maximizes expectation by fitting mixtures of Gaussian models to samples in high 
dimensional spaces. Deep learning-based models have been implemented for modeling human activities 
[11±13] based on video or skeleton. Open pose for two-dimensional pose estimation presented in [14] has 
employed a multi-stage CNN for extracting spatial features for human action recognition. Deep 
convolutional generative adversarial networks (GAN) have also been used to classify human activities even 
for fewer training datasets [15]. Further investigations for human motion generation or synthesis for enabling 
human interaction with smart machine systems that may involve higher-level human intention prediction 
and detection and lower-level details of actions have been shown in [16,17]. 

2.3 Human activity recognition datasets.  

Dataset for HAR that publicly available includes HMDB51 [18], UCF50 [19], NTU RGB+D dataset [20], 
MSR-Action3D [21], and InHARD [10]. HMDB51 was introduced by [18], consisting of approximately 
seven thousand realistic video clips from sources such as movies and web series. The dataset consists of 51 
classes of general day-to-day life activities such as jumping, laughing, kissing, and others, with 100 samples 
in each category. Another dataset in a similar category is UCF50 [19], which has offered 50 activity classes 
collected from online platforms like YouTube. The activities offered in the dataset include horse riding, pull-
ups, diving, running, skipping, etc. Later, the activities are extended into 101 classes with the same human 
activity category, which is called UCF101. Both datasets offer only RGB data at a resolution of 320 x 240 
with a fixed frame rate of 25 frames per second (fps). 

The kinetics dataset introduced by [22] consists of a significant dataset for HAR with 700 activity classes 
with more than 700 video par classes. Each video is captured from YouTube videos lasting for ten seconds. 
Types of activities included in the data set are human-to-human or human-to-object interactions such as 
shaking hands, hugging, steering the car, and brushing the floor. NTU RGB+D dataset presented by [20] 
offers a diverse range of activity classes. Types of action are divided into three categories: eleven mutual 
activities like pushing, kicking, etc., nine health-related activities such as sneezing, staggering, etc., and 40 
daily activities like drinking, reading, etc. It consists of approximately fifty-seven thousand samples in RGB 
+ Depth and in skeleton format. In addition, MSR-Action3D presented by [21] has been a choice for 
skeleton-based activity recognition. Dataset offers 567 depth map sequences with 20 different hand gesture 
activity class-like horizontal arm waves, drawing a circle with an arm. Depth maps are captured using a 
depth camera sensor and are available in 640 x 240 resolution of recorded sequences 

Though many datasets offer a diverse range of activity classes to facilitate HAR processes, most of them are 
related to daily life or health-related activities. From an industrial HAR point of view, there is a lack of a 
dataset that offers industrial activities, which is further addressed by [10] and presented InHard dataset 
(Industrial Human Activity Recognition Dataset). InHard demonstrates the actual industrial activity in an 
industrial environment, and the dataset is publicly released to facilitate the research progress in the field. The 
dataset provides various industrial assembly activities in the skeleton and RGB video format to facilitate 
HAR in the industrial environment. Moreover, it has not been well evaluated by the scientific community. 

3. Methodology  

A Panasonic 4K camcorder was employed in our experiment to obtain the video from the right side at 45 
degrees. Similarly, the Xsens Awinda IMU system is used to capture the joint motions for comparison to the 
InHard (c. [10])  dataset. However, both datasets comprise different settings such as frame rate, skeleton 
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joint numbers, and motion capturing systems. Therefore, we must resample the time to make a consistent 
frame rate, re-arrange the data structure and retarget the skeleton before comparing.  

The InHard dataset has offered an actual use case of industrial activities such as assembly of a part, picking 
components, measuring components, and representing actual industrial setup. The dataset comprises RGB 
video and IMU data for different participants (person) and in an adequate quantity. The participant's task in 
the InHard dataset is to assemble a component following instruction sets with the help of the UR10 robotic 
arm, using screws and hooks and a tool such as a screwdriver (c. [10,23]). The same activity with a different 
job (e.g., assembly of gear components) is proposed to reproduce InHard activities. The RGB video from 
the top view is used to analyze the spatial activities, while the RGB camera from the side helps to acquire 
(c. Figure 1)  

 
           (a)                            (b)                             (c)                          (d)                               (e)  

Figure 1 Validation and comparison of the InHard and newly captured datasets in the lab environment for similar 
activities but different sensing systems; InHard dataset (a) IMU skeleton, (b) Open pose overlay, (c. [7]), New dataset 

(c) IMU skeleton, (d) Open pose overlay, (e) RGB spatial. 

The methods for HAR based on video and skeleton dataset is described in three categories in subsection 3.1, 
and 3.2. 

3.1 Human activity definition and dataset curation 

Before the pre-processing task, it is necessary to explore the dataset to remove any unwanted data. Only an 
adequate and equal number of samples are provided for the deep learning method for training. Following is 
the list of nine low-level activity classes of both skeleton and RGB data with several samples in each class. 

Table 1 Number of samples in each activities class. 
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samples 1378 500 456 641 385 461 485 420 224 

It is essential to provide equal training data for each activity class to ensure proper learning of the network 
and the overall accuracy of the network. As deep learning algorithms require a large amount of data for good 
performance, we have only considered more than 200 samples classes. To facilitate HRC in the industry, the 
InHard dataset community has generalized assembly activities and presented activities that are used in many 
industrial assembly processes. Activities are divided into low-level activities, consisting of nine action 
classes (see Table 1), and high-level activities, which comprise 72 detailed action classes for more accurate 
activity detection.  
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3.2 HAR modeling based on sequential and temporal memory networks 

$�IXVLRQ�RI�&11�DQG�/670��VHH�)LJXUH����LV�SURSRVHG�WR�WDNH�DGYDQWDJH�RI�ERWK�QHWZRUNV�DV�&11�KDQGOHV�
VSDWLDO�LQIRUPDWLRQ�DQG�/670�WDNHV�FDUH�RI�WHPSRUDO�GDWD�LQIRUPDWLRQ��9LGHR�IUDPHV�DUH�JLYHQ�DV�LQSXW�WR�
&11�XVLQJ� D� SUH�WUDLQHG� QHWZRUN� LQFHSWLRQ�9���7KH� LQFHSWLRQ�9��PRGHO� LV� RQH� RI� WKH�FRPPRQO\� XVHG�
FRPSXWHU� YLVLRQ� WHFKQLTXHV� IRU� WDVNV� VXFK� DV� REMHFW� GHWHFWLRQ�� ,W� LV� SUH�WUDLQHG� RQ� WKH� ,PDJH1HW� GDWDVHW�
FRQVLVWLQJ�RI�RQH�WKRXVDQG�FDWHJRULHV��,QFHSWLRQ�9��DUFKLWHFWXUH�LV�EXLOW�ZLWK�V\PPHWULF�DQG�DV\PPHWULF�
EORFNV��7KH�EORFN�LQFOXGHV�D�VHULHV�RI�VPDOOHU�FRQYROXWLRQV��DYHUDJH�SRROLQJ�� DQG�PD[�SRROLQJ�IRU�IDVWHU�
WUDLQLQJ�DQG�SURFHVVLQJ�RI�LPDJH�GDWD�>��@��7KH�ODVW�RXWSXW�OD\HU�RI�WKH�&11�QHWZRUN�LV�UHPRYHG�WR�REWDLQ�
WKH�IHDWXUH�YHFWRU��7KHQ�WKLV�IHDWXUH�YHFWRU�EHFRPHV�DQ�LQSXW�WR�WKH�/670�WR�OHDUQ�WHPSRUDO�GHSHQGHQF\�DQG�
JLYH�WKH�ILQDO�FODVVLILFDWLRQ� 

 
Figure 2 Fusion of CNN and LSTM architecture for action recognition and model evaluation using InHard and new 

dataset. 

Table 2 System configuration for deep learning model 

Feature Description 

Hardware 
configuration 

All the deep learning model pre-processing and training are done using a high-performance 
computing (HPC) cluster, which has a specification of AMD 3.35 GHz CPU, NVIDIA 
Tesla V100 GPU, and 128 GB of RAM. 

Data 
preparation 

A model is trained for 14 low-level activity classes with approx. 400 samples per class. 
77% of data is used for training, 3% for training validation and the remaining 20% of data 
is used to evaluate the trained model. 

Optimizer Adamax 

Performance of the InHard dataset is tested using a deep learning model: Long Short-Term Memory (LSTM) 
and Convolution Neural Network (CNN). The accuracy of the dataset is tested using segmented activity 
recognition using both Skeleton and RGB data. The system configuration details are shown in Table 2. The 
implementation comprises IMU-based joint data and RGB-based skeleton pose data to further predict and 
detect human activity in the same time domain. Pose detection and LSTM technique are applied to RGB 
video data to extract the skeleton pose from video using an open pose library [14]. LSTM processes the 
extracted skeleton pose data and classifies the activity. LSTM is used to process the temporal dependency 
of extracted features and classify the activity at the end. We have used a single LSTM model to train skeleton 
data (BVH files); for RGB data (.mp4 files) training, CNN and LSTM are fused in which CNN is used to 
extract the spatial feature (resolution) of video frames. 
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As we are dealing with activity recognition tasks that may include different lengths, we have employed an 
LSTM model as a final output model for all cases. It is necessary to note that LSTM takes temporal features 
as an input in which the time-stamp indicates the length of the activities. Some of the InHard dataset 
activities are of different lengths, and this required us to perform training of the model using two different 
lengths of activity for each method. Accordingly, the activity length is categorized as short and long length 
activity in which for short length activity, the first 30 seconds of data is considered, and for prolonged length 
activity, the first 60 seconds of data is considered for each case. 

Before starting the training of deep learning models, it is necessary to clean and pre-process the training and 
test data. The cleaning and pre-processing of the InHard dataset include dividing the data frame into smaller 
batches, extracting skeleton data, and labeling its class. The training process is similar for both Skeleton 
(BVH) and video-skeleton cases. In both, hierarchical skeleton data is converted into vectors along with its 
class label. Besides, the data frame is divided into smaller batches depending on the length of the activity 
(short and long). Then these batches are used to train the LSTM model. The human activity recognition 
network code is publicly available [25]. The Tensorflow and Keras framework has been implemented for 
the training deep-learning model. Tensorflow is an open-source platform that provides various machine 
learning libraries, and Keras is a user-friendly high-level API that runs on top of Tensorflow [26].  

4. Result 

Based on systematically selected Tensorflow and Keras framework parameters, the early patience is to 4, 
and the learning rate is set to 0.02. The loss function is set to categorical cross-entropy as it is the default 
choice for classification.  

 
Figure 3 Comparison of model parameters for short activity (SA) or long activity (LA) for training (T) and validation 

(V) phase. 

For tuning the models, we have altered different parameters such as optimizer, size of input batches, and the 
number of hidden layers to obtain optimal parameters. The tuning parameters are epoch: 100, optimizer: 
'Adam' and 'Adamax', number of hidden layers: 1, 2, and 3, number of batches: 4, 8, and 16, and the same 
training process is repeated for two activities length data, i.e., short and long (see Figure 3).  

Training result is presented for skeleton (BVH) and video-skeleton data. For skeleton (BVH) and video-
skeleton data, the LSTM model is used and trained using a different model structure and parameters for short 
and long activity length types. The same training procedure is applied for RGB video data on CNN and 
LSTM network fusion. Training and validation accuracy for each model structure, parameters, and activity 
length is compared in Figure 3. The result shows the percentage of accuracy for RGB-based skeleton short 
activity and prolonged activity (RGB-SA and RGB-LA), RGB-based spatial video for short and long activity 
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(RGB-SP-SA and RGB-SP-LA), and IMU-based skeleton for short and long activity (IMU-SA and IMU-
LA) data for different numbers of hidden layers and batch sizes (4, 8, and 16). 

 
 (a) Short activity from IMU skeleton (IMU-SA)             (b) Long activity from IMU skeleton (IMU-LA) 

 
 (c) Short activity from RGB skeleton (RGB-SA)          (d) Long activity from RGB skeleton (RGB-LA) 

 
 (e) Short activity from RGB spatial (RGB-SP-SA)       (f) Long activity from RGB spatial (RGB-SP-LA)  

Figure 4 Confusion matrix representing the comparison of the predicted and detected actions. 
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The quantitative results based on Figure 3 show that short-activity recognition based on RGB video skeleton 
has achieved model training accuracy of 89% and validation accuracy of 75%. The training accuracy remains 
89% for the long-activity, while the validation accuracy drops to 65%. Using the model for evaluation on a 
test dataset yields 62% and 63% accuracy for short and long activity, respectively. Considering the IMU 
skeleton, the highest training accuracy and validation accuracy of short-activity are 94% and 72%, 
respectively. The long-activity is 98% for training accuracy and 76% for validation. Using the training 
weights of the model with the highest training accuracy and validation accuracy, the evaluation with test 
data yields evaluation accuracy of 85% for short-length activity and 88% for long-activity. For RGB video, 
a fusion of CNN and LSTM achieved 81% and 78% training and validation accuracy for short activity length 
and 80% and 72% training and validation accuracy for long activity length. Fusion of model has shown a 
77% and 74% evaluation accuracy on test data. 

A confusion matrix, which has a size of n x n, where n is the number of activities, is used to evaluate how 
accurately the model can classify the activities (c.[27]). The matrix compares the actual activities with the 
predicted activities (see Figure 4). 

5. Discussion  

To facilitate HRC, we have tested the InHARD dataset for industrial activity recognition using deep learning 
techniques for two modes of data: IMU skeleton data, and video-skeleton data, among which skeleton 
activity recognition has shown 88% evaluation accuracy, RGB video model gave 77%, and video-skeleton 
data is with 63% of evaluation accuracy on InHard dataset. 

The model's prediction is better when activity length is long because it has acquired more data frame (i.e., 
the batch size consists of 60 seconds of activity) than in short-length activity where the duration is 30 
seconds. Skeleton data provides detailed information about each human pose, more training data, and 
improved accuracy. Thus, it has been possible to distinguish the classification of activities having slight 
differences, such as putting down the screwdriver and picking up the screwdriver accurately.  

The video-skeleton method using open pose techniques shows poor results compared to the IMU methods. 
It classifies the activities; however, it gets confused between similar activities such as Take the screwdriver 
and Put Down Screwdriver. As the open pose technique highly depends on the person's view for detecting 
key points on the body for mapping to the skeleton, considering a camera position in a proper orientation 
with minimum occlusion possibility is crucial for obtaining better results. With the implemented open pose 
technique, only the required region of interest is considered from the RGB video to avoid noise that may 
affect the model accuracy. The comparison results with different datasets captured in the lab environment 
shows less than fifty percent success ratio from the captured twenty operations, while the IMU skeleton 
accuracy is 67%. On the other hand, the RGB video model (CNN+LSTM) has shown 60% accurate detection 
for some activities captured in the lab with Panasonic 4K camera. The accuracy evaluation of the proposed 
methods is still below the accuracy of the human activity recognition that has been published in [17], which 
employs region-based joint configuration. Reproducible workplace setup does not necessarily yield the same 
output for reasons such as motion capturing systems, body size variation, and implementation complexities. 

Overall results show that human activity recognition for industrial setup is still challenging to detect activities 
when robots are considered in the loop accurately. Due to the skeleton, body size, capturing system, and 
model parameters, repeated activities performed in different workplace settings are not straightforward to 
reproduce. Open source datasets such as InHard are helpful to investigate optimal settings for motion 
capturing and modeling, allowing to exploit the opportunities and identify the inherent challenges regarding 
activity prediction and detection techniques. However, more datasets must be employed before generalizing 
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human activities and actions detections. This may facilitate the path toward sustainable human and robot 
collaboration. 

6. Conclusion and future outlooks 

Human activity recognition in the cognitive production system may change the way humans and machines 
interact and cooperate for completing tasks. Gathering sufficient data that helps to extensively evaluate the 
performance and limitations of existing methods is still challenging. The main reasons discussed are model 
accuracy, data validity, and activity duration. Employing multi-systems for human motion data acquisition 
such as IMU and Optical cameras, methods such as CNN+LSTM approaches are evaluated for their 
accuracy. The overall result shows open research questions regarding motion capturing methods, feature 
mapping, and labeling. Nevertheless, the proposed approach has the potential to improve the way robots 
learn human motion behavior as co-partners. Future works will address real-time activity recognition with 
an extended cognitive capability in human-centric workplaces.  
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