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Abstract

Automated,  modular,  asynchronous and locally controlled material  flow systems promise high routing 

flexibility  in  production  lines  because  their  conveying  modules  can  be  reconfigured  without 

reprogramming PLCs. However, if such material flow systems comprise cycles and different routes, they 

may exhibit undesirable deterministic chaotic inter-arrival times, which can lead to conveying bottlenecks 

when approaching maximum capacity. Since existing analytical models have not been practically adopted 

for  planning material  flow systems,  an approach for  detecting deterministic  chaotic  inter-arrival  times 

during production is proposed. It employs the Hough transform to identify trajectories in inter-arrival time 

phase  space.  The  approach  is  tested  with  a  laboratory  double  belt  conveyor  system,  in  which  non-

deterministic behavior is minimized. Results are compared with a previously published analytical model. It 

is shown that the proposed approach is able to detect deterministic chaotic inter-arrival times for the test 

cases. Phase trajectories are only partly identified. Future research should test and compare different line 

detection algorithms for their influence on the approach’s robustness in practical production environments.
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1. Introduction

In series production of piece goods, material-flow automation is a common approach to reduce non-value 

adding labor cost. This approach considerably affects production efficiency because the time of material 

handling is a considerable part of total manufacturing time. Following [1], its ratio is about 85%. 

A popular class of automated material transport systems employs double conveyor belts to transport work 

pieces that are located on work piece holders. Such systems support routing flexibility. Two conveyor belts 

are normally moving at constant speed and take work piece holders with them using friction. When a work 

piece holder encounters an obstacle, e. g. a stopper or another work piece holder that is already blocked, it 

stops while the conveyor belts continue to move underneath it. When the block finishes, the obstacle is 

removed and the work piece holder is again moved by the belts. For such conveyor systems, distributed 

control can be used to make them reconfigurable [2]. 

A typical layout of double conveyor belts comprises a main loop and several side loops, in which stations 

are situated. Each work piece holder contains a memory with its production plan and a pointer to its next 

production step. At each junction, the memory of an arriving work piece holder is read out e. g. via RFID. 

If a station that is viable for conducting the next production step is situated inside the side loop then - if 

possible - the work piece holder is routed to this side loop. Otherwise, it continues its journey in the main 

loop. This design allows decentralized control of the material flow system because a Programmable Logic 
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Controller (PLC) that is responsible for controlling one side loop does not require knowledge about the 

other side loops but may only communicate via the work piece holders' memories. 

Figure 1: Double conveyor belt system with one work piece holder.

This control  design allows reconfiguration of the material  flow system layout without reprogramming 

PLCs, which can be considered an advantage for agile production (c. [2]). However, it also implies that the 

material flows through the different routes are normally not synchronized. It has been shown in [3] that 

such non-synchronized routes in material flows may lead to deterministic chaotic behavior, which may  

lead to reduced conveying capacity that can reduce overall production efficiency of assembly systems. 

In practice, such state explosions are either ignored or they are counteracted with system designs that limit  

the number  of  system states  but  that  are  harder  to  reconfigure at  the control  level.  Considering non-

synchronized production systems or production system chains this approach becomes infeasible.

Relevance of chaotic behavior in production systems with loops has been reported by several researchers  

(c. [4] and [5]). While effects on efficiency may be dominated in systems with high down-time ratio, it can  

lead to conveying bottlenecks when approaching maximum capacity. Furthermore, deterministic chaotic 

behavior  should  be  generally  avoided because  it  introduces  unlimited  numbers  of  system states,  i. e. 

dynamic complexity. In [6], it has been shown that stochastic effects such as processing time variability 

overlay but do not cancel this effect. Therefore, it would be desirable to detect such deterministic chaotic  

behavior when it happens during production in order to be able to counteract it e. g. by re-initialization. In 

[4],  a  mathematical  model  of  autonomously  controlled  production  networks  considering  time  delay 

systems  is  described,  which  allows  stability  analysis  using  Lyapunov  functions.  However,  practical 

management or control of the effect are considered hard because published models of the effect in [3] or 

[4] are difficult to understand and handle in engineering practice.

After  a  short  overview  of  present  approaches  to  material  flow  analysis,  this  work  presents  a  novel, 

practically applicable method for automatic detection of deterministic-chaotic material flow behavior. The 

method provides a measure that  describes the complexity of the trajectory that  the inter-arrival  times 

converge to in phase space. In this context, the term phase space is considered in the context of discrete  

event systems and shall be defined as a space of two dimensional vectors, where the first component is the  

n-th and the second component is the (n+1)-th inter-arrival time. In a proof of principle, the method is

tested using a double belt conveyor system with two work stations that are situated in separate side flows.

Stochastic behavior is minimized in the tests. Should the method prove applicable to real world scenarios,

it could be used for on-line detection of chaotic material flow behavior in production systems.
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2. Models of deterministic chaotic material flow behavior

2.1 Material flow simulation

Today, material flow simulation is an established technology that is widely adopted throughout industry 

(c. [7]).  The  dominant  paradigm  is  to  employ  discrete  event  simulation  models  that  are  set  up  and 

parameterized in graphical user interfaces. Graphical definition of material flows and control flows are  

often accompanied by code that describes behavioral logic. An approach for reducing manual modeling 

effort has been proposed in [8].

Material  flow simulation has been employed to investigate deterministic chaotic effects with limitless  

growing state space in [6]. It was found that deterministic chaotic effects overlay stochastic effect so that  

either may be dominant (s. Figure 2).

Figure 2:  Simulated inter-arrival time patterns for normal distributed bottleneck station processing times 

with different standard deviations for a double belt conveyor belt system using 57 work piece holders [6].

A different approach is to employ physics simulation for material flow simulations to reduce modeling 

effort for the non-controlled environment behavior (s. [9]). Resulting motions are less abstracted than those 

of  discrete  event  simulations.  Therefore,  accelerations  can  be  investigated,  which  enables  optimizing 

conveying velocities (c. [9]). [10] provides a survey of 3D game engines that comprise physics considering 

their application for production system simulation.

2.2 Analytical material flow models

A well  researched  domain  of  analytical  approaches  to  model  and  analyze  material  flow  behavior  is  

queueing theory (s.  [11]). There, arrival times are assumed to follow stochastic distributions. If complex 

layouts are considered, these distributions normally follow specific types such as exponential distributions 

(c. [12]). 

Furthermore,  colored  Petri-networks  (c.  [13])  and  max-plus  dioids  (c.  [14])  have  been  employed for 

material-flow  analysis  of  flexible  manufacturing  systems.  Typically,  in  these  analytical  approaches 

deterministic chaotic behavior is ruled out by a-priori assumptions or by modeling rules that are required  

for applying model analyses. 

In  [3],  series  based  analytical  models  for  deterministic  chaotic  inter-arrival  time  behavior  has  been  

presented. However, practical applications of the approach are limited because an analytical measure for 

comparing or assessing the time series is missing.

3. Method for detecting deterministic chaotic inter arrival times

The main idea of the method is to treat scatter plots of the phase space of inter-arrival times, i. e. the plot of 

the n-th and (n+1)-th inter-arrival time as images, on which the probabilistic Hough line transform [15] is 
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employed for line detection. If lines are detected then there are visible trajectories in phase space that  

indicate  deterministic  chaotic  behavior.  The number  of  lines  is  employed as  an indicator  of  dynamic 

complexity.

As an input, the proposed method employs arrival times of work piece holders at a specific location in the  

main loop. This location is situated in the region in front of a fork joint that leads to a bottleneck station. In  

front of the location, there must be a queueable conveyor section (s. Figure 1). Since modern PLCs have 

access to an internal clock, detection of arrival times is easily implementable. However, for the method 

time accuracy is crucial so that the logging of arrival times should run in a fast loop that is separated from 

the main control program. The method's steps are conducted as follows:

 Arrival times are stored with a sampling frequency of 1000 Hz in a ring buffer of 100 values inside 

the PLC.

 Each 20 ms, the ring buffer is read out by a computer that is connected via field bus.

 After each read out, the new arrival times are converted into inter-arrival times by subtracting the 

previous arrival time.

 Each inter-arrival time is mapped to a 2D histogram with 100 bins for each axis (optimum bin size  

may vary for different systems), in which the x-coordinate represents the (n)-th inter-arrival time  

and the y-coordinate represents the (n+1)-th inter-arrival time. 

 A binary matrix is set up, in which each element corresponds to a bin. Each matrix element is set  

to 255 for empty bins and to 0 for non-empty bins. 

 The matrix is extended by 1/5 its size at each border, i. e.  20 elements are padded at the top, 

bottom, left and right border so that the matrix size becomes 140x140.

 The Canny edge detector [16] is applied to the matrix as it were an image.

 The probabilistic Hough line transform (s. [15]) is applied on the result.

 Resulting lines are counted.

Table 1 provides an overview of the parameters for the Canny edge detector and the probabilistic Hough  

line transform, which have been manually derived.  

Table 1: Parameters for the algorithms

Algorithm Parameter Value

Canny Gaussian filter kernel size (x and y) 10

Hysteresis procedure threshold 1 100

Hysteresis procedure threshold 2 200

Sobel operator aperture size 7

Probabilistic Hough Line Transform Distance resolution 20

Angle resolution [rad] 0.17

Voting threshold 50

Maximum gap between points 30

4. Tests setup

The tests have been conducted with a Bosch TS/2+ based conveyor system (s. Figure 3). The double belt 

conveyor system comprises a main loop and two side loops. Processing times of both stations are 10 s.  

Conveying speed is 0.22 m/s. The production plan for each work piece holder is Station 1 → Station 2 → 

Station 1 → etc.
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Figure 3: Test setup with double belt conveyor

The overall system is controlled by three independently operating PLCs (one for the main loop and one for 

each side loop). The main control program cycles of the three PLCs are not synchronized with each other. 

Arrival times measurements are performed independently on one PLC so that the PLC runs both the main  

control program and a measurement program with 1 ms cycle time. 

Behavior at the joints follows one pattern that is commonly found in industry:

When a work piece holder arrives at a fork joint of a side loop with its next station then it is immediately 

routed  into  the  side  loop if  possible.  If  the  side  loop is  blocked because  of  a  queue  in  front  of  the 

bottleneck station, the work piece holder waits for 4 s, during which it is routed to the side loop as soon as  

no block is present any more. If the block lasts longer then the work piece holder continues traveling along  

the main loop.

When a work piece holder arrives at a merge joint, the side loop always gets precedence so that blocking 

of the station inside the side loop is avoided.

Work piece holders are initially queued at the stopper behind the long outer section of the main loop (front  

conveyor right in front of the turning unit in Figure 3)

Tests are conducted with each number of work piece holder numbers starting at 1 and ending at 32. At 32  

work piece holders, a deadlock immediately occurs. Note that deadlock situations start occurring at 26 

work piece holders and above after less than one minute.

5. Results

For 1 to 7 work piece holders, all detected lines are situated close to the x and y axes, and no chaotic  

behavior can be observed. Note that for tests with 3 work piece holders or less, no lines are detected  

because of the maximum gap parameter employed.

Figure 4 visualizes the test results for 7 to 14 work piece holders. Doing a visual analysis, an increasingly 

relevant pattern that covers areas far from the axes emerges. The pattern is highly visible for 12 work piece  

holders and disappears in tests with 14 work piece holders and more. In the pattern, polygonal features are 

manually observable. 
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Figure 4: Test results after 15 min. The inter-arrival time matrix is derived from a histogram following Figure 2.
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The lines that are detected by the method generally follow the visually observed patterns. However, more  

lines  are  generated  than  expected.  In  the  case  of  9  work  piece  holders,  lines  near  the  axes  are  not  

generated. Note that while line detection accuracy depends on the four parameters for the Probabilistic  

Hough Line Transform that are shown in Table 1, the most critical parameter has been the maximum gap 

between points. The result that the maximum number of generated lines clearly indicates the situation with  

the strongest pattern at 12 work piece holders is robust against parameter variations of less than ± 10%  

maximum gap between points.

6. Discussion

The proof of principle test demonstrates that for the considered scenario, the proposed method can be  

employed to automatically detect deterministic chaotic material flow behavior in double conveyor belts.  

The method and its algorithms that are state of technology in image analysis are able to extract lines that  

follow phase space trajectories. 

However, while the number of detected lines grows with the convolution of the inter-arrival time pattern, 

the gaps in the pattern that remain after 15 min measurement time lead to misidentified lines. In the case of  

13 work piece holders, lines are detected at the left side that go from bottom left to top right. Considering  

the other patterns, one would expect one line that is vertical and two parallel lines from top left to bottom 

right,  which represent  different  routes through the system. These patterns become more dominant for 

longer test times. Effectively, the maximum gap between points parameters prevents correct detection of 

lines for the considered 15 min measurement time. However, reducing the maximum gap parameter results 

in a lower overall number of recognized lines to a point, in which the approach does not yield usable  

results.  Therefore,  the  proposed  approach  is  considered  unsuitable  for  detecting  root  causes  for 

deterministic chaotic behavior or for phase space trajectory reconstruction.

Nevertheless,  automatic  detection  of  chaotic  behavior  may  provide  insights  for  operative  production 

management about system design shortcomings. The approach can easily be applied to existing conveyors 

e.g. by adding one proximity sensor per material flow loop. Employed at a large scale, it  could draw

attention to hidden issues that are normally covered by down times, breaks or idle times.

Besides its application using data from PLCs, the method can be directly applied to co-simulations e.  g. in 

digital  twins.  Application  in  the  design  phase  of  systems  would  allow  early  checks  for  undesired 

deterministic chaotic behavior.  As an addition to commonly used design quality checkers, the method  

could help to improve production system design.

7. Conclusion and Outlook

An approach for detecting deterministic chaotic inter-arrival times has been presented. In a test scenario, it  

has  been  shown to  automatically  detect  patterns  in  inter-arrival  time phase  space.  As  a  next  step  of 

research, the approach should be tested in real production situations that exhibit stochastic effects.  If the 

results  from the  described  laboratory  test  are  reproducible  in  industrial  production  environments,  the 

approach may help improve capacity flexibility by front loading issue handling. Instead of solving material 

flow bottlenecks  that  are  caused  by  deterministic  material  flow chaotic  behavior  when  production  is 

maximized, detection may trigger a system or control redesign during normal operation.
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