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Abstract 

Production systems must be more resilient and adaptive due to mass customization and increasingly external 
disturbances, such as supply chain disruptions or changing policies. As the last chain in the production value 
stream, assembly systems are especially prone to fluctuations, leading to alternative and more flexible 
assembly system designs. Online scheduling is a crucial component for dynamically controlling a flexible 
assembly system. 
This work presents a modular software architecture that interfaces between online scheduling agents and 
control systems. A standardized data model of the assembly system allows for exchanging different 
scheduling agents during the planning or operation phase. Applications are benchmarking competing 
algorithms, validating scheduling results by comparison, and seamlessly substituting or updating scheduling 
algorithms. The standardized data model and interface on the assembly system side facilitate the transition 
between planning and operation. A simulation model can be interchanged with a control system without 
extra effort to integrate the control system's scheduling agents. Additionally, the modular architecture 
enables production-parallel simulation to optimize the running system by evaluating and executing 
alternative scenarios. 
The long-term assembly system performance can profit from the modular architecture by updating the agent 
during production with advances in online scheduling algorithms (e.g., machine learning). Furthermore, the 
modular architecture enables the required resilience and adaptability by fast switching from simulation to 
real control systems and supporting system optimizations during operation. 
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1. Motivation

Various global trends in production technology push producing companies towards being more resilient and 
DGDSWLYH��&XVWRPHU¶V�GHPDQGV�DUH�LQFUHDVLQJO\�YRODWLOH�DQG�LQGLYLGXDOL]DWLRQ�LV�DQ�RQJRLQJ�FKDQJH�GULYHU� 
[1,2] Additionally, the recent pandemic still disrupts globalized supply chains and causes a shortage in 
semiconductors for production systems. [3] As a consequence, production systems and especially assembly 
systems, as the vulnerable last piece in the production chain, need to be adaptive and resilient to changes. 
[4,5] A solution are alternative assembly systems that break with the traditional concept of takt time and 
linear transfer in classical assembly lines. Examples of such concepts are matrix assembly systems [6,7], 
modular assembly systems [8], agile assembly systems [9], or dynamically interconnected assembly systems 
[10]. The break-up of linear transfer in those flexible assembly systems allows job routes that can be 
determined individually for each job. The allocation of processes at work stations for the jobs along the job 
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route can occur dynamically and with short reactions times. A consequence of the greater flexibility with job 
routes and the more dynamical character is a greater complexity in the landscape of software components 
for planning and control of such assembly systems. Also, in those systems changes in the product mix or 
disturbances, due to rework, missing components or worker shortages, are occurring in high frequency. 
[11,12] Therefore, online scheduling is a relevant task in such assembly systems. Machining systems are not 
considered, due to the significantly longer process time, less disturbances, and consequently less need for 
frequent re-scheduling or online scheduling.  

Following the complexity and the demands from online scheduling, multiple specific challenges for 
interfacing the different software components arise: During production in dynamical assembly systems with 
many disturbances, online scheduling algorithms must ensure the efficient job allocation. [13] These 
algorithms must cope with the complexity and temporal variability of boundary conditions. Therefore, 
traditional rule-based heuristics are not applicable and machine learning (ML) algorithms need to be applied. 
[14] These machine learning algorithms for online scheduling need to be connected to the control system 
that requests solutions for job allocation problems. The machine learning models are trained with simulation 
models that enable the generation of large datasets, required for machine learning training. Due to the 
significant computational time needed for most machine learning models they are trained before production 
[14] or with delay until deployment during production [15]. Consequently, in both cases an interface needs 
to enable the communication between the required simulation models and the online scheduling algorithms. 
Additionally, during training, a benchmark of different algorithmic approaches supports the choice over an 
algorithm. During production, alternative parametrizations or algorithms can be tested and deployed for the 
application with the control system. This demand for exchangeable online scheduling algorithms also results 
in an interface between the algorithms and the control system or simulation model. 

A possible solution for these complexity-driven challenges could be a modular and standardized software 
architecture that seamlessly connects the online scheduling algorithms with the simulation and control 
components during planning and production. In the next chapter 2 the state of the art in scheduling and 
control architectures, the derived research question and in brief the applied methodology are described. 

2. State of the Art and Methodology 

Literature presenting research regarding online scheduling primarily concentrates on the performance 
improvement or evaluation of scheduling algorithms, for instance, with the application of deep reinforcement 
learning techniques, but not on the integration in dynamical assembly system planning and control. [16±19] 
The existing literature on architectures for production planning and control for flexible production systems 
focuses on adaptive architectures as multi-agent systems in different heterarchical or hierarchical structures 
[20±22] or cloud manufacturing paradigms. [23,24] In those architectures, an agent is defined as a computer 
system embedded in an environment, which has the ability to perform autonomous actions to achieve 
predefined goals. [25] Online scheduling algorithms are included as agents connected to the shopfloor 
environment (e.g. [26]). Other potentially suitable architectures present modular control systems that 
incorporate approaches for online scheduling. [27] The presented control architectures typically focus on 
integrating online scheduling algorithms in the production phase and not on the application of the agents in 
the planning phase through connection to simulation environments. However, as explained above, 
simulations are indispensable e.g. for training ML algorithms. Therefore, a large body of literature 
integrating online scheduling algorithms into simulations exists (e.g. [28,29]), but neglects the integration of 
the proposed algorithms into existing control systems. 

As a summary, existing architectures contain agent-based approaches that enable a modularity for the 
scheduling agents and they provide interfaces for the superordinate planning or control systems. But, the 
reviewed architectural approaches either focus on the application of online scheduling in connection with 
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simulation models that run independently from real production systems. Or they only focus on the 
application in multi-agent systems that are connected to the shopfloor during production. Therefore, the 
deficit can be concluded that online scheduling agents cannot be connected to simulation models during 
planning or ML training and not to control systems in a multi-agent system approach during production with 
the same interface in current architectures. In other words, in the analysed literature, no dedicated software 
component for independently managing online scheduling requests and decisions. The following research 
question can be derived from this deficit:  

How can the seamless connection of various online scheduling agents with planning and 
control systems be enabled? 

To answer this research question the developments focus on newly overall new architecture, the required 
components and the necessary standardized interfaces. The well-established multi-agent system paradigms, 
including modular scheduling agents [20±22], already existing interface data models for transferring data in 
online scheduling scenarios [27±29] and principles of service-oriented architectures [30,31] are incorporated 
and used for the new architecture concept. 

The following chapter 3 presents the modular software architecture to address the above-stated deficit on a 
conceptual level. Two representations are used for this. First, a software architecture oriented overview on 
the components and their interfaces is given and described in detail. Second, an incorporation of the 
components in the layers of the Internet of Production reference framework is presented to provide a different 
perspective from production technology. The subsequent chapter 4 presents an implementation and testing 
of the conceptual architecture. The overarching structure of chapters 3 and 4 is based on the methodology of 
software and model development with the phased of formalization (conceptual model), implementation 
(executable model) and experimentation (testing results). [32]  

3. Conceptual Modular Software Architecture 

Figure 1 presents an overview of the modular software architecture. The proposed architecture is divided 
into two phases and two layers. In the system layer, the simulation module and the control system represent 
the digital version of the assembly shopfloor. The simulation module is applied to train machine learning 
models for online scheduling. Furthermore, independently of online scheduling, the simulation can evaluate 
assembly system alternatives, which is applied mostly during planning, but also during production to 
optimize the system. The control system, or manufacturing execution system, is responsible in the production 
phase to monitor and execute assembly or auxiliary processes at work stations, buffers, or the transport 
system. In a flexible alternative flexible assembly system as explained in the motivation, a job route needs 
to be scheduled during production respectively during simulation run time. After a process step, the job 
might have a variety of next process-station combinations as potential alternatives. 

The simulation or control system gathers the required information in a data model for decision-making. This 
data model needs to comprise all relevant static parameters describing the overall system configuration and 
dynamic variables representing the current system state. The parameters and variables need to fully represent 
the three system categories products (e.g. jobs allocated at processes and work stations), processes (e.g. 
progress, sequence, durations) and resources (e.g. transportation system, buffers, work stations states). The 
data model is standardized to allow interoperability. The ontology-based definition enables a standardized 
meta-model of digital twins as a connected data model. (cf. [33,34]) The interface methods are implemented 
continuously through the planning or production phase, i.e. in simulation and control systems. The methods 
are responsible for connecting to the scheduling layer. A scheduling request sends the data model of the 
assembly system.  
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The scheduling server, as a crucial part of the architecture, builds the interface between the system layer and 
the scheduling agents. It processes the scheduling request and forwards it with interfacing methods to one or 
multiple scheduling agents. Due to their independent decision-making and potential ability to learn in 
exchange with the environment, the term scheduling agent is chosen. 

 

 

Figure 1: Overview of the modular software architecture for online scheduling. 

 

In addition to communication functionalities, the scheduling server abstracts repetitive and simple tasks from 
the scheduling agents to reduce time-to-response. In case of trivial scheduling problems with only one 
station-process combination, the scheduling server can directly respond to the system layer with a scheduling 
assignment without addressing the scheduling agents. Another encapsulated task in the scheduling server is 
deadlock resolution. Deadlocks in online scheduling occur, for instance, when two jobs cross request the 
current station of the respective other job. In such cases, the scheduling server must force a scheduling 
decision or send a job to an intermediate buffer to free a station. As deadlock resolution is not a specific 
scheduling problem, but more a general production control issue, the abstraction avoids unnecessary 
communication and duplicate implementation in the scheduling agents. 

The decision-making to provide a scheduling assignment occurs in the scheduling agents. As described in 
the motivation, various scheduling agents can be deployed: A random agent as a random performance 
baseline for algorithm comparison, a heuristic agent with rule-based logic, or agents applying machine 
learning techniques such as deep reinforcement, unsupervised or supervised learning. The type of machine 
learning technique is independent for the scheduling server as it communicates via the request and 
assignment messages. The scheduling agents can be seen as suppliers of scheduling-as-a-service in the 
modular architecture. 
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The scheduling decision is a process-station combination. The scheduling agent returns it to the scheduling 
server, which replies to the interface methods that supply the results to the simulation or control system. 
There, the results are used to execute simulated or real processes or actions. For instance, during production, 
the scheduling decision triggers a handling unit and a transport system to move the job to the next work 
station. 

As an alternative representation, Figure 2 shows the modular software components from Figure 1 in the 
layers of the Internet of Production framework. [35] In comparison with Figure 1, this representation aims 
at the allocation of components in an existing reference framework. The underlying intention is to prepare a 
wider application of single components beyond the current online scheduling application. Examples would 
be a usage of the simulation model and the interface methods for the optimization of factory layouts or 
application in intralogistics as described in more detail in the last chapter 5. 

In the following, the allocation and purposes of the software components in the different Internet of 
Production layers are described briefly. The system level provides the scheduling problem and the shopfloor 
data. The interface methods act as a middleware+ that is capable of connecting the different software 
components. The scheduling server and the data model reside at the integration layer to provide multi-modal 
access to the online scheduling agents. They are responsible for decision-making and autonomous actions to 
provide the scheduling assignments in the smart expert layer. 

 

Figure 2: Incorporation of the modular software components in the reference framework Internet of 
Production for the production technology perspective (based on [35]). 

4. Implementation and Functional Testing 

The components and interface methods from the conceptual architecture presented in Figure 1 are 
implemented in infrastructure of the machine hall of the Laboratory for Machine Tools and Production 
Engineering (WZL) of RWTH Aachen University. The machine hall is equipped with several robots, manual 
work stations and automated guided vehicles. The software infrastructure consists of a Robot Operating 
System (ROS) middleware and the Message Queuing Telemetry Transport (MQTT) protocol for distributed 
communication. The control system COPE, developed by the Fraunhofer Institute for Production 
Technology (IPT) [27] is connected to the MQTT communication broker. 
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In Figure 3 in the top right corner, a section of the machine hall and the COPE user interface are visualized. 
The machine hall is represented in a discrete-event simulation model, created with Tecnomatix Plant 
Simulation, as shown on the top left. 

Both, the simulation model and the COPE control system integrate the interface methods. The interface is 
set up with the Flask micro-framework, offering standardized RESTful Hypertext Transfer Protocol (HTTP) 
commands for transferring JavaScript Object Notation (JSON) files for requesting and assigning scheduling 
decisions with the HTTP methods POST and GET, respectively. The scheduling server was created with the 
high-level Python web framework Django, offering classes and methods for setup up the addressable web 
server. Within the scheduling server the functionalities of resolving deadlocks by enforcing sub-optimal 
scheduling decisions and solving trivial scheduling problems are also implemented in Python. In Figure 3 
two excerpts of the content of request and assignment JSON files are shown. For the request, the file contains 
the name of the to-be-scheduled job as an identifier and the NextStation and NextProcess variables with the 
value -1, indicating a scheduling demand. Not listed in the excerpt is the current information about the 
assembly system with all current status of resources (robots, transport, manual work stations, etc.), other 
jobs and processes. In addition to the live date, static data that contains the overall system setup, such as 
locations of work stations, is included in the request. The assignment reply consists of the job name (COM-
PRD-002) and the station-process combination (COM-ROB-004 and COM-PRC-015). The nomenclature of 
these strings follows a JSON scheme, i.e. three letters or words and predefined letters, e.g. for the robot 
station. This scheme is defined the meta model, to allow standardized data formatting (according to [33]). 

 
Figure 3: Overview of the implemented software components, following the modular software architecture. 
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The implemented scheduling agents can be chosen with a parameter in the scheduling request and the 
scheduling server is forwarding the request to the respective scheduling agent. The deep learning online 
scheduling agent is implemented according to the descriptions in Göppert et al. (2020, 2021). [36,37] The 
random agent chooses scheduling assignments randomly and the heuristic agent (also explained in [36]) 
minimizes the waiting and transportation time for the next station-process combination. The random and 
heuristic agents serve as reference agents to evaluate the scheduling performance of the deep learning agent. 
All scheduling agents were implemented in Python using open libraries (e.g., NumPy, scikit-learn, Keras).  

The functionality of all components and interfaces was tested with qualitative validation measures, i.e. single 
error handling checks and large-scale simulation experiments. The qualitative validation results with 
corresponding inputs and functions are presented in Table 1.  

Table 1: Qualitative validation of interfaces and scheduling server functionality. 

Input description Function Result 

Data model content not schema-compliant in 
UHTXHVW��H�J��µ&20-PRODUCT-«¶� 

Scheduling server request consistency 
check 

Scheduling server error PHVVDJH��³'DWD�PRGHO�LQFRUUHFW´ 

Missing data model content in request (e.g. no 
NextProcess value given) 

Scheduling server request consistency 
check 

6FKHGXOLQJ�VHUYHU�HUURU�PHVVDJH��³'DWD�PRGHO�LQFRUUHFW´ 

Sending scheduling request with one possible 
station-process combination 

Scheduling server functionality check Assignment is consistent with the possible station-process 
combination, no deviation could be observed 

Response message from scheduling agent incorrect  Scheduling server agent message check 6FKHGXOLQJ�VHUYHU�HUURU�PHVVDJH��³6FKHGXOLQJ�DJHQW�HUURU´ 

Sending the same scheduling requests from a 
simulation model and control system 

Interface function consistency check Identical scheduling results for simulation and control system 

Not existing algorithm name requested (e.g. 
³WHVWBDJHQW´� 

Scheduling server request consistency 
check 

6FKHGXOLQJ�VHUYHU�HUURU�PHVVDJH��³$OJRULWKP�LQFRUUHQW´ 

 
In addition to the qualitative testing, a large number of test scenarios with the simulation model was executed 
as a large-scale validation. As shown in Göppert et al. (2020) 10,944 simulation scenarios, i.e. full simulation 
runs with 180 scheduling decision points per scenario were generated with the automated scenario analysis 
tool. [36]  In total, the 1.97x106 scheduling requests were processed by the scheduling server and the 
scheduling agents. The scheduling assignments were successfully retrieved by the simulation leading to 
validated scenario outputs in the form or reasonable performance indicators.  

5. Conclusion and Outlook 

In this last chapter, a conclusion on the research question with the key findings and an outlook on potential 
applications and research opportunities is provided. The research question ± How can the seamless 
connection of various online scheduling agents with planning and control systems be enabled? ± can be 
answered as follows: The standardized interfaces, the dedicated scheduling server and the overall validated 
modular software architecture enable the planning and control with various online scheduling agents. 

From the presented conceptual architecture and implementation, the key findings and additions to the 
knowledge base are: 

1. The dedicated scheduling server software module enables the encapsulation of scheduling decisions and 
externalization from simulation or control systems to, for instance, enable independent scheduling agent 
development. 

2. Advantages of the scheduling server are the central deadlock resolution to avoid repeated implementation 
in the scheduling agents for trivial scheduling task solution and to reduce unnecessary communication. 

3. Web-based interfaces allow for the system-agnostic (simulation or control) handling of scheduling 
requests and assignments and, therefore, enable switching seamlessly from simulating during planning to 
the control of a running system. 
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4. Applying data modelling standards such as schemes and meta-models facilitates the interoperable 
communication via data models and the modularization of components. 

5. The mentioned open-source libraries for web-server development give researches and practitioners from 
production technology potential support in creating a comparable modular scheduling architecture. 

Besides these benefits and learnings, also drawbacks of the presented architecture exist. A downside of the 
modularity are the additional communications efforts between the system layer, the scheduling server, and 
the scheduling agents. The time for the additional communication results in an overhead waiting time for 
each scheduling request. For simple scheduling requests, the communication overhead might reduce the 
performance, especially for discrete-event simulations that seek to simulate large numbers of scenarios 
quickly. Extra external communication efforts for each scheduling decision, can significantly increase the 
total simulation time. Also, the development and implementation costs of the dedicated scheduling server 
and the interface methods have to be considered. Proprietary software for simulation or control might also 
not allow the integration of the interface methods. 

Further potential applications of the proposed software architecture and its components can be found outside 
assembly systems, wherever online scheduling is applied. The data model for resembling the real system 
must be adapted to the application, but the functionality of the components is independent of that. A field 
with high potential is intralogistics, due to the short transport times and ad-hoc request of transportation, 
which cannot be scheduled ahead in large and complex systems. Further exemplary fields outside the 
manufacturing domain are airplane terminal allocation, scheduling of patients to hospital resources and 
assigning data computing tasks to processing units.  

Further research opportunities, besides the broader application in the above-mentioned fields, comprise the 
measurement of these external communication times depending on the various communication protocols or 
web server frameworks. With these results, the impact of external communication in contrast to the benefits 
of modular scheduling agents can be investigated. Also, the communication protocol that supplies the fastest 
response times can be chosen. In general, the long-term application of the modular scheduling architecture 
in real production with a control system could lead to more insights about potential interface improvements 
and could validate the postulated benefits. Furthermore, the long-term application would increase the 
architecture's maturity. Eventually, standardization committees could develop a specific reference 
architecture that follows domain-wide definitions of interfaces and data models.  
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