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Motivation

Accuracy, integrity and availability requirements are very stringent in urban navigation and autonomous driving. The
GNSS sensor is the only one that provides self-localisation in a global coordinate system.

Challenge: NLOS and multipath signal reception in ur-
ban areas.

I To meet high accuracy requirements, these large signal
distortions has to be known and corrected.

I Ray tracing approaches are real-time capable but re-
quire high computation load (O’Connor et al., 2021).

KOMET vision: Correction of GNSS multipath effects
for reliable autonomous localisation of highly automated
vehicles in metropolitan areas.

NLOS

Multipath

Fig. 1:: Erroneous GNSS signal reception in urban environments.

Antenna Calibration

I Group Delay Variation (GDV) and Phase Center Varia-
tions (PCV) to correct for antenna effects.

I Installations on car roofs affect the antenna near field.

I Accurate multipath error determination requires elimi-
nation of these effects.

Needs: Antenna calibration including the test vehicle.
(a) (b)

Fig. 2:: Calibration setup on a robot (a) and on the moving platform (b).
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Fig. 3:: GDV and PCV pattern of the Tallysman TW7972 antenna: calibrated on a robot ((a) and (b)) with 0◦ is geographical north and on the moving platform ((c) and (d)) with 0◦ is driving direction.
Note, that the colour-axes are different for visualisation purposes.

Ray Tracing Using 3D Building Model

(a) (b)

Fig. 4:: 3D Visualisation of ray tracing computation for an exemplary situation in the city of Hannover (a) and 360◦× 90◦

simulation results for a specific location visualised in a skyplot (b).

I 3D Mapping-Aided GNSS is a common
method to mitigate and correct GNSS er-
rors in urban areas (Ruwisch and Schön,
2022).

I Characterisation of error magnitude depen-
dent on user location and satellite position.

I Determination of NLOS and multipath sig-
nal reception areas.

Reference Trajectory

I Accurate reference trajectory for precise
range residuals.

I Accurate positioning system with redun-
dant RTK systems, fibre-optical ADMA-
IMU, 360◦ LiDAR sensor and additional
precise orthophotos.

I Ensuring precise and accurate trajectories,
each location, all times.

I Validation by tightly coupled IMU/GNSS
post-processing with ring-laser IMU/INS.

(a) (b)

Fig. 5:: Multi-sensor system platform for the development of high-precision reference trajectories with dedicates sensors on
roof top (a) and inside the car (b) for the drives in Hannover city.
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Fig. 6:: General database setup diagram (a) and detailed architecture description (b) with defined input and output values.

Vehicle domain
I Data-logging: GNSS raw measurements,

reference trajectory, metadata.

I Data-buffer: Storage of logged data for
further processing in various files.

I Process mapped data products for im-
proved GNSS-based positioning.

Back-end domain
I Time-sync. GNSS observations, location data, meta-data and de-

rived raw-data based on post-processing.

I Crowd-sourced raw-data stored in a specific format serves as back-
bone for generation of data products.

I Mapped raw-data is processed in order to derive aggregated data
products represented in a multi-dimensional map.

Conclusions and Future Work

I Development of a work flow to precisely determine GNSS NLOS and multipath errors.

I Intelligent database architecture to aggregate observations, antenna locations and to derive data products.

I Collected raw-data will be used for derivation of NLOS and multipath correction data for improved urban navigation.
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