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Abstract
The computation of correlation functions in models of statistical mechanics is the key
to comparing theoretical results with actual measurements. In the context of integrable
lattice models there exists a rich literature on correlators in vertex models and related
quantum-spin chains. Less is known for integrable face models and their related anyon
chains.
Therefore, we define generalised transfer matrices allowing for a solution of the

‘inverse problem’, i.e. we express local operators by means of objects from the Yang-
Baxter algebra. This motivates the study of reduced density matrices which contain
the information of all correlation functions. Instead of directly calculating them, we
show that they fulfil a set of functional equations. We use these equations to study
density matrices in (R)SOS models and their related anyon chains. In particular, we
find integral representations for the two and three-point functions of the r = 4 RSOS
model and calculate those quantities for the r = 5 model in the thermodynamic limit. In
addition we observe a factorisation of the three-point functions into two-point functions
and propose an efficient algorithm to factorise reduced density matrices for generic
models.

In the last section we study density matrices for the SO(5)2 face models. We examine
the structure of the two-site reduced density matrices and simplify them for certain
topological sectors. Since there exist different inequivalent sets of Boltzmann weights,
the latter is done for each choice leading to sets of discrete functional equations.

Keywords: correlation functions, face models, anyons, density matrices, functional
equations
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Zusammenfassung
Die Berechnung von Korrelationsfunktionen für Modelle aus der statistischen Mechanik
ist der Schlüssel zum Vergleich theoretischer Resultate und echter Messungen. Im Kontext
integrabler Gittermodelle existieren zahlreiche Arbeiten zu Korrelationsfunktionen für
Vertex-Modelle sowie für die mit ihnen verwandten Quantenspinketten. Weniger ist
bekannt für integrable Face-Modelle und die zugehörigen Anyonketten.
Deshalb definieren wir verallgemeinerte Transfermatrizen, die eine Lösung des „in-

versen Problems“ erlauben, d.h. wir drücken lokale Operatoren durch Objekte aus der
Yang-Baxter Algebra aus. Dies motiviert das Studium reduzierter Dichtematrizen, welche
die vollständige Information über alle Korrelationsfunktionen beinhalten. Anstatt diese
direkt zu berechnen, zeigen wir, dass sie einen Satz von Funktionalgleichungen erfüllen,
welche genutzt werden können, um die Dichtematrizen von (R)SOS-Modellen sowie den
zugehörigen Anyonketten zu studieren. Insbesondere finden wir Integralausdrücke für die
Zwei- und Dreipunktfunktionen des r = 4 RSOS-Modells und berechnen diese Größen
für das r = 5 Modell im thermodynamischen Limes. Außerdem beobachten wir eine
Faktorisierung der Dreipunktfunktionen in Zweipunktfunktionen und schlagen einen
effizienten Algorithmus zur Faktorisierung reduzierter Dichtematrizen für generische
Modelle vor.

Im letzten Abschnitt untersuchen wir Dichtematrizen für SO(5)2-Face-Modelle. Wir
untersuchen die Struktur der zweiplatz-reduzierten Dichtematrizen und vereinfachen
diese für bestimmte topologische Sektoren. Da es verschiedene inäquivalente Boltzmann-
Gewichte gibt, wird letzteres for jede mögliche Wahl getan und die jeweiligen Sätze
diskreter Funktionalgleichungen hergeleitet.

Schlagworte: Korrelationsfunktionen, Face-Modelle, Anyonen, Dichtematrizen, Funktio-
nalgleichungen
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Introduction

To understand the behaviour of atoms and molecules, we need to describe them quantum
mechanically. For very simple systems like the harmonic oscillator or two-body systems
like the hydrogen atom an exact solution of the Schrödinger equation is possible.
However, as we increase the number of particles and consider realistic interactions, an
exact solution is practically impossible in almost all cases and methods from statistical
physics and numerics must be applied.

Alternatively, one might try to search for models which do have the property of being
exactly solvable but only roughly resemble the considered physical system. The first and
most famous example is the Heisenberg model developed by Werner Heisenberg [1] and
Paul Dirac [2], which was used to describe ferromagnetism of solids. Later, Hans Bethe
found the exact solution for this one-dimensional spin-1/2 chain (nowadays also known
as the XXX model) by developing the coordinate Bethe ansatz [3].

In the following years more and more exactly solvable (also called integrable) models
have been discovered. One-dimensional quantum (spin) chains were realised via transfer
matrices of two-dimensional classical lattice models [4]. More advanced techniques to
solve the spectral problem for these models were developed, such as the algebraic Bethe
ansatz. Besides, new classes of integrable models have been found for example the
so-called interaction-round-a-face models (IRF or, in short, face models).

Face models were introduced by Baxter in a series of papers [5–7] as an auxiliary tool
for the solution of the eight-vertex model. Within this series the integrability of this
new class of models was established by a face version of the Yang-Baxter equation.

Meanwhile, many more integrable face models have attracted renewed attention due
to their connection to anyon models. All known elementary particles in our three-
dimensional world can be classified as bosons or fermions. The wave function of bosons
remains unchanged whenever two identical particles are exchanged while a fermionic
wave function picks up a minus sign. In 1977 Leinaas and Myrheim realised that the
restriction to bosons and fermions is a consequence of the world being three-dimensional
[8]. Furthermore, in two dimensions particles with more complicated exchange statistics
can exist. They were named anyons by Wilczek [9].
Although our world is not two-dimensional, it is possible to manufacture effectively

two-dimensional lattice systems. Consider e.g. a setup where electrons are confined in a
two-dimensional plane with a strong, perpendicular magnetic field. For low temperatures
the resistivity of this system has been measured by Klitzing as a function of the magnetic
field showing plateaus with values 2π~

e2ν where ν is an integer called the filling-factor [10].
This behaviour is called the quantum-Hall-effect. For samples with less disorder also
fractional values of ν appear [11]; this is called the fractional quantum-Hall-effect. A



theoretical explanation of the plateaus in the fractional case was given by Laughlin [12]
who introduced quasi-particles with anyonic exchange statistics. Hence, anyons can be
realised as collective excitations in two-dimensional electronic systems. The interest in
anyons has recently risen due to their potential use in topological quantum computing
[13].
There exists a correspondence between some anyon models and (integrable) face

models. Fibonacci (or more general su(2)k) anyons have been mapped to RSOS face
models [14] and it was realised that this face-anyon correspondence can be extended to
further models [15, 16]. Hence, the computation of correlation functions in face models
gives valuable insights into anyonic systems.
Exact solutions of integrable lattice models using Bethe ansatz methods allow for a

calculation of their spectrum, even in the thermodynamic limit, and unveil properties of
low lying excitations. However, to compare theoretical results with possible realisations
in laboratories, correlations functions need to be studied. Calculating them is much
harder within this framework.

Exact expressions for correlation functions are only known for a small set of models,
e.g. for the spin-1/2 Heisenberg model and generalisations thereof. In this case advanced
mathematical tools such as the representation theory of quantum algebras, functional
equations or the algebraic Bethe ansatz were used [17–21].

Examinations of inhomogeneous generalisations of the antiferromagnetic Heisenberg
chain showed that the N -point correlation functions of the ground state can be ob-
tained by solutions of the q-Knizhnik-Zamolodchikov (qKZ) equations. Furthermore,
in Refs. [22–24] it was shown that N -point functions can be completely expressed in
terms of two-point functions (the physical part) and a so-called algebraic part which is
independent of the model parameters.
Although the approach via qKZ equations is limited to the thermodynamic limit, it

was soon shown that the factorisation property is also true for finite lattice sizes. For
instance, in [25, 26] the three-site reduced density matrices of the isotropic Heisenberg
chain were expressed in terms of two-point functions.
This surprising property was established for further models, e.g. the XXZ model in

an external magnetic field [27–29] where it was shown to hold for arbitrary correlation
functions. Here, a hidden model-specific symmetry (the ‘fermionic basis’) was used,
which makes an application for models without this symmetry challenging.

An alternative way to prove the factorisation of correlation functions has been
proposed in [30] where the reduced density matrices were shown to fulfil discrete
functional equations. These equations together with the known asymptotics [31] uniquely
determine the density matrices. Realising that the factorised form of the density matrices
indeed solves the functional equations, the factorisation property was proven. Despite
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Introduction

being elegant, this proof is not constructive.
Reduced density matrices have also been studied in the context of many-electron

systems. In 1959 Charles Coulsen conjectured that information about many-particle sys-
tems could be gained from the two-particle reduced density matrices due to interactions
between electrons being dominated by two-particle terms [32]. Later, it was realised
that, in fact, the spectrum of an N -electron system can be written as a functional of
the two-particle density matrices [32, 33]. This resembles very much the factorisation
properties of reduced density matrices of face and vertex models. In particular, we
will show that the energy of the restricted solid-on-solid models can be related to the
two-site reduced density matrices.

This thesis aims to develop new functional techniques and give insights into correlation
functions in integrable face models. We use the results obtained for integrable face
models to find explicit expressions for correlation functions in a one-dimensional chain
of Fibonacci anyons.
The functional equations which are derived in this thesis only rely on physical

properties of the Boltzmann weights. Hence, they are widely applicable and we do not
need to restrict ourselves to face models of SOS type and are able to apply them to the
non-Abelian S0(5)2 face models. They are particularly interesting because they are in
general not of Temperley-Lieb type and might help to answer the question whether the
factorisation property of correlation functions is a general consequence of integrability
or rather a special feature of Heisenberg models and their face analogs.

Thesis outline

The thesis is divided into two parts. Part I. gives a rough overview of the classes of
models, mathematical techniques and objects which are needed to understand their
application in Part II.
In Section I.1 we give a brief introduction to integrable lattice models with a focus

on face models. Besides, we discuss their Hamiltonian limits relating them to one-
dimensional quantum systems. For face models these quantum-chains often display
anyonic behaviour. Hence, we discuss anyon models in Section I.2.
Correlation functions are expectation values of local operators whereas the objects

of the Yang-Baxter algebra, e.g. transfer matrices, act on all lattice sites. To use
integrability techniques in the context of correlation functions we show how to solve the
‘inverse problem’ for generic face models in Section I.3.

Part II. is dedicated to an application of the results to various face and anyon models.
The main focus is on studies of solid-on-solid models in Section II.1. To be specific, we
were able to obtain explicit results for the two- and three-sites reduced density matrices
of the CSOS model in a particularly simple reference state and for the ferromagnetic

3



ground states of the RSOS models with r = 4 and r = 5. The latter two are also studied
in the thermodynamic limit where an explicit solution of the functional equations is
possible. We also provide an algorithm to factorise N -point functions into sums of
two-point functions similar to the results obtained for related vertex models.

In the final Section II.2 we generalise the results to the SO(5)2 face model. There exist
inequivalent solutions of the Yang-Baxter equation leading to different models. Here,
we establish the unitarity and generalised crossing-relations for all of them and adapt
the functional equations to this case. Having characterised the two-site density matrix
by a minimal number of independent functions leads to a set of functional equations.
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Part I

Preliminaries





1 Face models and their Hamiltonian limits

The notion of integrability is a well defined concept in classical mechanics. A Hamiltonian
system with a 2n-dimensional phase space M is called (completely) integrable, if there
exist n independent conserved quantities Ik with k ∈ {1, . . . , n} which are in involution,
i.e. their Poisson brackets vanish. Furthermore, one of the conserved quantities has to
be the Hamiltonian of the system. Due to Liouville’s theorem a completely integrable
system can always be solved by quadratures and is thus often called solvable. The
classical inverse scattering method, a systematic approach to find and solve (classical)
integrable, systems has been developed by Gardner, Green, Kruskal and Miura in 1967
[34].

A direct translation of this definition to quantum mechanics is difficult. For instance,
the Hamiltonians of most quantum systems are Hermitian and yield a complete set of
commuting projection operators by the spectral theorem. A precise and widely accepted
definition of quantum integrability is still lacking. We will not focus too much on
this problem which is discussed in more detail in [35]. For lattice models and related
quantum spin chains we will follow Faddeev [36], Izergin and Korepin [37] and call
two-dimensional lattice models and their equivalent quantum chains integrable if they
can be solved by means of the quantum inverse scattering method.
In this section we will review integrable lattice models. Starting with a quick

recapitulation of basic concepts we will focus on interaction round a face models. The
following subsections discuss their Hamiltonian limit and apply it to an example system.

1.1 Integrable lattice models

In this section we will focus on two-dimensional classical integrable lattice models and
restrict ourselves to square lattices. The most important types of models can be roughly
put into three categories: spin models, vertex models and face models. Spin models
consist of classical spins sitting on the lattice sites, the most prominent example being
the Ising model. Vertex models are similar except for the dynamical variables being
assigned to the links between the lattice sites. Face models are similar to spin models,
however, here all four ‘spins’ (also called heights) around an elementary cell of the
lattice interact.

Thermodynamic properties of all mentioned types of models can be computed within
the transfer matrix formalism. The key idea is to express the partition function of the
lattice model through the trace of a (possibly very large) matrix t:

Z = tr tN . (I.1)



1 Face models and their Hamiltonian limits

Here, N denotes the number of rows in the lattice. Moreover, periodic boundary
conditions in vertical and horizontal direction are imposed.

In the thermodynamic limit N,M →∞ it is therefore sufficient to compute the largest
eigenvalue of t which dominates the partition function. We will study this construction
in more detail for face models.

As stated above, face models are classical statistical models defined on a square
lattice where to each site ` a height a` is assigned. The heights take values from a
(usually discrete) set S possibly subject to adjacency rules constraining their values on
neighbouring vertices. An elegant way to encode these rules is via an adjacency graph
with nodes a ∈ S and adjacency matrix

Aab ≡

1, spins a and b are allowed to be adjacent

0, spins a and b are not allowed to be adjacent
. (I.2)

The energy of the face model for a given height configuration is determined by local
Boltzmann weights depending on the heights around an elementary face [38]. These
weights are allowed to depend on a (spectral) parameter u ∈ C. We use a graphical
notation for them:

W

(
d c

a b

∣∣∣∣∣u
)

=
d

a

c

b

u = a

d

c

b

u . (I.3)

We call a face model integrable if the Boltzmann weights fulfil the (face) Yang-Baxter
equation (YBE):

∑
g∈S

W

(
f g

a b

∣∣∣∣∣u− v
)
W

(
f e

g d

∣∣∣∣∣ v
)
W

(
g d

b c

∣∣∣∣∣u
)

=
∑
g∈S

W

(
f e

a g

∣∣∣∣∣u
)
W

(
a g

b c

∣∣∣∣∣ v
)
W

(
e d

g c

∣∣∣∣∣u− v
)
.

(I.4)

In the graphical notation this corresponds to

a

f f e

d

cbb

g
u− v

v

u
= a

f e e

d

ccb

g

u

v
u− v , (I.5)
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1.1 Integrable lattice models

where heights on nodes with a solid circle are summed over and heights connected by
dotted lines are taken to be equal. We also assume the weights to satisfy unitarity
conditions

∑
e∈S

W

(
d e

a b

∣∣∣∣∣u
)
W

(
d c

e b

∣∣∣∣∣−u
)

= a

d d

c

b

e

b

u −u = ρ(u)ρ(−u)δac, (I.6)

and crossing relations of the form

W

(
d c

a b

∣∣∣∣∣u
)

= W

(
c b

d a

∣∣∣∣∣λ− u
)
, (I.7)

where λ is the so-called crossing parameter and ρ is a function. Both depend on the
considered model.

Lastly, an initial condition for the Boltzmann weights can be expressed as:

W

(
d c

a b

∣∣∣∣∣ 0
)

=
d

a

c

b

0 = δa,c . (I.8)

Let us now show how to find the partition function of a face model using the transfer
matrix method. To be specific we consider a lattice of L faces in horizontal and N in
vertical direction. To an allowed height configuration along a row we associate a state

|a〉 = |a0 a1 . . . aL〉 with Aa`,a`+1 = 1 for ` = 0, . . . , L− 1 (I.9)

and define HL as the span of all those states. Note that the adjacency condition couples
every spin with its neighbours. Consequently, HL can in general not be decomposed
into tensor products of local spaces. Here, one might already see parallels to the fusion
path states of anyonic models which will be explained later.

A subspace of HL is spanned by states with periodic boundary conditions. It is
denoted by HLper and can be visualised as closed walks of length L on the adjacency
graph. It is known from graph theory that the number of walks of length L from a
vertex a to a vertex b on a graph with adjacency matrix A is given by

(
AL
)
ab
. Hence,

the dimension of HLper is
dimHLper = trAL . (I.10)

In many cases one observes that for L� 1 the dimension of the state space behaves
as dim(HLper) ∼ αL where α is not an integer number, further indicating an anyonic

9



1 Face models and their Hamiltonian limits

character of the models. For the rest of this section we will work with periodic boundary
conditions in both vertical and horizontal direction (so effectively bending the lattice
around a torus). Thermodynamic quantities can be computed by means of the transfer
matrix method. In our context the (inhomogeneous) transfer matrix t(u) : HLper → HLper

is defined by its matrix elements

〈a|t(u)|b〉 = u− u1 u− uL. . .

a0

b0

a1

b1

aL−1

bL−1

a0 = aL

b0 = bL

. (I.11)

The Yang-Baxter equation and unitarity of the weights for integrable face models
imply [t(u), t(v)] = 0 for an arbitrary set of inhomogeneities {ui}Li=1:

〈a|t(u)t(v)|b〉 =
u− u1 u− uL

v − u1 v − uL

a0 a1 aL−1a0 = aL

b0 b1 bL−1 b0 = bL

= 1
ρ(u− v)ρ(v − u) ×

a0 a1 aL−1a0 = aL

b0 b1 bL−1 b0 = bL

u− v v − u
u− u1 u− uL

v − u1 v − uL

= 1
ρ(u− v)ρ(v − u) ×

a0 a1 aL−1a0 = aL

b0 b1 bL−1 b0 = bL

u− v v − u
v − u1 v − uL

u− u1 u− uL

10



1.1 Integrable lattice models

= 1
ρ(u− v)ρ(v − u) ×

v − u1 v − uL

u− u1 u− uL

a0 a1 aL−1a0 = aL

b0 b1 bL−1 b0 = bL

v − u u− v

=
v − u1 v − uL

u− u1 u− uL

a0 a1 aL−1a0 = aL

b0 b1 bL−1 b0 = bL

= 〈a|t(v)t(u)|b〉

In the first step, unitarity has been used to introduce an identity. Then the Yang-Baxter
equation is employed repeatedly exchanging the order of the spectral parameters. Due
to periodic boundary conditions the weight on the left can be moved to the right
where unitarity is used again and both weights cancel each other. Thus, we obtain
t(u)t(v) = t(v)t(u) as desired. Note that an essential ingredient for the introduction
of inhomogeneities is that the Yang-Baxter equation is of difference form, i.e. only the
differences of the spectral parameters enter. This is the case for all models considered
in this thesis. We therefore do not need to discuss the general case

The partition function can be computed via Z = tr
{
t(u)N

}
so it suffices to diagonalise

the transfer matrix. Due to integrability the eigenvectors are independent of the spectral
parameter. The inhomogeneities may physically be interpreted as a variation of the
interaction in the horizontal direction. They are introduced mainly as an auxiliary tool
for computations where only the homogeneous limit ui → 0 is ultimately of interest. If
all ui = 0 we say the model is homogeneous.

Hence, all thermodynamic properties of classical face models can be obtained from
the spectrum of the transfer matrix. Let us therefore study a widely applicable method
to solve the spectral problem based on functional relations. Similar methods will be
frequently used in later chapters so it is worth to spend some time on it.

11



1 Face models and their Hamiltonian limits

First note, that unitarity (I.6) and crossing symmetry (I.7) can be combined to yield:

a

c

a

b

d

e

u

u+ λ

= ρ(u)ρ(−u) δbe . (I.12)

Now consider the product t(ui) · t(ui + λ) where ui is any of the inhomogeneities. By
means of (I.12) and the initial condition it is evident (see [39] for more details) that

t(ui) · t(ui + λ) = 1 ·
L∏

i,k=1
ρ(ui − uk) ρ(uk − ui) for every i ∈ {1, 2, . . . , L} (I.13)

and hence the eigenvalues Λ(u) fulfil a discrete set of exact inversion relations:

Λ(ui)Λ(ui + λ) =
L∏
k=1

ρ(ui − uk) ρ(uk − ui) for every i ∈ {1, 2, . . . , L} . (I.14)

Repeatedly using the unitary condition one finds

L∏
i=1

t(ui) =
L∏
i=1

t(ui + λ) = 1

L∏
k,l=1

ρ(uk − ul) ρ(ul − uk) (I.15)

leading to only L− 1 of the inversion relations being independent. Supplemented with
analytic properties of the eigenvalues the inversion relations (and generalisations thereof)
have been used to solve the spectral problem of various models (see e.g. [39–41]. We
will show in Section I.1.4 how this is done for a concrete example. We will also need the
notion of local operators. An operator O is called an n-point operator, if there exist
natural numbers n1, n2 with n2 − n1 + 1 = n such that

〈a|O|b〉 =
(
n1−1∏
i=0

δaibi

)
Oan1 ...an2
bn1 ...bn2

 L∏
i=n2

δaibi

 . (I.16)

The simplest local operators are elementary operators (Eαβ )i : HL → HL with matrix

12



1.1 Integrable lattice models

elements

〈a|
(
Eαβ

)
i
|b〉 = δai,α δbi,β

∏
j 6=i

δajbj

=
ai−1 ai+1

α = ai

β = bi

,
(I.17)

which change only the height ai, but also depend on its neighbours due to the adjacency
condition. They generalise to elementary multi-point operators

〈a|Eαn1 ...αn2
βn1 ...βn2

|b〉 =
n2∏

k=n1

δak,αk δbk,βk
∏

j /∈{n1...n2}
δajbj

=
an1−1 an2+1

αn1 = an1

βn1 = bn1

αn2 = an2

βn2 = bn2

· · ·

· · ·

.

(I.18)

Another important example are the so-called Yang-Baxter operators, defined as

〈a|Wi(u)|b〉 := W

(
ai−1 bi

ai ai+1

∣∣∣∣∣u
)∏
j 6=i

δajbj . (I.19)

It is easy to see that the Yang-Baxter equation (I.4) can be expressed in terms of
Yang-Baxter operators as

Wi(u)Wi+1(u+ v)Wi(v) = Wi+1(v)Wi(u+ v)Wi+1(u) , (I.20)

where u and v are arbitrary spectral parameters. However, we are not only interested in
classical lattice models but also in their Hamiltonian (quantum) limits. While integrable
vertex models are often related to quantum spin chains (e.g. the 6-vertex model yields
the Heisenberg spin chain), many face models lead to anyonic models.

13



1 Face models and their Hamiltonian limits

1.2 Hamiltonian limits

Taking HLper as the Hilbert space of a quantum system, we may think of t(u) as a
generating function for integrals of motion:

t(u) =
∑
k

Hku
k (I.21)

with [Hk, Hl] = 0. The transfer matrix is a non-local operator acting on all lattice sites
simultaneously. For this reason, none of the operators Hk is a meaningful candidate
for a short-range Hamiltonian. If, however, the Boltzmann weights of a homogeneous
model have the property that for some value u = us

a

c

b

d

us = δb,c , (I.22)

we see that t(us) is just a shift operator. After a possible substitution u→ u− us we
may assume us = 0, i.e.

〈a|t(0)|b〉 =
L−1∏
i=0

δai+1bi . (I.23)

Note that this is a lattice version of the translation operator. Thus, we can define a
momentum operator P by

exp (−iP ) = t(0) . (I.24)

Likewise t(0)−1 shifts in the inverse direction and by means of crossing symmetry we
have t(0)−1 = t(λ). As a direct consequence we see that the logarithmic derivative of
t(u) at u = 0 is a local operator

〈a|t−1(0)t′(0)|b〉 =
∑
i

. . . . . .

W ′(0)

ai−1 ai ai+1

bi−1 bi bi+1

=
∑
i

∏
j 6=i

δajbjW
′
(
ai−1 ai

bi bi+1

∣∣∣∣∣ 0
)
.

(I.25)
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1.3 The Temperley-Lieb algebra

We can rewrite it as

H =
L−1∑
i=0

h(i−1)i(i+1) (I.26)

with the local Hamiltonian given by

〈a|h(i−1)i(i+1) |b〉 =
∏
j 6=i

δajbjW
′
(
ai−1 ai

bi bi+1

∣∣∣∣∣ 0
)
. (I.27)

Note that it depends on three consecutive heights whilst changing only one of them.
Performing this Hamiltonian limit, we can assign a quantum system with local

Hamiltonian to each integrable face model. We will see that these models often
correspond to non-Abelian anyon models which will be defined in the next section.
This correspondence between (some) anyon models and integrable face models has been
frequently used (see for example [14–16]).
Using higher order derivatives of log(t(u)) one can construct local operators acting

on more than two sites.

1.3 The Temperley-Lieb algebra

Before we start examining concrete examples of IRF models, let us study the underlying
algebraic structures. Many models can be constructed from representations of the so-
called Temperley-Lieb algebra (or its relatives). We will not present detailed calculations
but rather give a short overview.

The Temperley-Lieb algebra TLn(β) is an algebra (over C) generated by the elements
{1, e1, . . . , en−1} subject to the relations

e2
i =

√
βei

eiei±1ei = ei

eiej = ejei for |i− j| ≥ 2

(I.28)

where β is a free parameter.
The Temperley-Lieb algebra can be related to the Hecke algebra Hn(q). Its generators

gi (1 ≤ i ≤ n− 1) satisfy the relations

gigi+1gi = gi+1gigi+1 ,

gigj = gjgi for |i− j| ≥ 2 .

g2
i = (q2 − 1)gi + q2 .

(I.29)

Note the similarity between (I.29) and the defining relation of the Yang-Baxter operators
(I.20).
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1 Face models and their Hamiltonian limits

An explicit map π from the Hecke to the Temperley-Lieb algebra is given by

π : Hn(q)→ TLn(β) , gi 7→ qei − 1 (I.30)

where
√
β = q+ q−1. Taking the limit q → 1 one finds that Hn(q)→ Sn where Sn is the

symmetric group of order n. Thus, Hn(q) may be seen as a deformation or quantisation
of SN .
Now, imagine we had found a representation of TLn(β) on the Hilbert space of a

face model. We shall simply write ei for the image of the generators under such a
representation. Regarding (I.30) we make the ansatz

Wi(u) = 1 + fβ(u)ei . (I.31)

We introduced a spectral parameter u via the function fβ (β is the same as in the
defining relations of TLn(β)) which is usually called a Baxterisation.

Boltzmann-weights fulfilling the Yang-Baxter equation can now be found by plugging
the ansatz into (I.20) which yields

fβ(u) + fβ(v) +
√
βfβ(u)fβ(v) + fβ(u)fβ(v)fβ(u+ v) = fβ(u+ v) . (I.32)

One can verify that
fβ(u) = sin(u)

sin(λ− u) (I.33)

is a trigonometric solution for β = 4 cos2(λ).
This leads to a systematic way to find integrable face models: First, define the Hilbert

space of states by giving the adjacency conditions (I.2). Then find a representation of
the Temperley-Lieb algebra on it and use (I.31) and (I.33) to find Boltzmann weights.

There are indeed powerful methods to construct such representations which are based
on graph theory and towers of algebras. An explicit recipe can be found in [42]. It
is worth noting that the RSOS model, which is defined in the next section, can be
obtained in this way.

1.4 Example: The restricted solid-on-solid model

Let us pause with the general development of the theory and study an important
example. The restricted solid-on-solid (RSOS) model is a variant of Baxter’s 8-vertex
solid-on-solid model [38]. Historically introduced as an auxiliary model for the solution
of the 8-vertex model, solid-on-solid models and their relatives have recently attracted
much interest due to their relation to anyonic models [14, 43, 44].

The heights of the RSOS model belong to the set S = {1, 2, . . . , r− 1} where r ≥ 4 is

16



1.4 Example: The restricted solid-on-solid model

a natural number. The adjacency graph is the Dynkin diagram of the Lie algebra Ar−1:

. . .1 2 r − 2 r − 1
.

Adjacent heights must therefore differ by ±1 and lie between 1 and r− 1. These models
are particularly interesting because of their relations to conformal field theories (CFTs).
In 1984 it was shown [38, 45–47] that all unitary minimal conformal field theories with
central charge c < 1 are classified by their central charge

c = 1− 6
l(l + 1) with l = 3, 4, 5 . . . (I.34)

and conformal weights according to the Kac formula. Each of those models can be
obtained as the continuous limit of the critical RSOS model with r = l.

The weights of the critical model are trigonometric solutions of the YBE. Explicitly
they are given by:

W

(
a b

c d

∣∣∣∣∣u
)

= δad

√
gbgc
gagd

ρ(u+ λ)− δbcρ(u) (I.35)

with
ρ(u) = sin(u− λ)

sin(λ) , gx = sin(λx)
sin(λ) . (I.36)

They satisfy the unitarity relation (I.6) but crossing symmetry requires some care and
acquires additional (gauge) factors:

W

(
a b

c d

∣∣∣∣∣u
)

=
√
gb gc
ga gd

W

(
b d

a c

∣∣∣∣∣λ− u
)
. (I.37)

Let us demonstrate as a concrete example the application of the inversion equations
(I.14) to solve for the spectrum. First note that we can write the transfer matrix as

t(u) =
L/2∑

n=−L/2
t2n e

i2nu (I.38)

and consequently the eigenvalues are given by a finite Fourier series

Λ(u) =
L/2∑

n=−L/2
Λ2n e

i2nu . (I.39)

The leading Fourier coefficients can be computed from the asymptotic behaviour of t(u)
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1 Face models and their Hamiltonian limits

and are given by

Λ±L =
(

L∏
`=1

exp(∓i(u` + λ/2))
)

2 cos((2j + 1)λ)
(2 sinλ)L , j ∈ {0, 1

2 , 1, . . . ,
r − 2

2 } . (I.40)

as shown in [48].

This enables a spectral decomposition of the RSOS model into topological sectors
with ‘quantum dimension’

dq(j) = sin(π(2j + 1)/r)
sin(π/r) , (I.41)

labelled by the quantum number j. The emergence of this topological quantum number
can be traced back to symmetries of the anyon chains corresponding to the RSOS models
(see Eq. (I.54) where the generators of such topological symmetries are defined). The
inversion relations (I.14) become quadratic equations for the remaining L−1 coefficients.
However, this procedure is quite inefficient for large system sizes. For the periodic RSOS
model (and some related models) Bethe equations have been derived from the inversion
relations [39] which can be tackled with usual methods.

Although this functional approach gives the whole spectrum, it does not yield an
expression for the corresponding eigenstates. Besides, the algebraic Bethe ansatz
method is not suitable for most IRF models. The computation of correlation functions
〈φ0| O |φ0〉, where |φ0〉 is the ground state and O a local operator, is thus a complicated
task. We will develop new functional methods for the resolution of this problem which
circumvent the computation of the eigenstates. In particular, we will show how to
characterise and compute the correlation functions without explicit expressions for the
eigenstates.

Having, at least in principle, solved the spectral problem, we study the Hamiltonian
limit. Therefore, we first observe that

W ′
(
ai−1 ai

bi ai+1

∣∣∣∣∣ 0
)

= 1
sinλ W

(
ai−1 ai

bi ai+1

∣∣∣∣∣λ
)
− cot(λ)δbiai (I.42)

where W ′ is the derivative with respect to the spectral parameter u. We define the
operators ei to be

〈a|ei|b〉 =

∏
k 6=i

δakbk

 W

(
ai−1 ai

bi ai+1

∣∣∣∣∣λ
)
, (I.43)
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1.4 Example: The restricted solid-on-solid model

which explicitly read

〈a|ei|b〉 = δai−1ai+1

√
gaigbi

gai−1gai+1

∏
k 6=i

δakbk . (I.44)

It can be shown that they yield a representation of the Temperley-Lieb algebra.
Using Eqs. (I.25), (I.42) and (I.43) we can express the Hamiltonian as

HRSOS = t(0) · t′(0)−1 = 1
sinλ

∑
i

ei − L cot(λ) · 1 . (I.45)
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2 Anyon models

In classical mechanics the exchange of two identical particles does not change the state
of the system (i.e. the point in phase space). However, in quantum systems in three
spatial dimensions the exchange of two identical fermions leads to a sign change of the
wave functions. In two spatial dimensions the exchange of particles is described by the
braid group, which allows more complicated exchange statistics [8] and gives rise to
so-called anyons.
Anyons are characterised by their braiding relations. Specifically the interchange

of two Abelian anyons can lead to a phase factor eiθ in contrast to the restriction of
θ = 0 for bosons and θ = π fermions. For non-Abelian anyons the braiding relations are
extended to include unitary transformations on degenerate subspaces of many-particle
wave functions [9]. Hence, the braiding of non-Abelian anyons may also change the
anyon types.
Anyons appear e.g. as quasi particles in fractional quantum Hall states [12] and

have recently aroused huge interest due to their potential use in topological quantum
computing [13, 49].

In this section we will briefly describe the mathematical structures underlying anyonic
models. Afterwards, we discuss a simple but still powerfull non-Abelian anyon model –
the Fibonacci anyons. They describe the physics of the fractional quantum Hall effect
at filling factor ν = 5

2 [14].

2.1 Non-Abelian anyons

The modern mathematical language to describe anyonic theories uses modular tensor
categories [50, 51]. We will not go into too much detail with the definitions and therefore
only give a superficial description which suffices to understand all models discussed in
the thesis. For a more detailed review see for example [52].
An anyon model consists of a (finite) set C of anyon types (also called topological

charges). To be more precise: they are the objects of the tensor category C.
Those charges obey a commutative and associative fusion algebra

ψa ⊗ ψb =
⊕
c

N c
abψc (I.46)

where the fusion rules N c
ab are non-negative integers. They are non-zero if and only

if ψc is a possible outcome of a fusion process involving anyons of type ψa and ψb.
Associativity and commutativity lead to

N c
ab = N c

ba , (I.47)



2 Anyon models

ψa ⊗ (ψb ⊗ ψc) = (ψa ⊗ ψb)⊗ ψc ⇔
∑
f

Nd
afN

f
bc =

∑
e

N e
abN

d
ec. (I.48)

The last equivalence can be seen by employing (I.46) twice and comparing the coefficients
of each anyon type.

Note that the symbols ⊗ and ⊕ are in general not the tensor product and direct
sum but abstract structures of the tensor category. However, we will often deal with
tensor categories which stem from representations of some algebra and the fusion rules
correspond to the decomposition of the tensor product of two representations into
irreducible representations (irreps).

In any anyon model there exists at least one charge, the vacuum charge ψ1, which is
also called the trivial anyon. Fusion with the trivial anyon has no effect, i.e. N c

a1 = δac.
Every anyon type ψa ∈ C has a unique conjugate charge ψā which fulfils N1

ab = δbā. The
anyon ψā is therefore also called the antiparticle of a, since they annihilate each other
to the vacuum.

An anyon model is called non-Abelian if there exist (at least) two anyon types, say a
and b, such that ∑cN

c
ab > 1. If N c

ab is either 0 or 1 we call the model multiplicity free.
All models studied in this thesis will be of such type.

We use a graphical notation for the fusion of anyons where a vertex

b

a c

is allowed provided that N c
ab 6= 0. The diagram can be interpreted as the worldline of

anyons a and b which fuse and result in an anyon of type c. In this case time flows from
top left to bottom right.

Associativity of multiple fusion processes is governed by so-called F -moves, which
allow for a reordering:

a de

b c

=
∑
f

(
F abcd

)e
f a df

b c

. (I.49)

For a consistent physical model the F -Moves have to fulfil the pentagon equations.
They are consistency conditions for multiple fusion events and best understood in their
graphical forms.
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2.1 Non-Abelian anyons

u

x y z w

a
b

F azwu

u

x y z w

a c F xycu

u

x y z w

d
c

F xyzb

u

x y z w

e
b

F xewu

u

x y z w

e
d

F yzwd

Figure 1: The pentagon equations.

Demanding the diagram in Fig. 1 to commute results in equations for the matrix
elements of the F -moves:

(F xycu )da (F azwu )cb =
∑
e

(
F yzwd

)
ce (F xewu )db

(
F xyzb

)
ea . (I.50)

Note that this is a polynomial system of equations for the F -moves which is usually
hard to solve (see e.g. [51]). For most models the solution is only unique after some
gauge fixing. We will not provide more details here since for the models considered in
this thesis explicit expressions for the F -moves are known.

We will now discuss the physics of interacting anyons. Consider a chain of L anyons
of type ψa. For the moment we assume them to be at a distance from each other where
interactions are negligible. In that case the degenerate ground states are spanned by
fusion paths.
Starting with an auxiliary anyon ψa0 an orthogonal basis of fusion path states is

constructed by fusing ψa` and ψa into ψa`+1 resulting in

|a0 a1 . . . aL〉 with Na`+1
a`a = 1 for ` = 0 . . . L− 1 (I.51)

or, graphically,

. . .
a0 a1 aL

a a a

.

Here one can already see a connection with the previously defined face models. If
the set S of heights coincides with the topological charges and the fusion rules fulfil
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2 Anyon models

N
a`+1
a`a = Aa`a`+1 , we can identify fusion paths with basis states of the face model.
When the anyons come closer, nearest-neighbours will fuse and we characterise the

interaction by assigning different energies to the possible outcomes. For a mathematical
description of this process we build local projection operators acting on the fusion path
basis by means of the F -moves. They are given by

P
(aa→`)
i := ∑

ai−1,ai,a′i,ai+1

[(
F
ai−1aa
ai+1

)a′i
`

]∗ (
F
ai−1aa
ai+1

)ai
` | · · · ai−1a

′
iai+1 · · · 〉〈· · · ai−1aiai+1 · · · | .

(I.52)
Though depending on the sites i−1, i and i+1 they leave the first and the last invariant.
A straight forward generalisation allows to express local three anyon projection operators
as

〈a|P (aaa→`)
i |b〉 ≡

( ∏
k/∈{i,i+1}

δakbk

)∑
x

[(
F
bi−1aa
ai+1

)ai
x

(
F
bi−1xa
bi+2

)ai+1

`

]∗ (
F
bi−1xa
bi+2

)bi+1

`

(
F
bi−1aa
bi+1

)bi
x
.

(I.53)
Restricting ourselves to periodic boundary conditions the anyon model possesses

additional (topological) symmetries and the Hilbert space can be decomposed into
topological sectors. To measure them we insert an auxiliary anyon of type `, scatter it
through the ring and finally remove it [14]. Mathematically this process corresponds to
a product of F -moves:

〈a|Y`|b〉 =
L∏
i=1

(
F `aijbi+1

)bi
ai+1

. (I.54)

2.2 Example: Fibonacci anyons

The Fibonacci anyons are a mathematically simple example of a non-Abelian anyon
model, and yet at the same time they are just rich enough to allow for universal quantum
computation. Since they have been shown to arise from certain lattice models [14],
they are very relevant in the area of topological quantum computation. The convenient
combination of simplicity and universality in the Fibonacci anyon model is likely why
in most texts on the general topic it has become the standard example against which
new ideas are probed.
The tensor category Fib has only two objects, the identity anyon 1 and a second

anyon τ . The only non-trivial fusion rule is τ ⊗ τ = 1⊕ τ , from which we see that the
model is in fact non-Abelian. The F -moves of the Fibonacci anyons are quite simple,
with the only non-trivial move being

(F ττττ )ef =
(
φ−1 φ−1/2

φ−1/2 −1/φ

)
ef

, (I.55)
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where e, f ∈ {1, τ} and φ := 1
2(1 +

√
5) is the golden ratio. All other F -moves are 1 if

they are allowed by the fusion rules and 0 otherwise.
We will now focus on a chain of interacting τ anyons as described in Section I.2.1.

Because of P (ττ→1)
i + P

(ττ→τ)
i = 1 a general nearest-neighbour Hamiltonian is given by

H = J
L−1∑
i=0

P
(ττ→1)
i . (I.56)

The coupling constant J describes an interaction favouring fusion into 1 (J < 0) or τ
(J > 0) anyons. Note that the operators Xi := −φP (ττ→1)

i form a representation of
the Temperley-Lieb algebra, cf. (I.28), which is identical to the standard representation
associated with su(2)3.
The anyons of an su(2)3 theory can be labeled by generalised spins j = 0, 1

2 , 1,
3
2 .

An automorphism of the corresponding fusion algebra allows us to identify j = 0, 3
2

with the trivial (x = 1) and j = 1
2 , 1 with the τ -anyon of the Fibonacci chain. Starting

from fusion path states |x0x1 . . . xL〉 of Fibonacci anyons with xn ∈ {1, τ} we obtain
the Hilbert space of the r = 5 RSOS model defined in Section I1.4 by mapping

xn 7→ an ≡



1 for xn = 1, n odd

2 for xn = τ, n even

3 for xn = τ, n odd

4 for xn = 1, n even

. (I.57)

Note that this mapping gives only half of the basis states of the RSOS model, since an
will be even (odd) on the even (odd) sublattice. The other half is obtained by switching
odd and even in (I.57). This also provides a mapping of the anyon Hamiltonian to an
operator in the RSOS model. Similarly the projection operators Xi are mapped to the
local operators ei defined in (I.44). In particular, we find for the anyon Hamiltonian

H = J
∑
i

P
(ττ→1)
i 7→ J

φ

∑
i

ei . (I.58)
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3 Solving the Inverse Problem

Measurements of physical quantities are in the majority of cases related to correlation
functions. To compare mathematical models with actual experiments it is therefore
desirable to be able to compute them. Quite often this proves to be a hard task and
even for integrable models it is still a subject of current research.
On first sight this is no surprise: The Yang-Baxter algebra yields highly non-local

operators while correlations functions are expectation values of local operators. Hence,
the solution of the inverse problem was a big achievement.

3.1 Solution for the Heisenberg model

A solution of the quantum inverse problem for the XXZ model has been developed by
Kitanine, Maillet and Terras in 1999 [53] and was used to compute correlation functions
also in the thermodynamic limit [19]. We will quickly review the procedure and see the
difficulties that impede a direct generalisation to IRF models.

Let us first give a very brief introduction to the XXZ model: Recall that the (periodic)
spin-1/2 XXZ model can be constructed from the Uq(sl(2))-R-matrix. Defining b(u) :=

sinh(u)
sinh(u+η) and c(u) := sinh(η)

sinh(u+η) , it explicitly reads

R(u) =


1 0 0 0
0 b(u) c(u) 0
0 c(u) b(u) 0
0 0 0 1

 (I.59)

and acts on the tensor product of two spaces Va = C2 and Vb = C2. It yields a repre-
sentation of the Yang-Baxter algebra on

L⊗
i=1

Vi (where all Vi = C2) via the monodromy
matrix

Ta(u) = Ra1(u− u1) . . . RaL(u− uL) . (I.60)

The space Vq :=
L⊗
i=1

Vi is called the quantum space while Va is the auxiliary space.

Here, as usual, Rai(u− ui) is the action of R(u− ui) on Va and Vi. Since R(u) solves
the Yang-Baxter equation, the RTT -equation

Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u− v) (I.61)

holds and implies the commutativity of the transfer matrices t(u) = traTa(u):

[t(u), t(v)] = 0 . (I.62)
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The Hamiltonian of the periodic XXZ-spin-1/2 chain can then be constructed from the
logarithmic derivative of t(u).

As a matrix on Va the monodromy matrix Ta(u) takes the form

Ta(u) =
(
A(u) B(u)
C(u) D(u)

)
(I.63)

where the matrix elements are operators on Vq. Their commutation relations are inferred
from the RTT relation. This is the starting point for the algebraic Bethe ansatz solution.
Starting from a so-called pseudo-vacuum |0〉, excited states are constructed as

|λ1, . . . , λn〉 = B(λ1) . . . B(λn)|0〉 (I.64)

where the complex numbers λi are a solution to the Bethe equations. Such vectors are
sometimes also called on-shell Bethe vectors as opposed to vectors |λ1, . . . , λn〉 where
the parameters λi do not solve the Bethe equations which are then called off-shell. More
details on the algebraic Bethe ansatz and a derivation of the Bethe equations can be
found in [54].

On first sight the computation of correlation functions, i.e.

〈λ1, . . . , λn|O|λ1, . . . , λn〉 (I.65)

seems hopeless for a local operator O since it is sandwiched between states constructed
by means of the non-local B operators. However, this becomes manageable by expressing
local operators through elements of the Yang-Baxter algebra.

For the XXZ model local spin-1/2 operators acting on V` can be expressed (see [53]
for a proof) as:

σ−` =
`−1∏
i=1

(A+D) (ui) ·B(u`) ·
L∏

i=`+1
(A+D) (ui) (I.66)

σ+
` =

`−1∏
i=1

(A+D) (ui) · C(u`) ·
L∏

i=`+1
(A+D) (ui) (I.67)

σz` =
`−1∏
i=1

(A+D) (ui) · (A−D)(u`) ·
L∏

i=`+1
(A+D) (ui) . (I.68)

Now any local operator can be reconstructed in terms of elements of the monodromy
matrix and transfer matrix. Hence, integrability techniques can be applied. This method
has been extended to a bigger class of integrable models in [55].
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3.2 Solution for the CSOS model

For instance we obtain

(Eαβ )i =
i−1∏
l=1

t(ul)T βα(ui)
i∏
l=1

t(ui)−1 .

However, the situation is more complicated in case of IRF models which are not
constructed from a monodromy matrix and lack an auxiliary space. We will first show
how this problem has been approached for a ‘hybrid’ model – the cyclic solid-on-solid
model. It can be formulated as a solution to the dynamical Yang-Baxter equation and
a solution of the inverse problem has recently been given in [56].

3.2 Solution for the CSOS model

Let us discuss in more detail the first solution of the quantum inverse problem for an
IRF model. The heights of the cyclic solid-on-solid (CSOS) model are taken from the
set S = {0, 1, 2, . . . , r − 1} and the adjacency graph is given by

. . .1 2 r − 2 r − 1

0 .

It corresponds to the Dynkin diagram of the affine Lie algebra Ãr−1. The origin of the
CSOS model dates back until 1988 [57], when it was developed by Pearce and Seaton
as a new variant of the unrestricted SOS model. Unlike the already discussed RSOS
model it admits a solution by algebraic Bethe ansatz methods. This was achieved by an
embedding of the Boltzmann weights into the elements of a dynamical R-matrix.

Felder’s work on elliptic quantum groups [58] enabled an application of methods that
result into an Algebraic Bethe ansatz solution of the CSOS model [59, 60].

Given an R-matrix R(u, s) ∈ End(V1 ⊗ V2) which solves the dynamical Yang-Baxter
equation (DYBE)

R1,2(u12, s+ ηh3)R1,3(u13, s)R2,3(u23, s+ ηh1) =

= R2,3(u23, s− ηh1)R1,3(u13, s+ ηh2)R1,2(u12, s)
(I.69)

one can build an Eτ,η(sl(2)) module, i.e. a representation of the algebra generated by
the RTT -relation:

R1,2 (u12, s+ ηh3)T1,3 (u1, s)T2,3 (u2, s+ ηh1) =

= T2,3 (u2, s)T1,3 (u1, s+ ηh2)R1,2 (u12, s) .
(I.70)

29



3 Solving the Inverse Problem

The additional parameter s on which the operators depend is called dynamical parameter
and we use the abbreviation uij = ui − uj . In the sl(2) case we have R(u, s) ∈
End(C2 ⊗ C2) and h = σz, e.g.

R1,2(u12, s+ ηh3) (|i〉 ⊗ |j〉 ⊗ |k〉) = R(u, s+ µ)
(
|i〉 ⊗ |j〉

)
⊗ |k〉 (I.71)

if h|k〉 = µ|k〉.

From the DYBE it can be seen that the R-matrix itself solves the RTT -relation. For
the CSOS model it reads

R(u, s) =


1 0 0 0
0 a(u; s) b(u; s) 0
0 b(u;−s) a(u;−s) 0
0 0 0 1

 . (I.72)

The entries a and b are defined in terms of the elliptic theta function θ(u) := θ1(ηu; τ)
and we require Im(τ) > 0. Then

a(u; s) = θ(s+ 1)θ(u)
θ(s)θ(u+ 1) and b(u; s) = θ(1)θ(u+ s)

θ(s)θ(u+ 1) . (I.73)

The entries of the R-matrix are the Boltzmann weights of a face model

R(u, s)ijkl =

s

s+ i

s+ k

s+ k + l

= s+ i+ j

u
i l

k

j

. (I.74)

Using the R-matrix we obtain a representation on the Hilbert space H =
N⊗
i=1

C2, defining

T (u, {ui}, s) ∈ End(C2 ⊗H) by

T (u, {ui}, s) = Ra,N

(
u− uN , s+

N−1∑
i=1

hi

)
Ra,N−1

(
u− uN−1, s+

N−2∑
i=1

hi

)
. . . Ra,1(u− u1, s)

(I.75)

=
(
A(u) B(u)
C(u) D(u)

)
[a]

(I.76)
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3.2 Solution for the CSOS model

where the matrix is represented in the canonical basis of Va = C2. The inhomogeneities
{ui} are arbitrary complex numbers, so we are actually dealing with an inhomogeneous
version of the dynamical 6-vertex model. From now on we will not display them explicitly
and simply write T (u, s).

Note that this is analogous to the coproduct of usual quantum groups [61]. The
monodromy matrix T acts on the underlying vertex labels, i.e. on an auxiliary space
Va = C2 and H and not directly on the face heights that are parameterised by s.

Taking the trace does not directly yield an integrable model since t(u, s) = trVaT (u, s)
does not define a family of commuting operators on H. To fix this problem we lift all
operators to the space of meromorphic H[0]-valued functions Hf = Fun(H[0]). Here
H[0] is the zero weight space, i.e. the kernel of the total spin operator h1,2,...,N = ∑N

i=1 hi.
For the special choice of η = m/r with m and r coprime all weights are r-periodic in
s and we can restrict s to the set Crs0 := s0 + Z/r, where s0 ∈ C and r ∈ N are fixed
constants. A state is therefore a function f : Crs0 → H[0]. Note that now the state space
Hf can be described by paths of the height variables with periodic boundary conditions
modulo r:

|a〉 : Crs0 → H[0], s 7→ |a〉(s) = δs,a0ea1−a0 ⊗ ea2−a1 ⊗ · · · ⊗ eaN−aN−1 , (I.77)

with the canonical basis vectors e±1 of C2. To get rid of the s dependence of T and
arrive at an integrable face model, define the dynamical operators τs and ŝ, which
act according to τsf(s) = f(s+ 1) and ŝf(s) = sf(s). The lifted monodromy matrix
T̂ (u) ∈ End(C2 ⊗Hf ) is then given by:

T̂ (u) = T (u, ŝ) τhas =
(
A(u, ŝ)τs B(u, ŝ)τ−1

s

C(u, ŝ)τs D(u, ŝ)τ−1
s

)
. (I.78)

To illustrate the definitions we use the graphical notation which was introduced in (I.74),
e.g. the matrix element 〈b|Â(u)|a〉 in the path basis of Hf is depicted as

+ +

a0 a1

b0 b1

aL−1 aL

bL−1 bL

a1 − a0

b1 − b0

aL − aL−1

bL − bL−1

u− u1 u− uL δb0,a0+1δbN ,aN+1 (I.79)

where the two δ are the result of the shift τs in the definition of Â(u) = A(u, ŝ)τs.
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3 Solving the Inverse Problem

We can now discuss the solution of the inverse problem. In [56] local operators

〈b|
(
Eαβ

)
i,i+1
|a〉 = δai+1−ai, α δbi+1−bi, β (I.80)

were considered and expressed by matrix elements of the monodromy matrix. There
are two important things to notice: First of all, note that they only fix differences
between heights due to the fact that they actually act on the underlying vertex model.
Secondly, in our graphical notation elements of the monodromy matrix are labelled on
the horizontal ends. Hence, solving the inverse problem means shifting the indices α
and β from the vertical to the horizontal direction.

We do not repeat the proof from [56] and just state the result:

(
Eαβ

)
i,i+1

=
i∏

k=1
t̂(uk)T̂α,β(ui + 1)

i+1∏
k=1

t̂(uk)−1 τ̂β−αs . (I.81)

The proof in [56] is based on the dynamical Yang-Baxter algebra and thus it is for
instance unclear how to extend it to other IRF models. We will solve this problem in
subsequent sections.

3.3 Solution for generic IRF/anyon models

So far we have seen solutions of the inverse problem for spin chains related to vertex
models and a special IRF model which can be cast into a very similar form. We will
now proceed and present a solution for generic IRF models only relying on physical
symmetries of the Boltzmann weights. Most of this section is based on [62].

Let us reconsider the Hilbert space of anyonic models. Recall that it is spanned by
fusion path states. They can be decomposed into sectors HLαβ labelled by the auxiliary
anyons α = a0 and β = aL. We call them auxiliary because they are the starting and
end point of a fusion process with the physical anyons forming a chain of length L.

Given a classical IRF model with L columns and N horizontal rows this identification
suggests to view the left and right boundary heights as auxiliary spins. We go one
step further and note that sequences α = (α0 α1 . . . αN ) with Nαn+1

αna∗ = Aαnαn+1 = 1
of heights on vertical lines can be identified with fusion paths spanning an ’auxiliary’
Hilbert space VN . We agree that from now on greek indices will be used to label
auxiliary heights.

We represent the matrix elements of generic linear operators B on the space VN ⊗̂HL
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3.3 Solution for generic IRF/anyon models

as 1

(
〈a|⊗̂〈α|

)
B
(
|β〉⊗̂|b〉

)
= B

α0 = a0 . . .

. . .

α1

...

αN−1

αN = b0

β0 = aL

β1

βN−1

βN = bL

... .

(I.82)
The matrix elements of B in VN are linear operators on HL and vice versa:

Bαβ = 〈α|B|β〉 , Bab = 〈a|B|b〉 . (I.83)

A special example of such operators which will be frequently used is T (u) : V1⊗̂HL →
V1⊗̂HL, given by:

(
〈a|⊗̂〈α|

)
T (u)

(
|β〉⊗̂|b〉

)
= u− u1 u− uL. . .

α0 = a0

α1 = b0

a1

b1

aL−1

bL−1

β0 = aL

β1 = bL

. (I.84)

Note that by tracing

t(u) = trV1T (u) =
∑
α,β

Tααββ (u) ,

〈a|t(u)|b〉 = u− u1 u− uL. . .

a0

b0

a1

b1

aL−1

bL−1

a0 = aL

b0 = bL

(I.85)

we recover the transfer matrix. We will also need the mappings

Tαβ(u) =
∑
γδ

T γδαβ(u) , Tαβ(u) =
∑
γδ

Tαβγδ (u) , (I.86)

which send HLαβ → HL and vice versa. Note that Tαβ(u)Tαβ(v) is a linear operator

1The symbol ⊗̂ indicates that the index of the joint vertex of the two factors coincides.
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3 Solving the Inverse Problem

on HL which leaves HLper invariant and thus defines a unique operator HLper → HLper by
restriction. Strictly speaking one should write

(
Tαβ(u)Tαβ(v)

) ∣∣∣
HLper

which we omit to
not overload the notation. Domain and image space should anyway always be clear
from context.

Also recall the definition of elementary operators (Eαβ )i from Eq. (I.17). We can now
formulate one of the main results of this thesis.

Theorem 1. The local operator
(
Eαβ

)
i
can be expressed as2

(
Eαβ

)
i

=
L∏

k,`=1

1
ρ(uk − u`)

(
i−1∏
k=1

t(uk)
)
Tαβ(ui)Tαβ(ui+1)

 L∏
k=i+2

t(uk)

 . (I.87)

The function ρ is the same as in the unitarity relation (I.6).

Proof. Let us first prove the statement for an easy example where the chain length is
L = 2, i.e. two faces per row. For |a〉, |b〉 ∈ H2

per we use the unitarity relation (I.6) and
find:

〈a|Tαβ(u1)Tαβ(u2)|b〉 =

u1 − u1 u1 − u2

u2 − u1 u2 − u2

a0 a1 a0

b0 b1 b0

α β =

u1 − u2

u2 − u1

a0 a1 a0

b0 b1 b0

α β

=
2∏

k,`=1
ρ(uk − u`)δa0b0δa1αδb1β =

2∏
k,`=1

ρ(uk − u`)〈a|
(
Eαβ

)
1
|b〉.

For L > 2 the procedure works similarly. First use the initial condition in every row.
Then use unitarity until all Boltzmann weights are turned into Kronecker δ′s. Whenever
unitarity is used we produce two ρ-functions and find the correct prefactor. A detailed
demonstration can be found in Appendix A.

Note that this proof only requires unitarity (I.6) and the initial condition of the
Boltzmann weights. The theorem is therefore widely applicable.

We have thus provided an expression of local 1-point operators by means of operators
from the Yang-Baxter algebra. A generalisation to n-point operators is straightforward.

2To avoid more lengthy expressions we use the convention, that empty products evaluate to 1 and all
operators which contain the non-existing parameter u0 are omitted.
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3.3 Solution for generic IRF/anyon models

An elementary operator acting on several neighbouring sites 1 ≤ n1 ≤ n2 ≤ L can be
expressed as

E
αn1 ...αn2
βn1 ...βn2

=
L∏

k,`=1

1
ρ(uk − u`)

(
n1−1∏
k=1

t(uk)
)
×

× Tαn1βn1
(un1)

 n2∏
k=n1+1

T
αk−1βk−1
αkβk

(uk)

 Tαn2βn2 (un2+1)

 L∏
k=n2+2

t(uk)


=
(
n1−1∏
k=1

t(uk)
)
Tαn1βn1

(un1)×

×

 n2∏
k=n1+1

T
αk−1βk−1
αkβk

(uk)

 Tαn2βn2 (un2+1)
(
n2+1∏
k=1

t−1(uk)
)
.

(I.88)
We emphasise that this construction and its proof is valid for all face models whose
Boltzmann weights satisfy the unitarity conditions. This is the starting point for the
definition of the reduced density matrix, which will be discussed in the next section.
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4 The N-site reduced density matrix
Having solved the inverse problem the Yang-Baxter algebra can be used as a tool to
compute correlation functions. Let us briefly review the case of the spin-1/2 Heisenberg
chain and why the situation is more complicated for IRF models (and their corresponding
anyon chains).
Recall from Section I.3 that for the Heisenberg spin chain one can construct the

eigenvectors of the transfer matrix as Bethe vectors |λ1, . . . , λn〉. If now |λ1, . . . , λn〉 is
an on-shell Bethe vector and O a local operator, one can use the inverse problem and
express O through elements of the Yang-Baxter algebra such that O|λ1, . . . , λn〉 can be
written as a linear combination of off-shell Bethe vectors. Correlation functions may
thus be reduced to the computation of scalar products of an on-shell and an off-shell
Bethe vector.
This has been achieved by Slavnov in 1989 in terms of determinant expressions for

the scalar product of an on-shell and an off-shell Bethe vector [63]. However, for higher
rank spin chains a determinant formula for scalar products of on- and off-shell Bethe
vectors is still unknown.

The dependence on the Algebraic Bethe ansatz can be circumvented using functional
relations. For the XXX and related models many results have been obtained this way
(see e.g. [23, 25, 64, 65] and [66] for a generalisation to higher rank models).

Most IRF models cannot be solved via algebraic Bethe ansatz methods. We will
therefore follow the second route by defining reduced density matrices and deriving
functional equations fulfilled by them. The content of this section is largely based on
[62].

4.1 Definition of the reduced density matrix

Recall that we can decompose any local N -point operator into a sum of elementary
operators (I.17). Hence, a complete characterisation of the introduced models requires
reduced density matrices, i.e operators of the form

1
〈φ0|φ0〉

〈φ0|E
αn1 ...αn2
βn1 ...βn2

|φ0〉 . (I.89)

which act only on a subpart of the lattice. Here |φ0〉 ∈ HL is the ground state of the
model. More generally one may consider the general right (left) eigenvectors |φ〉 (〈φ|) of
the transfer matrix corresponding to a particular eigenvalue Λ(u), i.e. t(u)|φ〉 = Λ(u)|φ〉
(〈φ|t(u) = 〈φ|Λ(u)).

Let us introduce the operators T̃N : HL → HL, corresponding to N = n2 − n1 + 2
consecutive rows of the face model with fixed sequences α = (α`)n2+1

`=n1−1 and β =



4 The N -site reduced density matrix

(β`)n2+1
`=n1−1 of auxiliary indices (although not written explicitly the index N is to be

understood as the combination (n1, n2))

T̃N (λn1 , . . . , λn2+1)αβ =
n2+1∏
k=n1

T
αk−1βk−1
αkβk

(λk) . (I.90)

Now define
DN (λn1 , . . . , λn2+1)αβ = 〈φ|T̃N (λn1 , . . . , λn2+1)αβ|φ〉

〈φ|φ〉
n2+1∏
k=n1

Λ(λk)
. (I.91)

By construction DN is a matrix on the auxiliary space ' VN . Note that Dαβ

N = 0 for
αn1−1 6= βn1−1, αn2+1 6= βn2+1 as a consequence of |φ〉 ∈ HLper.
Graphically this operator can be depicted as (here shown for N = 2 with n1 = 1,

n2 = 1):

D2(λ1, λ2){α}{β} =

α0 β0

α1

α2

β1

β2

Φ

Φ

T̃2(λ1, λ2) · 1
〈Φ|Φ〉Λ(λ1)Λ(λ2)

=

α0 β0

α1

α2

β1

β2

Φ

Φ

λ1 − u1 . . .

. . .

λ1 − uL

λ2 − uLλ2 − u1

· 1
〈Φ|Φ〉Λ(λ1)Λ(λ2)

(I.92)

where the projection onto the eigenstate |Φ〉 is indicated by sandwiching of T̃N . Note
that D{α}{β}N = 0 for αn1−1 6= βn1−1, αn2+1 6= βn2+1 for states |Φ〉 ∈ HLper. This allows
to decompose DN into blocks labeled by αn1−1 and αn2+1, i.e.

D2(λ1, λ2){α}{β} =
(
D

[α0,α2]
2 (λ1, λ2)

)α1

β1
(I.93)

for the example N = 2 displayed above.
Comparing with (I.88) we observe that the reduced density matrix of the face model
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4.2 Properties of the reduced density matrix

for N consecutive edges (or segments of the fusion path) in an eigenstate |Φ〉 of the
transfer matrix is obtained from DN by proper choice of the arguments λk:

DN (λn1 , . . . , λn2+1){α}{β}
∣∣∣
λk=uk, k=n1,...,n2+1

= 1
〈Φ|Φ〉 〈Φ|E

αn1 ...αn2
βn1 ...βn2

|Φ〉 , (I.94)

In a slight misuse of notation we shall denote DN as N -site density matrix below.
DN is normalised such that trVNDN (λn1 , . . . λn2+1) = 1, which constrains the diagonal
elements of DN . Taking partial traces, i.e. summing over pairs (α`, β`) of auxiliary
indices, any n-point function with n ≤ N can be computed from DN . Hence, instead of
the reduced density matrices as defined in (I.89) we can try to compute DN as a function
of the spectral parameters. This gives us additional freedom to generate functional
equations which will be shown in the next section.

4.2 Properties of the reduced density matrix

We start our investigation with some general properties which result directly from
symmetries of the local Boltzmann weights and are therefore quite general. Model
specific peculiarities will be investigated later.

Recall the definition of Yang-Baxter operators in Eq. (I.19):

〈α|Wi(u)|β〉 := W

(
αi−1 βi

αi αi+1

∣∣∣∣∣u
)∏
j 6=i

δajbj . (I.95)

It follows immediately from the Yang-Baxter equation (I.4) that

Wi(λi+1 − λi) ·DN (λ1, . . . , λi, λi+1, . . . , λN ) = DN (λ1, . . . , λi+1, λi, . . . , λN ) ·Wi(λi+1 − λi) , (I.96)

where we assume that 1 ≤ i < N . This equation is particularly useful since it allows for
a reordering of the spectral parameters. Note that due to the initial condition (I.8) and
crossing symmetry (I.7) Wi(λ) degenerates to a Kronecker δ which will later be used to
find a reduction relation relating DN and DN−2.

Apart from these quite obvious relations, the reduced density matrix is subject
to a further functional equation, which is one of the main results of this thesis. To
formulate this we introduce an operator AN (λ1, . . . , λN ) : End(VN )→ End(VN ). Given
an arbitrary operator B acting on VN as defined in (I.83), the action of AN on B

graphically defined as

(
AN (λ1, . . . , λN )[B]

)αβ = δα0β0δαNβN∏N

i=1 ρ(λi−λN )ρ(λN−λi)
×

39



4 The N -site reduced density matrix

. . ....

α0

α1

αN−2

αN−1

β0

β1

βN−2

βN−1

βN = αN

B

λN − λN−1

λN − λ1

P−

λN−1 − λN

λ1 − λN

φ

φ

.

For models with crossing symmetry as in (I.7) the operator P− ∈ End(V1) is obtained
by evaluation of the Boltzmann weight (I.3) at u = λ. For more complicated cases P−
needs to be modified, see (II.16) below. Note that the extra Kronecker δ’s ensure that
the image of B has elements acting on HLper only.
As an example consider the action of A2 on the reduced density operator D2, here

shown for a system of length L = 2:

A2(λ1, λ2)[D2(λ1, λ2)]αβ = δα0β0
ρ(λ1−λ2)ρ(λ2−λ1)Λ(λ1)Λ(λ2)×

× λ2 − λ1 λ1 − λ2

P−

λ1 − u1 λ1 − u2

λ2 − u1 λ2 − u2

α0 β0

α1 β1

α2 = β2

φ

φ

(I.97)

We can now formulate the main theorem of this chapter.

Theorem 2. The density operator DN (λ1, . . . , λN ) is a solution of the functional
equation

AN (λ1, . . . , λN )[DN (λ1, . . . , λN )] = DN (λ1, . . . , λN + λ) (I.98)

if λN is equal to one of the inhomogeneities, i.e. λN ∈ {ui}Li=1.

Proof. The proof can be found in Appendix B.
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Some comments regarding the homogeneous limit are in order. For distinct inhomo-
geneities (I.98) consists of L independent equations, one for each inhomogeneity. Taking
the homogeneous limit ui → 0 it seems as if those equations degenerate to a single one.
However, let us assume u1 = 0 and consider the difference of the functional equations
at λN = u2 and λN = 0. To increase readability we suppress the spectral parameters λ1

to λN−1. After a division by u2 one obtains:

AN (u2)[DN (u2)]−AN (0)[DN (0)]
u2

= DN (u2 + λ)−DN (0 + λ)
u2

. (I.99)

Taking the limit u2 → 0 yields the derivative of the functional equation (I.98) with
respect to the last argument. Repeating this procedure with all inhomogeneities that
are still left we find that the equation is also valid for its first L− 1 derivatives.
Another very useful relation follows immediately from Eq. (I.12). Notice, that the

operator Wi(λ) degenerates to a Kronecker δ due to the initial condition (I.8) and
crossing symmetry (I.7).

Theorem 3. The density operator DN (λ1, . . . , λN ) fulfils the reduction relation

〈α|WN (λ) ·DN (λ1, . . . , u, u+ λ)|β〉 = δαNαN−2 δβNβN−2 ×

×〈α0 . . . αN−2|DN−2(λ1, . . . , λN−2)|β0 . . . βN−2〉
∏L
i=1 ρ(u− ui)ρ(ui − u)

Λ(u)Λ(u+ λ)
(I.100)

for arbitrary values of u. Although not explicitly written, it is understood that the
right-hand side is zero whenever the sequence (αN−2 αN−1 αN ) or (βN−2 βN−1 βN ) is
not allowed by the adjacency condition.

Proof. The proof is shown in Appendix C.

Clearly for u = uj the scalar factor on the right cancels due to the inversion relation
(I.14). However, this equation is valid for any value of u and will be prove to be very
useful in the following section. A similar reduction relation was found in [67] relating
two polynomial solutions of the level-one qKZ equations.
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Part II

Applications





1 Models of SOS type
In this section we will use the functional equation (I.98) to compute the density matrices
of face models of solid-on-solid (SOS) type and the related anyon chains. In particular,
we will present results for the two- and three-point functions of Fibonacci anyons. We
will closely follow the presentation in [62].

This class of face models has been introduced by Andrews, Baxter and Forrester
as an auxiliary tool to solve the 8-vertex model [5–7, 38]. Based on this, face-vertex
correspondence has been formalised [68] and been applied to a variety of models.

Here we shall not go deeper into this subject but apply our results to two critical
models with a finite set S of height variables that have already been studied in earlier
sections, i.e. the cyclic solid-on-solid (CSOS) model [57] and the restricted solid-on solid
(RSOS) model [38].

1.1 The cyclic solid-on-solid models

As discussed in Section I.3.2 the height variables of the CSOS model take integer values
0 ≤ a ≤ r − 1 for a positive integer r. Heights on adjacent sites are required to differ
by ±1 modulo r. As shown in Section I.3.2 the weights of the model can be embedded
in a dynamical R-matrix. Here we will not assume this additional algebraic structure
and start directly from the Boltzmann weights. Note that the weights appearing in
the (critical limit of the) dynamical R-matrix (I.72) differ from those given below by a
dynamical gauge transformation. The Boltzmann weights of the critical CSOS model
are (heights in the arguments of W are taken modulo r)

αa = W

(
a− 1 a

a a+ 1

∣∣∣∣∣u
)

= W

(
a+ 1 a

a a− 1

∣∣∣∣∣u
)

= sin(λ− u)
sinλ ,

β±a = W

(
a a± 1

a∓ 1 a

∣∣∣∣∣u
)

= sin u
sinλ ,

γa = W

(
a a+ 1

a+ 1 a

∣∣∣∣∣u
)

= 1 ,

δa = W

(
a a− 1

a− 1 a

∣∣∣∣∣u
)

= 1 .

(II.1)

Here the crossing parameter is λ = πm/r where 1 ≤ m ≤ r − 1 is coprime to r. In the
general (non-critical) case the Boltzmann weights are given by elliptic functions and
also explicitly depend on the height variable a. Interestingly the weights (II.1) coincide
with the non-zero vertex weights in the R-matrix of the six-vertex model. In fact, this
relation has been used extensively, e.g. to identify the operator content of the low energy



1 Models of SOS type

effective theory of the lattice model in the thermodynamic limit [69]. Furthermore, and
unlike most other face models, the transfer matrix of the CSOS model has a simple
eigenstate which enables a solution by means of the algebraic Bethe ansatz method
based on the R-matrix (I.72) depending on a dynamical parameter related to the height
variables. This property has already been used to compute form factors in the basis of
Bethe eigenstates of this model [56].
Here we will utilise the existence of a particularly simple eigenstate of the CSOS

transfer matrix to illustrate the approach to compute correlation functions based on the
functional equation (I.98). To be specific we choose the CSOS model with r = 3 and
crossing parameter λ = 2π/3. Considering a lattice of length L = 3k with integer k it is
easy to verify that

|Ω〉 ≡ 1√
3

(|012 012 . . . 0〉+ |120 120 . . . 1〉+ |201 201 . . . 2〉) ∈ HLper (II.2)

is an eigenstate of the transfer matrix with eigenvalue

Λ0(u) = a(u) + d(u) (II.3)

where

a(u) ≡
L∏
i=1

sin(λ− (u− ui))
sinλ , d(u) ≡

L∏
i=1

sin(u− ui)
sinλ . (II.4)

The definition of the Boltzmann weights immediately yields the action of the single
row operators (I.84) on this state:

Tααα+1α+1(u)|Ω〉 = a(u)√
3
|αα+ 1α+ 2 α . . . α〉 ,

Tααα−1α−1(u)|Ω〉 = d(u)√
3
|αα− 1α− 2 α . . . α〉 .

(II.5)

This allows to analyse the density matrices DN in the state (II.2). The simplest case
is N = 1 where periodic boundary conditions imply that α0 = β0 and α1 = β1. As a
consequence, D1(λ) is a diagonal operator on V1 whose diagonal elements can be read
off directly from Eqs. (II.5), e.g.

〈01|D(Ω)
1 (λ)|01〉 = 1√

3
ã(λ) , 〈02|D(Ω)

1 (λ)|02〉 = 1√
3
d̃(λ) , (II.6)

where ã(u) = a(u)/(
√

3 Λ0(u)) and analogously for d̃. Note that the trace condition
trV1D1(λ) = 1 implies d̃(λ) = 1/

√
3− ã(λ) .

Similarly, the diagonal elements of the two-site density matrix D2(λ1, λ2) in the
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1.1 The cyclic solid-on-solid models

reference state are obtained from (II.5). The functional equation (I.98) allows for the
direct computation of all off-diagonal elements: choosing

{|010〉, |012〉, |020〉, |021〉} ∪ {|121〉, |120〉, |101〉, |102〉} ∪ {|202〉, |201〉, |212〉, |210〉}
(II.7)

as a basis for the auxiliary space V2 and using the fact that the Boltzmann weights are
invariant under the shift of all heights by an integer, we find that the density matrix
has a structure of three identical 4× 4 blocks D(Ω)

2 (λ1, λ2). Restricting ourselves to the
first of these blocks we find for the reference state (II.2)

D
(Ω)
2 (λ1, λ2) =


ã(λ1)d̃(λ2) 0 g(λ1, λ2) 0

0 ã(λ1)ã(λ2) 0 0
0 0 ã(λ2)d̃(λ1) 0
0 0 0 d̃(λ1)d̃(λ2)

 (II.8)

or, using the notation introduced in Eq. (I.93),

D
(Ω)[0,0]
2 (λ1, λ2) =

(
ã(λ1)d̃(λ2) g(λ1, λ2)

0 ã(λ2)d̃(λ1)

)
,

D
(Ω)[0,1]
2 (λ1, λ2) = d̃(λ1)d̃(λ2) , D

(Ω)[0,2]
2 (λ1, λ2) = ã(λ1)ã(λ2) .

(II.9)

With this ansatz we obtain from the functional equations (I.98) and (I.96) after some
algebra an explicit expression for the off-diagonal element (λk` ≡ λk − λ`)

g(λ1, λ2) = −
√

3
2 sin(λ12)

(
d̃(λ1)ã(λ2)− ã(λ1)d̃(λ2)

)
. (II.10)

Hence, as a consequence of the simple form of the reference state (II.2) of the r = 3
CSOS model, the two-site density matrix is completely determined by the one-point
function ã(λ). This is also true for the three-site density matrix D

(Ω)
3 ({λ1, λ2, λ3}).

Choosing the bases

[0, 0] : |0120〉, |0210〉 , [0, 1] : |0101〉, |0121〉, |0201〉 , [0, 2] : |0102〉, |0202〉, |0212〉
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1 Models of SOS type

for the [0, a]-blocks in the auxiliary space V3 we find:3

D
(Ω)[0,0]
3 ({λj}) =

√
3
(
ã(λ1)ã(λ2)ã(λ3) 0

0 d̃(λ1)d̃(λ2)d̃(λ3)

)
,

D
(Ω)[0,1]
3 ({λj}) =

√
3


ã(λ1)d̃(λ2)ã(λ3) 0 −ã(λ3)g(λ1, λ2)
−ã(λ1)g(λ2, λ3) ã(λ1)ã(λ2)d̃(λ3) ?

0 0 ã(λ1)ã(λ2)ã(λ3)

 ,

D
(Ω)[0,2]
3 ({λj}) =

√
3


ã(λ1)d̃(λ2)d̃(λ3) −d̃(λ1)g(λ1, λ2) ??

0 d̃(λ1)ã(λ2)d̃(λ3) −d̃(λ1)g(λ2, λ3)
0 0 d̃(λ1)d̃(λ2)ã(λ3)

 ,

(II.11)
with

? = −
cos(π6 − λ12)ã(λ2)g(λ1, λ3)

sinλ12
−
√

3ã(λ1)g(λ2, λ3)
2 sinλ12

,

?? =
cos(π6 − λ12)d̃(λ2)g(λ1, λ3)

sinλ12
−
√

3d̃(λ1)g(λ2, λ3)
2 sinλ12

.

This suffices for the calculation of the nearest and next-nearest neighbour correlation
functions in the reference state (II.2). In the homogeneous limit (i.e. all inhomogeneities
uk = 0) we have ã(0) = 1/

√
3, d̃(0) = 0, and g(0, 0) = 0. Therefore, the two and

three-site density matrices for λi = 0 are diagonal with non-zero elements

〈012|D(Ω)
2 (0, 0)|012〉 = 〈120|D(Ω)

2 (0, 0)|120〉 = 〈201|D(Ω)
2 (0, 0)|201〉 = 1

3 ,

〈0120|D(Ω)
3 (0, 0, 0)|0120〉 = 〈1201|D(Ω)

3 (0, 0, 0)|1201〉 = 〈2012|D(Ω)
3 (0, 0, 0)|2012〉 = 1

3 .
(II.12)

With Eq. (I.94) this yields the expected results for the two- and three-point functions
in the reference state |Ω〉 of the r = 3 CSOS model.

1.2 The restricted solid-on-solid models

The RSOS model introduced in Section I.1.4 can be treated in a similar way. Note that
the state space is obtained by removing 0 from the set of heights allowed in the CSOS
model. To increase readability, we repeat here the Boltzmann weights of the critical
RSOS model:

W

(
a b

c d

∣∣∣∣∣u
)

= δad

√
gbgc
gagd

ρ(u+ λ)− δbcρ(u) (II.13)

3The coefficients in (II.11) are obtained using a combination of the functional equations (I.98) and
(I.96) and the algorithm for the calculation of the structure functions in the factorised form of the
N -site density matrices described below.
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1.2 The restricted solid-on-solid models

with
ρ(u) = sin(u− λ)

sinλ , gx = sin(λx)
sinλ (II.14)

and a crossing parameter λ = π/r. Recall that the crossing relation (I.7) is modified to

W

(
a b

c d

∣∣∣∣∣u
)

=
√
gb gc
ga gd

W

(
b d

a c

∣∣∣∣∣λ− u
)
. (II.15)

This modification has to be taken into account whenever crossing symmetry is used, in
particular in the definition of the A-operator in (I.97). To cancel the additional factors
from the Boltzmann weight evaluated at u = λ we have to rescale the corresponding
weight giving the operator P− ∈ End(V1):

〈α0α1α2|P−|β0β1β2〉 = α1

α0 = β0

β1

α2 = β2

P− ≡ δα0β0δα2β2

√
gα0gα2

gα1gβ1
α1

α0

β1

α2

λ .

(II.16)
In addition, the third step of the proof in Appendix B needs to be reconsidered. Keeping
track of the gauge factors we find that the A-operator needs to be multiplied by an
additional factor of

√
gβN−1/gαN−1 .

As seen in Section I.1.4 the spectrum of the transfer matrix can be decomposed into
topological sectors characterised by the topological quantum number j (see Eq. (I.40)).
In addition, there is a discrete symmetry due to the invariance of the Boltzmann weights
under a reflection of all heights, i.e. a → r − a.4 This symmetry is passed on to the
transfer matrix and the reduced density operators.

Starting with the single-site density matrix D1(λ1) we observe that only its diagonal
elements are allowed to be non-zero. We will now prove that D1(λ1) is independent of
the spectral parameter λ1 in any eigenstate |Φ〉 of the transfer matrix (although the
matrix elements may still depend on the choice of inhomogeneities {ui}Li=1): to compute
D

[1,2]
1 (λ1) we note that due to the adjacency condition

D
[1,2]
1 (λ) = 〈12|D1(λ)|12〉 =

∑
α1

〈1α1|D1(λ)|1α1〉 = 〈Φ|P
(1)
1 t(λ)|Φ〉

〈Φ|Φ〉Λ(λ) = 〈Φ|P
(1)
1 |Φ〉
〈Φ|Φ〉 ,

(II.17)

where we have used the definition of D1. Note that the one-site projection operators,

4Note that this reflection is an automorphism of the underlying fusion algebra su(2)r−2 for odd r,
see the discussion for r = 5 in Section I.2. This allows to restrict the possible topological quantum
numbers in (I.40) to take integer values j ∈ {0, 1, . . . , (r − 3)/2} .
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1 Models of SOS type

defined as
〈a|P (ā)

` |b〉 = δa`ā
∏

δajbj , |a〉, |b〉 ∈ HL , (II.18)

are independent of the spectral parameter. Hence, the 1-point function (II.17) is the
local height probability for finding a spin a = 1 if |Φ〉 = (〈Φ|)†. With the same reasoning
one concludes that D[2,1]

1 (λ1) and the reflected matrix elements are equal to (II.17).
Following the same route we calculate

D
[2,1]
1 (λ1) +D

[2,3]
1 (λ1) =

∑
α1

D
[2,α1]
1 (λ1) = 〈Φ|P

(2)
1 |Φ〉
〈Φ|Φ〉 . (II.19)

Given that D[2,1]
1 (λ1) is constant we find that D[2,3]

1 (λ1) is also independent of λ1.
Repeating this procedure we find that in fact all matrix elements are independent of the
spectral parameter and given as sums of the local height probabilities. Generically, the
latter depend on the state |Φ〉 and the inhomogeneities. For the critical RSOS models
considered here we find, however, that they are functions only of r and the local spin in
the topological sectors with quantum dimension dq = 1. Using the known values for
the local height probabilities in the thermodynamic ground state of the homogeneous
system [38] we find

D
[a,a+1]
1 (λ) = sin (πa/r) sin (π(a+ 1)/r)

r cos (π/r) (II.20)

for the non-zero elements of the single-site density matrix in these sectors. Note that
the independence of the spectral parameter is a particular feature of the RSOS Hilbert
space, cf. the λ1-dependent expressions for the CSOS case.

The r = 4 RSOS model. For the simplest nontrivial case, r = 4, the height variables
take the values 1 ≤ a ≤ 3. This model is equivalent to the Ising model via the mapping
a→ a− 2 which results into height variables from {−1, 0, 1}. If we have a` = ±1 at any
site ` the adjacency condition enforces a`′ = 0 for any neighbouring site `′. Hence, the
lattice decomposes into two sublattices. On one of them all heights are 0 whereas on the
second they are either 1 or −1. Each elementary face of the lattice has two diagonally
opposite corners with height 0 such that the interaction is effectively reduced to that of
two Ising spins along the other diagonal.

From the considerations above we immediately get D[α,β]
1 (λ1) = 〈Φ|P (1)

1 |Φ〉/〈Φ|Φ〉 for
all states |αβ〉 ∈ V1. Using the trace condition with dimV1 = 4 it follows that

D1(λ1) = 1
4 1 , (II.21)

independent of the choice of inhomogeneities in agreement with Eq. (II.20).
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1.2 The restricted solid-on-solid models

For the two-site density matrix we consider the auxiliary space V2 with dimension six
and we choose

{|121〉, |123〉, |212〉, |232〉, |321〉, |323〉} (II.22)

as a basis. Analogously to previous calculations we find

〈212|D2(λ1, λ2)|212〉 =
∑
α2

〈21α2|D2(λ1, λ2)|21α2〉 = D
[2,1]
1 (λ1) = 1

4 (II.23)

and also, due to reflection symmetry, 〈232|D2(λ1, λ2)|232〉 = 1/4. Additionally, we have
that ∑

α2

〈12α2|D2(λ1, λ2)|12α2〉 = D
[1,2]
1 (λ1) = 1

4 . (II.24)

Hence, we find that the non-zero blocks in D2(λ1, λ2) are

D
[1,1]
2 (λ1, λ2) = 1

8 + 1
2f(λ1, λ2) , D

[1,3]
2 (λ1, λ2) = 1

8 −
1
2f(λ1, λ2) ,

D
[2,2]
2 (λ1, λ2) =

( 1
4 g(λ1, λ2)

g(λ1, λ2) 1
4

)
,

(II.25)

D
[3,1]
2 and D[3,3]

2 follow from height reflection ai → r − ai. In general, the two functions
f and g are independent. Evaluating equation (I.96) yields f(u, v) = f(v, u) and
g(u, v) = g(v, u), i.e. the two site density operator for r = 4 is symmetric under
exchange of the spectral parameters.

Taking (II.25) as an ansatz in the functional equation (I.98) we obtain 2L linear
relations for the unknown functions f and g at λ2 ∈ {u1, u2, . . . , uL}:

cos(2λ12) f(λ1, λ2 + λ) + sin(2λ12) g(λ1, λ2) = 1
4 ,

cos(2λ12) g(λ1, λ2 + λ) + sin(2λ12) f(λ1, λ2) = 1
4 .

(II.26)

For the actual computation of the density matrices we note that, as a consequence
of (I.91,) the elements of DN (λ1, . . . , λN )∏N

k=1 Λ(λk) are Fourier polynomials in the
spectral parameters λk. We have checked that, for small N and system sizes, the
(L+ 1)N unknown Fourier coefficients can be determined uniquely for a given transfer
matrix eigenvalue Λ(u) using the discrete functional equations (II.26) for N = 2 and
similarly (I.98) for general N once DN−1 is known (cf. the appearance of D1 in the sum
rules (II.23) and (II.24) for D2).

This procedure is simplified if we consider density operators for eigenstates in sectors
with quantum dimension dq(j) = 1, i.e. topological quantum numbers j ∈ {0, 1}:
Here we find that D2 is determined by a single function of the spectral parameters
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1 Models of SOS type

f(λ1, λ2) ≡ g(λ1, λ2) such that the equations (II.26) for the elements of the two-site
density matrix degenerate to a set of L equations. Another simplification in these sectors
is found for spectral parameter λ2 → i∞: In this limit the functions f and g vanish and
D2(λ1, λ2) becomes the single-site density matrix D1(λ1), written as an operator on V2

using the basis (II.22). In fact, we find that a similar reduction relating DN for large
λN to DN−1 for N ≥ 2 holds in the topological sectors with quantum dimension dq = 1
of the RSOS models where (recall that D1 is independent of the spectral parameter and
diagonal): 5

lim
λN→i∞

[DN (λ1, . . . , λN )]α0...αN ,β0...βN

= [DN−1(λ1, . . . , λN−1)]α0...αN−1,β0...βN−1 [D1]αN−1αN ,βN−1βN∑
α [D1]αN−1α,βN−1α

.
(II.27)

Using (I.96) one obtains expressions for DN in the limit of large λk, k < N .
Hence, the asymptotics of the N -site density matrix is determined by the (N − 1)-site

one, e.g. (recall that f = g in these sectors)

lim
λ3→i∞

D3(λ1, λ2, λ3) = 1
8 1+ f(λ1, λ2)

2



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1


(II.28)

for the three-site density matrix of the r = 4 model in the basis

{|1212〉, |1232〉} ∪ {|2121〉, |2321〉} ∪ {|2123〉, |2323〉} ∪ {|3212〉, |3232〉}

of V3.
Remarkably, it has been shown that the density matrices of the Heisenberg spin chain

can be written as

DN (λ1, . . . , λN ) =
[N/2]∑
m=0

∑
I,J

 m∏
p=1

ω(λip , λjp)

 fN ;I,J(λ1, . . . , λN ) (II.29)

in terms of a nearest neighbour two-point function ω and a set of recursively defined

5A similar reduction has been found to be satisfied by the density matrices of the Heisenberg spin
chain [30].
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1.2 The restricted solid-on-solid models

elementary functions fN ;I,J of the spectral parameters λj , so-called ‘structure functions’
[23]. Here I = (i1, . . . , im) and J = (j1, . . . , jm) such that I ∩ J = ∅, 1 ≤ ip < jp ≤ N

and i1 < · · · < im.
For the density matrices in eigenstates from the topological sectors with quantum

dimension dq(j) = 1 (j ∈ {0, 1} for the r = 4 RSOS model) we observe a similar
behaviour: Looking for instance at the three-point density matrix and taking into
account Eq. (II.29) we assume that the matrix elements of D3(λ1, λ2, λ3) can be written
as

f0(λ1, λ2, λ3) + f1,2(λ1, λ2, λ3) f(λ1, λ2)

+ f2,3(λ1, λ2, λ3) f(λ2, λ3) + f1,3(λ1, λ2, λ3) f(λ1, λ3) ,
(II.30)

where f0 and the fI,J are rational functions of e2iλ12 and e2iλ23 (λk` ≡ λk − λ`), and
f(u, v) is the single function from (II.25) which determines the two-site density matrix
in these topological sectors.
Most importantly, the model parameters such as the system size L and the inhomo-

geneities {uk} enter the expressions (II.29) only via the two-point function ω (or f in
(II.30)). This fact can be used to implement an efficient algorithm6 for the numerical
calculation of f0 and fI,J in the ansatz (II.30) for the 3-site density matrix of the r = 4
RSOS model (or the structure functions fN ;I,J appearing in an ansatz such as (II.29)
for elements of the N -site density matrix DN ):

1. choose a set of spectral parameters Λ = {λ1, . . . , λN},

2. diagonalise the transfer matrix of a sufficiently small system with randomly chosen
inhomogeneities,

3. pick an eigenstate of the transfer matrix (from the topological sector considered)
and compute the generalised N -site density matrix DN (λ1, . . . , λN ) and the two-
site density matrix D2(λj , λk) for pairs (λj , λk) from Λ using their definition
(I.91),

4. compare D2 to (II.25) to obtain numerical values for the corresponding two-point
functions f(λj , λk),

5. insert the data from steps 3 and 4 into (II.30) (resp. (II.29)) to get a linear
equation relating the structure functions,

6. repeat steps 2 to 5 to build a system of linear equations which can be solved for
the structure functions fN ;I,J(λ1, . . . , λN ).

6A similar method has been used to compute expectation values of local operators for the spin-1/2
Heisenberg chain in a particular basis [70–72].
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1 Models of SOS type

Once these functions are known for a range of spectral parameters it is straightforward
to find analytical expressions, e.g. by Fourier analysis, which can be checked using (I.98).
In practice it is helpful to keep one spectral parameter fixed and vary the differences
λij . Often one can guess the functional dependence on λij by visually inspecting plots
of the structure functions.
A slight complication in the present case of the r = 4 RSOS model is that the

decomposition (II.30) is not unique. Evaluating the diagonal element α = β = (1, 2, 1, 2)
of the functional equation (I.98) for D3(x, y, z) we find an additional relation satisfied
by the two-point function f :

sin(2λ12) f(λ1, λ2) + sin(2λ23) f(λ2, λ3)− sin(2λ13) f(λ1, λ3) = 0 . (II.31)

This identity holds for arbitrary values of λj , j = 1, 2, 3, as a consequence of α2 = 1
being a leaf node on the adjacency graph (c.f. the remark in Appendix B).
Hence, following the procedure outlined above we found the factorised form of the

three-point density matrix DN=3 of the r = 4 RSOS model. Remarkably, it turns out
to be sufficient to compute the initial data for a system of length L = 2 < N . Moreover,
we find that the structure functions are the same for all eigenstates |Φ〉 of the transfer
matrix in the topological sectors considered here. As a result we obtain

D
[12]
3 (λ1, λ2, λ3) = 1

8 1+ 1
2 sin(2λ23)

(
sin(2λ23) −1

1 − sin(2λ23)

)
f(λ1, λ2)

+ cos(2λ23)
2 sin(2λ23)

(
0 1
−1 0

)
f(λ1, λ3) + 1

2

(
0 1
1 0

)
f(λ2, λ3) ,

D
[21]
3 (λ1, λ2, λ3) = 1

8 1+ 1
2

(
0 1
1 0

)
f(λ1, λ2) + cos(2λ12)

2 sin(2λ12)

(
0 1
−1 0

)
f(λ1, λ3)

+ 1
2 sin(2λ12)

(
sin(2λ12) −1

1 − sin(2λ12)

)
f(λ2, λ3) .

(II.32)
As before the other non-zero blocks follow from the height reflection symmetry of the
density matrix. These expressions are unique up to transformations based on Eq. (II.31).
Again, we can consider the homogeneous limit uk ≡ 0 for k = 1, . . . , L, where the

expectation values of N -point functions can be obtained from the density matrix

DN (λ1, . . . , λN )|λk≡0 (II.33)

according to Eq. (I.94). In this case the one-point function D1(0) is already given by
(II.21). In addition, D2(0, 0) is completely fixed by the two-point function f(0, 0).

For the computation of D3(0, 0, 0) the singularities for λ1 = λ2 and λ2 = λ3 in
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1.2 The restricted solid-on-solid models

Eq. (II.32) have to be taken care of. We expand the two-point function as

f(λ1, λ2) ' (0, 0) + (1, 0)λ1 + (0, 1)λ2 + 1
2
(
(2, 0)λ2

1 + 2 (1, 1)λ1λ2 + (0, 2)λ2
2

)
+ . . .

(II.34)
with (k, `) ≡ ∂k1 ∂`2 f(λ1, λ2)|λ1=λ2=0. Note that (k, `) = (`, k) due to the symmetry of
f(λ1, λ2). Additional relations between the coefficients of the r = 4 two-point function
follow from the identity (II.31), e.g. (2, 0)−2(1, 1) = 4(0, 0). As a result, the singularities
are removed and the homogeneous limit of D3 is found to be

D
[12]
3 (0, 0, 0) = 1

8 1 + 1
2

(
(0, 0) (0, 0)− (1,0)

2
(0, 0) + (1,0)

2 −(0, 0)

)

D
[21]
3 (0, 0, 0) = 1

8 1 + 1
2

(
(0, 0) (0, 0) + (1,0)

2
(0, 0)− (1,0)

2 −(0, 0)

) . (II.35)

Note that all other matrix elements can be obtained by height reflection symmetry. As
a consequence the two- and three-point correlations in a transfer matrix eigenstate |Φ〉
from the topological sectors with dq = 1 of the homogeneous r = 4 RSOS model are
given in terms of (0, 0), i.e. the numerical value of the two-point function at spectral
parameters λ1 = λ2 = 0, alone. The latter is directly related to the corresponding
eigenvalue of the RSOS Hamiltonian H = J ∂u ln t(u)|u=0, i.e.

EΦ = 4J L f(0, 0) . (II.36)

Hence, explicit expressions for two- and three-point functions in the ground states of the
infinite system can be obtained from Eqs. (II.25) and (II.35) using the known results
for the energy density of the RSOS model in the thermodynamic limit [73]. We find

f(0, 0) = ± 1
2π (II.37)

for the ground state of the RSOS Hamiltonian with J = −1 (+1).

Until now the reduction relation (I.100) has not been used. Keeping in mind the
additional gauge factors appearing in the crossing relation (II.15) we can use the
factorised form of D3 from (II.32) and plug it into (I.100).

In general, the product Λ(u)Λ(u+ λ) is difficult to compute. However, for r = 4 it
can be computed explicitly using results for the Ising model [74] (to which the r = 4
RSOS model can be mapped):

Λ(u)Λ(u+ λ) =
L∏
i=1

ρ(u− ui)ρ(ui − u) + y
L∏
i=1

ρ(u+ λ− ui)ρ(ui − u− λ) , (II.38)
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1 Models of SOS type

where y ∈ {±1} is the eigenvalue of the height reflection operator Y which maps all
heights a→ r− a. As discussed earlier, the transfer matrix commutes with Y such that
to each eigenstate a unique value of y is assigned. Numerical investigations for small
system sizes lead to the conjecture that for chain lengths L = 4k the ground state has
y = 1, while for L = 4k − 2 we find y = −1. In the following we will only discuss y = 1,
the y = −1 case can be handled analogously.

Using the factorised form of D3(x, u, u + λ) (II.32) the reduction relation (I.100)
yields equations for the function f(x, u) valid for arbitrary spectral parameters. Since
D1(u) = 1

41 is explicitly known, we can use (II.38) to find an explicit expression for the
right-hand side. In particular this yields the difference equation:

sin(2(x− u))f(x, u) + cos(2(x− u))f(x, u+ λ) = r(u) , (II.39)

where the right-hand side reads

r(u) = 1
2 + 2y ∏L

i=1
ρ(u+λ−ui)ρ(ui−u−λ)

ρ(u−ui)ρ(ui−u)

− 1
4 . (II.40)

From now on we will work in the homogeneous limit ui → 0. In this case the expression
simplifies to

r(u) = 1
2(1 + y tan(2u)L) −

1
4 . (II.41)

In addition, Eq. (I.100) yields an explicit expression for f(u, u+ λ):

f(u, u+ λ) = 1
2(1 + y tan(2u)L) −

1
4 . (II.42)

Note that in contrast to the discrete functional equations (II.26) which are valid only
at a finite set of points, Eq. (II.39) holds for arbitrary spectral parameters x and u.
This functional equation for r = 4 case is special compared to the r = 5 case. For
r = 4 the two-point function f fulfils an additional identity (II.31) which can also be
deduced from the reduction relation (I.100). This information is the key to generate
the continuous functional equation. Besides, for other values of r an explicit expression
for Λ(u)Λ(u+ λ) is not known. We will now use these equations to explicitly calculate
f for arbitrary chain lengths.

To solve (II.39) we define h(x, u) = sin(2(x− u))f(x, u) and often suppress x in the
argument, i.e simply write h(u). Since λ = π/4, we arrive at

h(u)− h(u+ λ) = r(u) . (II.43)

Before we start with the solution of this equation, let us look at the function h(x, u) with
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Figure 2: The function h(u) is plotted for different states at chain length L = 8. One can
see that the (anit-)ferromagnetic ground state (GS) resembles periodically repeating straight
lines while the excited states (ES) from the j = 0 sector are periodically varying around them.
Excited states from the j = 1

2 sector (the dashed lines) display poles.

x = 0 in the homogeneous limit. From Fig. 2 we expect h(u) in the (anti-)ferromagnetic
ground state in the thermodynamic limit to consists of periodically repeated straight
lines. We shall later show that this is indeed the case.

Note that in the thermodynamic limit L→∞

r(u) =


1
4 for u ∈

(
−π

8 + kπ, π8 + kπ
)
with k ∈ Z,

−1
4 for u ∈

(
π
8 + nπ, 3π

8 + nπ
]

with n ∈ Z .
(II.44)

Furthermore, from (II.42) we deduce h(0, λ) = −1
4 and employing the periodicity of

h we get h(0, λ+ nπ) = −1
4 , which serves as a boundary condition for the solution of

the functional equation. Also note that r(u) agrees with the right-hand side of the
discrete functional equation (II.26) in a finite range around u = 0. This is expected
since for a chain length L Eq. (I.98) also holds for the first L−1 derivatives. Performing
the thermodynamic limit L → ∞ we conclude that the functional equation fixes all
derivatives at the origin and assuming h to be analytic at (0, 0) therefore also in a
(small) neighbourhood.

It is easy to see that one solution of (II.43) in the thermodynamic limit is given by

h(x, u) = x− u
π

for (x− u) ∈
(
−π8 ,

3π
8

)
. (II.45)

Note that it is a function of (x− u) and it suffices to fix its values in the given interval
since it is π-periodic. Hence, we can calculate f(0, 0) = 1

2π in agreement with the result
for the ferromagnetic ground state in Eq. (II.37).
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1 Models of SOS type

Another simple solution is

h(x, u) = u− x
π

for (x− u) ∈
(
−3π

8 ,
π

8

)
. (II.46)

This solution corresponds to the antiferromagnetic ground state yielding f(0, 0) = − 1
2π .

Let us compare the result for the thermodynamic limit with the finite size results.
Therefore we plot the function h(0, u) computed from the exact finite size density
operators together with the result from (II.45)
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Figure 3: Plots of the function h(0, u) for chain lengths of L = 4, 6 and L = 8 as well as the
result obtained in the thermodynamic limit for the ferromagnetic ground state. Even for small
system sizes we see a quick convergence. We chose a very small interval for v to resolve the
small differences between the functions.

Now let us solve the functional equation for finite chain lengths L. Defining a(z) =
h(iz + λ

2 ) and b(z) = r(iz) the functional equation is transformed to

a

(
z + i

λ

2

)
− a

(
z − iλ2

)
= b(z) (II.47)

and can be solved by Fourier methods. Numerical investigations for small L reveal that
a(z) tends to a non-zero constant for z → ±∞ such that we have to differentiate in
order to calculate the Fourier transform.
We define the Fourier transforms

A(k + iε) = 1
2π

∫ ∞
−∞

dz a′(z)e−iz(k+iε) ,

B(k + iε) = 1
2π

∫ ∞
−∞

dz b′(z)e−iz(k+iε) ,
(II.48)

where we introduced a small parameter ε > 0 which will remove poles from the integration
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1.2 The restricted solid-on-solid models

contour. The inverse transformation yields

a′(z) =
∫ ∞
−∞

dk A(k + iε)eiz(k+iε)

b′(z) =
∫ ∞
−∞

dk B(k + iε)eiz(k+iε)
(II.49)

Here we assumed that a(z) does not have poles in the strip −λ/2 ≤ Im(z) ≤ λ/2, which
is true for the ferromagnetic ground state [48]. To find solutions for other states the
integration contour needs to be changed appropriately.

Taking the Fourier transform of the derivative of Eq. (II.39) we obtain

A(k + iε) = − B(k + iε)
2 sinh

(
1
8π(k + iε)

) . (II.50)

Note that the shift by iε will allow us to take the inverse Fourier transformation. Hence,
we calculate

a′(z) = −
∫ ∞
−∞

dk ei(k+iε)z B(k + iε)
2 sinh

(
π(k+iε)

8

)
= −

∫ ∞
−∞

dk ei(k+iε)z

2 sinh
(
π(k+iε)

8

) 1
2π

∫ ∞
−∞

dy b′(y)e−i(k+iε)y

= −
∫ ∞
−∞

dy b′(y)
∫ ∞+iε

−∞+iε
dk′ eik

′(z−y)

4π sinh
(
πk′

8

) with k′ = k + iε ,

(II.51)

where we exchanged the order of integration in the last step. Defining the kernel

K(z) := −
∫ ∞+iε

−∞+iε
dk eikz

4π sinh
(
πk
8

) (II.52)

we find
a′(z) =

∫ ∞
−∞

dy b′(y)K(z − y) = (b′ ∗K)(z) . (II.53)

where ∗ denotes the convolution.

Fortunately the kernel can be calculated exactly. First, observe that sinh
(
π(k−8i)

8

)
=

− sinh
(
πk
8

)
leading to

K(z) +
∫ −∞+iε−8i

∞+iε−8i
dk eikz

4π sinh
(
πk
8

) = K(z)(1 + e8z) . (II.54)

On the other hand, the left-hand side of the previous equation is simply a closed contour
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Figure 4: Graphical description of the contour C.

integral along the contour C from Fig. 4 enclosing the origin

lim
R→∞

∮
C

dk eikz

4π sinh
(
πk
8

) =
(∫ ∞+iε

−∞+iε
+
∫ −∞+iε−8i

∞+iε−8i

)
dk eikz

4π sinh
(
πk
8

) , (II.55)

where we used that for R→∞ the two paths on the sides do not contribute.
Hence, we use the residue theorem to find

K(z)(1 + e8z) = −iResk=0
eikz

2 sinh
(
πk
8

) = −4i
π

(II.56)

and solve for K(z)
K(z) = −4i

π

1
1 + e8z . (II.57)

To find a(z) up to an x dependent constant ψ(x) we use partial integration to shift
the derivative to the kernel

a′(z) = −
∫ ∞
−∞

dy b(y) ∂
∂y
K(z − y) + ψ̃(x)

=
∫ ∞
−∞

dy b(y) ∂
∂z
K(z − y) + ψ̃(x)

(II.58)

resulting in
a(z) =

∫ ∞
−∞

dy b(y)K(z − y) + ψ(x) . (II.59)

Here x is the first spectral parameter of the function h(x, z). Up to now we ignored
the x dependence, since b(z) is independent of it. Hence, the integration ‘constant’
ψ(x), into which we absorbed the boundary term ψ̃(x) from the partial integration, can
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1.2 The restricted solid-on-solid models

depend on x and will be determined below. Going back to the original functions we can
use Eq. (II.42) to find ψ(x). After simplifications we arrive at

h(x, u) = 2
π

∫ ∞
−∞

dy b(y) sin(4(u− x))
sinh(4(y + iu)) sinh(4(y + ix)) . (II.60)

Comparing this function with the numerical values from the exact D2 operator for small
system sizes, we find perfect agreement for u ∈ (0, λ). In fact, the solution (II.60) is
discontinuous at u = 0, λ and one has to employ analytical continuation. Shifting the
integration contour in (II.60) by iδ gives the solution on the interval (−δ, λ− δ), i.e.

h(x, u) = 2
π

∫ ∞+iδ

−∞+iδ
dy b(y) sin(4(u− x))

sinh(4(y + iu)) sinh(4(y + ix)) (II.61)

for u ∈ (−δ, λ − δ). We now prove that this defines indeed a solution to the original
equation. Let δ > 0 as well as −δ < u < 0 and calculate

h(x, u)− h(x, u+ λ) = 2
π

(∫ ∞+iδ

−∞+iδ
−
∫ ∞
−∞

)
dy b(y) sin(4(u− x))

sinh(4(y + iu)) sinh(4(y + ix)) .

(II.62)
Similar as seen before this expression is a contour integral encircling a simple pole
at y = −iu (the left and right borders are pushed to infinity and do not contribute).
By means of the residue theorem one shows that the right-hand side evaluates to
b(−iu) = r(u) which finishes the proof.
The solution (II.60) is very useful since it allows for a computation of correlation

functions for an arbitrary system size L which enters only as a parameter in the integral.
As an application, we show the deviation of h(0, u) from the thermodynamic limit (II.45)
for chain lengths L = 40, 80 and L = 120 in Fig. 5. Also note that the solution (II.60)
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Figure 5: The differences between the finite size results for h(0, u) and the thermodynamic
limit −uπ from Eq. (II.45)

together with (II.36) allows to calculate the finite size ground state energy for arbitrary
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1 Models of SOS type

system sizes.

The r = 5 RSOS model. As a second example we consider the r = 5 RSOS model
with local heights 1 ≤ a ≤ 4. Analogously to the r = 4 RSOS model, we can compute
the single site density matrix. In states from the sector with topological quantum
number j = 0 (recall that the topological sectors in the odd r RSOS models are labelled
by integers 0 ≤ j ≤ (r − 3)/2 = 1) we find that the matrix elements are independent of
the system size and the inhomogeneities {uk}:

D
[α,β]
1 (λ) =

1/(5 +
√

5) for (αβ) ∈ {(12), (21), (34), (43)} ,
√

5/10 for (αβ) ∈ {(23), (32)} ,
(II.63)

as given by Eq. (II.20).

The auxiliary space V2 for the two-site density matrix of the r = 5 model has
dimension ten. Due to the adjacency condition the Hilbert space of states splits into
two subspaces spanned by fusion paths with a0 even and odd, respectively. The transfer
matrix is a map between these two subspaces and hence, products of an even number of
transfer matrices (or more general single row operators) will be block diagonal and may
be written as the sum of an even and and odd part. According to this decomposition of
the Hilbert space we choose the following basis for V2:

{|121〉, |123〉, |321〉, |323〉, |343〉} ∪ {|212〉, |232〉, |234〉, |432〉, |434〉}. (II.64)

The two sets are related by reflection ai → r − ai and hence, we may restrict ourselves
to the subspace generated by the first. Again the structure of the density operator
D2(λ1, λ2) is constrained by sum rules such as (II.23) and (II.24). We find the non-zero
blocks of D2 in the first subspace with odd a0 to be (b is a constant)

D
[1,1]
2 (λ1, λ2) = −1

2 + 4D[2,1]
1 + f(λ1, λ2) ,

D
[1,3]
2 (λ1, λ2) = D

[3,1]
2 (λ1, λ2) = e(λ1, λ2) ,

D
[3,3]
2 (λ1, λ2) =

(
d(λ1, λ2) c1(λ1, λ2)
c2(λ1, λ2) b

)
.

(II.65)

The sum rules immediately imply

e(λ1, λ2) = 1
2 − 3D[2,1]

1 − f(λ1, λ2) , b = D
[2,1]
1 . (II.66)

62



1.2 The restricted solid-on-solid models

Furthermore, the trace condition trV2D2(λ1, λ2) = 1 yields

d(λ1, λ2) = f(λ1, λ2) +D
[2,1]
1 . (II.67)

Using the relations (I.96) we find that the off-diagonal functions are related via

c1(λ1, λ2) = c2(λ2, λ1) ≡ (
√

5 + 2)
1
2 g(λ1, λ2) (II.68)

and

f(λ1, λ2) = g(λ1, λ2) + g(λ2, λ1)
2 +

(
5 + 2

√
5
) 1

2 cotλ12
g(λ1, λ2)− g(λ2, λ1)

2 . (II.69)

Moreover, further simplifications are found for eigenstates of the transfer matrix in
the j = 0 topological sector (where b = 1/(5 +

√
5) according to Eq. (II.63)): in this

sector the off-diagonal elements of D2 coincide, i.e. g(λ1, λ2) = g(λ2, λ1), and therefore
g(λ1, λ2) = f(λ1, λ2) . As a consequence D2 can again be expressed in terms of a single
scalar function f(λ1, λ2) satisfying the functional equation

f(λ1, λ2 + λ) =
√

5− 2
4(cos(2λ12)− cos(2λ)) −

cos(2(λ12 − λ))− cos(2λ)
cos(2λ12)− cos(2λ) f(λ1, λ2)

(II.70)
for λ2 ∈ {u1. . . . , uL}. Defining ϕ(x) ≡ cos(2x) − cos(2λ) and setting χ(λ1, λ2) ≡
f(λ1, λ2)/ϕ(λ12) we can rewrite this equation as

χ(λ1, λ2) + χ(λ1, λ2 + λ) =
√

5− 2
4ϕ(λ12)ϕ(λ12 − λ) . (II.71)

As in the r = 4 RSOS model the density matrices DN can be computed recursively for
any given transfer matrix eigenvalue using their analytical properties and the functional
equations. In particular, we find that the asymptotic behaviour of the N -site density
matrices is related to the N − 1-site one as given by (II.27), e.g.

lim
λ2→i∞

D
(odd,odd)
2 (λ1, λ2) = 1

2(
√

5 + 5)



3−
√

5 0 0 0 0
0

√
5− 1 0 0 0

0 0
√

5− 1 0 0
0 0 0 2 0
0 0 0 0 2


(II.72)

in the topological sector with quantum dimension dq = 1, i.e. j = 0 for the r = 5 RSOS
model.

Similar as in (II.32) for r = 4 we were able to express the three-point density matrix
of the r = 5 RSOS model in this topological sector as a sum of terms factorising into
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1 Models of SOS type

spectral parameter dependent elementary functions and the two-point function f(λ1, λ2)
solving the functional equation (II.70). Proceeding as for r = 4 we find the factorisation
of D3 in the one-dimensional block corresponding to the sequence α = (1234) of heights
to be

D
[14]
3 (λ1, λ2, λ3) = 7

4
√

5
− 3

4 −
1
4
(√

5 + 1 + (3
√

5− 5) cotλ13 cotλ23
)
f(λ1, λ2)

− 1
4
(√

5 + 1 + (3
√

5− 5) cotλ12 cotλ13
)
f(λ2, λ3)

− 1
4
(√

5 + 1− (3
√

5− 5) cotλ12 cotλ23
)
f(λ1, λ3) .

(II.73)
We present the complete list of non-zero matrix elements of D3 in Appendix D.

Now it is straightforward to calculate D3 in the homogeneous limit. Expanding the
two-point function as in Eq. (II.34) for the case r = 4 we find for the one-dimensional
block considered above

D
[14]
3 (0, 0, 0) = 7

4
√

5
− 3

4 − 2 (0, 0) + 1
8
(
3
√

5− 5
)

(2 (1, 1)− (2, 0)) . (II.74)

All other matrix elements may be computed using Appendix D.

1.3 Fibonacci anyons

As discussed in Section I.2 we can relate face models to one-dimensional quantum chains
with anyonic degrees of freedom on each lattice site. Considering the Hamiltonian limit
of the homogeneous RSOS model with r = 5, i.e. ui ≡ 0 in (I.84), one obtains a model
of Fibonacci anyons [14, 43]. Here we will use the functional equation (I.98) to compute
the two-site density matrix for the chain of τ -anyons.

The Hilbert space of fusion paths for these anyons was shown to be isomorphic to the
a0 odd part of the RSOS Hilbert space HLper for r = 5 and we saw in Section I.2 that
the Hamiltonian of the anyon chain

H = J
L−1∑
n=0

P (ττ→1)
n (II.75)

belongs the family of conserved quantities generated by the transfer matrix of the RSOS
model (I.85) by means of the mapping from Eq. (I.57).
We will now use the solution of the inverse problem to relate the energies of the

anyon model to the density operator of the homogeneous model. Note that in this case
t(0) is the translation operator with eigenvalues Λ(0) = exp(2πik/L) for some integer k.
Furthermore, we have ρ(0) = −1 for the RSOS model. Assuming that the eigenstates of
the transfer matrix are normalised, that is 〈Φ|Φ〉 = 1, the two-point function (I.94) is
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1.3 Fibonacci anyons

given by
〈Φ|Eα0α1α2

β0β1β2
|Φ〉 = D2(0, 0){α}{β} . (II.76)

Translation invariance, i.e [H, t(0)] = 0, implies that the energy of an eigenstate |Φ〉
is EΦ = LJ 〈Φ|P (ττ→1)

1 |Φ〉. As P (ττ→1)
1 depends only on the first three heights of the

chain, we can directly apply (II.76) to obtain

EΦ = LJ trV2

(
P

(ττ→1)
1 D2(0, 0)

)
, (II.77)

which relates the energy density of the anyon chain to certain correlators of the RSOS
model.

Plugging the explicit expression of P (ττ→1)
1 into (II.77) and using the simplified form

of the two-site density matrix (II.65) for eigenstates |Φ〉 in the topological sector j = 0
of the r = 5 RSOS model 7 we finally find

EΦ
L

= J

2
(√

5 + 5
)

(0, 0) + J

2
(
3−
√

5
)
. (II.78)

For the r = 4 RSOS model the ground state energies of the anyon model in the
thermodynamic limit are known [73] giving

(0, 0) =

−2 +
√

5 + 1
3

√
5
6(25− 11

√
5) for J > 0

1
2 −

1√
5 for J < 0

(II.79)

for the corresponding two-point functions f(0, 0). Finally, we show how our results
can be used for the computation of three-point functions. Therefore, we consider the
operator P (τττ→1) (see Eq. (I.53)) which projects the fusion product of three consecutive
τ -anyons to an anyon of type 1

〈a|P (τττ→`)
i |b〉 ≡

( ∏
k/∈{i,i+1}

δakbk

)∑
x

[(
F
bi−1ττ
ai+1

)ai
x

(
F
bi−1xτ
bi+2

)ai+1

`

]∗ (
F
bi−1xτ
bi+2

)bi+1

`

(
F
bi−1ττ
bi+1

)bi
x

(II.80)
and find

〈Φ|P (τττ→1)
1 |Φ〉 =

√
5− 2− 2

(√
5 + 5

)
(0, 0)− 5

4
(√

5− 1
)

(2 (1, 1)− (2, 0)) .
(II.81)

Thermodynamic limit of the r = 5 RSOS model Taking the thermodynamic limit,
the discrete functional equation (II.71) of the homogeneous model is again valid in
some non-empty neighbourhood around the origin. Hence, we can solve it for the

7This condition holds in particular for the ground states of the antiferromagnetic anyon chain (J > 0)
with L mod 3 = 0 and the ferromagnetic model (J < 0).
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ferromagnetic ground state (belonging to the j = 0 topological sector). From (II.72) we
deduce limχ→i∞ g(u, v) = 0. Having in mind the analytic properties of the eigenvalue
[48], we set a(u, z) := χ(u, iz + λ

2 ) and b(u, z) := r(u, iz), r(λ1, λ2) being the function
on the right-hand side of Eq. (II.71). Note that b(u, z) does not have poles for z ∈ R if
0 6= u ∈ R. Moreover, one finds limz→±∞ b(u, z) = 0. This allows to take the Fourier
transform of both sides of Eq. (II.71).

For the ferromagnetic groundstate a(u, z) does not have any poles in the strip
−iλ/2 ≤ Im(z) ≤ iλ/2. Therefore, the Fourier transforms

A(u, k) = 1
2π

∫ ∞
−∞

dz a(u, z)e−ikz

B(u, k) = 1
2π

∫ ∞
−∞

dz b(u, z)e−ikz
(II.82)

can be carried out similar to the r = 4 case leading to

A(u, k) = B(u, k)
2 cosh

(
λ
2k
) . (II.83)

Proceeding as in (II.51) we see that

a(u, z) =
∫ ∞
−∞

dy b(u, y)K(z − y) (II.84)

with
K(z) =

∫ ∞
−∞

dk eikz

4π cosh(πk10 )
(II.85)

The kernel K can be evaluated exactly. Note that it has a simple pole at z = −5i. Since
cosh(πk10 ) = − cosh

(
π(k−10i)

10

)
we can proceed similar to Eqs. (II.54) and (II.55), i.e. we

first observe that

K(z) +
∫ −∞−10i

∞−10i
dk eikz

4π cosh(πk10 )
= K(z)(1 + e10z) . (II.86)

The left-hand side of the previous equation is again a contour integral along the contour
C from Fig. 6

lim
R→∞

∮
C

dk eikz

4π cosh(πk10 )
=
(∫ ∞
−∞

+
∫ −∞−10i

∞−10i

)
dk eikz

4π cosh(πk10 )
, (II.87)

where the left and right sides of the rectangle do not contribute for R→∞. Using the
residue theorem we find

K(z) = 5
2π sinh(5z) . (II.88)
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Figure 6: Graphical description of the contour C.

By a similar trick we can solve the integral in (II.84) and find exact results for the
correlation functions described above. Note that the integrand fulfils

b(u, y)K(z − y) = −b(u, y + iπ)K (z − (y + iπ)) (II.89)

and thus we choose an integration contour according in Fig. 6 but with −10i replaced
by iπ. For small x, u > 0 the poles inside the contour are located at{

iπ

5 − ix,
4iπ
5 − ix, iπ − ix,

2iπ
5 − ix,

iπ

5 − iu,
2iπ
5 − iu,

3iπ
5 − iu,

4iπ
5 − iu

}
. (II.90)

Again, the left and right sides of the rectangle do not contribute in the limit R→∞.
Hence, we can find an explicit expression for a(u, z) using the residue theorem. Going
back to the original function χ(λ1, λ2) we find after simplifications

χ(λ1, λ2) = 3−
√

5
4 cos(2λ12) + 4 cos(4λ12) + 2 (II.91)

and, hence, we obtain the two point function f(λ1, λ2) = χ(λ1, λ2)ϕ(λ1, λ2). As
displayed in Fig. 7 we see a good convergence of the finite size correlation functions
towards the exact result in the thermodynamic limit. However, the result is only valid
for λ2 from a small interval around 0. This can be seen by comparing the above results
with finite size data. Even for L = 6 we already see an almost perfect matching around
the origin but severe deviations in other areas (see Fig. 8).
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Figure 7: Comparison of the exact result (II.91) in the thermodynamic limit L =∞ with the
finite size correlation functions of system sizes L = 6, 8. In each case f(0, v) is plotted for the
homogeneous model.
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Figure 8: Comparison between the solution (II.91) of the functional equation (II.70) in the
thermodynamic limit L =∞ and the finite size function for different chain lengths L. One can
see that further away from the origin both functions behave quite differently. It is also observed,
that for L mod 3 = 0 (dashed lines) poles appear.

Luckily, this still suffices for the calculation of correlation functions in the thermody-
namic limit. We find (0, 0) = 1

2 −
1√
5 , (2, 0) = 14

5 −
6√
5 and (1, 1) = 2

5(−7 + 3
√

5). Using
these results and (II.81) we find an exact expression for the three-anyon projector for
eigenstates |Φ〉 in ferromagnetic ground state of the r = 5 RSOS model:

〈Φ|P (τττ→1)
1 |Φ〉 = 14

√
5− 23 . (II.92)
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We conclude this section with some remarks. Comparing the result for the ther-
modynamic limit with the r = 4 model, we see some similarities. For r = 4 the
right-hand side (II.44) of the continuous functional equation (II.39) is discontinuous in
the thermodynamic limit and agrees with the discrete functional equation (II.26) only
in a neighbourhood of the origin. We expect a similar behaviour for r = 5. For L→∞
the right-hand side of (II.71) is exact in some interval containing the origin but deviates
from the ‘real’ function r(u) periodically. To obtain the exact solution one needs to find
the continuous version of (II.71). This, as well as the extension to arbitrary values of r,
will be interesting topics for future research.
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Having studied some models of RSOS type, let us transfer the results to different
face models and related anyon chains. There exist many strategies to construct such
models. Here we shall focus on anyon models where the anyon types are labelled by
representations of some algebra (in this section Uq(so(5))) and the fusion rules are
read off from the decomposition of tensor products of representations into irreducible
ones. These anyon models have been shown to be exactly solvable upon a fine tuning
of the coupling constants. For some values the Hamiltonian is generated by transfer
matrices of related integrable face models [16]. In this chapter we will focus on the
SO(5)2 anyon model and in particular on its related face models. Therefore, we give
a brief introduction to the model and continue with the examination of its reduced
density matrices. We conclude this section with the derivation of the discrete functional
equations and give an outlook on their potential usage in future work.

2.1 The SO(5)2 model

Let us consider anyons satisfying the fusion rules of SO(5)2 as given in Table 1. F -moves
consistent with those fusion rules have been constructed in [75]. There are four sets of
gauge inequivalent8 F -moves parameterised by pairs of numbers (l, κ) where l = 1, 3 and
κ = ±1. Considering the projection operators (I.52) one finds that they are independent
of the choice of κ. Therefore we will fix κ = +1 and denote the F -moves by F (l)
whenever we want to specify the choice for l.

⊗ ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

ψ1 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6
ψ2 ψ2 ψ1 ⊕ ψ5 ⊕ ψ6 ψ3 ⊕ ψ4 ψ3 ⊕ ψ4 ψ2 ⊕ ψ5 ψ2
ψ3 ψ3 ψ3 ⊕ ψ4 ψ1 ⊕ ψ2 ⊕ ψ5 ψ2 ⊕ ψ5 ⊕ ψ6 ψ3 ⊕ ψ4 ψ4
ψ4 ψ4 ψ3 ⊕ ψ4 ψ2 ⊕ ψ5 ⊕ ψ6 ψ1 ⊕ ψ2 ⊕ ψ5 ψ3 ⊕ ψ4 ψ3
ψ5 ψ5 ψ2 ⊕ ψ5 ψ3 ⊕ ψ4 ψ3 ⊕ ψ4 ψ1 ⊕ ψ2 ⊕ ψ6 ψ5
ψ6 ψ6 ψ2 ψ4 ψ3 ψ5 ψ1

Table 1: The fusion rules for SO(5)2 anyons.

Consider a chain of L ψ3 anyons. As explained in Section I.2 we obtain the fusion
path basis via Eq. (I.51). From the F -moves we get the projection operators P (33→b)

i

(see Eq. (I.52)). The fusion rules lead to the adjacency graph depicted in Fig. 9.
The fusion rule ψ3 ⊗ ψ3 = ψ1 ⊕ ψ2 ⊕ ψ5 implies that the most general local nearest

8The solution of the pentagon equations (I.50) usually requires some gauge fixing.
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ψ1

ψ2

ψ3 ψ4

ψ5

ψ6

Figure 9: Adjacency graph for a chain of ψ3 anyons.

neighbour Hamiltonian can be described by a single parameter θ

hi(θ) = cos
(
θ + π

4

)
P

(33→2)
i + sin

(
θ + π

4

)
P

(33→5)
i (II.93)

resulting in
H(θ) =

∑
i

hi(θ) . (II.94)

Depending on the value of θ the model is described by different phases c.f. [76]. Here
we will focus on some special values of θ where the Hamiltonian belongs to the set of
conserved quantities of a face model.

Points of integrability have been found in [16] using the fact that the local projection
operators yield a representation of the Birman-Murakami-Wenzl (BMW) algebra [77,
78] containing a copy of the Temperley-Lieb algebra (I.28) as a subalgebra. Using
Baxterization techniques similar to those explained in Section I.1.3 IRF Boltzmann
weights solving the Yang-Baxter equation have been found.

Their general form is given by

Wαβ

(
a b

c d

∣∣∣∣∣u
)

=
6∑

n=1
wα,βn (u)

[(
F aβαd

)b
n

]∗ (
F aαβd

)c
n

(II.95)

with α, β ∈ {1, 2, . . . , 6} and functions wα,βn (u). In our case of a chain of ψ3 anyons
only α = β = 3 needs to be considered and we will use wn(u) ≡ w3,3

n (u) and similarly

W 3,3
(
a b

c d

∣∣∣∣∣u
)
≡W

(
a b

c d

∣∣∣∣∣u
)
.

Using only the Temperley-Lieb representation one obtains the non-zero functions

w1(u) = sinh(γ − u)

w2(u) = sinh(γ + u)

w3(u) = w2(u)

(II.96)

with cosh(γ) =
√

5/2. Notice that the anisotropy parameter corresponds to the massive
phase of the XXZ model.
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2.1 The SO(5)2 model

Another set of Boltzmann weights can be obtained using the full BMW algebra

w1(u) = sinh
(
u+ πi lFZ

10

)
sinh

(
u+ 3πi lFZ

10

)
w2(u) = sinh

(
u− πi lFZ

10

)
sinh

(
u− 3πi lFZ

10

)
w3(u) = sinh

(
u+ 9πi lFZ

10

)
sinh

(
u+ 3πi lFZ

10

) (II.97)

where lFZ = 39 for l = 1 and lFZ = 1 for l = 3 such that the weights explicitly depend
on the choice of F (l). Although we use the same notation for the Boltzmann weights of
Temperley-Lieb and the BMW type, it should always be clear from context which one
is meant

After the construction of the Boltzmann weights all definitions from the previous
chapter can be applied to this model. In particular we can define the transfer matrix
t(u) via (I.11).

Taking the Hamiltonian limit as explained in Section I.1.2 we find that for certain
values of θ the anyonic Hamiltonian (II.94) is obtained. To be definite, we set

H(α′, α′′) = α′
d

du ln t(u) + α′′L . (II.98)

The Temperley-Lieb representation then yields (II.94) for θ = 0 and θ = π where
(α′, α′′) = ±( 1

2
√

2 ,
1

2
√

10). Using the BMW representation one finds two additional
integrable points at θ = η and θ = η + π where η = arctan 1+

√
5

4 − π
4 .

In the following section we will examine the reduced density matrices for the SO(5)2

model. Note that we are now actually considering three IRF models: one corresponding
to the Temperley-Lieb solution for the Boltzmann weights and two corresponding to the
BMW solution for l = 1 and l = 3. Before studying the density operators it is, however,
useful to examine the symmetries of the model.

According to Section I.2 the Hilbert space can be decomposed into topological sectors
i.e. into the eigenspaces of the operators Y` defined in Eq. (I.54). The transfer matrices
commute with these operators and thus its eigenstates can be labelled by the their
eigenvalues. We will see that similar to the RSOS models we can use the Y3 eigenvalues
to characterise the ‘good’ sectors for which simplifications in the structure of the density
matrices occur.

9The index of lFZ stands for Fateev–Zamolodchikov. The SO(5)2 IRF model is related to the Z2
Fateev–Zamolodchikov models where lFZ characterises the R-matrices which are related to the IRF
Boltzmann weights and vice versa.
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2 SO(5)2 anyons

2.2 The Temperley-Lieb model

Following the same strategy as in the previous Section II.1 on SOS models, we consider
the reduced density operators DN (λn1 , . . . , λn2). Note that the Boltzmann weights and
therefore also the (generalised) transfer matrices depend on the choice of the integrable
point. Let us first consider the Temperley-Lieb point for which the model is Temperley-
Lieb equivalent to the XXZ Heisenberg chain. In this case similar results as for the SOS
models, which can be related to the 6-vertex model by face-vertex-correspondence, are
expected.
As discussed earlier the transfer matrix commutes with the topological operator Y3

and thus there exists a common basis of eigenstates. The eigenvalues of the operators Y`
are known to be quotients of the modular S-matrix associated to each choice of F -moves
which diagonalises the fusion rules [50]. In our case one finds y3 ∈ {0,±1,±

√
5}. In

addition, the (generalised) transfer matrices do not depend on the choice of F (l) for the
Temperley-Lieb model.

Numerically calculating D1(λ1) for small chain lengths we observe that it is always
independent of the spectral parameter and the inhomogeneities for states in the y3 =
±
√

5 sectors and we will from now on restrict our studies to these sectors. In those
sectors D1(λ1) is particularly simple:

D
[α,β]
1 (λ1) =


1
20 for (αβ) ∈ {(13), (31), (64), (46)}
1
10 for all other allowed (α, β)

. (II.99)

To find an exact expression for D2 in the considered sectors we proceed similar to
the algorithm from the previous Section II.1.2. Inspired by the structure of D2 for the
r = 4, r = 5 RSOS models, we assume that we can express the two-site density operator
in terms of one off-diagonal element, i.e. we make the ansatz

f0 + f1 f(λ1, λ2) (II.100)

for any matrix element of D2(λ1, λ2) with constants f0, f1 being independent of the
spectral parameter, inhomogeneities and system size. Specifically, choosing f(λ1, λ2) ≡
〈232|D2(λ1, λ2)|242〉 the constants f0 and f1 can be easily obtained from the exact finite
size values of D2. Since the dimension of the auxiliary space dim(V2) = 28 is quite large
we only present the one-dimensional [1, 1] block of the density operator as an example:

D
[1,1]
2 (λ1, λ2) = 1

100 + 2
5 f(λ1, λ2) . (II.101)

To study the functional equation (I.98) we first need to establish the unitarity and
crossing relations of the SO(5)2 face model at the Temperley-Lieb point. Regarding

74



2.2 The Temperley-Lieb model

unitarity we find that (I.6) holds with

ρ(u) = sinh(u− γ) . (II.102)

Note that for our choice of Boltzmann weights we have ρ(0) = −1/2. Furthermore, the
initial condition (I.8) acquires a factor of 1/2

d

a

c

b

0 = 1
2 δa,c . (II.103)

The crossing relation for this model is more complicated compared to RSOS models.
We find that Eq. (II.15) needs to be modified to

W

(
a b

c d

∣∣∣∣∣u
)

= gad
gbc

W

(
b d

a c

∣∣∣∣∣−γ − u
)
, (II.104)

where the gauge factors gab are given by

g13 = −g64 = 1 ,

g23 = g24 = g53 = g54 =
√

2 ,

g32 = g35 = g42 = g45 =
√

5
2 ,

g31 = −g46 =
√

5 .

(II.105)

Taking into account these differences in comparison with the SOS models, we need to
reconsider the P− operator which we define as

〈α0α1α2|P−|β0β1β2〉 = α1

α0 = β0

β1

α2 = β2

P− ≡ 2δα0β0δα2β2

gα0β1

gα1α2
α1

α0

β1

α2

−γ .

(II.106)
With this choice and keeping track of the gauge factors the A-operator must be multiplied
by an additional factor of gβN−1αN /gαN−1αN (and λ→ −γ).

After simplifications the functional equation yields

ρ(u− v)f(u, v − γ) + ρ(u− (v − γ))f(u, v) = 1
40 . (II.107)
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2 SO(5)2 anyons

Setting g(u, v) := f(u, v)/ρ(u, v) we finally obtain

g(u, v) + g(u, v − γ) = 1
40 ρ(u− v) ρ(u− v + γ) . (II.108)

Note that this equation is quite similar to those obtained for the r = 5 RSOS model
(II.70). However, this model is massive and the solution will need some adaptions
compared to those found in Section II.1.

2.3 The BMW models

In order to have (generalised) transfer matrices with real valued matrix elements we
rescale their arguments by a factor i, i.e. we work with

(
〈a|⊗̂〈α|

)
T (u)

(
|β〉⊗̂|b〉

)
=

L∏
i=1

W

(
ai−1 ai

bi−1 bi

∣∣∣∣∣ i (u− ui)
)
δa0,α0 δaL,β0 δb0,α1 δbL,β1 .

(II.109)
In contrast to the Temperley-Lieb case the (generalised) transfer matrices now depend

explicitly on the choice of F -moves. Recall that there are two inequivalent sets F (l) with
l = 1 and l = 3 which must be studied separately. Nonetheless, the unitarity relation
is identical for both of them. One finds ρ(u) = sin

(
π
10 + iu

)
cos

(
1
5(π + 5iu)

)
. The

crossing relation is the same as for the Temperley-Lieb case (see (II.104) and (II.105)).

The l = 1 case

Restricting ourselves to the y3 = ±
√

5 sector one observes that D1(λ1) is independent
of u and the inhomogeneities and coincides with the result found for the Temperley-Lieb
model (II.99).
The computation of D2(λ1, λ2) becomes more complicated even in the y3 = ±

√
5

sectors. Now two independent functions are needed to completely characterise the
density operator. It turns out that the ansatz

a0 + a1 f(λ1, λ2) + a2 g(λ1, λ2) (II.110)

with f(λ1, λ2) ≡ 〈232|D2(λ1, λ2)|242〉 and g(λ1, λ2) ≡ 〈313|D2(λ1, λ2)|323〉 is sufficient
to decompose any matrix element of the density operator, where a0, a1 and a2 are
constants independent of the spectral and system parameters.
As an example we compute the [1, 1] block:

D
[1,1]
2 (λ1, λ2) = 1

100 + 1
10
(
5−
√

5
)
f(λ1, λ2) +

√
3−
√

5
5 g(λ1, λ2) . (II.111)

76



2.3 The BMW models

All other matrix elements are easily computed from the exact finite size D2 operators.
Having found the general shape of D2 we can insert it into the functional equation

(I.98). Note that due to the additional i in the definition of the generalised transfer
matrices the Boltzmann weights appearing in the A-operator have to be changed
accordingly.

Using the decomposed D2 operator, the functional equation (I.98) simplifies to a set of
two coupled equations. For the sake of readability we use the notation sk := sin(k(u−v))
and ck := cos(k(u− v)) resulting into

ρ(u− v)ρ(v − u)f(u, v − iλ) = α0(u, v) + α1(u, v)f(u, v) + α2(u, v)g(u, v)

ρ(u− v)ρ(v − u)g(u, v − iλ) = β0(u, v) + β1(u, v)f(u, v) + β2(u, v)g(u, v)
(II.112)

with coefficient functions

α0(u, v) = 1
32

(
− 1

5
√

5
1
25
(√

5 + 5
)

c2
)
,

α1(u, v) = 1
32

(
−
√

5 + 3 + 2
√

5
(
5− 2

√
5
)

s2−
√

2
(√

5 + 5
)

s4− 2 c2 +
(√

5− 1
)

c4
)
,

α2(u, v) = 1
16

−√7
5 + 3√

5
+
√

5− 11√
5

s2 + 4√√
5 + 5

s4 +
√

7
5 + 3√

5
c2

 ,

β0(u, v) = 1
160
√

2
,

β1(u, v) = 1
32

(√
15− 5

√
5−

√
125− 55

√
5 s2−

√
15− 5

√
5 c2

)
,

β2(u, v) = 1
16

(
1
2

√
50− 22

√
5 s2 +

√
1
2
(√

5 + 5
)

s4− 1
2
(√

5− 1
)

c2 + 1
2
(√

5− 1
)

c4
)
.

We will now examine the model F (l = 3).

The l = 3 case

Choosing l = 3 does not affect the unitarity and crossing relations. Furthermore,
D1(λ1) is unchanged compared to the previous cases, while the decomposition of
D2(λ1, λ2) differs. We can still choose f(λ1, λ2) ≡ 〈232|D2(λ1, λ2)|242〉 and g(λ1, λ2) ≡
〈313|D2(λ1, λ2)|323〉 and write any matrix element according to (II.110). However, the
constants do not agree, e.g. we find

D
[1,1]
2 (λ1, λ2) = 1

100 + 1
10
(
5 +
√

5
)
f(λ1, λ2)−

√√
5 + 3
5 g(λ1, λ2) . (II.113)

Plugging the above result into the functional equation (I.98) results again into two
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2 SO(5)2 anyons

equations given by

ρ(u− v)ρ(v − u)f(u, v − iλ) = α0(u, v) + α1(u, v)f(u, v) + α2(u, v)g(u, v)

ρ(u− v)ρ(v − u)g(u, v − iλ) = β0(u, v) + β1(u, v)f(u, v) + β2(u, v)g(u, v)
(II.114)

where the coefficient functions are given by

α0(u, v) = 1
32

( 1
5
√

5
− 1

25
(√

5− 5
)

c2
)
,

α1(u, v) = 1
32

((√
5 + 3

)
−
√

40
√

5 + 100 s2−
√

10− 2
√

5 s4− 2 c2−
(√

5 + 1
)

c4
)
,

α2(u, v) = 1
16

(√
7
5 −

3√
5

+
√

5 + 11√
5

s2 + 2
√

1
5
(√

5 + 5
)

s4−
√

7
5 −

3√
5

c2
)
,

β0(u, v) = 1
160
√

2
,

β1(u, v) = 1
32

√5
(√

5 + 3
)
−
√√

5 + 5
(
3
√

5 + 5
)

s2−

(√
5 + 5

)
√

2
c2

 ,

β2(u, v) = 1
16

(
1
2

√
50 + 22

√
5 s2 +

√
1
2
(
5−
√

5
)

s4 + 1
2
(√

5 + 1
)

c2− 1
2
(√

5 + 1
)

c4
)
,

using again the notation sk := sin(k(u − v)) and ck := cos(k(u − v)). One observes
apart from some signs huge similarities between the functional equations for the l = 1
and the l = 3 model.

To conclude this section we emphasise that the structure of the functional equations
resembles those found for the RSOS model. For the Temperley-Lieb model we were
able to express D2 by one single function similar to what has been discussed for the
RSOS r = 4, 5 models in the sectors with quantum dimension 1. However, the BMW
models turned out to be more complicated even in the ‘good’ topological sectors. Here
the structure of D2 and the functional equations are similar to the RSOS models in the
topological sectors with quantum dimension > 1. Similar coupled equations have also
been found for higher rank vertex models, e.g. in [79, 80]. It will be interesting to see if
some of the methods can be adapted to the RSOS and SO(5)2 models.
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Conclusions

Correlation functions in integrable face models are still not as well understood as their
vertex relatives. Corner transfer matrix [81] and functional methods [38, 82] have been
used to calculate local height probabilities but in general the literature on this subject
is rather scarce. In this thesis new functional methods have been developed and applied
to several critical solid-on-solid models and the SO(5)2 model.

To achieve this goal, we solved the ‘inverse problem’ for generic face models and thus
were able to relate correlation functions to reduced density matrices. Instead of directly
calculating these matrices, we derived a set of functional equations for inhomogeneous
face models, a discrete one (I.98), which is only valid at a discrete set of points and a
reduction relation (I.100) relating N - to (N − 2)-point functions.

For instance, we have obtained explicit expressions for the reduced density matrices
of the r = 3 CSOS model for a particularly simple reference state. They were expressed
in terms of the one-point function which depends on the spectral parameter and
the inhomogeneities. By contrast, the one-point functions in the RSOS models are
independent of the spectral parameter. For the r = 4, 5 RSOS models we have been
able to express the two-site density matrices in terms of two unknown functions similar
to the spin-1/2 Heisenberg chains [29, 31]. These functions are uniquely determined by
the derived functional equations for any transfer matrix eigenstate, given the analytical
properties inherited from the Boltzmann weights.
Additional properties of the density matrices are found in topological sectors with

quantum dimension dq = 1 (containing the ground states of the RSOS model): here we
have observed a reduction relating DN to DN−1 when one of the spectral parameters
approaches infinity. This resembles the asymptotic condition on the density matrices
complementing the discrete qKZ equation for the Heisenberg spin chain guaranteeing
the uniqueness of its solution [30, 31]. Moreover, we have found that the reduced density
operators of the r = 4 and 5 RSOS models in these topological sectors can be further
simplified. Here, the two-site density operator D2 is completely characterised by one
single function. Preliminary results support the conjecture that this holds true for any
r > 5 in these sectors.

Restricting ourselves to these sectors, we were able to solve the functional equations
for the ferromagnetic ground state of the r = 4 model. A key role was played by the
reduction relation (I.100) which allowed us to find a continuous functional equation
for the density operator. For finite chain lengths the solution is given by a single
integral while in the thermodynamic limit an explicit expression can be derived. For
the r = 5 model we were able to find an explicit solution of the functional equation in
the thermodynamic limit again corresponding to the ferromagnetic ground state.



To efficiently find finite size correlation functions in the r = 5 (and possibly also r > 5
RSOS models), one needs to find a continuous version of the discrete functional equations.
However, the reduction relation does not fulfil the task in this case. Inspecting the
r = 4 case may give a hint how such an equation may look like. It will be interesting to
examine this topic in future research.

Once the two-point functions are calculated these results can be used to obtain explicit
expressions for the N -point reduced density matrices with N > 2. Motivated by similar
results for the spin-1/2 Heisenberg chain [23], we assumed a factorisation of long-range
correlators into an algebraic part, which is independent of system parameters, and a
physical part, which is described in terms of the two-point functions (see Eq. (II.30)).
Moreover, we proposed an efficient algorithm to calculate the algebraic part and used
it for the calculation of the three-sites density operator of the r = 4, 5 RSOS models.
Combined with the explicit results for the two-sites density operator we were able to
exactly determine the three-point functions for these models and for the corresponding
chain of Fibonacci anyons.
Since the functional methods developed in Part I. are quite general, one can apply

them to the SO(5)2-model and any other face model which possesses crossing and
unitarity symmetries. This IRF/anyon model belongs to solutions of the Yang-Baxter
equation which are in part not of Temperley-Lieb type in contrast to the SOS models
studied before. The SO(5)2 anyon model can be mapped to the corresponding face model
for some values of the coupling constants (integrable points). For certain topological
sectors we were able to unveil the structure of the two-site reduced density matrix and
derived functional equations for the functions which characterise them.
Methods from this thesis may be used to answer long-standing questions: first of

all, in the context of RSOS models a comparison of the density matrices with the
corresponding quantities for the related anisotropic Heisenberg chains at roots of unity
can provide insights into the boundary contributions to correlation functions resulting
from the particular fusion path nature of the RSOS Hilbert space.
Secondly we want to emphasise that the discrete functional equations (I.98) for the

density operators hold for generic integrable IRF models (such equations are also known
for vertex models and spin chains related to quantum groups [83]). Together with
the algorithm used here for the computation of the structure functions in factorised
expressions (II.29) and (II.30) this may well allow to shed some light on the question
whether the factorisation of correlation functions is a general property of integrable
models which extends beyond RSOS models and spin-1/2 chains. Therefore, it is
desirable to extend the studies of the SO(5)2 model to three-point functions and analyse
their factorisation properties.
Other possible extensions are fused or higher rank face models. Their vertex coun-
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Conclusions

terparts, i.e. spin chains with spin > 1
2 have been addressed using similar techniques

and explicit results for two- and three-point functions have been found [84, 85]. Since
fused models obey crossing and unitarity symmetries it is expected that they can be
tackled by methods developed in this thesis. Higher rank vertex models have also been
studied but there are fewer results (see e.g. [66, 80] for explicit expressions for correlation
functions of the SU(3) spin chain). The functional equations for higher rank models
differ from those found in the rank one case due to the absence of crossing relations. It
is expected that similar methods can also applied to higher rank face models to study
their correlation functions.

To conclude, in this thesis quite general functional methods have been developed and
applied to correlation functions of various face and anyon models. The open questions
arising from it may be a starting point for further research in this context.
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A Proof of Theorem 1.

Having shown the proof of Theorem 1. only for a chain length L = 2 we now present
the general (graphical) proof. We use double arrows to indicate periodic boundary
conditions in horizontal direction. For arbitrary L and 1 ≤ n < L and |a〉, |b〉 ∈ HLper

we need to calculate the matrix element:

〈a|
(
n−1∏
k=1

t(uk)
)
Tαβ(un)Tαβ(un+1)

 L∏
k=n+2

t(uk)

 |b〉 =

=

0 u1,2 . . . u1,L−1 u1,L

u2,1 0 . . . u2,L−1 u2,L

...
...

...
...

...

un,1 un,2 . . . un,L−1 un,L

un+1,1 un+1,2 . . . un+1,L−1 un+1,L

...
...

...
...

...

uL−1,1 uL−1,2 . . . 0 uL−1,L

uL,1 uL,2 . . . uL,L−1 0

a0 a1 a2 aL−2 aL−1 aL

b0 b1 b2 bL−2 bL−1 bL

α β

. (A.1)

Let us have a closer look on the four central rows and illustrate the procedure. Having
used the initial condition (I.8), we can repeatedly use unitarity (I.6) turning all Boltz-
mann weights into Kronecker δ′s. To guide the eye, each usage of unitarity is indicated
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by shading the involved weights. One finds:

· · · t(un−1)Tαβ(un)Tαβ(un+1)t(un+2) · · · =

=

. . . un−1,n un−1,n+1 un−1,n+2 . . .

. . . un,n−1 un,n+1 un,n+2 . . .

. . . un+1,n−1 un+1,n un+1,n+2 . . .

. . . un+2,n−1 un+2,n un+2,n+1 . . .

α β

= ρn−1,nρn,n+1ρn+1,n+2×

×

. . . un−1,n+1 un−1,n+2 . . .

. . . un,n+2 . . .

. . . un+1,n−1 . . .

. . . un+2,n−1 un+2,n . . .

α β

= ρn−1,nρn,n+1ρn+1,n+2ρn−1,n+1ρn,n+2×

×

. . . un−1,n+2 . . .

. . . . . .

. . . . . .

. . . un+2,n−1 . . .

α β

= ρn−1,nρn,n+1ρn+1,n+2ρn−1,n+1ρn,n+2ρn−1,n+2×

85



×

. . . . . .

. . . . . .

. . . . . .

. . . . . .

α β

where ui,j ≡ ui − uj and ρi,j ≡ ρ(ui − uj)ρ(uj − ui) has been used. Iterating the
procedure in every row, we find

〈a|
(
n−1∏
k=1

t(uk)
)
Tαβ(un)Tαβ(un+1)

 L∏
k=n+2

t(uk)

 |b〉 =

=
L∏

k,`=1
ρ(uk − u`)

. . . an−1 an = α an+1 . . .

. . . bn−1 bn = β bn+1 . . .

α β

=
L∏

k,`=1
ρ(uk − u`)δan,αδbn,β

∏
j 6=n

δajbj

=
L∏

k,`=1
ρ(uk − u`) 〈a|

(
Eαβ

)
n
|b〉

which ends the proof.
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B Proof of Theorem 2.
Here we will provide the proof for the functional equation (I.98). It consists of three
steps. The idea is, to consider the action of AN on a density operator with one row added,
i.e. DN+1(λ1, . . . , λN , λN + λ). Recall, that for every n ∈ N Dn(λ1, . . . , λn){α}{β} = 0
if α0 6= β0 or αn 6= βn. In those cases the functional equation holds trivially, so we may
assume α0 = β0. Also note that (AN (λ1, . . . , λN ) [DN+1 (λ1, . . . , λN , λN + λ)]){α}{β} is
a matrix element of an operator VN+1 → VN+1. To keep the presentation legible, the
following steps will be shown graphically for N = L = 2, e.g.

A2 (λ1, λ2) [D3 (λ1, λ2, λ2 + λ)]{α}{β} = δα0β0δα2β2

ρ(λ1 − λ2)ρ(λ2 − λ1)Λ(λ1)Λ(λ2)Λ(λ2 + λ)×

×

γ

λ1 − λ2 λ2 − λ1

λ

λ1 − u1 λ1 − u2

λ2 − u1 λ2 − u2

λ2 + λ− u1 λ2 + λ− u2

α0 β0

α1 β1

α2 = β2
β3α3

Φ

Φ

Now, writing VN+1 = VN ⊗̂V1 (see II.3 for the definition of the symbol ⊗̂) we perform
two ‘(constrained) partial traces’ over the factor V1 each leading to one side of the
functional equation, i.e. operators on VN . In a final step we show that for the special
choice of λN being one of the inhomogeneities {ui} the constraint can be dropped and
both summations lead to the same result.
In a first step we note that from the definition (I.91) of the density operators

∑
αN+1

DN+1 (λ1, . . . λN , λN + λ){α}{β} = DN (λ1, . . . , λN ){α
′}{β′} , (B.2)

where α′ = (α0, . . . , αN ) and β′ = (β0, . . . , βN ) with α0 = β0 and αN = βN . This gives
immediately

∑
αN+1

AN (λ1, . . . , λN ) [DN+1 (λ1, . . . λN , λN + λ)]αβ = AN (λ1, . . . , λN ) [DN (λ1, . . . λN )]α
′β′ .

(B.3)
Note that this fixes the spin γ to be equal to α1 in the graphical representation above
(or αN−1 for general N). Therefore we have obtained the left-hand side of the functional
equation (I.98).
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For the second step we sum over α = αN = βN and fix the spin γ to be equal to
βN−1. For N = L = 2 this becomes (thick dotted lines indicate where the constraint
δγβ1 is used)

δγβ1

∑
α2

A2 (λ1, λ2) [D3 (λ1, λ2, λ2 + λ)]{α}{β} =

= δα0β0

ρ(λ1 − λ2)ρ(λ2 − λ1)Λ(λ1)Λ(λ2)Λ(λ2 + λ)×

×
∑
α

γ

λ1 − λ2 λ2 − λ1

λ

λ1 − u1 λ1 − u2

λ2 − u1 λ2 − u2

λ2 + λ− u1 λ2 + λ− u2

α0 β0

α1 β1

α
β3α3

Φ

Φ

= δα0β0

ρ(λ1 − λ2)ρ(λ2 − λ1)Λ(λ1)Λ(λ2)Λ(λ2 + λ)×

×
α

γ

λ1 − λ2 λ2 − λ1

λ1 − u1 λ1 − u2

λ2 − u1 λ2 − u2

λ2 + λ− u1 λ2 + λ− u2

α0 β0

α1 β1

β3α3

Φ

Φ

= δα0β0

Λ(λ1)Λ(λ2)Λ(λ2 + λ)

λ2 − u1 λ2 − u2

λ1 − u1 λ1 − u2

λ2 + λ− u1 λ2 + λ− u2

α0 β0

α1 β1

β3α3

Φ

Φ
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= 1
Λ(λ1)Λ(λ2 + λ)

λ1 − u1 λ1 − u2

λ2 + λ− u1 λ2 + λ− u2

α0 β0

α1 β1

β3α3

Φ

Φ

= D2 (λ1, λ2 + λ)α̃ β̃

with α̃ = (α0, α1, α3) and β̃ accordingly. Here we have used the initial and crossing
conditions to evaluate the Boltzmann weight at λ, the Yang-Baxter equation to pull the
rotated weight from the right to the left and finally 〈Φ|Tα0α0(λ2) = Λ(λ2)〈Φ|Pα0α0 with
the projection operator Pαα : Hper → Hαα. For general N > 2 these operations have to
be iterated to move the row T (λN ) to the top yielding the right-hand side of Eq. (I.98).

The final step consists of showing that for the special choice of λN the two operations
shown above yield the same result. Recall Eq. (I.12) which for convenience reads:

a

c

a

b

d

e

u

u+ λ

= ρ(u)ρ(−u) δbe . (B.4)

This relation can be iterated which was used to find inversion relations for the transfer
matrices of inhomogeneous face models [39]. Here it is the key ingredient to complete
the proof. To this end we focus on the last two lines of AN [DN+1](λ1, . . . , ui, ui + λ).
The scalar prefactors appearing in (I.97) and in the following operations are suppressed
as they do not depend on the spins in the auxiliary spaces and are irrelevant for the
proof. Now we use the initial condition in the i-th column and (I.12) in the following
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ones until the rightmost line of spins is reached:

Φ

...
...

...
...

. . .

. . .

. . .

. . .

. . .

0 ui − ui+1 ui − uL

λ ui − ui+1 + λ ui − uL + λ

λγ

βN+1
αN = βN

βN−1

=

Φ

...
...

...
...

. . .

. . .

. . .

. . .

. . .
ui − ui+1 ui − uL

ui − ui+1 + λ ui − uL + λ

λγ

βN+1
αN = βN

βN−1
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=

Φ

...
...

...
...

. . .

. . .

. . .

. . .

. . .
ui − uL

ui − uL + λ

γ

βN+1
αN = βN

βN−1

=

Φ

...
...

...
...

. . .

. . .

. . .

λN − λN−1

γ

βN+1

βN

βN−1

βN−2

Using the initial condition for the rotated weight with spectral parameter λ we obtain
that βN = βN+1. By definition of the operator AN and periodic boundary conditions in
quantum space Hper we also have αN = αN+1. The spin γ is not connected to one of
the Boltzmann weights any more and therefore the partial traces considered above yield
the same result. This proves the theorem.

Note that the restriction of λN ∈ {ui} in the functional equation (I.98) can be dropped
for matrix elements where αN−1 is a leaf node of the adjacency graph G: in this case
all neighbouring spins are necessarily equal and therefore the lowest two rows can be
removed using (I.12) for arbitrary values of λN .

Finally one should remark that, depending on the definition of the Boltzmann weigths
for a particular model, the crossing relation may be modified by height dependent gauge
factors, see e.g. (II.15) for the RSOS model. While these factors cancel in calculations
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where periodic boundary conditions can be imposed they have to be taken care of in
the functional equation (I.98) – either by rescaling the operators A and D or by adding
constant (i.e. not spectral parameter dependent) prefactors.

92



Appendix

C Proof of Theorem 3.

The proof consists of a repeated usage of (I.12) and is shown in a graphical manner.
Note that we are rescaled the right-hand side by its denominator.

N∏
i=1

Λ(λi) 〈α|WN (λ) ·DN (λ1, . . . , u, u+ λ)|β〉 =

φ

λ

u− u1 . . . u− uL

u− u1 + λ . . . u− uL + λ

αN−2

αN−1

αN

βN−2

βN−1

βN

=

φ

u− u1 . . . u− uL

u− u1 + λ . . . u− uL + λ

αN−2

αN

βN−2

βN−1

βN

= ρ(u− u1)ρ(u1 − u)

φ

. . . u− uL

. . . u− uL + λ

αN−2

αN

βN−2

βN−1

βN
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=
L∏
i=1

ρ(u− ui)ρ(ui − u)

φ

αN−2

αN

βN−2

βN

In the first step we used that a Boltzmann weight evaluated at λ degenerates to a
Kronecker-δ. Then repeatedly using (I.12) the two last rows disappear while producing
a product of ρ functions. Dividing the resulting equation by ∏N−2

i=1 Λ(λi) gives (I.100)
and thus proves the theorem.

D Factorisation of D3 for the r = 5 RSOS model
Similar as in the r = 4 case, Eq. (II.30), the matrix elements of the three-site density
operator D3(λ1, λ2, λ3) in transfer matrix eigenstates from the j = 0 sector of the r = 5
RSOS model can be decomposed in terms factorizing into the two-point function f(λi, λj),
1 ≤ i < j ≤ 3, as defined in (II.65) and a set of structure functions fi,j(λ1, λ2, λ3), i.e.

f0 + f1,2(λ1, λ2, λ3) f(λ1, λ2) + f2,3(λ1, λ2, λ3) f(λ2, λ3) + f1,3(λ1, λ2, λ3) f(λ1, λ3) .

Furthermore we find that all structure functions can be written as

f1,2(λ1, λ2, λ3) = 1
4
(
f1

1,2 + f2
1,2 cot(λ13) + f3

1,2 cot(λ23) + f4
1,2 cot(λ13) cot(λ23)

)
f1,3(λ1, λ2, λ3) = 1

4
(
f1

1,3 + f2
1,3 cot(λ12) + f3

1,3 cot(λ23) + f4
1,3 cot(λ12) cot(λ23)

)
f2,3(λ1, λ2, λ3) = 1

4
(
f1

2,3 + f2
2,3 cot(λ12) + f3

2,3 cot(λ13) + f4
2,3 cot(λ12) cot(λ13)

)
(D.5)

where f0 and {f1
i,j , f

2
i,j , f

3
i,j , f

4
i,j} are constants depending on the considered matrix

element. Hence, we can uniquely describe any matrix element by in total 13 constants.
In Table 2 we list these constants for the non-zero matrix elements 〈α|D3(λ1, λ2, λ3)|β〉
in the sector with odd α0. All other matrix elements can be obtained by using reflection
symmetry.
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