Logical Labeling Schemes

Maurice Chandoo*

Abstract. A labeling scheme is a space-efficient data structure for encoding graphs from
a particular class. The idea is to assign each vertex of a graph a short label s.t. adjacency
of two vertices can be determined by feeding their labels to an algorithm which returns
true iff they are adjacent. For instance, planar and interval graphs have labeling schemes.
The label decoding algorithm should be of low complexity since the time it takes to
execute corresponds to the time to query an edge.

What graph classes have a labeling scheme if the label decoding algorithm must be
very efficient, e.g. computable in constant time? In order to investigate this question we
introduce logical labeling schemes where the label decoding algorithm is expressed as a
first-order formula and consider their properties such as the relation to regular labeling
schemes. Additionally, we introduce a notion of reduction between graph classes in
terms of boolean formulas and show completeness results.

Keywords: implicit graph conjecture, graph class reduction, structural graph theory

1 Introduction

Labeling schemes are a type of data structure that provide asymptotically space-optimal representa-
tions for certain graph classes. Let us consider interval graphs as an example. A graph is an interval
graph if each of its vertices can be mapped to a closed interval on the real line such that two vertices
are adjacent iff their corresponding intervals intersect. There are 2°(1°87) different interval graphs
on n vertices. Neither adjacency matrix nor adjacency list are optimal to represent an interval
graph since both require more than O(nlogn) bits. Instead, the interval model of an interval graph
can be used: given an interval graph G with n vertices, write down its interval model (the set of
intervals that correspond to its vertices), enumerate the endpoints of the intervals from left to right
and label each vertex with the two endpoints of its interval, see Figure I} The set of vertex labels is
a representation of the graph and adjacency of two vertices can be determined by comparing their
four endpoints. Each endpoint is a number between 1 and 2n and therefore a vertex label requires
21og 2n bits. Thus, such a representation of an interval graph requires only O(nlogn) bits.

The idea behind this representation can be generalized. Let C be a graph class with 20(nlogn)
graphs on n vertices; we call such graph classes factorial. We say C has a labeling scheme if the
vertices of every graph in C can be assigned binary labels of length O(logn) such that adjacency
can be decided by an (efficient) algorithm A which gets two labels as input. The algorithm A may
only depend on C. By adjusting the label length it is also possible to find labeling schemes for
non-factorial classes. However, many important graph classes are factorial and therefore we restrict
our attention to them.

Labeling schemes were introduced by Muller [Mul88] and by Kannan, Naor and Rudich [KNR92].
One line of research in this area has seeked to minimize the label length in labeling schemes for
particular graph classes such as forests [ADK17]. Another fundamental question is whether every

*Leibniz Universitat Hannover, Institut fiir Theoretische Informatik; E-Mail: \chandoo@thi.uni-hannover.de

mailto:chandoo@thi.uni-hannover.de

2 7

1 3 4 5 6 8 9 10

Figure 1: Interval model and the resulting labeling of the interval graph

factorial and hereditary (= closed under vertex deletion) graph class has a labeling scheme. Being
hereditary can be regarded as a weak uniformity requirement that is satisfied by most natural graph
classes. This question remains open and its affirmative statement is known as the implicit graph
conjecture: every factorial, hereditary graph class has a labeling scheme with a label decoding
algorithm that runs in polynomial time. An overview of results related to this conjecture can be
found in [Spi03; Atm+15].

Many factorial, hereditary graph classes have been shown to have a labeling scheme. We are
interested in the opposite direction, i.e. trying to prove that a factorial, hereditary graph class does
not have a labeling scheme when the label decoding algorithm has low computational complexity.
This paper addresses the first challenge in this direction: finding a suitable definition of what low
computational complexity means. It should be sufficiently constrained in order to make it possible
to prove lower bounds while still being able to express labeling schemes for many graph classes.
We will argue that label decoders defined in terms of first-order logic over the structure of natural
numbers equipped with order, addition and multiplication are suitable for this task.

Overview. In section 2] we formally define labeling schemes and show how classes of labeling
schemes can be defined in terms of sets of languages. In section [3] we introduce logical labeling
schemes and relate them to classes of labeling schemes defined in terms of complexity classes.
Moreover, we show that quantifiers do not increase the expressiveness of logical labeling schemes in
the absence of addition and multiplication. In section [4] we consider what happens when the size
restriction on the labeling is omitted in quantifier-free logical labeling schemes. Our interest in
this class stems from the fact that many of the candidates for the implicit graph conjecture can
be found there. In section [5| we define a reduction notion between graph classes, which allows us
to relate the difficulty of finding labeling schemes for different graph classes. We prove that two
graph classes called dichotomic and linear neighborhood graphs are complete for certain fragments
of logical labeling schemes. Additionally, we prove that no uniformly sparse graph class is complete
for any such fragment. Figure |3]in the final section provides an overview of all the sets of graph
classes discussed here and their relations.

2 Basic Definitions and Classical Complexity

Notation. We write N,Np,Z,Q and R to denote the set of naturals excluding 0, naturals
including 0, integers, rationals and reals. For n € N let [n] = {1,...,n} and [n]o = [n] U {0}. Let
logn = [logy n]. Given a set X whose elements are sets, let [X]c = {2’ | 2 € X and 2’ C z} denote
its closure under subsets. For a function f which maps to a k-tuple, we write f;(z) to denote the
i-th component for k£ € N and i € [k]. We consider an undirected graph to be a directed graph with
symmetric edge relation. Every graph G = (V, E) is assumed to contain no self-loops ((v,v) ¢ E for
all v € V') unless explicitly stated otherwise; we say “a graph with self-loops” to indicate that it may
contain self-loops. The in-neighborhood Nj,(v) of a vertex v in a graph G is {u | (u,v) € E(G)}
and the out-neighborhood Nou(v) is {u | (v,u) € E(G)}. A graph class is a set of graphs closed
under isomorphism. For a graph class C and n € N let C—,,,C~,,C<, denote the set of graphs with
n, more than n and less than n vertices in C.

A boolean formula is an expression consisting of propositional variables and the boolean connectives
=, A\, V. A first-order formula ¢ over signature ¢ is an expression consisting of boolean connectives
-, A\, V, quantifiers 3, V, the equality symbol ‘=’, relation and function symbols from ¢ and variables.
A variable in ¢ is called free if it is not quantified. A first-order formula is called atomic if it contains
no quantifiers and boolean connectives. The structure N has Ny as universe and is equipped
with order ‘<’ and addition ‘4+‘ and multiplication ‘x‘ as functions, i.e. +(x,y) = = + y and
X (z,y) = zy. The structure N, has [n]y as universe and is equipped with order ‘<’, cut-off addition
‘“+¢ (+(z,y) :=z+y if x+y < n and 0 otherwise) and cut-off multiplication ‘x‘. Given a first-order
formula ¢ over {<,+, x} with k free variables and aq,...,a; € N, we write (M, aq,...,ax) E ¢ to
denote that ¢ is satisfied (modeled) when its free variables are replaced with ay,...,a; and it is
interpreted over the structure M.

Graph Theory. A graph class C is hereditary if every graph that occurs as induced subgraph
of a graph in C is in C as well. For example, forests and planar graphs are hereditary but trees
are not. The hereditary closure [C]c of a graph class C is the set of graphs that occur as induced
subgraph of a graph in C. For example, the hereditary closure of trees are forests. A graph class
is factorial if it has at most 29("1°8") different graphs on n vertices. A graph class C is uniformly
sparse if every graph G with n vertices in [C]c has at most cn edges for some fixed ¢ € N and all
n € N. We write Hereditary, Factorial and US to denote the set of hereditary, factorial and uniformly
sparse graph classes. A graph class C is said to have a universal polynomial graph if there exists a
sequence G1,Ga,... of graphs such that every graph in C—, is an induced subgraph of G,, for all
n € N and the quantity |V (G,)| is polynomially bounded.

An intersection graph class is a graph class where the vertices of every graph from that class
can be mapped to some type of object (e.g. line segments in the plane) such that two vertices are
adjacent iff their associated objects intersect. Line segment, disk graphs and k-box graphs are the
intersection graphs of line segments in R?, disks in R? and k-dimensional axis-parallel boxes in
R* for k € N. A graph is a k-interval graph if each of its vertices can be associated with k closed
intervals on the real line such that two vertices are adjacent iff some of their intervals intersect. A
graph G = (V, E) is a k-dot product graph if there exists a mapping f: V — R* such that (u,v) € F
iff Zle fi(uw) fi(v) > 1 for all u # v € V. The interval number (resp. boxicity) of a graph G is the
smallest k € N such that G is a k-interval (resp. k-box) graph. The arboricity (resp. thickness) of a
graph G is the smallest k£ € N such that there exist k forests (resp. planar graphs) Gy, ..., G on
the same vertex set as G such that E(G) = UE_ E(G;).

Complexity Theory. Let P, EXP and 2EXP denote the set of languages that are decidable in
polynomial time, exponential time and double exponential time. Let R denote the set of decidable
languages and let PH denote the set of languages in the polynomial-time hierarchy. Additionally, we
will refer to the two circuit complexity classes AC? and TC?. The class ACY consists of the languages
over {0,1} that can be decided by a family of boolean circuits of polynomial size and constant
depth using negation gates and gates for conjunction and disjunction with unbounded fan-in. The
class TC? is defined just as ACY but additionally majority gates (outputs 1 iff the majority of its
inputs is 1) with unbounded fan-in may be used. Logspace-uniformity is assumed. It holds that
ACY C TC® C P. Moreover, order can be computed in ACY and multiplication can be computed TC.
See [Vol99] for formal definitions and the mentioned results in circuit complexity.

Definition 2.1. A labeling scheme is a tuple S = (F,¢) where F' C {0,1}* x {0,1}* is called label
decoder and ¢ € N is called label length. A graph G with n vertices is representable by S, in symbols
G € gr(9), if there exists a labeling £: V(G) — {0,1}¢1°8™ such that for all u # v € V(G):

(u,0) € B(G) < (£(u), l(v)) € F

We call S a labeling scheme for a graph class C if every graph in C is representable by S (C C gr(S)).
We also say S represents C.

In a labeling scheme with label decoder F' only queries ‘(z,y) € F?’ where z and y have equal
length are ever made. Thus, we can assume w.l.o.g. that (x,y) € F implies |z| = |y| for all label
decoders F'. A label decoder can be encoded as language over {0, 1} by concatenating its entries.
This makes it possible to interpret complexity classes over languages as sets of graph classes.

Definition 2.2. Let F' C {0,1}* x {0,1}* be a label decoder and let L(F) = {zy | (x,y) € F'}. Let
A be a set of languages over {0,1}. We say a graph class C is in GA if there exists a labeling scheme
(F,c) for C with L(F') € A.

For example, GP is the complexity class of graph classes that have a labeling scheme with a
polynomial-time computable label decoder. This means it takes polylogarithmic time to query an
edge in a graph with n vertices since the labels have O(logn) length. The classes GR (computable
label decoder) and GP coincide with the ones defined by Muller [Mul88] and Kannan et al. [KNR92],
respectively. The class GALL is the set of graph classes that have a labeling scheme without
any restriction on the label decoder (ALL denotes the set of all languages). A graph class is in
GALL iff it has a universal polynomial graph. The implicit graph conjecture can be stated as
Factorial N Hereditary C GP. A factorial, hereditary graph class for which no labeling scheme is
known is called a candidate for the implicit graph conjecture.

It can be shown that imposing computational restrictions on label decoders does affect the set of
graph classes that can be represented by using a diagonalization argument. However, the graph
classes constructed to show these separations are not hereditary and thus do not affect the implicit
graph conjecture.

Theorem 2.3 ([Chal7, Corollary 3.4]). GEXP C G2EXP C --- C GR C GALL.

Many hereditary graph classes for which a labeling scheme is known can be trivially placed in
GACY. In fact, the only exception that we are aware of are graph classes with bounded twin-width.
Twin-width is a new graph parameter introduced by Bonnet et al. which subsumes clique-width,
i.e. every graph class with bounded clique-width has bounded twin-width. Every graph class with
bounded twin-width is in GP via the labeling scheme described in [Bon+21].

For example, graph classes with bounded clique-width, interval number or boxicity are in GACY.
A labeling scheme for graph classes with bounded clique-width is described in [Spi03, p. 165 f.]. It
is not difficult to see that the label decoder for it can be computed in AC®. For graph classes with
bounded interval number or boxicity this follows from a simple generalization of the labeling scheme
for interval graphs (for a graph with interval number or boxicity at most k, label each vertex with
2k numbers which represent its k intervals).

The implicit graph conjecture asks if every factorial, hereditary graph class is in GP. One can
also ask the converse, i.e. whether every graph class in GP is a subset of a factorial and hereditary
graph class. In fact, this does not even hold for GACY. From a graph-theoretical point of view one
might consider [Factorial N Hereditary]c to be the set of well-behaved, factorial graph classes since
being hereditary is the weakest uniformity requirement that can be imposed.

Fact 2.4 (|Chal7, Theorem 4.5]). GAC® ¢ [Factorial N Hereditary]c.

3 Logical Labeling Schemes

Establishing unconditional lower bounds in the context of computational complexity is difficult
and usually involves considering weak models of computation. The setting of labeling schemes

adds an additional layer of complexity to that task. Even though AC’ is among the smallest
complexity classes studied in complexity theory, it currently seems intractable to prove that a
factorial, hereditary graph class is outside of GAC®. Therefore a simpler class of labeling schemes
that can still represent interesting graph classes would be helpful.

The following class of labeling schemes fits that bill. Suppose that each vertex of a graph G with
n vertices is labeled with k integers between 0 and n¢ for some fixed ¢ and k. These k integers can
be encoded using O(logn) bits. The label decoder is allowed to add, multiply and compare these
numbers and determines adjacency from these comparisons. For example, the labeling scheme for
interval graphs from the introduction falls into this class. Each vertex is labeled with two numbers
between 1 and 2n to represent the endpoints of its interval and two vertices w,v with numbers
u1, U9, V1, v are adjacent iff neither us < v nor vo < u; meaning no interval ends before the other
starts; in this case ¢, k = 2. All uniformly sparse graph classes, k-interval graphs and graph classes
with bounded boxicity can be represented with such labeling schemes. This type of label decoder
can be formalized using first-order formulas.

Definition 3.1. A logical labeling scheme is a tuple S = (¢, ¢) where ¢ is a first-order formula
over the signature {<, 4, x} with 2k free variables and ¢, k € N. If ¢ contains no quantifiers we call
S quantifier-free. For a graph G with n vertices we define the following three interpretations of S:

Gegr(S):e3:V(G) = [n95 Vu#v e V(G): (u,v) € E(G) & (Ne, £(u), £(v)) = ¢
G € gro (S) e 3 V(G) = [n95 Yu#v € V(G): (u,v) € E(G) & (N, £(u),L(v) E ¢
G € gry(5) = 3H: V(G) — NE Vu#veV(G): (u,v) € B(G) < (N, (u),L(v) E ¢

For a logical labeling scheme S = (¢, ¢) and a signature o C {<,+, X} we say S is over o if ¢ is a
formula over o, i.e. ¢ uses only symbols from o.

The definition of gr(.S) essentially states that a graph can be represented by a logical labeling
scheme S = (i, ¢) if each of its vertices can be labeled with & numbers from [n°|y such that there
is an edge (u,v) iff ¢ is satisfied when plugging in the numbers ¢(u) and ¢(v) and evaluating it
over the finite structure A,c. Due to the finiteness addition and multiplication are cut-off, e.g. a
term +(x,y) evaluates to 0 if x + y > n°. The definition of gr (.5) is identical to gr(S) except that
¢ is evaluated over N and therefore addition and multiplication are not cut-off (no overflow can
occur). The definition of gr,(S) is identical to gr,(S) except that the numbers used to label the
vertices can be arbitrarily large instead of being at most n¢. Therefore this interpretation does not
correspond to a labeling scheme. However, it does capture certain candidates for the implicit graph
conjecture and will be considered in the next section.

Definition 3.2. Let 0 C {<,+, x}. We define GFO(0) (resp. GFO4¢(0)) as the set of graph classes
C for which there exists a (quantifier-free) logical labeling scheme S over o such that C C gr(S).

We omit the curly braces when referring to these classes, e.g. GFO(<,+) = GFO({<,+}).
Moreover, we write GFOy¢/GFO as shorthand for GFO4¢ (<, +, x)/GFO(<, +, x) and GFO 4 (=)
as synonym for GFO(qf)(Q)) since equality is the only symbol available when o =). We say a
graph class C is in GFO(o) (resp. GFOq¢(0)) via a logical labeling scheme S if S is over o (and
quantifier-free) and C C gr(S) . For example, interval graphs are in GFOq¢(<) via (¢,2) with
0= (z2 <y Vs <m1).

Suppose gr(.S) in Definition is replaced with gr, (S). Does that affect the set of graph classes
defined by GFO(c) or GFO4¢(c)? The following lemma shows that it does not make a difference for
the class GFOg4 (o) if o contains ‘<’ or o = (). Stated differently, in the context of quantifier-free
logical labeling schemes we can assume the natural interpretation of addition and multiplication
instead of the cut-off version when order is present.

Lemma 3.3 (Overflow). Let 0 C {<,+,x} s.t. 0 = 0 or o contains ‘<’. A graph class C is in
GFOg¢ (o) iff there exists a quantifier-free logical labeling scheme S over o such that C C gr,.(S).

Proof. If & = () then gr(S) = gr,.(S) holds for every logical labeling scheme S over ¢ since no
overflow can occur without using addition or multiplication. Therefore the statement trivially holds.
Let us consider the other cases where ¢ contains ‘<.

“=": Let C be a graph class in GFO4 (o) via a logical labeling scheme S = (¢, c). We construct a
quantifier-free logical labeling scheme S’ = (v, ¢) over o from S such that C C gr(S"). We assume
w.l.o.g. that we have access to the constants cop = 0 and ¢; = n¢ in 9. The constants can be realized
by adding two variables to each vertex which are promised to receive the values 0 and n¢ in every
labeling; this means v has 2(k + 2) free variables if ¢ has 2k free variables. We build v from ¢ such
that the overflow checks are incorporated into 1. To do this, we replace each atomic subformula A
of ¢ by a guarded one A’.

We demonstrate how to do this based on the following example. Let A(z1,z2,y1,y2) be the
atomic formula x (+(z1,y2), z2) < +(x2,y1). We convert A into A’ by checking whether an overflow
occurs at each subterm bottom-up. A’ is the following formula (order of operation is implied by
indentation and reading a formula ¢ — a A ¢ — [as “if ¢ then « else 87).

—_

a1 < +(x1,y2) —
c1 < X(cp,x2) —
c1 < +(z2,y1) —
co < o
A=ep < +H(x2,y1) —
co < +(w2,91)
A ey < X(co,x2) —
c1 < +(x2,11) =
X (co,x2) < ¢
A=er < +(z2,y1) —
x (o, w2) < +(w2,91)
A=er < +(z1,y2) —
c1 < X(+(z1,y2),2) —

- W N

= =~ A~ /N
_ O © N S D

—~ ~ o~~~
_ =
w N

—_
W~ (0¢)
_— D D D DD DD DO —

In line (1) it is checked whether an overflow occurs for +(z1,y2) (if 1 + y2 > n® holds). In lines (2
to (11) it is assumed that +(z1,y2) overflows and therefore it is replaced with c¢g. For example, the
overflow check for x(+(x1,y2), z2) becomes ¢; < X(cg,x2) in line 2. In line (13) it is assumed that
+(x1,y2) does not overflow and thus +(z1,y2) is not replaced with co.

“<”: Let C be a graph class and S = (¢, ¢) is a quantifier-free logical labeling scheme over o
such that C C gr(S5). The maximal value that results from evaluating any term in ¢ must be
polynomially bounded since every term in ¢ is a polynomial. This means there exists a d € N such
that the largest value produced while evaluating ¢ for a graph with n vertices does not exceed n.
Therefore gr (¢, c) C gr(p,cd) and C € GFO4¢(0) via (¢, cd). O

The following theorem describes the relation between the sets of graph classes defined in terms of
logical labeling schemes and the ones defined in terms of classical complexity classes. The label
decoder of a quantifier-free logical labeling scheme can be interpreted as a family of boolean circuits
by replacing each atomic formula with a circuit that computes it (the size of the circuit depends on
the number of vertices n). Quantifiers can be evaluated using non-determinism.

Theorem 3.4. GFOy(<) € GAC®, GFOy € GTC? and GFO C GPH.

Proof. First, we show how to convert a logical labeling scheme S into regular labeling schemes S’
and S” such that gr(S) C gr(S’) and gr.(S) C gr(S”) (1). Then we argue that if C is in GFO4(<)
/ GFOq4 / GFO via a logical labeling scheme S then the label decoder of S” (or S”) can be computed
in AC® / TC® / PH and therefore the inclusions hold (2).

Strictness of the first two inclusions follows from:

Corol. 4.5 Fact [2.4]
GFO4t(<) € GFO4 € PBS C [Factorial N Hereditary]c 2 GAC” C GTC'

(1) Let S = (¢,c) be a logical labeling scheme with 2k free variables. We define S' = (F,,d)
as follows. There are two aspects that need to be considered when converting ¢ into F,. First,
in order to express the overflow conditions in Fi,, the number of vertices n of a graph must be
accessible somehow. However, since graphs with different numbers of vertices may receive vertex
labels of equal length, n cannot be inferred from the label length alone. For example, the vertices in
a graph with 9 vertices and the vertices in a graph with 16 vertices both receive labels whose length
is dlog9 = dlog 16 = 4d (reminder: by logn we mean [logsn|). We encode n in the first logn bits
of a vertex label. Secondly, a value in [n¢]y is encoded using (¢ + 1) logn bits.

Let val: {0,1}* — Ny be the function which maps a binary string (possibly with leading zeros)
to its numeric value, e.g. val(0) = 0, val(1100) = 12 and so on. Let d = 1+ k(c + 1) and let F}, be
defined as:

(xox1 ... Tk, Yoy - - - Yk) € Fyp i (Nee,val'(z1), ..., val'(zk), val'(y1), ..., val'(yx)) = ¢

for all zo,y0 € {0,1}™, x5,y € {0,1}¢V™ m € N and i € [k] with z := val(z) + 1 and
val’(w) := min{z¢, val(w)}.

Let bing: [2F — 1]o — {0, 1}* be the bijective function which maps a number between 0 and 2% — 1
to its binary representation padded with leading zeros, e.g. bing(2) = 0010. Suppose a graph G
with n vertices is in gr(S) via a labeling ¢: V(G) — [n°]k. Then it holds that G is in gr(S’) via the
labeling

¢'(v) := bing, (n — 1)bin ey 1ym (€1(v)) - . bingei1)m, (Cr(v))

where m := logn and ¢; is the i-th component of £.

The labeling scheme S” with gr. (S) C gr(S”) can be defined similarly to S’. The only two
differences are that we can drop the first logn bits of a vertex label used to encode n since there is
no need to check for overflows (therefore the label length of S” is k(c + 1)) and in the definition of
the label decoder of S” the formula ¢ is interpreted over N instead of Ne.

(2) Suppose C is in GFOq. Due to Lemma there exists a quantifier-free logical labeling scheme
S = (i, ¢) such that C C gr. (S). The label decoder of S” can be computed in TC® via the family
of circuits that is described by ¢ itself since order, addition and multiplication can be computed in
TCY and there is no need to consider overflows.

Similarly, if C is in GFO4¢(<) there exists a quantifier-free logical labeling scheme S over {<}
such that C C gr (S) due to Lemma Since order can be computed in ACY it follows that the
label decoder of S” can be computed in AC? via the family of circuits described by ¢.

Suppose C is in GFO via a logical labeling scheme S = (¢,¢). We can assume w.l.o.g. that ¢
is in prenex normal form. The label decoder of S’ can be computed in PH due to the quantifier
characterization of PH and the fact that the quantifier-free part of ¢ can be evaluated in polynomial
time.

(To see that this proof is not circular despite its forward reference to Corollary the reader
can think of this theorem as appearing at the very end of the paper, which is not a problem since it
is not used in any other proof.) O

In the remainder of this section we show that quantifiers do not increase the expressivity in
the absence of addition and multiplication. To do so, we explain how a quantifier-free logical
labeling scheme without addition and multiplication can be converted into an equivalent one without
quantifiers.

Lemma 3.5. Let 0 C {<,+,x} s.t. 0 =0 or o contains ‘<’. GFOy (o) is closed under union.

Proof. Let C,D € GFOu(0). Due to Lemma there exist quantifier-free logical labeling schemes
(p,c) and (¢, d) over o such that C C gr. (¢,c) and D C gr. (¢,d). We assume w.l.o.g. that ¢
and 1) both have 2k free variables named x1,..., 2k, y1,...,yx and ¢ = d (assume ¢ < d, then we
could choose (¢, d) instead since gr. (¢, c) C gro (¢, d)). We define a quantifier-free logical labeling
scheme (¢, ¢) with 2(k + 2) free variables over o:

¢($8,$87$1a s 7xk’7y87y8>y17 s >yk’) £ ((.Tg = 338) - 90) A ((_‘xg = ZCS) — w)

Assume a graph G with n vertices is in gro (¢, c) via a labeling £: V(G) — [n¢]5. Then G is in
gro.(¢,c) via £'(v) := (0,0,¢(v)) for all v € V(G). Similarly, for a graph G in gr. (1, c) one can
choose ¢'(v) := (0,1, ¢(v)). Therefore CUD C gr (¢, c) and thus CUD € GFO4(o). O

Fact 3.6. GFO4(=) = GFO(=).

Proof. Let C be in GFO(=) via a labeling scheme S = (¢, ¢) with 2k free variables and ¢ quantified
variables. We show that there exists a quantifier-free formula ¢ with 2k free variables which only
uses equality such that

(Nncaa)): P <= (Nn“aa)): w

holds for all n¢ > 2k 4+ ¢ and a@ € [nc]gk . This implies that all graphs with more than o := /2k + ¢
vertices in gr(S) are in gr(¢, c) as well and therefore C>, € GFOq¢(=). Since GFOg (=) is closed
under union (Lemma and contains every singleton graph class, it follows that C is in GFO4(=).

To prove that for every ¢ there exists an equivalent quantifier-free 1), it suffices to prove this
for every ¢ of the form 3z /\éz1 L; where every L; is a literal and [€ N (see quantifier-elimination
[Smo91, p. 310]). Suppose ¢ has this form. We assume that ¢ is neither a tautology nor unsatisfiable,
otherwise we can define ¢ as x = x for some free variable = or the negation thereof. If z does
not occur in any literal then we can simply remove the quantifier, i.e. ¢ £ /\2:1 L;. Therefore we
assume z occurs in at least one literal. Assume z occurs in at least one positive literal L; £ z = x
for some free variable . Then we can obtain 1 by removing the literal L; and replacing every
occurrence of z with x. If z only occurs in negative literals, this means in order to satisfy ¢ one
must assign z a value which, in the worst case, no other variable has. If the universe is sufficiently
large (n > «) then such a value always exists and therefore we can remove all literals containing z
and the existential quantifier.]

Theorem 3.7. GFO (<) = GFO4(<,+) = GFO4 (<, x) = GFO(<).

Proof. Obviously, GFO4¢(<) is a subset of the other three classes since it is more restrictive. We
show that GFOu¢(<,+) and GFOu (<, x) are subsets of GFOg(<) in Lemma Here, we prove
that GFO(<) C GFO4 (<, +) and therefore the theorem holds.

(1) (2) 3) 4)
GFO(<) € GFO(<,suc) € GFO™(<,suc) C GFOg(<,suc) € GFO4¢ (<, +)

(1) Unlike in the case of GFO(=), quantifier elimination cannot be applied directly to GFO(<)
since the formula 3z ¢ < z A z < y has no quantifier-free equivalent using only ‘<’. Instead, we
consider the fragment that is additionally equipped with the unary function ‘suc’ which increments

its argument by one if it does not exceed the universe size, otherwise it returns 0. We call the set of
graph classes defined by this fragment GFO(<, suc).

(2) Let GFO®°(<,suc) be defined as the set of graph classes C for which there exists a logical
labeling scheme S over {<,suc} and C C gr_ ().

Suppose C is in GFO(<, suc) via the logical labeling scheme (¢, ¢) and ¢ has 2k free and ¢ quantified
variables. We assume w.l.o.g. that ¢ is in prenex normal form, i.e. it has the form Q121 ...Qqzq ¥
with @; € {3,V} and v is quantifier-free. Let V;/V. denote the set of universally/existentially
quantified variables in ¢ and let

¢élel...quq (/\ ﬁcl<z> — <¢’/\ /\ ﬁcl<z>

zeVh 2€Ve

where ¢; is a constant representing the maximum element of the universe and v’ is obtained by
replacing every atomic subformula in ¢ by a guarded one in the same manner as in the “="-direction
of the proof of Lemma The premise of the propositional implication (left-hand side of ‘—")
ensures that only values up to ¢; are considered for universally quantified variables. The big
conjunction after 1)’ ensures that only values up to c¢; are admissible for existentially quantified
variables. The guarded replacements simulate the overflow condition. It follows that

(Noe, @) = @ & (N, @) = ¢

holds for all @ € [n€]2* and therefore C is in GFO™(<, suc) via (¢, c).
(3) Suppose C is in GFO™(<, suc) via (¢, ¢) and ¢ has 2k free variables. Due to Lemma [3.§] there
exist a quantifier-free formula ¢ over {0, <,suc} with 2k free variables such that

WN.a) e N, a) =y

holds for all @ € N(Q)k. We can modify the labeling scheme (v, ¢) by adding an additional variable
to each vertex which is promised to receive the value 0 in every labeling and use it to replace the
constant 0. It follows that C is in GFOgf (<, suc) via (¥, c).

(4) The expression suc(z) can be simulated by « + 1 and the constant 1 can be realized by adding
an additional variable to each vertex. To prevent overflow when translating a labeling scheme (¢, ¢)
in GFOE?(<, suc) to GFO4(<, +), choose ¢+ d as second component of the new logical labeling
scheme where d is the number of times ‘suc’ appears in .

(To see that this proof is not circular despite its forward reference to Lemma and the
reader can think of this theorem as appearing right before Theorem [5.15] since it is not used in any
other proof before that.) O

Lemma 3.8. For every formula ¢ over the signature {0, <,suc} there exists an equivalent quantifier-
free formula v over the same signature, i.e. (N,@) = ¢ < (N, @) |= 9 holds for all @ € N§ where k
is the number of free variables in .

Proof. To prove that for every ¢ there exists an equivalent quantifier-free 1, it suffices to prove this
for every ¢ of the form 3z /\izl L; where every L; is a literal and | € N (see quantifier-elimination
[Smo91) p. 310]). There are the following 4 types of literals:

l.x+i<y+y
2.x4+1t=y+j
3. z+1i<y+j (negation of <)

4. x+1i# y+ j (negation of =)

where z,y are variables or the constant 0 and 7, j € Ny (note: = + i means suc is applied i times to
x). First, we argue why it suffices to consider only literals of the first two types (positive literals).
The idea is to rewrite literals of type 3. and 4. using disjunction (¢ < b < a < bV a = b and
a#b<< a<bVb < a), then rearrange the formula ¢ such that it becomes a disjunction of
conjunctions and draw the existential quantifier inside the disjunction:

=3z \//\ng\/ﬂz/\Lg

where Lg are appropriately chosen positive literals. Therefore it suffices to rewrite 3z A, Lz into
an equivalent quantifier-free formula for every j.

Due to the previous paragraph we can assume w.l.o.g. that ¢ = 3z /\éz1 L; where every L; is a
positive literal. Next, we explain how to convert ¢ into an equivalent quantifier-free formula . We
assume that ¢ is neither unsatisfiable nor a tautology, otherwise it is trivial to write an equivalent
quantifier-free formula. Moreover, we assume that no literal contains the same variable more than
once, e.g. ¢ < = + 2 does not occur. We assume that z occurs in at least one literal since otherwise
we can simply remove the part ‘3z’ from ¢ to obtain . We distinguish the following two cases.

Case 1: there exists a literal z + 4 = x + j for some i,j € Ng. In this case replace z with
T + j — 1 in every literal, rearrange each literal so that it contains no negative term and then
remove the existential quantifier to obtain . For example, a literal z + ¢ < y + p would become
r+j—it+qg<y+pandthenz+j+qg<y+p+r.

Case 2: z only occurs in literals with ‘<’. Let Xj; denote the set that consists of all pairs (z, k)
such that x is a free variable or the constant 0, k € Z and there exists a literal x + i < 2z 4+ j
with £ = j — i in ¢. Analogously, let X4 denote the set that consists of all pairs (x, k) such that
there exists a literal z + j < x 4+ ¢ with £k = j —i. Observe that a literal corresponding to the
pair (z,k) € X is satisfied iff + < 2 4+ k and a literal corresponding to (z,k) € X, is satisfied iff
2+ k < x. If Xy is empty then we can simply remove every literal containing z from ¢ to obtain v
because there always exists a sufficiently large value for z that satisfies all constraints implied by Xj;.
Thus, we assume that X is non-empty. If Xj; is empty then z can be replaced with the constant 0.
Therefore we assume X}; is non-empty as well. We define 1) as conjunction of the literals in the sets
[:1, £2 and £3:

e [:= set of literals in ¢ that do not contain z
o [y := literal equivalent to y — m < & — k — 1 for each (z,k) € Xy and (y,m) € Xy
e L3 := literal equivalent to k < x for each (z,k) € Xyt

It remains to argue why ¢ and v are equivalent, i.e. for all @ € N’g it holds that

WN.a) e N, a) =y

“=": Let @ € N§ and let (N, @) |= . We need to argue that all literals in £, Lo and L3 are
satisfied. This implies (N, d@) = 1. For £; this holds because all its literals occur in ¢ as well. Let L
be a literal in Ly via (z,k) € Xg and (y,m) € Xj;. This means L is equivalent toy —m <z —k — 1.
The pair (x, k) implies z + k < x and the pair (y, m) implies y < z + m must hold in ¢ with respect
to the assignment @. This means z < x — k and y — m < z and therefore y — m < z < x — k, which
implies y —m < & —k —1. Let L be a literal in £3 via (z,k) € Xg¢. The pair (z, k) implies z+k <
and therefore k < z since z > 0.

“<": Let @ € N§ and let (V,@) = 1. We argue that there exists a b € Ny such that (N, @) |= ¢
where z is assigned the value b. We define b as minimum over {a(z) —k — 1| (z,k) € Xgt} where
a(x) denotes the value assigned to variable z in @. It holds that b > 0: assume that this is not the

10

case, i.e. b < 0. This would imply that there exists an (z, k) € Xy such that a(x) —k —1 < 0, which
is equivalent to a(z) < k. Since (N, @) models 9, the literal in L3 for (z,k) € Xy implies k < a(z),
contradiction.

All literals of ¢ not containing z are satisfied due to £1. Each literal containing z in ¢ corresponds
to either an element in Xy or Xy;. Let (z,k) € Xg¢. This means 2+ k <z <2<z —k—1 and
therefore b < a(x) — k — 1. Our choice of b satisfies this. Let (y,m) € X);. This means y < z +m
resp. a(y) < b+m must hold. Due to L, it holds that a(y) —m < a(x) —k —1 for every (z,k) € Xy.
Since b = a(x) — k — 1 for some (z, k) it follows that the literal for (y,m) € X, in ¢ is satisfied. [

4 Polynomial-Boolean Systems

Line segment graphs, disk graphs and k-dot product graphs are candidates for the implicit graph
conjecture. All three share in common that they can be defined as the set of induced subgraphs
of some infinite graph H with vertex set R¥ and two vertices in H are adjacent iff they satisfy a
certain combination of polynomial (in)equations over 2k variables for some k € N. Given a graph G,
a mapping £: V(G) — R* showing that G is an induced subgraph of H is called a realization of G.

It can be shown that it suffices to use rationals instead of reals to define these classes by a
perturbation argument, i.e. V(H) = Q¥ for some k. A natural question that arises is how many bits
are required to represent each rational in some realization of a graph with n vertices from such a
class. McDiarmid and Miiller have shown that line segment and disk graphs require at least 22(%)
bits and that this also suffices for every such graph, i.e. the bound is tight [MM13]. Kang and
Miiller have shown that the same (upper and lower) bound holds for k-dot product graphs [KM12].
Therefore the labeling schemes induced by the definitions of these graph classes do not represent
them since they allow only O(logn) bits per rational.

This way of defining graph classes can be formalized as what we call a polynomial-boolean system.
Such a system consists of a sequence of 2k-variate polynomials that are compared with each other
and a boolean function that determines adjacency from these comparisons. Any graph class that
can be defined by a polynomial-boolean system is factorial and hereditary as we shall see. Therefore
it provides a source of potential new candidates for the implicit graph conjecture. Also, we show
that this formalism yields the same set of graph classes as the one that can be represented by
quantifier-free logical labeling schemes w.r.t. the interpretation gr (-) (Lemma .

We consider a polynomial to be a function that can be defined by an expression consisting of
variables, addition and multiplication.

Definition 4.1. Let X € {Ny,Z,Q,R}. A polynomial-boolean system (PBS) is a tuple (P, f) where
P is a sequence of ¢ polynomials with signature X2 — X and f is a ¢?-ary boolean function for
some k,q € N. We define gr(P, f) as the following set of graphs. A graph G with n vertices is in
gr(P, f) iff there exists a labeling £: V(G) — X* such that for all u # v € V(G) it holds that

(u,v) € B(G) & f(x11,...,244) =1

where z; ; = [p;(¢(u),£(v)) < pj(£(u),£(v))] for i, j € [q] and p; denotes the i-th polynomial in the
sequence P.

A graph class C is in PBS(X) if there exists a PBS (P, f) with polynomials over X such that
C Cgr(P,s). If X = Ny, we also write PBS instead of PBS(Ny).

It is easy to see that PBS(Ny) C PBS(Z) C PBS(Q) C PBS(R). Line segment graphs, disk graphs
and k-dot product graphs are in PBS(Q) since their definitions can be expressed as PBS.

The following lemma guarantees that every graph class that can be represented by a PBS and for
which no labeling scheme is known, must be a candidate for the implicit graph conjecture.

11

Lemma 4.2. PBS(R) C [Factorial N Hereditary|c.

Proof. Let (P, f) be a PBS where P is a sequence of g 2k-ary polynomials over R. We show that
gr(P, f) is small and hereditary, which implies that PBS(R) is a subset of [Factorial N Hereditary]c.
Let G be a graph that is in gr(P, f) via a labeling £: V(G) — R*. An induced subgraph of G on
vertex set V! C V(G) is in gr(P, f) via the labeling £ restricted to V’. Thus gr(P, f) is hereditary.

It remains to argue that gr(P, f) is small. We do so by applying Warren’s theorem [Spi03, p. 55],
which can be stated as follows. Let £ = (E1, ..., E;,) be a sequence of polynomial inequations over
variables x1,...,z,. Each inequation is assumed to be of the form p(zi,...,2,) < q(z1,...,2y)
where p, ¢ are polynomials. Let d denote the maximum degree of the polynomials that occur in
these inequations. Let n: R™ — {0,1}"™ be defined as follows. Given @ € R", the i-th component of
n(@) is 1 iff the inequation E; holds for the values @ for i € [m]. An element of the image of 7 is
called a sign pattern of £. Warren’s theorem states that the number of sign patterns of £ is at most
(chm)n where c¢ is some constant.

We argue that the number of graphs on n vertices in gr(P, f) is bounded by the number of sign
patterns of a certain sequence of inequations £. Consider a graph G on n vertices that is in gr(P, f)
via a labeling £: V(G) — R¥. The presence of the edge (u,v) in G is determined by the result of
¢? polynomial inequations. Therefore G is determined by the results of at most ¢?n? polynomial
inequations. These inequations use kn variables x! with u € V(G) and i € [k]. Let d denote the
maximum degree over the polynomials in P. This means £ has kn variables, ¢’n? inequations and

kn
maximum degree d. Consequently, there are at most (%) e n9™ graphs on n vertices in
gr(P, f) (¢,d, k,q are constants). O

The following theorem shows that choosing between polynomials over Ny, Z or Q does not make
a difference, i.e. they all lead to the same set of graphs classes. Therefore we simply write PBS in
the following. It is not clear whether PBS = PBS(R).

Theorem 4.3. PBS(Ny) = PBS(Z) = PBS(Q).

Proof. We argue that PBS(Q) C PBS(Np) in two steps. First, we show that PBS(Q) C PBS(Q4.)
where Q4 = {x € Q| z > 0} (1). Secondly, we argue why PBS(Q4) C PBS(Np) (2).

(1) Let C € PBS(Q) via a PBS (P, f) where P is a sequence of ¢ 2k-ary polynomials over
Q. We outline a PBS (P, f') over Q4 which shows that C is in PBS(Q4). This construction
relies on the following observation. Given a € Q let |a| denote its absolute value and sign(a)
equals —1 if a is negative and 1 otherwise. For n € N and @ € Q" let |d| = (Jai],...,|an|) and
sign(a@) = (sign(ay), . ..,sign(a,)). For all polynomials p, ¢: Q" — Q and sign patterns § € {—1,1}"
there exist polynomials p’,¢': Q7 — Q4 such that for all @ € Q" with sign(@) = § it holds that
p(@) < q(a) iff p'(|@]) < ¢’(|d@]). For example, consider the polynomials p(z,y,z) = #2y32 + y and
q(z,y,z) = z and the sign pattern (—1,1, —1) for (z,y, z). If we only consider inputs with this sign
pattern then it holds that p(z,vy, 2) < q(x,y, 2) iff |y| + |2| < |z[*|y]?|2|.

R:—/ 57—/
p q

For each variable in (P, f) we have two variables in the new PBS (P’, f"). The first one is used to
store the absolute value of the original variable and the second one encodes the sign. Let G be a graph
that is in gr(P, f) via a labeling £: V/(G) — QF. We derive the following labeling ¢': V(G) — Q2"
from £. Givenu € V(G) let £(u) = (u1,...,ux). Weset £'(u) = (Jur],u], ..., |ug|, u),) where u = |u;|
if u; is negative and any other non-negative value if u; is positive. This allows us to infer the sign
pattern and absolute values of the original labeling ¢ from /.

The PBS (P, f') is constructed such that G € gr(P’, ') via £’. The adjacency of two vertices
uw and v depends on the results of p;(¢(u),{(v)) < p;(¢(u),£(v)) for i,j € [g]. The result of these
inequations is determined by checking p'(|¢(u)], |€(v)]) < ¢'(|(w)], |¢(v)]) in (P’, f’) where p’ and ¢
depend on p;, p; and the sign pattern of £(u), ¢(v). This means for every pair ¢, j € [¢] and every sign

12

pattern s € {—1,1}?* there is a pair of polynomials in P’ and additionally P’ has the polynomials
p(21,...,T4x) = x; for i € [4k] to decode the signs.

(2) To see that PBS(Q4.) C PBS(Np) it suffices to make the following observation. For all polynomi-
als p, g: Q’i — Q. there exist polynomials p/, ¢': N2¥ — Ny such that for all @ = (Z—ll, el Z—:) € Qﬁ
it holds that p(a) < q(a) iff p/(a1,b1,...,ak,bk) < ¢ (a1,b1,...,ax,br). The functions p’ and ¢’ can
be obtained from the inequation p < ¢ by multiplying with the denominators. Therefore a PBS
(P, f) over Q4 with 2k variables can be translated into a PBS (P’, f’) over Ny with 4k variables

such that gr(P, f) C gr(P’, f'). O

Lemma 4.4. A graph class C is in PBS iff there exists a quantifier-free logical labeling scheme S
such that C C gr,(9S).

Proof. “=": Let (P, f) be a PBS where P is a sequence of ¢ polynomials over Ny. The PBS
(P, f) can be directly encoded as quantifier-free logical labeling scheme S = (¢, 1). Each of the ¢?
inequations of (P, f) is an atomic formula in ¢ and the propositional part of ¢ must represent the
boolean function f. It follows that gr(P, f) C gr,(S).

“<”: Let S = (¢, c) be a quantifier-free logical labeling scheme. The value c is irrelevant since it
does not affect grp(S). Every atomic formula in ¢ is of the form p < q or p = ¢ where p and ¢ are
expressions over addition and multiplication and therefore represent polynomials. Choose these as
sequence of polynomials P and define f in terms of the boolean formula that is obtained by replacing
every atomic formula in ¢ with a propositional variable. It follows that gr,(S) C gr(P, f). O

Corollary 4.5. GFO4s C PBS C [Factorial N Hereditary]c.

Proof. The inclusion GFO4s C PBS holds for the following reason. Suppose C is in GFO4. Due to
Lemma there exists a quantifier-free logical labeling scheme S such that C C gr (S). From
that and Lemma it directly follows that C is in PBS since gr,(S) C gr,(S). The inclusion
PBS C [Factorial N Hereditary]c follows from PBS C PBS(R) and Lemma [4.2] O

One can also characterize PBS as the set of graph classes that occur as subset of the hereditary
closure of some graph class in GFO; since the hereditary closure enables one to sidestep the size
limitation of the labeling by choosing a sufficiently large graph to increase the maximal value allowed
in the labeling and then taking the relevant subgraph. An interesting consequence of this is that
GFOg4r = PBS if GFOg is closed under hereditary closure.

Fact 4.6. A graph class C is in PBS iff there exists a graph class D in GFOgy such that C C [D]c.

Proof. “=7: Let C € PBS. Due to Lemma there exists a quantifier-free logical labeling scheme
(¢,1) such that C C gr,(¢,1). We show that every graph in C occurs as induced subgraph of some
graph in gr_ (¢, 1) and gr (¢, 1) is in GFOqt due to Lemma

Let G € C. This means G € gr, (¢, 1) via some labeling ¢: V(G) — N&. Let r be the maximal
value in the image of £. Let H be a graph with r vertices whose vertex set is a superset of V(G) and
that is in gro, (¢, 1) via the labeling ¢': V(H) — [r]5 with ¢'(v) = £(v) if v € V(G) and (0,...,0)
otherwise. Clearly, GG is an induced subgraph of H.

“<”: Let C and D be graph classes such that D € GFOg4 and C C [D]c. Since GFO4 C PBS
(Corollary it follows that D € PBS. And since PBS is trivially closed under hereditary closure
and subsets it follows that [D]c and therefore C is in PBS. O

Lemma 4.7. GFO4(<) is closed under hereditary closure.

Proof. We need to show that for every graph class C € GFO4(<) its hereditary closure [C]c is in
GFO4(<). Let C be in GFO4(<) via a logical labeling scheme (¢, ¢) and ¢ has 2k free variables.
We show that [C]c C gr(y, k) and therefore [C]c is in GFOg(<).

13

Let G be a graph in C with n vertices. Since G € C there exists a labeling £: V(G) — [n°]§ which
witnesses that G is in gr(p,c). We convert ¢ into a ‘normalized’ labeling ¢y such that the maximal
value in the image of ¢ is at most kn. Let {z1,...,z,} denote the subset of numbers from [n¢y
that occur in the image of ¢, i.e. for every i € [r] there exists a v € V(G) and j € [k] such that
x; =L (v). Assume the x;’s are ordered, i.e. 1 < x3 < --+ < x,. Replace the numbers in the image
of ¢ with their index minus one, i.e. x; becomes i — 1 and call the new labeling 3. Observe that ¢
is a correct labeling for G since the order relation is maintained by the renumbering, i.e. x; < z;
iff i —1 < j — 1. Moreover, the image of ¢ can contain at most kn different values (r < kn) which
limits the maximal value in the image of ¢y.

Let H be an induced subgraph of G with m vertices. Take the labeling ¢ for G, restrict it to the
vertices in H and normalize it as described above. The restricted labeling contains at most km
different values and therefore the maximal value in the image of the normalized labeling is at most
km, which does not exceed m*. Thus, it witnesses that H is in gr(yp, k). O

Corollary 4.8. If GFO4s(<) = GFO then GFO4 (<) = PBS.

Proof. Let C € PBS. From Fact it follows that there exists a graph class D € GFOg such that
C C [D]c. Assuming GFOq¢(<) = GFOgt, this means D is in GFOq¢(<) and therefore [D]c is in it
as well due to Lemma Due to closure under subsets it follows that C is in GFOg(<). O]

Therefore in order to prove that GFOg¢ (<) # GFOg it suffices to show that GFOq¢(<) # PBS.

5 Algebraic Reductions

Consider the relation between interval and box graphs. Every box graph can be expressed by
intersecting the edge relation of two interval graphs as depicted in Figure [2] since every box can
be represented by two intervals. Also, every planar graph can be expressed by taking the union of
the edge relation of three forests since planar graphs have arboricity at most 3. Additionally, every
forest is a box graph. It follows that every planar graph can be expressed in terms of 6 interval
graphs as \/f‘:1 Interval A Interval. One could say that the adjacency structure of planar graphs
is not more complex than that of interval graphs in a sense since the former can be expressed as
boolean combination of the latter.

We would like to relate the difficulty of finding a labeling scheme with a label decoder of a
particular complexity for one graph class to another. For instance, saying that C reduces to D
(C < D) should mean that a labeling scheme for D can be translated to a labeling scheme for C with
the same complexity. The crucial property required of such a reduction notion is that the different
sets of graph classes that we consider must be closed under it, i.e. C <D and D € GA imply C € GA.
We show that the reduction notion outlined above satisfies this property for all sets of graph classes
considered here.

Figure 2: Box graph as conjunction of two interval graphs

14

This reduction notion can also be used to relate graph classes without labeling schemes. For
instance, if one could reduce two candidates for the implicit graph conjecture to each other, this
would imply that there is a common obstacle that makes finding a labeling scheme for them difficult.
We show that there are two graph classes called dichotomic and linear neighborhoods graphs that
are complete for GFO(=) and GFO(<), respectively. This means every graph class in the respective
set can be reduced to them.

Definition 5.1. We define negation, conjunction and disjunction on graphs and graph classes as
follows. Let G, H be graphs over the same vertex set V.

-G = (V,{(u,v) |u#v e V}\ EQG)) (edge-complement without self-loops)
GNH:=(V,E(G)NE(H)) (intersection of edges in G and H)
GVH:=(V,E(G)UE(H)) (union of edges in G and H)

Let C,D be graph classes.

—C :={-G |G eC}=col
CoD:={GoH|GeC,HeDand V(G)=V(H)} for o€ {V,A}

Let ¢ be a boolean formula with k variables. We write ¢(Cy,...,Cx) to denote the graph class that
results from evaluating ¢ for the graph classes Cy, ..., Cp.

A graph G has arboricity at most k iff G € \/f:1 Forest, it has thickness at most k iff G €
\/f:1 Planar and it has boxicity at most k iff G € /\f:1 Interval.

This definition induces an algebra on graph classes, which satisfies some laws of boolean algebra.
For instance, negation is an involution (-—C = C) and conjunction and disjunction are commutative
and associative. But C V C = C does not hold for all graph classes C because Forest V Forest is the
class of graphs with arboricity at most two, which contains the complete graph on 3 vertices Kj.
The next lemma implies that all laws of boolean algebra where each variable occurs only once on
each side of the equation are satisfied.

Definition 5.2. Let f be a k-ary boolean function. We define the functions f’ and f” based on f
as follows. Let Gy, ..., G be graphs on the same vertex set V. Then f'(Gq,...,G}) is defined as
the graph G = (V, E) with (u,v) € E iff u # v and f(z1,...,2;) = 1 where z; := [(u,v) € E(G;)]
for i € [k] and u,v € V. Let Cy,...,Ck be graph classes. Then f”(Cy,...,Cx) is defined as the graph
class:

{G3(G,...,Gy) €C1 x -+ x C on vertex set V(G) s.t. G = f'(G1,...,Gp)}

Lemma 5.3. Let ¢ be a boolean formula with k variables where each variable occurs at most once
and let f, be the k-ary boolean function that is represented by ¢. It holds that ¢(Cy,...,Cy) =
fg(Cl, ..., Cx) for all graph classes C1,...,Cy.

Proof. We write C to abbreviate (C1,...,Ck) and Cy for Cy x -+ x Cg.

We show this using structural induction over . Suppose ¢ uses the variables x1,...,x;. The base
case is projection, i.e. ¢ 2 z; for some i € [k]. It holds that ¢(C) = C; by definition and C; = fé,’(é)
directly follows from the definition of fg. For the induction step we have to consider =, A and
V. Let us start with negation. Suppo_§e @ £ —p. Due to the induction hypothesis it holds that

— —

P(C) = f{p’(@ Therefore ¢(C) = = f;(C). It remains to argue that fg(@) = —f"(C), which holds iff:

G € fl(C) & -G € f(C)

15

Let G € f2(C). This holds iff there exist (G1,...,Gy) € Cx such that G = fL(G1,...,Gy). It holds
that f,(G1,...,Gg) = =G since fo(z1,...,21) =1 & fy(z1,...,2) = 0 and therefore -G € f{ﬂ’((?)

Suppose that ¢ £ 1 A ¢y. Since every variable occurs at most once in ¢ we can assume
w.l.o.g. that ¢; only (at most) references the first [variables of ¢ and 1/}_2 the last k — [variables
for some [€ [k — 1]. Due to the induction hypothesis it holds that ¢;(C) = fy (C) for i € {1,2}.

— — — — —

Therefore ¢(C) = f, (C) A f;;,(C). It remains to argue that f7(C) = f (C) A f,(C).

G € fl(C)
& 3(G1,...,Gy) € C: G = fL(G1,...,Gy)
& 3(Gr,...,Gp) €C: G = f}, (G1,...,G) A fh,(G1,..., Gr)
& 3(Hy, ..., Hy), (..., Jx) € Cx: G = fl, (Hy,... . Hp) A fh, (J1, ..o, i)
&G e f(C)Af,(0)

The second equivalence holds because f,(z1,...,xy) is true iff fy, (x1,...,2x) and fy,(z1,...,28)
are true. Let us explain why the fourth statement implies the third statement. Assume G =
f{bl(Hb ce Hk) A f{pQ(Jla e Jk) Then

G:f{pl(Hl,“thJl—&—la'--7Jk:)/\f{/;Q(Hly-~7Hlat]l+17'--,l]k)

because fv,,bl and fz’p2 only depend on the first [and last k — [parameters, respectively. Stated

differently, choose (Hy, ..., H;, Jit1,...,Jk) € 5X as witness for the third statement.
An analogous argument can be made for V. O

Corollary 5.4. Let p,v be boolean formulas with k wvariables where every variable occurs at
most once. If ¢ and ¢ are logically equivalent then they are equivalent on graph classes as well,
i.e. (C1,...,Ck) = ¥(C,...,Ck) holds for all graph classes Cy,...,Cy.

Proof. 1t holds that ¢(C1,...,Cx) = fZ(Cr,...,Cy) and ¥(C1,...,Cx) = fi(C, ..., Cy) where f,, and
fy are the k-ary boolean functions represented by ¢ and 1 (Lemma. Since ¢ and % are logically
equivalent f, = f, and therefore f7 = f/. O

Definition 5.5 (Algebraic Reduction). Let C,D be graph classes. We say C reduces to D, in
symbols C <pp D, if there exists a boolean formula ¢ such that C C ¢(D,..., D). A set of graph
classes A is closed under <gp-reductions if C <gp D and D € A implies C € A. A graph class C is
<pr-complete for a set of graph classes A if C € A and every graph class in A reduces to C. We
write [C]pr to denote the set of graph classes that reduce to C.

It is easy to verify that <gp is reflexive and transitive. Reflexivity follows from the fact that
C C D implies C <gp D.

The argument that planar graphs reduce to interval graphs which we made at the beginning of
this section can be generalized to arbitrary uniformly sparse graph classes since every such graph
class has bounded arboricity and therefore can be expressed as \/f:1 Interval A Interval for some k.

In the following we show that all sets of graph classes considered here are closed under <gp.

Lemma 5.6. A set of graph classes A is closed under <gg-reductions if it is closed under subsets,
negation and conjunction, i.e. A = [Alc and for all graph classes C,D € A it holds that =C,CAD € A.

16

Proof. Assume A is closed under subsets, negation and conjunction. Let C <gp D via a boolean
formula ¢ (C C ¢(D,...,D)) and D € A. If a variable occurs more than once in ¢, rename it to
make each variable occur at most once. Since D is inserted for each variable during evaluation
this does not affect the resulting graph class. Due to Corollary we can replace each occurrence
x Vy in ¢ with =(—x A —y). Since A is closed under negation and conjunction it follows that
©(D,...,D) € A and therefore C € A due to closure under subsets. O]

Fact 5.7. GAC’, GP, GEXP, GR, GALL and [Factorial N\ Hereditary]c are closed under <pg-reductions.

Proof. We show that all classes satisfy the premise of Lemma All of them are closed under
subsets by definition. For all G- classes closure under negation follows from closure under complement
of the sets of languages from which they are derived and closure under conjunction follows from
combining two labeling schemes. Given two labeling schemes S1 = (F1,c1),S2 = (Fy,c2) let
S3 = (F3,01 + 62) with F3 = {($1$2,y1y2) | dn e NVi € {1, 2}: T, Yi € {0, 1}cin AN ($Z,yz) € Fz} It
holds that gr(S1) A gr(S2) = gr(S3) and the computational complexity of Fj is the same as of F}
and F2.

For [Factorial N Hereditary]c it suffices to consider only hereditary graph classes to prove that it
is closed under negation and conjunction. Let C € [Factorial N Hereditary]c. Then its hereditary
closure [C]c is in [Factorial N Hereditary]c by definition and if =[C]c is in [Factorial N Hereditary]c
then —C must be as well since it is a subset of =[C]c. An analogous argument can be made for A.

The complement of a factorial, hereditary graph class remains factorial and hereditary. Thus,
[Factorial N Hereditary]c is closed under negation. Suppose C,D are factorial, hereditary graph
classes. We argue that C A D is factorial and hereditary as well. A graph in C A D on n vertices is
determined by choosing a graph with n vertices from C and D. Therefore C A D contains at most
n@M) . pOM) — O™ graphs which makes it factorial. Assume G € C A D via the graphs H, Ho,
i.e. G = Hy N\ Hy. Then every induced subgraph of G is in C A D by choosing the corresponding
induced subgraphs of H; and Hs. Therefore C A D is hereditary. O

Fact 5.8. GFOy (o), GFO(0) and PBS are closed under <pp-reductions for all o C {<,+, x}.

Proof. Suppose C <gr D via a boolean formula ¢ with [variables (C C ¢(D,...,D)) and S = (¢, ¢)
is a logical labeling scheme with D C gr(S) and v has 2k free variables. We construct a logical
labeling scheme S’ = (¢, ¢) where ¢ has 2kl free variables such that C C gr(S”). Let

¢<x_iua‘ﬁay_i7agi) é%"(w(_iay_i)vaw(ﬁvy_z))

where @; and g; represent k variables for each i € [I].
Now, we argue why C C gr(S’) holds. Suppose G € C. This implies there exist Hy,...,H; € D
with the same vertex set as G such that for all u # v € V(G) it holds that

(u,v) € E(G) & fo(x1,...,2;) = 1 with z; := [(u,v) € E(H;)] for i € [[]

due to Lemma Since H; € D there exists a labeling ¢;: V(G) — [n°]k for every i € [I] which
witnesses that H; is in gr(S). It holds that G is in gr(S’) via the labeling £(v) := (¢1(v), ..., ¢(v)).
Since ¢ does not contain any quantifiers or function/relation symbols that were not already present
in 1, it follows that S’ shows that GFOys(c) and GFO(o) are closed under <gp-reductions. The
same construction works for PBS. O

The fact that all these sets of graph classes are closed under <gp-reductions suggests that algebraic
reductions are a sensible notion of reduction for graph classes in the context of labeling schemes.
Before we continue with treating completeness, let us give an example of a set of graph classes that
is not closed under <pp-reductions: the set of all graph classes with bounded clique-width. Since

17

the closure of path graphs under disjoint union—Ilet’s call it P—has bounded clique-width and
every grid graph can be expressed as disjunction of two graphs from P, it follows that grid graphs
reduce to P. Assuming closure, this would imply that grid graphs have bounded clique-width which
is false.

Fact 5.9. There exists no hereditary graph class that is <gp-complete for GACY.

Proof. For the sake of contradiction, assume there exists a hereditary graph class C that is <pp-
complete for GACY. Since C € GAC? it must hold that C is factorial. This implies C € [Factorial N
Hereditary]c and since this set of graph classes is closed under <gp-reductions (Fact |5.8] .) this implies
GACY C [Factorial N Hereditary]c which contradicts Fact [2 O

This suggests that it is unlikely that there is a nice graph-theoretical characterization for GAC?
and thus proving lower bounds for it likely requires insights beyond graph theory. The same
argument applies to every superset of GACY such as GP.

Maybe not so surprisingly, there is a tight correspondence between quantifier-free logical labeling
schemes and algebraic reductions. The idea is to replace the atomic formulas in such a labeling
scheme with propositional variables and then plugging in the graph classes represented by the
atomic formulas. This yields the same graph class.

We call a logical labeling scheme (¢, ¢) atomic if ¢ is an atomic formula, i.e. it contains no boolean
connectives and quantifiers.

Lemma 5.10 (Algebraic Interpretation). Let o C {<,+, x} s.t. 0 =0 or o contains ‘<’. A graph
class C is in GFOq¢ (o) iff there exist atomic labeling schemes S1, ..., S, over o and a boolean formula
@ with a variables such that C C o(grso(S1), -, 97 (Sa))-

Proof. “=": Let C be in GFO4 (o). Due to Lemma there exists a quantifier-free logical labeling
scheme S = (¢, ¢) over o such that C C gr. (S). Let Aj,..., A, be the atomic formulas of 1) and
let ¢ be the boolean formula with a variables that results from replacing every atomic formula in
with a propositional variable. We assume w.l.o.g. that 1 has 2ak variables xé-, y; for i € [al, j € [Kk]
and the variables used in every atomic formula A; are a subset of {x;, y; |je [k]} This implies

that every variable of 1 occurs in at most one atomic formula.

We claim that C € p(gro (A1, ¢), ..., 8y (Aa; ¢)). Let f, be the a-ary boolean function represented
by . Due to Lemmait holds that ¢(gro(A1,¢), ..., 80 (Aa, €)) = fo(erac(A1,0), - -, 8T (Aa; €)).-
Let G be a graph in C. We need to show that:

G e fcg(groo(AbC)v s vgroo(Aa7C))

This requires us to show that there exist graphs Gi,...,G, over the vertex set V(G) such that
G = f,(G1,...,G,) and G; € gro(4;,¢) for all i € [a]. Since G is in C there exist labelings
i V(G) — [nc]g for every i € [a] such that

(u,v) € E(G) & fo(x1,...,xq) = 1 with x; := [(N, 4 (u), 4;(v)) = Ai]

holds for all u # v € V(G). Let G; be the graph with the same vertex set as G and there is an edge
(u,v) € E(G;) iff (N, 4i(u), li(v)) | A; for all i € [a] and u # v. Then G = f(G1,...,G,) holds by
definition and G; € gro(A;,c) via ¢; for all ¢ € [a].

“«<": Suppose C g 0(8roo(S1)s - -+ 5860 (Sa)). Since GFOy¢(0) is closed under union (Lemma [3.5))

it holds that D = U 8l (Si) is in GFOy¢(o). This implies C <pp D via ¢ because C C ¢(D, ..., D).
Therefore C is in GFOqf(o) due to closure under <pp-reductions (Fact [5.8). O

Lemma 5.11. GFOu(<,+) and GFO4(<, X) are subsets of GFOq(<).

18

Proof. To prove that GFOq¢(<,) is a subset of GFO4(<) for o € {4, x} we argue that it suffices
to show that gr. (S) € GFO4(<) for every atomic labeling scheme S over {<, a}. Assume that is
the case. Given a graph class C € GFOg (<, «), there exist atomic labeling schemes S, ...,S, over
{<,a} and a boolean formula ¢ such that C C ¢(gry(S1), ..., 8rx(Sq)) due to Lemma [5.10] By
assumption it holds that gr. (S1),...,8r,(S.) are in GFO4¢(<) and therefore D = Ule gro.(S;)
is in GFOg (<) due to closure under union (Lemma. It holds that C <gr D via ¢ and due to
closure under <pp-reductions (Fact it follows that C € GFO4(<).

Let S = (¢, ¢) be an atomic labeling scheme over {<,a}. We argue that gr_ (S) is in GFO4(<)
via a logical labeling scheme S’ that we will construct. Using gr..(.5) instead of gr(S) allows us to
assume that addition and multiplication are associative. Assume ¢ has variables x1, ..., g, Y1, - - -, Yk-
The idea is to rearrange the (in)equation such that the variables z1,...,z) are on one side of the
(in)equation and y1, ..., yx are on the other side. This allows us to precompute the required values
in the labeling for S’. Let us show how this works in detail when « is ‘+’ and ¢ uses ‘<’. In that
case ¢ is a linear inequation and can be written as

k k
Z a;z; + biy; < Z cizi + diy;
i—1 i—1

for some a;, b;, ¢;,d; € Ny for i € [k]. This can be rewritten as:

k k
Z(ai — Ci)CL‘Z' < Z(dl — bz)yz
=1 =1

ln(:tl,...,mk) T'n(y17--~7yk)

For n € Nlet [,,, 7, be the functions induced by the left-hand and right-hand expression with signature
[nc]g — R. Let E,, be the union of the image of [, and the image of r,,. Let E, = {e1,...,e,, } for

=,

some z, e Nand e; < ey <---<e,,. ForallneN, @b e [n]% and ¢; = I, (@), ej = ry(b) it holds
that:

(N,@,b) = 1n(@) <ra(b) © e <ej i<
Let S" = (v,d) where (21, T2,y1,%2) = 71 < y2 and d = 2k(c + 1). We show that gr.(S) C gr(5’).
Consider a graph G on n vertices that is in gr,(S) via a labeling ¢: V(G) — [nc]lg. We construct
a labeling ¢': V(G) — [nd]g which shows that G is in gr(S’). For u € V(G) let ¢'(u) = (4,7) with
e; = lp(¢(u)) and e; = r,(€(u)). For all u # v € V(G) it holds that

(u,v) € E(G) & (N, £(u), £(v)) | ¢
< p(l(w) < rp(f(v))
& 0 (u) < th(v)
& WV (), (v) E v

where ¢, denotes the i-th component of the tuple. Since |E,| < 2(n¢ 4 1)F < n?#(+1) = nd it holds
that no value in the image of ¢ exceeds n¢. O

Definition 5.12. A directed graph G with self-loops is strictly dichotomic if for all u,v € V(G) and
a € {in,out} it holds that Ny (u) N Ny (v) = 0 or Ny(u) = Nu(v). A directed graph G is dichotomic
if self-loops can be added to G such that it becomes strictly dichotomic.

The graph with vertices u, v, w and edges (u,v), (v,u), (u,w), (v,w) is dichotomic but not strictly
dichotomic since Noyt(u) and Ny (v) are neither disjoint nor equal but if we add the self-loops (u, u)
and (v,v) then it becomes strictly dichotomic. Every directed forest is strictly dichotomic. Every

19

vertex in a forest has in-degree at most one and therefore Ni,(u) = Niy(v) or Nin(u) N Niy(v) = 0 for
all u,v € V(G). Additionally, the out-neighborhoods of every distinct pair of vertices are disjoint
because every node has a unique parent.

Theorem 5.13. Dichotomic graphs are <pp-complete for GFO(=).

Proof. Since GFO(=) = GFO4(=) (Fact it suffices to show that dichotomic graphs are <gp-
complete for GFOg¢(=). We show that (1) a graph is dichotomic iff it is in gr(S) where S = (¢, 1)
and (71,9, y1,y2) = 71 = yo and (2) gr(S’) C gr(S) holds for every atomic labeling scheme S’
over () (i.e. using only equality). Membership of dichotomic graphs in GFOq¢(=) directly follows
from (1). To see that every graph class C in GFO4¢(=) reduces to dichotomic graphs consider the
following argument. Let C € GFOq¢(=). Due to Lemma there exist atomic labeling schemes
S1,...,8, over () and a boolean formula ¢ such that C C ¢(gr(S1),...,8r(Ss)) (greo(-) = gr(+) since
no overflow can occur without addition or multiplication). Due to (2) gr(S;) C gr(S) holds for all
i € [a]. This implies C C (gr(S),...,gr(S)) and therefore C reduces to dichotomic graphs via ¢.

(1) “=7: Let G be a dichotomic graph with n vertices and let V(G) = [n]. Let G’ be a strictly
dichotomic graph with the same vertex set as G such that G’ = G after removing all self-loops
from G'. Let ~, denote the equivalence relation on V(G) such that u ~4 v iff N, (u) = N4(v) for
a € {in,out} where N, refers to the a-neighborhood of G’. For a vertex v € V(QG) let [v], denote
a representative of the equivalence class of v w.r.t. ~,. For a vertex v € V(G) with in-degree at
least one let [v]pred = [U]our Where u is some vertex in Nij,(v). If v has in-degree zero let [v]preq = 0.
Observe that for all u,v € V(G) it holds that [u]pred = [V]pred Whenever u ~i, v and therefore
[U]pred = [[t)in]prea- It holds that G is in gr(S) via the labeling ¢(v) = ([v]out, [[V]in]pred) because for
all u # v:

(u,v) € E(G) < ([ulout; v) € E(G) < [u]out = [V]pred & [tlout = [[V]in]prea & £1(u) = £2(v)

“<”: Let G be a graph with n vertices that is in gr(S) via a labeling ¢: V(G) — [n]3. Add a
self-loop to every vertex u of G such that ¢1(u) = ¢3(u) and call the resulting graph G’. We argue
that G’ is strictly dichotomic and therefore G is dichotomic. Given two vertices u,v it holds that
either ¢1(u) = ¢1(v) and therefore u and v must have the same out-neighborhood or ¢1(u) # ¢1(v)
and thus their out-neighborhoods must be disjoint. The same argument can be made for the
in-neighborhoods. It follows that G’ is strictly dichotomic.

(2) Let S = (1, ¢) be an atomic labeling scheme over () and let ¢ have z1,...,Zk, y1,. .., Yk as
free variables. If ¢ is x; = x; or y; = y; for some ¢, j € [k] then it is simple to see that every graph in
gr(S’) is dichotomic and therefore gr(S’) C gr(S). Suppose ¢ £ x; = y; for some i, j € [k]. Assume
G € gr(S') via £: V(G) — [n°]k. Since only the i-th and j-th component of £ are considered when
evaluating 1, the other components can be ignored. Let Z, = {¢;(v) |v € V(G)} = {e1,...,e.,}. It
holds that z, < n and G is in gr(S) via ¢'(v) = (a,b) where e, = £;(v) and b is chosen s.t. £;(v) = ¢,
if ¢;(v) € Z,, and b = 0 otherwise. O

Definition 5.14. A directed graph G with self-loops is a strict linear neighborhood graph if for all
u,v € V(G) and « € {in,out} it holds that Ny (u) C Ny (v) or Nyo(v) € Ny(u). A directed graph G
is a linear neighborhood graph if self-loops can be added to G such that it becomes a strict linear
neighborhood graph.

Theorem 5.15. Linear neighborhood graphs are <gp-complete for GFO(<).

Proof. Since GFO(<) = GFO4(<) (Theorem [3.7)) it suffices to show that linear neighborhood graphs
are <gp-complete for GFO4¢(<). We show that (1) a graph is a linear neighborhood graph iff it is
in gr(S) where S = (¢,1) and p(x1, 79, y1,y2) = 71 < y2 and (2) gr(S’) reduces to gr(S) for every
atomic labeling scheme S’ over {<}. Then the same argument as in the proof of Theorem

20

applies, except that gr(.S;) must be replaced with ¢;(gr(5),...,gr(S)) (with gr(S;) <pr gr(S) via
¢;) instead of gr(S) for all i € [a] since we only show reducibility in (2) here.

(1) “=7: Let G be a linear neighborhood graph with n vertices. Let G’ be a strict linear
neighborhood graph with the same vertex set as G such that G’ = G after removing all self-loops
from G’. Let ~j, be the equivalence relation on V(G) such that u ~i, v if Nip(u) = Nip(v) where Ny,
refers to the in-neighborhood of G’. Let Vj be the set of vertices with in-degree zero. Let Vi, ..., Vj
be the equivalence classes of ~i, except Vy such that Ni,(V;) € Nin(V;) for all 4,5 € [k] with i < j.
The following labeling ¢: V(G) — [n]3 shows that G is in gr(S). For u € V(G) let £(u) = (u1,uz)
with u € V,,, and u; is the minimal value such that v € Ni,(Vy,+1) (or uy = k if this minimum
does not exist) for uy,us € [k]o. To see that this is correct, consider an edge (u,v) € E(G) and
(u) = (u1,u2),£(v) = (vi,v2). It holds that u € Niy(v) = Nin(Vi,). Since u € Nin(Vi,) it follows
that u; +1 < v and thus u; < vy. For a non-edge (u,v) ¢ E(G) it holds that u ¢ Niy(v) = Nin(Vy,).
Therefore u; + 1 > v and thus u; £ vs.

“<”: Let G be a graph that is in gr(9) via a labeling ¢: V(G) — [n]3. Add a self-loop to
every vertex u of G such that ¢;(u) < f2(u) and call the resulting graph G’. We argue that
G’ is a strict linear neighborhood graph and therefore G is a linear neighborhood graph. Let
u,v € V(G) and £(u) = (u1,u2), (v) = (vi,v2). If ug < vy then Noyt(v) € Noue(u). If ug > v; then
Nout (1) € Noyt(v). The same holds for ug, v and the in-neighborhoods of u and v. Therefore G’ is
a strict linear neighborhood graph.

(2) Let S" = (1, ¢) be an atomic labeling scheme over {<} and let ¢ have x1,..., 2k, y1,..., Yk
as free variables. If 1) uses ‘=’ then it can be rewritten using ‘<’ since x = y iff =(z <y Vy < z).
Therefore it suffices to consider only atomic labeling schemes using ‘<‘ and show that they reduce
to gr(.5).

If ¢ is x; < z; or y; < y; for some 4, j € [k| then it is easy to see that gr(S’) is dichotomic and
therefore can be expressed as atomic labeling scheme using ‘=". Therefore we assume) = z; < Y
for some i, j € [k]. Let G be a graph with n vertices in gr(S’) via a labeling £: V(G) — [n°]§. Let
Zn ={l;(v) |veV(G)} and Z,, = {eg,...,e,,—1} such that ¢y < e; < --- < e, _1 (the order of
the values is preserved by the indices). Additionally, for € Ny we define 7(z) as p such that e, is
the smallest value in Z,, with x < ep; if such a value does not exist then 7(z) = z,. For example,
if Z, ={3,7,11} = {ep,e1,e2} then m(z) =0for 0 <z <3, w(z) =1for 4 <z <7, w(z) =2 for
8 <z <11 and n(z) = 3 for z > 11. Then G is in gr(S) via £(v) = (a,7(¢;(v))) with e, = ¢;(v). O

Observe that only undirected graph classes can reduce to an undirected graph class since
conjunction, disjunction and negation preserve the symmetry of the edge relation (by undirected we
mean a graph class that only contains graphs with symmetric edge relation). Therefore it trivially
holds that forests or interval graphs cannot be complete for GFO(=) or GFO(<). However, we can
consider the undirected version of these sets where all non-undirected graph classes are removed
from it. For a set of graph classes A let undirected A denote the set of undirected graph classes in A.

Theorem 5.16. No uniformly sparse graph class is <pp-complete for undirected GFO(=).

Proof. We prove this by showing that (1) a graph class C reduces to forests iff C or —C is uniformly
sparse and (2) the set of all complete and empty graphs X is in GFO(=) but neither uniformly
sparse nor co-uniformly sparse. Suppose C is uniformly sparse. Due to (1) it holds that C <gp Forest
and therefore the set of graph classes that reduce to C is a subset of the set of uniformly sparse
graph classes and their complements since D <pp C implies D <gg Forest. This implies X cannot
be reduced to C but it is in GFO(=) due to (2). Therefore C is not complete for undirected GFO(=).

(1) We show that if C <gp Forest then C or —C is uniformly sparse. The other direction follows
from the fact that every uniformly sparse graph class has bounded arboricity. First, observe that
C A'D C C whenever C is closed under edge deletion since E(G A H) C E(G) for all graphs G, H.

21

Analogously, C VD C C if C is closed under edge insertion. Therefore Forest A D C Forest and
—Forest VD C —Forest for all graph classes D.

Suppose C <pp Forest via a boolean formula ¢, i.e. C C p(Forest, ..., Forest). We can assume
w.l.o.g. that ¢ is in DNF due to Lemma . A clause of ¢ is a conjunction of literals and a literal
can be either Forest or —Forest. If a clause C of ¢ contains at least one positive literal (Forest) then
it evaluates to a subset of Forest since Forest AC C Forest. If a clause C' with k literals contains only
negative literals, i.e. C'= /\i’?:1 —Forest, then it evaluates to — \/f:1 Forest which is the complement
of the class of graphs with arboricity at most k. Therefore each clause in ¢ either evaluates to
Forest or — \/?:1 Forest for some k£ € N.

Assume every clause in ¢ evaluates to Forest and ¢ has k clauses. Then ¢(Forest, ..., Forest)
evaluates to the class of graphs with arboricity at most k& which is uniformly sparse and therefore
C, which is a subset of this class, is uniformly sparse as well. If this assumption does not hold
then at least one clause evaluates to A := — \/f:1 Forest for some k£ € N. Since A is closed under
edge insertion it follows that F(Forest, ..., Forest) is a subset of A which is the complement of a
uniformly sparse graph class and therefore this holds for C as well since it is a subset of .A.

(2) X is in GFO(=) via the logical labeling scheme (i, 1) with (1, 22, y1,y2) = o1 = y2 VY1 = 2.
For K,, label every vertex with (1,1) and for =K, label every vertex with (1,2). Neither X nor =X
are uniformly sparse since both contain the set of complete graphs. O

6 Summary & Open Questions

Motivated by trying to prove that a factorial, hereditary graph class does not have a labeling
scheme when restricting the computational complexity of the label decoder, we have introduced
the class of logical labeling schemes (since characterizing even GAC? seems beyond reach). The
quantifier-free fragment GFO is particularly interesting since it is the largest class which is a
subset of both GP and [Factorial N Hereditary]c. Being a subset of the latter suggests that it contains
only well-behaved graph classes from a graph-theoretical point of view. Moreover, it admits an
alternative characterization in terms of label decoders that be computed in constant time on a
RAM, making it interesting from a more practical perspective. We pose the following (probably)
easier to refute variant of the implicit graph conjecture to stimulate the search for lower bounds.

Conjecture 6.1 (Weak Implicit Graph Conjecture). Every factorial, hereditary graph class is in
GFOy, i.e. GFO4¢ = [Factorial N Hereditary]c.

All hereditary graph classes known to be in GAC? are in GFO(<) as well. The only exception
are graph classes with bounded clique-width for which it is unknown if they are in GFO4¢ (or even
PBS). Thus, graph classes with bounded clique-width are candidates for the weak implicit graph
conjecture. Before attempting to prove lower bounds against GFOg, one should try GFO(=) and
GFO(<) first. The various characterizations of these two classes suggest that this is a realistic
endeavor. For instance, are interval graphs in GFO(=)?

A line of inquiry that we find particularly interesting is to determine undirected graph classes
that are complete for undirected GFO(=) and GFO(<). We have shown that no uniformly sparse
graph class can be complete for undirected GFO(=). A candidate for GFO(=) is gr(y, 1) with
© = 21 = y2 Vy1 = 22 (an undirected variant of dichotomic graphs). Interval graphs are a candidate
for GFO(<). Curiously, it is not clear whether k-interval graphs reduce to interval graphs. Last but
not least, showing reductions between candidates for the implicit graph conjecture such as disk and
line segment graphs would also be interesting.

22

GALL

% Thm. 2.3]
GPH [Factorial N Hereditary]c
GP Thm. B] Corol. L]
| GFO
GTCO PBS= [{[C]c | C € GFO4}] -
\\ Fact B
GFO4¢ = label decoder computable on RAM
Thm. 3.4] o without division in constant time
GAC®
[Chal?| Cor. 3.84]
GFO(<) = GFO4¢(<) = GFO4¢(<,+) = GFO4¢(<, x) = [Linear Neighborhood]gr
Thm. [3.7] Thm. (.15]
Fact B.6] Thm. [5.13]
GFO(=) = GFO4¢(=) = [Dichotomic|gp
Thm.
USUUS = [Forest]gr
Figure 3: Overview of the sets of graph classes considered here

References

[ADK17] Stephen Alstrup, Sgren Dahlgaard, and Mathias Baek Tejs Knudsen. “Optimal Induced
Universal Graphs and Adjacency Labeling for Trees”. In: J. ACM 64.4 (Aug. 2017),
27:1-27:22. 18SN: 0004-5411. poOI: 10.1145/3088513. URL: http://doi.acm.org/10.
1145/3088513.

[Atm+15] A. Atminas, A. Collins, V. Lozin, and V. Zamaraev. “Implicit representations and
factorial properties of graphs”. In: Discrete Mathematics 338.2 (2015), pp. 164 —179.
1SSN: 0012-365X. DOI: https://doi.org/10.1016/j.disc.2014.09.008. URL:
http://www.sciencedirect.com/science/article/pii/S0012365X14003690.

[Bon+21] Edouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
“Twin-Width II: Small Classes”. In: Proceedings of the Thirty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms. SODA ’21. Virtual Event, Virginia: Society
for Industrial and Applied Mathematics, 2021, 1977-1996. 1SBN: 9781611976465.

[ChalT] Maurice Chandoo. “Computational Complexity Aspects of Implicit Graph Representa-
tions”. PhD thesis. Hannover, Germany, 2017. DOI: [10.15488/3569.

[KM12] Ross J. Kang and Tobias Miiller. “Sphere and Dot Product Representations of Graphs”.

In: Discrete & Computational Geometry 47.3 (2012), pp. 548-568. 1sSN: 1432-0444. DO

10.1007/s00454-012-9394-8. URL: https://doi.org/10.1007/s00454-012-9394~
8.

23

https://doi.org/10.1145/3088513
http://doi.acm.org/10.1145/3088513
http://doi.acm.org/10.1145/3088513
https://doi.org/https://doi.org/10.1016/j.disc.2014.09.008
http://www.sciencedirect.com/science/article/pii/S0012365X14003690
https://doi.org/10.15488/3569
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1007/s00454-012-9394-8

[KNRY2]

[MM13]

[Mul8§]

[Smo91]

[Spi03]

[Vol99]

Sampath Kannan, Moni Naor, and Steven Rudich. “Implicit Representation of Graphs”.
In: STAM Journal on Discrete Mathematics 5.4 (Nov. 1992), pp. 596-603. 1SSN: 0895-4801
(print), 1095-7146 (electronic).

Colin McDiarmid and Tobias Miiller. “Integer realizations of disk and segment graphs”.
In: Journal of Combinatorial Theory, Series B 103.1 (2013), pp. 114 —143. 1sSN: 0095-
8956. DOI: http://dx .doi.org/10.1016/7 . jctb.2012. 09 .004. URL: http :
//www.sciencedirect.com/science/article/pii/S0095895612000718.

John Harold Muller. “Local Structure in Graph Classes”. Order No: GAX88-11342.
PhD thesis. Atlanta, GA, USA, 1988.

Craig Smorynski. Logical Number Theory I: An Introduction. Logical Number Theory I:
An Introduction Bd. 1. Springer, 1991. 1SBN: 9780387522364.

Jeremy P. Spinrad. Efficient Graph Representations.: The Fields Institute for Research
in Mathematical Sciences. Fields Institute monographs. American Mathematical Soc.,
2003. 1SBN: 9780821871775.

Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 1999. 1sBN: 3540643109.

24

https://doi.org/http://dx.doi.org/10.1016/j.jctb.2012.09.004
http://www.sciencedirect.com/science/article/pii/S0095895612000718
http://www.sciencedirect.com/science/article/pii/S0095895612000718

	Introduction
	Basic Definitions and Classical Complexity
	Logical Labeling Schemes
	Polynomial-Boolean Systems
	Algebraic Reductions
	Summary & Open Questions
	References

