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Abstract 

While autonomous guided vehicle systems are increasingly used in homogeneous and structured 
environments, their use in complex and variable scenarios is usually limited. Established algorithms for the 
navigation of systems use static maps with deterministic metrics, which can only achieve optimal results in 
clearly defined environments. In dynamic and extensive deployment scenarios, which are also dependent on 
a large number of influencing parameters, autonomous intralogistics systems cannot yet be deployed 
dynamically. One example here is mixed transport between buildings under changing weather conditions. 

As a solution for dynamic navigation, we propose a hybrid metric in combination with topological maps and 
cyclic environmental sensing. Based on a quantification of influencing factors on each intralogistics entity, 
an optimal and dynamic navigation of every system can be performed at any time. The individual 
components are implemented in the context of an autonomous tow truck system and evaluated in different 
application scenarios. The results show significant added value in use cases with sudden weather changes 
and complex route networks. 
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1. Introduction

The number of use cases for autonomous systems in intralogistics scenarios is continuously growing. Initially 
limited to warehousing and commissioning, advances in sensor technology and computing hardware 
increasingly enable systems to be used in unstructured production and logistics environments. The 
foundation of navigating such environments is a representation of inherent knowledge by static or cyclically 
updated maps. Within this metric representation, paths for transport entities can be computed and executed 
according to different specifications for optimal behavior. Commonly, the shortest path is used for navigation 
of autonomous transport vehicles. [1] 

This approach is optimal and often sufficient for use cases with identically qualified transport vehicles and 
homogeneous operating environments. Within industrial use cases, however, there are often different kinds 
of transport vehicles as well as dynamically changing working environments. Especially in the case of 
routing networks with outdoor areas and heterogenous vehicle classes, purely metric considerations of 
navigation solutions are no longer sufficient to enable optimal navigation. For complex and changing 
environments, no established algorithm for optimal navigation exists. [2] 
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In this work, we propose the use of a hybrid metric combined with a state-of-the-art heuristic for optimal 
navigation of autonomous transportation vehicles as a function of environmental factors and structural 
constraints inside intralogistics transportation networks. The proposed solution builds upon a node-based 
representation of the working environment with inherent information encoding. In conjunction with cyclic 
monitoring of relevant environmental and weather parameters, this enables continuous evaluation and 
adjustment of the optimal navigation of autonomous transport systems. By incorporating an open-source 
framework for route network design, a user-friendly interface for modifying the basic map material and 
deviating metric weighting becomes possible. 

Due to the high degree of interference of parametrization and real-world systems, the described metric is 
detailed using an autonomous tow truck system in mixed indoor and outdoor operation and the potential in 
dynamic application areas with changing environmental conditions is shown. Finally, an evaluation and 
outlook on further relevant improvements is given. 

2. Related Work

In general, the navigation of autonomous transport systems is based on a-priori knowledge implemented as 
maps of the operational environment, whereby established methods can be differentiated into metric and 
topological approaches [3]. Metric maps represent the operational environment as a true-dimensional 
relation of granular basic elements, usually area squares of the size of the necessary sensory resolution. Due 
to the high information density, this form of map representation is suitable for small areas of operation where 
high accuracy is required in the context of navigation. Topological maps abstract the work area to a network 
of nodes that represent references within the operational environment. Edges between nodes represent a 
relation between locations and thus state transitions of the driverless transport vehicle. Due to the applied 
reduction of information density, topological maps are suitable as a form of representation of large 
transportation networks as well as the navigation of driverless transportation systems within them. The use 
of a topological map also enables the efficient mapping of relevant parameters for the operation of driverless 
systems by attribute assignment to the corresponding nodes and edges. [4, 5] 

The use of topological maps has already been used for the mixed indoor and outdoor deployment of 
autonomous transport vehicles [6] as well as autonomous cars [7]. In the classical approach, nodes represent 
relevant reference points within the deployment environment. Edges between the nodes form a relation and 
thus a physical connection between the nodes. The resulting network can be represented as a graph with 
directed edges, where the metric distance between the connected nodes is usually used as edge weight. It can 
be seen as an optimization problem for the navigation between two points of the graph using a defined 
heuristic. A distinction is made between informed and uninformed search methods. [8] Uninformed search 
methods consider inherent information, such as the smallest sum of previously considered nodes, when 
evaluating the next node to be considered. Informed search methods also use additional information from a 
weighted estimate to achieve a targeted solution to the optimization problem. This can represent, for 
example, the Euclidean distance of the current node to the target node. Exemplary, the heuristic of the A*-
Algorithm is defined by 

݂ሺݔሻ ൌ ݃ሺݔሻ ൅ ݄ ሺݔሻ (1)

with f(x) being the cost of the current cell, g(x) being the actual cost of the accumulated edges from the start 
point to the current node and h(x) being the weighted estimate of the current node to the goal. [9] 

To obtain an optimal solution to the navigation problem, the heuristic used must be monotonic. This means 
that the estimated cost must never be overestimated and the triangle inequality holds. [10] 

In the case of homogeneous environments, where the metric between waypoints is directly relative to the 
effort of driving, a topological representation of the map and the application of the classical A* algorithm 

786



 

 

on the routing graph can be used to optimally implement a navigation of autonomous transport vehicles. In 
dynamic environments as well as changing environmental influences, a purely metric view of the route 
network cannot be used for optimal navigation. To extend the A*-algorithm towards dynamic environments 
and entities with different capabilities, different approaches have been researched. 

[11] introduces a time-space network model for navigation of automated guided vehicle fleets. In addition 
to the pure consideration of the distance traveled for each vehicle, the heuristic is extended to include the 
state of motion of the vehicles. The metric for optimal navigation is thus extended for an overall optimum 
by the possible prediction of occupancy states for individual route sections. However, it does not include 
environmental influences on the overall navigation and only optimizes on its own knowledge of the transport 
entity. 

[12] considers the significance of weather influences on the driving behavior of cars. Based on recorded and 
predicted weather effects, the edge weights and thus the distance values of a route network are multiplied by 
a fixed factor. This allows the use of a uniform metric for determining an optimal path. However, decision 
variants and different capabilities of various vehicles, as they often exist in mixed indoor and outdoor route 
networks are not considered. The approach is thus not easily transferable towards autonomous transport 
vehicles in intralogistics. 

A parametrical description of autonomous transport vehicles for the adaptation of navigation algorithms is 
described in [13]. Adaptive navigation is made possible by linking the physical capabilities of the vehicle as 
well as the kinematics of the vehicle with the achievable velocity in various movement scenarios. 

In the field of mixed indoor and outdoor intralogistics, there are no approaches known to the authors that 
allow adequate consideration of relevant environmental influences on autonomous transport vehicles for the 
optimal navigation in dynamic mixed indoor and outdoor operational environments. However, such a 
heuristic is necessary for holistic optimization of transports in case of highly branched route networks with 
multiple viable options. 

3. Definition of a hybrid metric 

In [14] and [15], we have shown the influence of different operational environments on the localization 
capabilities of autonomous transport vehicles as well as a possibility of inherent information coding for 
describing the operational environment. The definition of a new hybrid metric is necessary to combine both 
findings in an optimal navigation algorithm, which is updated upon changes in environmental conditions. 
To ensure an optimal result, the superordinate heuristic must meet the criterion of monotonicity and the 
triangle inequality while also taking weather influences on the driving behavior of driverless transport 
vehicles into account.  

The driving characteristics of autonomous transport vehicles are primarily defined by their ability to perceive 
the environment and interpret the corresponding information [16]. Environmental influences affect different 
sensors in various ways. Optical sensors such as Light Detection and Ranging (LiDAR) or cameras are 
affected by particles of different sizes inside their corresponding area of observation. In outdoor 
environments, these can be exemplary be snowflakes, raindrops, fog or dust particles [17]. Passive optical 
sensors are also dependent on the illumination intensity of the respective detection area. [18] 

In addition to the influences on the sensors used and the resulting detection range with corresponding speed 
and availability restrictions, the physical characteristics of the vehicle are relevant for operation in different 
operational environments. Information on the maximum speed, restrictions due to floor coverings, maximum 
gradient values depending on possible over-freezing as well as wind influence on trailers must be considered 
for optimal navigation.  
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Since the consideration of relevant factors is not possible in a pure metric, we propose the use of a hybrid 
metric considering the influence of all mentioned information. For autonomous transport vehicles all impact 
factors are directly reflected upon the maximum achievable and achieved speed. To include them in the 
navigation, the cost of nodes inside the A* algorithm can simply be extended to: 

݃௛௬௕௥௜ௗሺݔ, ሻݒ ൌ  ෍
௜ݔ
௜ݒ

௡

௜ୀଵ

 (2) 

ghybrid(x,v) represents the costs of the nodes visited so far in applying the A* algorithm on the route network. 
It is calculated as sum of the corresponding route elements (real distance) xi and the possible speed vi (with 
vi > 0) for the considered transport vehicle between the nodes Ki and Ki-1. While the factor xi has the same 
value at any time due to the physical conditions of the area of operation, vi includes the vehicles dependence 
on environmental conditions and the used transport systems. 

To allow optimal navigation in extensive route networks, an informed search is necessary. The chosen 
heuristic must also reflect external influences on the autonomous transport vehicle as well as physical 
capabilities. It must be monotonic as well as compatible with the triangular inequality in order to guarantee 
an optimal result of the navigation. In complex deployment environments, the use of classical metrics for 
the cost estimation function, such as the pure Euclidian distance between the currently considered node and 
the target point, is only suitable to a limited degree. An extended heuristic that satisfies the conditions for 
optimal navigation on the fastest path is a simple division of the air distance by the maximum speed of the 
vehicle on the chosen path. However, in order to avoid weighting of each estimated cost with the same 
maximum feasible speed (which would again result in the output of the shortest and not necessarily fastest 
path) a decision criterion for a choice of the used speed classes is necessary. Resource-efficiently, this can 
be achieved by incorporating the number of adjacent nodes and a classification into indoor and outdoor areas. 
The following formula is used to calculate the cost estimation function: 

݄௙௔௦௧ ൌ  
ሺܭ௚௘௦ ൅ 1ሻ כ ݄஺כ

ሺܭ௜௡ௗ௢௢௥ ൅ 1ሻ כ ௜௡ௗ௢௢௥,௠௔௫ݒ ൅ ௢௨௧ௗ௢௢௥ܭ כ ௢௨௧ௗ௢௢௥,௦௜௧௨ݒ
 (3) 

with 

௜௡ௗ௢௢௥,௠௔௫ݒ ൒ ௜ݒ ௢௨௧ௗ௢௢௥,௦௜௧௨ݒ ݀݊ܽ  ൒  ௜ݒ

Kges is the number of neighboring nodes of the considered element of the graph. hA* represents the classical 
metric for the estimation function, for example being the Euclidean distance between the element and the 
target node. Kindoor and Koutdoor describe the number of adjacent nodes that are categorized as indoor and 
outdoor nodes, respectively. Vindoor,max is the maximum speed that can be achieved in the indoor area. 
Voutdoor,situ is the maximum speed that is allowed by an autonomous transport vehicle in the dynamic outdoor 
area under the environmental conditions prevailing at the time of calculating the navigation solution. 
According to the above formula, outdoor nodes that have a similar distance to the destination node are 
preferentially expanded under favorable weather conditions. The different speeds are again directly 
dependent on the capabilities of the transport vehicle used as well as the operational environment. The 
mentioned conditions ensure the monotonicity of the selected metric. 

In summary, the heuristic for navigating the fastest path in a given route network with information on current 
environmental conditions can be written similar to the classical A*-algorithm: 

௛݂௬௕௥௜ௗ ൌ ݃௛௬௕௥௜ௗ ൅ ݄௙௔௦௧ (4) 

 

 

788



 

 

4. Implementation of the proposed metric 

The implementation of the hybrid metric is heavily dependent on the physical characteristics of each 
autonomous transport vehicle as well as the environmental conditions. In the following chapter, one 
implementation is detailed using a driverless tow truck as an example as shown in Figure 1. The 
corresponding vehicle has a variety of sensors that use different measurement principles to sense the 
environment and thus enable autonomous operation. The operational environment with dynamic indoor and 
outdoor areas is provided by a hybrid topological map in .osm data format. Inherent information coding 
assigns ground conditions, slopes and relevant environmental influences to each node and edge via fixed 
flags inside the .osm map. The tow truck is equipped with camera-based optical odometry, wheel-based 
odometry, LiDAR sensors, and GPS and UWB systems. The tow truck can travel at a maximum speed of 10 
km/h in outdoor areas. In indoor areas, the speed is limited to 6 km/h due to national safety regulations.  

 
Figure 1: Autonomous tow truck for the exemplary realisation of the hybrid metric 

Relevant environmental conditions for the functioning of the autonomous route tow truck are summarized 
in Table 1. Different influences on the sensors result in a decreasing ability of the tow truck to perceive the 
environment and thus result in a necessary reduction of the allowed maximum driving speed. The reduction 
of the maximum speed was determined empirically in tests. 

Table 1: External influences on sensor systems and required behavior of the tow truck 

Ambient influence Affected component Required behavior 

Humidity condensing [19] Camera (passive, active), LiDAR Driving outdoors not permitted  

Wind speed [20] Stability of towed trailers >25km/h: driving outdoors not 
permitted 

[25; 15] km/h: driving speed 
reduction outdoors to 5 km/h 

Illuminance [21] Camera (passive) < 10 lx: driving outdoors not 
permitted 

[10; 200] lx: driving speed 
reduction outdoors to 5 km/h 

Temperature [22] Traction, Condensate on optical 
components 

< 0 °C: driving speed reduction 
outdoors to 5 km/h 
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The navigation of the autonomous tow truck is implemented in the Robot Operating System (ROS) on a control 
computer running Ubuntu Linux 20.04. The working environment is provided as a hybrid topological map with a 
corresponding route network. The individual nodes are defined by their position in the Global Positioning System 
(GPS) coordinate system. Distances between nodes and thus the lengths of the edges result from the Euclidean distance 
in the north-south, east-west and elevation direction. The relevant environmental conditions in the outdoor area are 
recorded cyclically every 30 seconds by a weather station and transmitted to the tow truck via LoRa-Wan. The A*-
algorithm with the actual heuristics based on the hybrid metric is implemented as a standalone package in ROS. In 
order to cope with dynamic changes in environmental conditions, an actuality check is made when reaching individual 
nodes to see if any thresholds of the configuration have been exceeded. If this is the case, a new navigation from the 
current location to the selected destination is triggered. This whole set up with environmental sensing, reconfiguring, 
navigation and interfacing with transport orders and the driving hardware is shown in Figure 2. 

 

 

Figure 2: System Setup for the dynamic navigation based on environmental sensing and the hybrid metric 

5. Evaluation 

To evaluate the functionality of the hybrid metric, its integration described in chapter 4 is tested in different 
use case scenarios. For the application in dynamic indoor and outdoor areas, the following key features are 
particularly relevant: 

x Correct functionality of the hybrid metric 
x Runtime of the algorithm in complex route networks 
x Ruggedness of the algorithm for real-time updates 

For testing of the functionality of the hybrid metric in rapid changes of environmental conditions, a digital 
twin of the operational environment and the tow truck was created. Additionally, to the real-world system, 
this implementation is used to rapidly adjust weather conditions that would be difficult to test in reality. 
Based on the defined environmental conditions, it was investigated whether the hybrid metric adapts the 
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navigation of the system according to the defined criteria. Figure 3 presents the results of a representative 
test run. It can be seen that even with sudden weather changes, adjustments to the path are made according 
to the fastest route. 

 
Figure 3: Exemplary visualisation for one evaluation case of the hybrid metric 

For an evaluation of the algorithm's runtime in complex route networks, an extensive industrial site with 
diverse indoor and outdoor areas was digitized and stored in the form of an .osm dataset. On this dataset, 
different algorithms for randomly generated start and destination points were investigated with respect to 
their runtime. The proposed heuristic captured the fastest route in every case, while the classical heuristic 
for an A* algorithm almost exclusively found the shortest route between the two points. The run time of the 
proposed heuristic is comparable to the application of the classical A* algorithm and scales similar to the 
values presented in [15]. 

The robustness of the proposed algorithm was tested during the complete evaluation phase of the research 
project E|SynchroBot, which results are openly available over the website of the institute FAPS. During the 
evaluation time, no limitation of the available time of service could be measured. 

6. Summary and outlook 

In this paper, a hybrid metric for the consideration of dynamic environmental influences on the optimal 
navigation of autonomous transport vehicles is presented. By considering the specific influences as well as 
the physical properties of driverless transport entities, the problem of the fastest route of a mixed indoor and 
outdoor navigation can be solved. The proposed metric is implemented exemplarily on a driverless tow truck 
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showcasing a demonstrative derivation of parameters. In the context of real industrial application scenarios, 
the qualitative function of the metric could be shown. 

In perspective, the use of such a metric allows the autonomous and dynamic navigation of different transport 
vehicles in extensive areas of application with changing indoor and outdoor areas. A centralized acquisition 
of environmental data ensures that each vehicle has a corresponding knowledge base for the assessment of 
external weather influences. Together with the inherent information coding of .osm data, a fast and efficient 
navigation in the mixed indoor and outdoor logistics context can be achieved. 

In perspective, the presented methodologies can be transferred in a variety of use cases. For example, a 
hybrid consideration of public transport with other means of transport, such as e-scooters or bicycles, would 
be possible without significant modifications. 

As an outlook of the presented work, a further development of the presented heuristic should certainly be 
mentioned. Due to the monotonicity requirement, a significant underestimation of the actual (time) cost is 
performed in the current notation. Because this underestimation is applied equally to all nodes, the influences 
on the order of expansion cancel each other out. However, so far, the result is not suitable for an operational 
estimation of the remaining transport time. Here, an alternative approach, which makes a real estimate, would 
be the next step of a fully useful implementation. 
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