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Abstract

In characteristic 0 irreducible tensor products of representations of symmet-
ric and alternating groups have been described by Zisser and by Bessenrodt
and Kleshchev. In positive characteristic a classification conjecture for such
products for symmetric groups S,, was formulated by Gow and Kleshchev.
Parts of the conjecture were proved shortly after in papers of Bessenrodt and
Kleshchev and of Graham and James. However many cases in characteristic
2 for n even were still open. For alternating groups in characteristics p > 7
irreducible tensor products have been described in a paper of Bessenrodt
and Kleshchev, though not for p <5.

In the submitted papers I consider the still open cases, completing the
classification of irreducible tensor products of representations of symmetric
and alternating groups up to a certain class of tensor products for alternating
groups in characteristic 2.

In Charakteristik 0 wurden die einfachen Tensorprodukte von Darstel-
lungen der symmetrischen und alternierenden Gruppen von Zisser und von
Bessenrodt und Kleshchev beschrieben. In positiver Charakteristik formu-
lierten Gow und Kleshchev eine Klassifizierungsvermutung fiir solche Pro-
dukte der symmetrischen Gruppen .5,,. Teile der Vermutung konnten kurz
danach von Bessenrodt und Kleshchev und von Graham und James bewie-
sen werden, trotzdem blieben vielen Fiélle in Charakteristik 2 fiir gerade n
noch offen. Fiir alternierende Gruppen in Charakteristik p > 7 wurden die
einfachen Tensorprodukte in einem Artikel von Bessenrodt und Kleshchev
beschrieben, fiir p < 5 jedoch nicht.

In den eingereichten Artikeln betrachte ich die noch offenen Fille. Da-
bei kann ich die Klassifizierung von einfachen Tensorprodukten von Dar-
stellungen der symmetrischen und alternierenden Gruppen abschlieflen, mit
der einzigen Ausnahme einer Klasse von Tensorprodukten fiir alternierenden
Gruppen in Charakteristik 2.

Keywords: symmetric groups, alternating groups, tensor products
Schlagworte: symmetrische Gruppen, alternierende Gruppen, Tensorproduk-
te






Introduction

Let G be a group and F' be a field. A F'G-representation is an homomorphism
f:G — GL(V), where V is a F-vector space. Given a F'G-representation
[+ G — GL(V) we often simply refer to V' as a FG-representation (or
FG-module), with G-action given by gv = f(g)v for g € G and v € V. The
dimension of a F'G-representation V' is just the dimension of V' as a F-vector
space. The notions and results presented below on representation theory are
standard and well known, see for example [Se].

The simplest example of representation is the trivial representation 14,
that is the F'G-representation with V' = F and G-action gv = v for each
g € G and v € V. A further basic example of representation is the regular
representation, the F'G-representation where V' has F-basis {e4|g € G} and
G-action given by gej, = egy, for every g, h € G.

In the following we will always assume that G is a finite group, F' is
an algebraically closed field and that representations have finite dimension.
Although these assumptions could be somehow weakened, this setting is
enough for the purpose of this introduction and we will always work within
this setting in the submitted papers [Mi} Mol Mj].

Given a F'G-representation V and a subspace V' C V we say that V'
is a subrepresentation (or submodule) of V' if V’ is stable under the action
of G. If there exists a proper G-stable subspace 0 C V' C V then V is
called reducible. If no such proper G stable subspace exists and V' # 0 then
V is called irreducible. Any 1-dimensional F'G-representation is irreducible,
but in general there exist irreducible F'G-representations which are not 1-
dimensional. Clearly if V' and W are isomorphic representations, that is
there exists an F-vector space isomorphism ¢ : V' — W such that go(v) =
©(gv) for every g € G and v € V, then V is irreducible if and only if W is
irreducible. Thus irreducible F'G-representations are usually only considered
up to isomorphism.

Note that if V' is any irreducible F'G-representation and 0 # v € V is any
non-zero vector of V', then V is the F-span of the vectors gv for g € G. Since
by assumption G is a finite group we then have that V is finite dimensional.
So the assumption of V' being finite dimensional does not limit the study of
irreducible representations of finite groups.

Let now V and W be two F'G-representations. The tensor product space
V ® W can be viewed as a F'G-representation using the G-action

g(v @ w) = (gv) @ (gw)

for each g € G, v € V, w € W and extending the action linearly. Note
that V@ W = W @ V and that if V/ =2 V and W = W are two further
FG-representations then V'@ W/ 2V @ W.

If at least one of V or W has dimension 0, then so does the tensor product
V ® W. So let us now assume that this is not the case. If V' is reducible
and 0 C V/ C V is a proper submodule of V then 0 C V'@ W CV @ W
is a proper submodule of V ® W. So in this case V ® W is also reducible.
Similarly V ® W is reducible if W is reducible. Thus if the tensor product



V ® W is irreducible then both V' and W have to be irreducible, but this
assumption is not enough to imply that V ® W is irreducible.

One class of tensor products which are always irreducible are tensor prod-
ucts of a 1-dimensional representation with an irreducible representation:
let V be a 1-dimensional F'G-representation and W be an irreducible F'G-
representation. Since V is 1-dimensional there exists an homomorphism
f: G — F* such that gv = f(g)v for each ¢ € G and v € V. Let
f*: G — F* be given by f*(g) = f(g)~! for each ¢ € G. Since F* is
abelian, f* defines a 1-dimensional F'G-representation V*. For fixed non-
zero vectors v € V and v* € V* we then have that for each ¢ € G and
wew

gvRv* W) = (gv)@(gv")@(gw) = f(g) f*(9)(v@r* @ (gw)) = vRV* @ (gw).

Thus W and V@ V*® W are isomorphic representations (through the vector
space map w — v@v*@w). Since VR V*@W = W is irreducible, it follows
that V ® W is also irreducible. As this class of tensor products is always
irreducible, we refer to such tensor products as trivial irreducible tensor
products. On the other hand irreducible tensor products V ® W where
neither V nor W is 1-dimensional are called non-trivial irreducible tensor
products.

In order to describe techniques that help studying irreducible tensor
products we first have to define some representations and state some ba-
sic results.

The construction of the module V* introduced above for 1-dimensional
representations, can be generalised also to module of dimension larger than
1 as follows. Let f: G — GL(V) be a FG-representation. Let V* = V as
vector space. Upon choosing bases for V' and V* and representing f though
matrices, define a FG-representation f* : G — GL(V*) by f*(g) = (f(g9)~')?
(with M! being the transpose matrix of M). The FG-representation f* is
called dual representation of f (and V* with the corresponding G-action is
called dual representation of V).

Given two F'G-representations fy : G — GL(V) and fw : G — GL(W)
it is possible to define a F'G-representation f : G — GL(Homp(V,W)) on
the homomorphism space Homp(V,W) by f(g)¢ = fw(g) o v o fir(g)~*
for g € G and ¢ € Homp(V,W). We have V* @ W = Homp(V,W). In
particular V* 2 V* ® 1¢ = Homp(V, 15).

Consider now the space of G-homomorphisms Homg(V, W), that is ho-
momorphisms ¢ € Homp(V, W) for which fi(g9)¢(v) = ¢(fv(g)v) for each
g € G and v € V. Then Homg(V,W) is exactly the set of homomor-
phisms ¢ € Homp(V, W) on which G acts trivially, that is f(g)¢ = ¢ for all
g € G (with f the above defined F'G-representation on Homg(V, W)). For
V' an irreducible F'G-representation Schur’s Lemma states that Endg (V) is
1-dimensional as F-vector space.

Let us now go back to the tensor product of two representations V' and
W. If V.® W is irreducible then by the previous paragraph Endg(V @ W)
is 1-dimensional. Further

Endg(V @ W) = Homg(V* ®@ V,W* @ W) = Homg(Endp(V'), Endp(W)).



Thus if V@ W is irreducible then
dim Homg(Endp(V), Endp(W)) = 1. (1)

This observation suggests us to study the F'G-representations Endg (V') and
Endp(W) separately in order to decide if the tensor product V @ W might
be irreducible. In particular we can use this idea to obtain reduction results
on which V' ® W might be irreducible and then study such tensor products
more in details (for example using knowledge on at least one of the two
representations V' or W).

One way to study the endomorphism modules Endp(V) is to study re-
strictions Vig of V to subgroups H of G and the corresponding permutation
modules 1Tg. Given any F'G-representation A and any subgroup H < G,
the restriction Aig is simply the F'H-representation A obtained by restrict-
ing the G-action to a H-action. Given a F H-representation B, again with
H < @G, it is possible to define the induced F'G-representation as follows.
Let K be a set of representatives of G/H and define BT% ‘= OrexkB as a
F-vector space. The BTJCJ} becomes a F'G-representation with the G-action
given by g(kb) = E((Eilgk)b), with £ € K the representative of the coset
gkH. If B = 1p then the H-action is trivial, so given any non-zero vector
x € 1p, elements of G permute the vectors {kz|k € K} which build a basis of
1¢§ =1 HT%, explaining why such representations are called permutation
representations.

By Frobenius reciprocity

Homg (A, B1S) = Homy (Al%, B) and Homg(B1%, A) = Hompy (B, ALS)

for every subgroup H < GG, FG-representation A and F'H-representation B.
In particular

Homg (11, Endp(A)) = Homg (11, A* © A)
>~ Homy (15, A* | @ AL%)
>~ Endy (AL%).

Thus studying restrictions A¢g and the dimension of the corresponding H-
endomorphism space as well as the submodule structure of the permutation
modules 11% can bring informations on certain submodules of Endp(A).
Since the modules Endp(A) are self-dual, this also gives informations on
some quotients of Endp(A).

In order to obtain reduction results on possible irreducible tensor prod-
ucts, the idea is thus to show that in most cases (|1)) does not hold by studying
homomorphisms

Endp(A) — 11% — Endp(B)

for different subgroups H < G.

We will now show more in details how this is applied to the case where G
is a symmetric or alternating group. Before doing this we introduce notation
for irreducible representations of these two classes of groups.

For the symmetric group S, it is well known that irreducible represen-
tations are labelled by partitions of n in characteristic 0 and by p-regular
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partitions of n (that is partitions of n which have no part repeated p or
more times) in positive characteristic p. We refer the reader to |J| for more
informations on the representation theory of symmetric groups.

Let 22(n) = Zy(n) be the set of partitions of n and, for p positive, Z,(n)
be the set of p-regular partition of n. For each partition A € 2,(n) let D* be
the corresponding irreducible S,,-representation (which is well defined up to
isomorphism). When considering irreducible representations of alternating
groups it is well known (see [Ben, BO||FK]|) that either D’%i’; ~ B s
irreducible or that D/\ii’; = Ej\rEBEﬁ is the direct sum of two non-isomorphic
irreducible representations. Further each irreducible representation of A,, is
isomorphic to E* or E2 for some partition A € Z,(n).

In order to classify irreducible tensor products D* ® D* for symmetric
groups the first step, using the idea above is to study the endomorphism
modules Endg(D?) and Endp(D*) separately using certain permutation
modules. It turns out that this approach works using permutation modules
induced from large Young subgroups S,. Here if @ = (aq,..., 1) € Z(n)
then S, C S, is the Young subgroup

S{l,...,al} X S{Oll-l-l,...,()q-‘raz} X X S{n—ah-i-l,...,n} = Sa1 X Sa2 Koo X Sah-

By large Young subgroup we mean that n —a; < k for some constant k. For
example if p = 0 then this approach works taking h = S,,—1 and S,,_2 2, that
is studying the restrictions D)\ingl and D>‘¢§:722 for any partition A\ as

well as the permutation modules 1@271 and 1T§:72 . The structure of both
restrictions of irreducible representations and permutation modules induced
from Young subgroups is well understood in characteristic 0, allowing to tell
that

dim Homs , (Endp(D?), Endp(DH)) > 2

if neither D* nor D* is 1-dimensional, so that D* ® D* is not irreducible in
this case. This approach had been used by Zisser in |Z] to prove this result.

Consider now p > 0. If p # 2 or if n is odd and p = 2 then the structure
of the permutation modules 115" and 113" is still easy enough. Thus
this same idea allowed Bessenrodt and Kleshchev in [BeKs|] to prove that
also in these cases if D* @ D* is irreducible then either D* or D* needs to
be 1-dimensional.

If n is even and p = 2 however there exist some non-trivial irreducible
tensor products D* @ D* (at least for n = 2 (mod 4)). It had been con-
jectured by Gow and Kleshchev in [GK]| that non-trivial irreducible tensor
products for symmetric groups can only occur for n = 2 (mod 4) and that
in this case D* ® D* is a non-trivial irreducible tensor product if and only
if, up to exchange, A = (n/2+1,n/2 —1) and g = (n —2a — 1,2a + 1)
with 0 < a < n/2. Such tensor products have been proved to be indeed
irreducible by Graham and James in |GJ]. Due to the aforementioned paper
of Bessenrodt and Kleshchev it thus remained open to prove that no further
non-trivial irreducible tensor products existed (some reductions also in this
case had been obtained by Bessenrodt and Kleshchev). The main reason
why this case had remained open was that structure of the modules 1T2271

and 1T2272 ) becomes more complicated when n is even and p = 2. Using
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the submodule structure of these two permutation modules as well as that
of the permutation module 113", the proof of the conjecture of Gow and
Kleshchev was completed in the first submitted paper [M;]. This required a
careful analysis of the restrictions of D* to the subgroups S,,_» and Spn—22
and their submodule structure.

Consider now alternating groups. Here three kind of tensor products have
to be considered. The first kind of products are those of the form E* @ EX.
In this case if E* ® E* is irreducible then D* ® D* is also irreducible. Since
whenever D*® D is irreducible the partition v € Z2,(n) with D@ D* = D¥
is known and since it is also known when D”iS" splits, these tensor products
are easily checked for irreducibility (and actually none of them turns out to
be irreducible if neither E¥ nor E* is 1-dimensional).

The other two classes of tensor products that have to be considered are
those of the forms E* @ EX and EX ® E. A problem when studying the
endomorphism rings Endp(ET) of splitting modules is that the modules ET
are less understood than the modules D™ (at least in positive characteristic).
One way to avoid this problem is to study the modules

Homp(EL,EY ® E™) and Homp(ET] ® ET,ET)
instead using that E;T:T/S(; >~ D7, Given any F'S,-representation M,
Homa, (M]3, Homp(EL, ET @ E™)) & Homa, (M]3, (E1)* ® (D™3"))

(
= Homs, (M, ((ET)" @ (D™13")13")
= Homs, (
(
(

M, (E113")* ® DT)
= Homs,, (M, (D™)" ® D7)
= Homs, (M,Endp(D7™))

and similarly
Homp, (M|3", Homp(ET & E™, ET)) = Homs, (M, Endp(D")).

So knowing information on the submodule structure of the F'S,-module
Endp (D7) can lead to knowing information on the submodule structures
of the FA,-modules Homp(ET, ET © E7) and Homp(ET © ET,ET). We
also obtain corresponding informations on quotients of these modules, since
the irreducible representations of the symmetric groups are self dual and so

ET & E™ = D" |3" = (D™|3")" = (ET)* & (E™)",
thus for some ¢ € {+}
Homp(ET, ET & E™) = Homp(ET & E™, ET, ).

Assume now that EB* ® Ef = F is irreducible. Since EY and E" have
the same dimension we have that either E* ® E” is also 1somorph1c to E or
that F is not isomorphic to any quotient of E* ® E” So by Schur’s lemma

dim Homp, (Endp(E), Homp(E#, EY))
= dim Homp, (E* @ E*,E* @ E}}) <1
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for e € {#} and then

dim Homs, (Endp(D?), Endp(DH))
= dim Homa,, (End(E*), Homp(EY @ E*, E)) < 2.

Similarly if £ ® EY is irreducible then

dim Hompa,, (Homp(E2, E}), Homp(E¥, EY))
= dim Homa, (E3 ® E*, B} @ E}) <1

for each choice of d,e € {£} and then
dim Homp,, (Homp(E}, E3 @ EX), Homp(EY @ E*, EY)) < 4.

Thus we obtain some generalisations of . In many cases these dimension
bounds are shown not to hold through study of Endg(D?) and Endx(DH)
separately. However since the bounds are now larger we require more permu-
tation modules to obtain enough informations on Endz(D?) and Endp(D*).
Cases where these bounds do not allow to exclude irreducibility are checked
more in details (using the structure of at least one of the two modules ap-
pearing in the product).

In characteristic 0 more informations are known on the splitting modules
E2, so that this case is easier to cover and had already been covered implic-
itly by Zisser in |Z] and explicitly by Bessenrodt and Kleshchev in [BeK;].
In particular they showed that the only non-trivial irreducible tensor prod-
ucts for alternating groups in characteristic 0 are exactly those of the form
E(n—11) & Egla), for n = a®. It is easy to see that, in characteristic 0,
an irreducible module D* of a symmetric group S,, restricts irreducibly to
S,_1 but splits upon restriction to A,, if and only if n = a? and A = (a%)
for some a. This gives a different description of the non-trivial irreducible
tensor products for alternating groups in characteristic 0.

In positive characteristic p > 5 the structure of the modules ITSZ% B for
k < 5 allowed Bessenrodt and Kleshchev in [BeK3| to completely characterise
non-trivial irreducible tensor products. The given classifications in these
cases nicely extends the above description from characteristic 0: up to certain
congruences modulo p on n and the number of parts of A, the non-trivial
irreducible tensor products of alternating groups are exactly those of the form
EC=LD®@E} where DA\L%Z—I is irreducible. The problem with characteristics

2, 3 and 5 is that the structure of the modules lTSLM for £ < 5 can in these
cases be more complicated.

Using also permutation modules corresponding to other Young subgroups
as well as a more detailed analysis of the restriction of the modules D* to the
corresponding Young subgroups the classification of non-trivial irreducible
tensor products in characteristics 3 and 5 was completed in the second and
third submitted papers [Ma,|M3s] to completely characterise non-trivial irre-
ducible tensor products in characteristics 3 and 5. In characteristic 2, non-
trivial irreducible tensor products which do not involve basic spin modules
(that is irreducible representations which are not labelled by the partition
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([(n+1)/2],[(n—1)/2])) have been completely described in [Ms]. In char-
acteristics 3 and 5 the classification extends that from larger characteristic,
with only one further non-trivial irreducible tensor product in characteris-
tic 3. In characteristic 2 the tensor products corresponding to the above
characterisation are shown to be irreducible and it is shown that any other
possible non-trivial tensor product must involve a basic spin modules as one
of its factors.

Irreducible tensor products for alternating groups in characteristic 2 with
basic spin modules are considered in a paper currently in writing [Ms].

I will now present some connection to other results.

Irreducible tensor products for covering groups of symmetric and alter-
nating groups. Let S, and A, be double covers of S, and A,, respectively.
The irreducible representations of S,, (resp. A,) which are not irreducible
representations of S, (resp. A,) are called irreducible spin representations.
When considering irreducible tensor products V @ W of S,, or A,, there are
three cases to be considered: neither V nor W is a spin representation, V
is not a spin representation but W is or both V' and W are spin represen-
tations. In the first case V' @ W is irreducible for S,, (resp. A,) if and only
if it is irreducible for S,, (resp. A,), so these tensor products do not require
extra consideration. The other two cases can be considered using arguments
similar to those described above for symmetric and alternating groups. For
double covers of symmetric groups in characteristic 0 this has been done by
Bessenrodt [Bes| and Bessenrodt and Kleshchev [BeKy|. In positive charac-
teristic p > 5 some reduction results had been obtained by Kleshchev and
Tiep in [KT]. In [My4] the characterisation of non-trivial irreducible tensor
products for double covers of symmetric and alternating groups in arbitrary
odd characteristic was completed. Since there are no spin representations in
characteristic 2, this case does not have to be considered for these groups.

Characteristic 0. In characteristic 0 results are often easier since in this
case any representation of a finite group is always isomorphic to a direct
sum of irreducible representations. So in this case knowing the character
of a representation is equivalent to knowing the representation itself (up to
isomorphism). Further in this case more informations on irreducible rep-
resentations are known, for example for symmetric groups dimensions and
characters of irreducible representations are known in characteristic 0 but
they are in general not known in positive characteristic. So more questions
can often be answered in this setting.

For symmetric groups, known results on Kronecker coefficients (that is
the multiplicity of D¥ as a composition factor of D @ D*) allow to de-
scribe tensor products with certain properties, like tensor products which
have only few homogeneous components [BeK;| or multiplicity free tensor
products [BB|. A different question connected to Kronecker coefficients is
the Saxl conjecture, which studies the existence of partitions A such that
any irreducible representation DY appears with positive multiplicity in the
tensor square D* @ D?.

For covering groups, multiplicities of composition factors of tensor prod-
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ucts of an irreducible representation with a basic spin module are known,
see [St, Theorem 9.3]. Further (almost) homogeneous tensor products have
been characterised in [Bes, BeKy].

A different kind of coefficients considers multiplicities of compositions
factors of representations obtained by inducing an irreducible representa-
tion of a Young subgroup. Since Young subgroups are direct products of
symmetric groups, this means considering induced outer tensor products.
Multiplicities of composition factors in this case are given by the Littlewood-
Richardson coefficients, see [J, 16.4]. The Littlewood-Richardson coefficients
also gives multiplicities of composition factors of tensor products of repre-
sentations of general linear groups, see [J, 26.13] and the remark just after.

For spin irreducible representations coefficients for inducing from the
double covers Sy C S;, of the Young subgroups Sy are also known. Here outer
tensor products are replaced by reduced Clifford products (since Sy is not
a direct product of smaller covering groups). Formulas for the multiplicities
of composition factors of induced reduced Clifford products are given in [St,
Theorems 8.1, 8.3].

Irreducible restrictions. Let V a representation of G and H < G be a
subgroup. If the restriction V] is irreducible then

dim Homg(11%, Endp(V)) = dimEnd g (V) = 1.

This suggests that when studying irreducible restrictions of representations
of a given group to subgroups reduction results can be obtained by study-
ing the permutation module 11% and the endomorphism module Endp (V)
separately. Similar to the tensor product case one can try to show that
Homg (11%, Endp(V)) is not 1-dimensional by constructing homomorphisms
which factor through some other permutation module IT%, that is homo-
morphisms
119 — 119 — Endp(V)

for different subgroups K < G.

For symmetric groups, taking K = S,,_1, Sp,—2.2 or S,,_3 3 this approach
often allows to obtain reductions to transitive or 2- or 3-homogeneous sub-
groups. Once these reductions are obtained, the remaining cases are then
considered more in details (using informations on the representations or sub-
groups) to complete the classification. For alternating groups, when consid-
ering restrictions of splitting modules, slight modifications of this idea are
used, similarly to what was done for tensor products.

Since the structure of the endomorphism rings Endp(D?) is studied us-
ing the structure of permutation modules induced from Young subgroups
when considering either irreducible restrictions or irreducible tensor prod-
ucts, there are multiple references between papers studying these two prob-
lems.

In characteristic 0 irreducible restrictions for symmetric and alternating
groups are studied by Saxl in [Sa]. The cases for p > 5 are considered in pa-
pers of Brundan and Kleshchev [BrK] and Kleshchev and Sheth [KS;,KSs|.
Maximal intransitive cases for symmetric groups were covered by Jantzen
and Seitz |JS], Kleshchev [K| and Phillips [P], but for the other cases in
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characteristics 2 and 3 only some reduction results were available, due to
Kleshchev and Sheth [KS;] as well as Kleshchev, Sin and Tiep [KST]. In
IKMT,, KMT5,[ KMTSj| the classification of irreducible restrictions of repre-
sentations of symmetric and alternating groups was essentially completed.
Again due to the often more complicated structure of the permutation mod-
ules 1TSZ,2,2 and 1T227373 in characteristics 2 and 3, these cases required a
much more careful analysis of the modules involved.

For covering groups of symmetric and alternating groups classifications
of irreducible restrictions were obtained by Kleidman and Wales [KW] in
characteristic 0 and Kleshchev and Tiep [KT] in positive characteristic.

Aschbacher-Scott classification of mazimal subgroups of finite classical
groups. Aschbacher and Scott showed in |AS| that understanding the con-
jugacy classes of maximal subgroups of almost simple groups is one of two
problems which is needed in order to be able to completely describe maxi-
mal subgroups of arbitrary finite groups. For G a symmetric or alternating
group, maximal subgroups of G have been described in |LPS|. For sporadic
groups informations on maximal groups can be found in the ATLAS [Atl].
For G a finite classical group, Aschbacher defined in |A] certain classes of
subgroups %;(G) for 1 < ¢ < 8 and .¥(G) consisting of possible maximal
subgroups of G. Since not all subgroups in the classes %;(G) and . (G) are
maximal, the subgroups appearing in these classes have to be further studied
to determine which of them are indeed maximal. In dimension at most 12
the question of maximality of these subgroups has been answered in [BHR].
For dimension at least 13, it has been studied in [KL| which subgroups of the
classes €;(G) are maximal, but maximality of subgroups of the class .¥(G)
is still open.

If H € ¥(G) is not maximal then there exists H < L < G with L €
%¢;(G) for some i € {2,4,6,7} or L € .#(G) (see |Ma]). One of the conditions
on H € .¥(G) is that H acts absolutely irreducibly on the natural module
of G.

If L is also in class .’(G) then in particular there exists an irreducible
representation D of L such that D|% is irreducible.

If L is in class %4(G) and V is the natural representation of G then
Vig =~ V) ® Vo with neither V; nor V5 of dimension 1. In particular upon
further restriction to H one can see that H has a non-trivial irreducible
tensor product.

Since groups H in class .(G) are almost quasi-simple, that is S <
H/Z(H) < Aut(S) for S a non-abelian simple groups, the study of irre-
ducible restrictions of representations of almost quasi-simple groups to al-
most quasi-simple subgroups and of irreducible tensor products of almost
quasi-simple groups has an application to the Aschbacher-Scott classifica-
tion. Note that although the existence of an irreducible restriction (resp.
non-trivial irreducible tensor product) is necessary for the existence of a
maximal subgroup subgroup L with H < L < G and L € (G) (resp.
L € €4(@)), this is not a sufficient condition.

In particular the above described work on irreducible tensor products
and irreducible restrictions of representations of symmetric and alternating



groups and their covering groups is needed for this classification.

More details on this can be found in [Ma]. In this survey paper references
can also be found for the irreducible tensor products and irreducible restric-
tions problems for finite groups of Lie type. Further informations about
containments H < L < G with L € %;(G) with i € {2,6,7} can also be
found as well as additional informations on the structure of subgroups con-
tained in class .7 (G) and resulting further restrictions on possible subgroups
containments H < L < G.

I thank Christine Bessenrodt for bringing the problem of the classifica-
tion of non-trivial irreducible tensor products for symmetric and alternating
groups to my attention and for some discussion. I also thank Alexander
Kleshchev for some discussion.
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